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Existing Automatic Differentiation Tools

Compuঞng derivaঞves is key tomanymachine learning algorithms. Exisঞng
approaches:

Differenঞable DSLs (TensorFlow [1], PyTorch [2], DiffTaichi [3]) provide
a new language where everything is differenঞable. Must rewrite code.
Operator Overloading (Adept [4], JAX [5]) tools provide differenঞable
versions of exisঞng language constructs. May require rewriঞng.
Source Rewriঞng tools staঞcally analyze code to produce a new
gradient funcঞon in the source language.

This hinders applicaঞon of ML to new domains!

// Pseudo-Relativistic C++ nbody simulator
vec3 force(Planet& p1, Planet& p2) {
// Approximate Einstein Field Equation
// Gµν + Λgµν = 8πG

c4 Tµν

}
void step(std::array<Planet> bodies, double dt) {
for (size_t i=0; i<bodies.size(); i++) {

for (size_t j=0; j<bodies.size(); j++) {
if (i == j) continue;
bodies[i].acc += force(bodies[i], bodies[j]) * dt;

}
}
...

}

Figure 1. Currently, ML researchers who want to use exisঞng libraries like the relaঞvisঞc
simulator above, must spend their ঞme fully understanding and rewriঞng the
implementaঞon of the library rather than using it to solve their problem.

Optimization and AD

All tools for exisঞng code operate at the source level prevenঞng opঞmiza-
ঞons before AD without reimplemenঞng compiler analyzes and opঞmiza-
ঞon into the AD tool. While historically not considered necessary, we
demonstrate in Figure 2 how crucial opঞmizaঞon prior to AD can be.

float mag(const float*); //Compute magnitude in O(N)
void norm(float* out, const float* in){

// float res = mag(in); LICM moves mag outside loop
for(int i = 0; i < N; i++) { out[i] = in[i] / mag(in); }

}

// LICM, then AD, O(N)
float res = mag(in);
for(int i = 0; i < N; i++) {

out[i] = in[i] / res;
}
float d_res = 0;
for (int i = 0; i < N; i++) {

d_res += -in[i] * in[i]
* d_out[i]/res;

d_in[i] += d_out[i]/res;

}
∇mag(in, d_in, d_res);

// AD then LICM, O(N^2)
float res = mag(in);
for(int i = 0; i < N; i++) {

out[i] = in[i] / res;
}

for (int i = 0; i < N; i++) {
float d_res = -in[i] * in[i]

* d_out[i]/res;
d_in[i] += d_out[i]/res;
∇mag(in, d_in, d_res);

}
//

Figure 2. When differenঞaঞng norm, running LICM prior to AD is asymptoঞcally faster
than running AD followed by LICM.

Usage

We provide Enzyme packages for PyTorch and TensorFlow that allow users
to import foreign code into their ML workflow without rewriঞng.

import torch
import enzyme
# Create some initial tensor
inputTensor = ...
# Apply foreign function
outputTensor = enzyme("test.c", "f").apply(inputTensor)
# Derive gradient
outputTensor.backward()
print(inputTensor.grad)

Figure 3. Using Enzyme from PyTorch.

Design

Convenঞonal Wisdom: “AD is more effecঞve in high-level compiled lan-
guages (e.g. Julia, Swi[, Rust, Nim) than tradiঞonal ones such as C/C++,
Fortran and LLVM IR […]” -Innes [6]

Enzyme overturns said wisdom by demonstraঞng successful and high-
performance AD on low-level programs. By introducing new interprocedu-
ral analyses, Enzyme is able to extract all the required high-level semanঞcs
necessary to differenঞate.
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Figure 4. Enzyme differenঞates LLVM [7] intermediate representaঞon. This allows
Enzyme to differenঞate a variety of languages and act both before and a[er opঞmizaঞon.

define @relu3(double %x)
entry:
; Shadows for reverse
; alloca %d_x = 0.0
; alloca %d_call = 0.0
; alloca %d_result = 0.0
; Cache of %cmp
; alloca %cmp_cache
%cmp = %x > 0
br %cmp, %iftrue, %end

iftrue:
%call = @pow(%x, 3)
br cond.end

end:
%res = φ[%call, if.true],

[0, entry]↪→

ret %res

rev_end:
; adjoint of return
store %d_res = 1.0
; adjoint of %res phi node
%cmp2 = load %cmp_cache
%tmp = load %d_res
%d_call += if %cmp2, %tmp else 0
store %d_res = 0.0
br %cmp, %rev_iftrue, %rev_entry

rev_iftrue:
; adjoint of %call
%df = 3 * @pow(%x, 2)
%d_x += %df * (load %d_call)
store %d_call = 0.0
br %rev_entry

rev_entry:
%0 = load %d_x
ret %0

Figure 5. Gradient synthesis of relu(pow(x,3)). Le[: the original computaঞon with
comments showing the shadow allocaঞons of acঞve variables that would be added to
the forward pass. Right: reverse pass generated by Enzyme. The full synthesized
gradient funcঞon would combine these (with shadow allocaঞons added), replacing the
return with a branch to the reverse pass.

Evaluation

Performing AD a[er opঞmizaঞon yields a 4.2× speedup over AD before
opঞmizaঞon. This accounts for much, but not all, of Enzyme’s improvement
over prior art (different cache and acঞvity analysis implementaঞons).
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Figure 6. Relaঞve speedup of AD systems on ADBench+ [8] benchmarks, higher is be�er.
A red X denotes programs that an AD system does not produce a correct gradient. A
value of 1.0 denotes the fastest system, whereas 0.5 denotes taking twice as long.

Conclusion

Enzyme is compiler plugin that performs reverse-mode automaঞc differ-
enঞaঞon of LLVM [7]. By performing AD a[er opঞmizaঞon, Enzyme is
able to achieve state-of-the-art performance. It is easy to incorporate into
exisঞng tools and we have demonstrated taking derivaঞves of C/C++ via
Clang, PyTorch [2], and Tensorflow [1]; as well as Julia, Rust, and Swi[.
We’ve also demonstrated dynamic language support by using Enzyme to
differenঞate Julia [9].

For more informaঞon about installing and using Enzyme, please visit
https://enzyme.mit.edu and come to our spotlight presentaঞon!
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