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Beaver hiking up a mountain in 
the style of Monet (DALLE)

DeepL Translator
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    &
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   &
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f1 has 100 instructions
f2 has 10 instructions
f3 has 1000 instructions
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Extending the reasoning of compilers
• Manually specified transformations are the bread and butter of compilers (we 

tend to call the ”optimization passes”)
• Very GOFAI style-symbolic reasoning of “we can prove program A is faster than 

program B”
• Often extend this to say if we think A is faster than B

• Compilers are rampant with manually specified heuristics of when we think A is 
faster than B … and often get it wrong (or at least for some people)
• Hundreds of arbitrarily chosen flags, orderings, etc.
• A change to optimization pass ordering led to a 50% performance reduction for 

NVPTX (https://bugs.llvm.org/show_bug.cgi?id=52037)

…

https://bugs.llvm.org/show_bug.cgi?id=52037


Automated transformations within compilers

• Much work early work focused on using ML to automate the “coarse 
reasoning” of input programs, and select parameters for the fastest program
• Advantage:  all output programs are correct

• Tensor Comprehensions (2017) used genetic algorithms to pick schedules 
(achieved 90+% of peak)
• End-to-end Deep Learning of Optimization Heuristics (2017) used LSTM 

networks to predict

• Yet, you still need to manually specify the structure of the output programs



Future of Optimization + ML
1. Automated Transformations

2.

3.
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• The significant area of AI research in the mid-late 2010’s

• Achieved state of the art skill at various games including Go,
StarCraft, Atari games, etc

• Given a state s and set of possible actions actions(s), pick the optimal action a  
that maximizes a (often end-game) reward.
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• The significant area of AI research in the mid-late 2010’s

• Achieved state of the art skill at various games including Go,
StarCraft, Atari games, etc

• Given a state s and set of possible actions actions(s), pick the optimal action a  
that maximizes a (often end-game) reward.

• Idea: we can model each GOFAI-style compiler optimization as one of these 
actions!



Reinforcement Learning for Compilers
• AutoPhase (2019) used deep RL to predict optimal LLVM compiler pass orderings

• Achieved 28% boost beyond O3, with promising generality results
• At the time, no good way to represent the program in a way that can be analyzed by the 

network
• Demonstrates the significant data and compute problem within RL: bottlenecked by the 

iterations through the reward/action simulator

• Learning to optimize halide with tree search and random programs (2019) used 
beam search (e.g. greedily take the top k)
• ProTuner (2020) used plain old Monte Carlo Tree Search (MCTS) to search for 

schedules

• MLGO (2021) use policy gradients and evolution strategies to optimize for size 
(7% reduction beyond Oz)



Future of Optimization + ML
1. Automated Transformations

2. Neural Program Representation

3.



Unsupervised Learning + Transformers
• Earlier approaches were bottlenecked by the amount of labeled data  
• Train on a large corpus of unlabeled data (all of the internet) & fine-tune 

on a small dataset (some sample phrases in two languages)
• Transformers enable efficient contextual access without serializing inputs
• This is the secret sauce behind modern LLMs (like GPT).

Unlabeled Data General Model
Pretraining

Task
Translate English to French

+
Fine-tune Model

Fine Tuning
La

ng
ua

ge

Fr
en

ch
 to

 E
ng

lis
h



How well can Transformers compile code?

• Goal: Determine effectiveness of end-to-end optimization / generation of 
low level programs
• Enabling Transformers to Understand Low-Level Programs (IEEE HPEC ’22)

https://ieeexplore.ieee.org/abstract/document/9926313
• Whole program analysis and optimization with transformers 
• Leverage autogenerated and unlabeled training data from compiler (clang)
• Build novel LLVM-specific specific optimizations for better training

La
ng

ua
ge

https://ieeexplore.ieee.org/abstract/document/9926313


Why ML on Low-Level Code Is Hard

%5 = phi i64 [ 0, %2 ], [ %11, %4 ]
%6 = getelementptr inbounds double, double* %1, i64 %5
%7 = load double, double* %6, align 8, !tbaa !4
%8 = call double @mag(double* noundef %1) #2
%9 = fdiv double %7, %8
%10 = getelementptr inbounds double, double* %0, i64 %5
store double %9, double* %10, align 8, !tbaa !4
%11 = add nuw nsw i64 %5, 1
%12 = icmp eq i64 %11, 100
br i1 %12, label %end, label %loop

ret void

define void @norm(double* noalias %0, double* noalias %1)
  br label %loop

declare double @mag(double* readonly) argmemonly //Compute magnitude in O(n)
double mag(double[] x) ) { … }

//Compute norm in O(n^2)
void norm(double[] out, double[] in) {

  for (int i=0; i<n; i++) {
out[i] = in[i] / mag(in);

}
}

• More verbose and precise semantics
• -> Ensures that optimizations can be performed (moving mag outside loop 

requires mag to be readonly)

Loop invariant code motion 
(LICM) 



Case study: Translating C to (Optimized) LLVM

double relu3(double x) {
double result;
if (x > 0)
result = pow(x, 3);

else
result = 0;

return result;
}

define double @relu3(double %0) {

%2 = fcmp ogt double %0, 0

br %2, label %3 , label %5

3: 

%4 = tail call double @pow (%0, double 
3)

br label %5

5:

%6 = phi [%4, %3], [0, %1]

ret %6

}



Data & Results
• Csmith (randomly generated compilable C programs) (Yang et al., 2011)
• Project CodeNet (web scrape of competitive programming online judging 

websites) (Puri et al., 2021)
• AnghaBench (1 million selected and cleaned compilable GitHub C programs) 

(de Silva et al., 2021)

Csmith Project CodeNet AnghaBench

Training Accuracy 90.73% 93.66% 99.03%

Reference Match N/A 5.76 13.33%

BLEU Score (0~100) 43.39 51.01 69.21

Model evaluation result on the 3 datasets 



Preprocessing Modification & Optimizations
• Expanding preprocessing directives with clang –E such as pasting the definition of 

imported libraries, compile-time constants, and more.

• Reduce redundancies in program grammar while making sure to faithfully restore 
the original

 
%4 = load i32**, i32*** %2 %4 = load i32** %2

#ifdef AARCH64
#define size_t int64_t
#else 
#define size_t int32_t
#endif 
size_t getsize(); int64_t getsize();



Preprocessing Modification, cont. 
• Prefix Notation 

• A * B + C / D => + * A B / C D 
• Prefix notation previously shown effective for mathematics (Griffith & Kalita, 2019)

• Writing out definitions of global variables so they can be recoverable on the function 
level, which makes the programs more complex

{ [4 x i8], i32, { i8, i32 }} STRUCT 5 ARR 3 4 x i8 i32 STRUCT 2 i8 i32 

%struct.1 = type { i32, i32, i64 }
...
%2 = alloca %struct.1, i64 %1

%struct.1 = type { i32, i32, i64 }
...
%2 = alloca { i32, i32, i64 }, i64 %1



Ablation Analysis

Original Cleaned Prefix Prefix & Global -O1

Training 
Accuracy 99.03% 97.84% 99.60% 99.36% 97.87%

Reference 
Match 13.33% 21.15% 49.57% 38.61% 38.73%

BLEU Score 
(0~100) 69.21 72.48 87.68 82.55 77.03

Compilation 
Acc. 14.97% N/A N/A 43.07% N/A

Ablation studies of model evaluation result on AnghaBench dataset

• The various cleanup simplifies LLVM IR programs and boosts accuracy, while 
the expansion of global variables ensures compilation but reduces accuracy
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1. Automated Transformations

2. Neural Program Representation

3. Unlabeled Data [1]

[1] ComPile: A Large IR Dataset from Production Sources (2023), 

Aiden Grossman, Ludger Paehler, Konstantinos Parasyris, Tal Ben-Nun, Jacob Hegna, William Moses, Jose 
M Monsalve Diaz, Mircea Trofin, Johannes Doerfert

https://arxiv.org/search/cs?searchtype=author&query=Grossman,+A
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Problems in AI (including for Code)
• Language models are designed to predict tokens that are seem likely to appear at 

the next location
• This means that when they respond to queries, they aren’t really ``solving’’ the 

problem in the conventional sense, and may output answers that seem 
reasonable, but make no sense (hallucinations).
• This is exacerbated for symbolic reasoning tasks like math, or programming

…the very tasks the first AI systems were designed to do 



Future of Optimization + ML
1. Automated Transformations

2. Neural and Symbolic Program Representation

3. Unlabeled Data



Summary
• AI and optimization have a long, and very intertwined history
• There have been many interesting optimization + ML studies, many of which have 

followed corresponding trends in AI
• However, we’re still quite far from the “dream” compiler that auto optimizes all of 

your code perfectly well
• To get there we will need to look not just at the current trends, but also the history 

of these fields
• There’s a lot of opportunity for work here, please reach out if interested!


