

# LLVM in the age of LLMs: Machine Learning for IR, Optimization, & More



William S. Moses

University of Illinois, Urbana Champaign wsmoses@Illinois.edu



Al4Dev Workshop @ SC'23 Nov 13, 2023

• An introduction to an assortment of interesting and relevant ML and compiler literature leading to why the community is focused on LLM's

- An introduction to an assortment of interesting and relevant ML and compiler literature leading to why the community is focused on LLM's
- Will provide an intuition for effectively combining compilers + ML through a series of personal case studies

- An introduction to an assortment of interesting and relevant ML and compiler literature leading to why the community is focused on LLM's
- Will provide an intuition for effectively combining compilers + ML through a series of personal case studies
- A biased view of interesting places for the field to go.

- An introduction to an assortment of interesting and relevant ML and compiler literature leading to why the community is focused on LLM's
- Will provide an intuition for effectively combining compilers + ML through a series of personal case studies
- A biased view of interesting places for the field to go.

- An introduction to an assortment of interesting and relevant ML and compiler literature leading to why the community is focused on LLM's
- Will provide an intuition for effectively combining compilers + ML through a series of personal case studies
- A biased view of interesting places for the field to go.

# This Talk is <u>Not</u>

• A comprehensive look at all the related literature (aka not your next paper's related work section)

- An introduction to an assortment of interesting and relevant ML and compiler literature leading to why the community is focused on LLM's
- Will provide an intuition for effectively combining compilers + ML through a series of personal case studies
- A biased view of interesting places for the field to go.

- A comprehensive look at all the related literature (aka not your next paper's related work section)
- An intro course on ML for HPC

- An introduction to an assortment of interesting and relevant ML and compiler literature leading to why the community is focused on LLM's
- Will provide an intuition for effectively combining compilers + ML through a series of personal case studies
- A biased view of interesting places for the field to go.

- A comprehensive look at all the related literature (aka not your next paper's related work section)
- An intro course on ML for HPC
- Your PhD thesis

- An introduction to an assortment of interesting and relevant ML and compiler literature leading to why the community is focused on LLM's
- Will provide an intuition for effectively combining compilers + ML through a series of personal case studies
- A biased view of interesting places for the field to go.

- A comprehensive look at all the related literature (aka not your next paper's related work section)
- An intro course on ML for HPC
- Your PhD thesis
- ... Or is it? (<u>https://grad.illinois.edu/admissions/apply</u>)



List me 4 examples of the most impressive AI tools or outcomes



As of my last knowledge update in January 2022, here are four examples of impressive AI  $\square \square \square \square$  tools or outcomes:

- 1. AlphaGo by DeepMind (2016):
- 2. GPT-3 by OpenAl (2020):
- 3. DeepMind's AlphaFold (2020):
- 4. IBM Watson for Oncology (2013):



List me 4 examples of the most impressive AI tools or outcomes



ዕፊም As of my last knowledge update in January 2022, here are four examples of impressive Al tools or outcomes:

- 1. AlphaGo by DeepMind (2016):
- 2. GPT-3 by OpenAl (2020):
- 3. DeepMind's AlphaFold (2020):
- 4. IBM Watson for Oncology (2013):



| Beaver hiking up a mountain in |
|--------------------------------|
| the style of Monet (DALLE)     |

English V



### Why is AI so successful now (and not 20 years ago)?

### Why is AI so successful now (and not 20 years ago)?

#### How do we emulate that success in program optimization?

### Why is AI so successful now (and not 20 years ago)?

How do we emulate that success in program optimization?

...and push even further?

- "Good Old Fashioned AI" (GOFAI) aka Symbolic AI
  - Can we build AI by writing a sufficiently expressive set of rules?
  - Led to creation of LISP programming language, computer time sharing, and many more "non-Al"



- "Good Old Fashioned AI" (GOFAI) aka Symbolic AI
  - Can we build AI by writing a sufficiently expressive set of rules?
  - Led to creation of LISP programming language, computer time sharing, and many more "non-Al"
- Analyzing language by modelling stages of language (tokenizing, features, etc)
  - Parse Tree



- "Good Old Fashioned AI" (GOFAI) aka Symbolic AI
  - Can we build AI by writing a sufficiently expressive set of rules?
  - Led to creation of LISP programming language, computer time sharing, and many more "non-Al"
- Analyzing language by modelling stages of language (tokenizing, features, etc)
  - Parse Tree
- Sophisticated filters to identify information in images
  - Canny Edge Detection (1986)







- "Good Old Fashioned AI" (GOFAI) aka Symbolic AI
  - Can we build AI by writing a sufficiently expressive set of rules?
  - Led to creation of LISP programming language, computer time sharing, and many more "non-Al"
- Analyzing language by modelling stages of language (tokenizing, features, etc)
  - Parse Tree
- Sophisticated filters to identify information in images
  - Canny Edge Detection (1986)
- Artificial Neural Networks









- "Good Old Fashioned AI" (GOFAI) aka Symbolic AI
  - Can we build AI by writing a sufficiently expressive set of rules?
  - Led to creation of LISP programming language, computer time sharing, and many more "non-AI"
- Analyzing language by modelling stages of language (tokenizing, features, etc)
  - Parse Tree
- Sophisticated filters to identify information in images
  - Canny Edge Detection (1986)
- Artificial Neural Networks





- "Good Old Fashioned AI" (GOFAI) aka Symbolic AI
  - Can we build AI by writing a sufficiently expressive set of rules?
  - Led to creation of LISP programming language, computer time sharing, and many more "non-Al"
- Analyzing language by modelling stages of language (tokenizing, features, etc)
  - Parse Tree
- Sophisticated filters to identify information in images
  - Canny Edge Detection (1986)
- Artificial Neural Networks



 Symbolic AI lost out as it is bottlenecked by the need to manually specify transformations

- Symbolic AI lost out as it is bottlenecked by the need to manually specify transformations
- Fortunately in compilers we never have to manually specify transformations

```
y(i) = A(i,j) * x(j)
```

```
int compute(taco tensor t *y, taco tensor t *A, taco tensor t *x) {
 int y1 dimension = (int) (y->dimensions[0]);
 double* restrict y vals = (double*) (y->vals);
  int A1 dimension = (int) (A->dimensions[0]);
 int* restrict A2 pos = (int*)(A->indices[1][0]);
 int* restrict A2 crd = (int*)(A->indices[1][1]);
 double* restrict A vals = (double*) (A->vals);
  int x1_dimension = (int) (x->dimensions[0]);
 double* restrict x vals = (double*) (x->vals);
  #pragma omp parallel for schedule(runtime)
  for (int32 t i0 = 0; i0 < ((A1 dimension + 31) / 32); i0++) {
    for (int32 t i1 = 0; i1 < 32; i1++) {
     int32 t i = i0 * 32 + i1;
     if (i >= A1 dimension)
        continue;
     double tjy val = 0.0;
      for (int32 t jA = A2 pos[i]; jA < A2 pos[(i + 1)]; jA++) {
        int32 t j = A2 crd[jA];
        tjy val += A vals[jA] * x vals[j];
      y vals[i] = tjy val;
  roturn 0
```

- Symbolic AI lost out as it is bottlenecked by the need to manually specify transformations
- Fortunately in compilers we never have to manually specify transformations



int compute(taco tensor t \*y, taco tensor t \*A, taco tensor t \*x) {
 int y1 dimension = (int)(y->dimensions[0]);
 double\* restrict y vals = (double\*)(y->vals);
 int A1 dimension = (int)(A->dimensions[0]);
 int\* restrict A2\_rose = (int\*)(A->indices[1][0]);
 int\* restrict A2\_rose = (int\*)(A->indices[1][0]);
 int\* restrict A2\_rose = (double\*)(A->vals);
 int x1 dimension = (int)(x->dimensions[0]);
 double\* restrict A\_vals = (double\*)(x->vals);
 int x1 dimension = (int)(x->dimensions[0]);
 double\* restrict x\_vals = (double\*)(x->vals);

#pragma omp parallel for schedule(runtime)
for (int32 t i0 = 0; i0 < (Ai dimension + 31) / 32); i0++) {
 for (int32 t i1 = 0; i1 < 32; i1++) {
 int32 t i = 10 \* 32 + 11;
 if (i >= Ai\_dimension)
 continue;

double tjy\_val = 0.0; for (in32\_t ja = A2\_pos[i]; jA < A2\_pos[(i + 1)]; jA++) ( in132\_t j = A2\_crd[jA]; tjy\_val += A\_vals[jA] \* x\_vals[j]; y vals[i] = tjv val;

} return 0; int compute(laco\_tensor\_t \*y, taco\_tensor\_t \*A, taco\_tensor\_t \*x) {
 int yi\_dimension = (int) (y->dimension[]);
 double\* restrict y\_vals = (double\*)(y->vals);
 int A, dimension = (int) (A->indimens[0]);
 int\* metrict Al\_pos = (int\*) (A>>indimes[0][0]);
 int duble\* restrict x\_vals = (double\*) (A>vals);
 int x\_d\_dimension = (int) (X>damensions[0]);
 double\* restrict x\_vals = (double\*) (A>vals);

#pragma omp parallel for schedule(static)
for (int32\_t py = 0; py < y1\_dimension; py++) {
 y\_vals[py] = 0.0;</pre>

```
iA0 = A1_crd(iA);
i = A1_crd(iA);
if (iA0 == 1) {
    double ty_val = 0.0;
    for (int32_t j A = A2_pos[iA]; jA < A2_pos[(iA + 1)]; jA++) {
        int32_t j = A2_crd[jA];
        ty_val == A_vals[jA] * x_vals[j];
        y_vals[i] = ty_val;
        y_vals[i] = ty_val;
        ia += (int32_t)(iA0 == 1);
        iA == (int32_t)(iA0 == 1);
        ia = A1_crd[iA];
        i = A1_crd[iA];
        i = i = 10 * 32;
        }
    return 0;
```

int compute(Laoy Lensor t \*y, Laoy Lensor t \*a, Laoy Lensor t \*x) {
 int y/ dimension = (int) (y->limension[]);
 double\* restrict y\_vale = (double\*)(y->vale);
 int A\_dimension = (int) (A->limension[]);
 int restrict Al\_crds = (int\*) (A->limeics[]]);
 int restrict A\_crds = (double\*) (A->vals);
 int restrict x l\_ords = (double\*) (A->vals);
 if x restrict x l\_ords = (A->vals\*) (A->vals\*);
 if x restrict x

#pragma omp parallel for schedule(static)
for (int32\_t py = 0; py < y1\_dimension; py++) {
 y\_vals(py) = 0.0;
}</pre>

#pragma omp parallel for schedule(runtime) for (int32 t i0 = 0; i0 < ((A1 dimension + 31) / 32); i0++) { int32 t pA1 begin = i0 \* 32; int32\_t iA = taco\_binarySearchAfter(A1\_crd, A1\_pos[0], A1\_pos[1], pA1\_begin); int32 t pA1 end = A1 pos[1]; int32 t iA0 = A1 crd[iA]; int32\_t i = A1\_crd[iA]; int32\_t i1 = i - i0 \* 32. int32\_t i1\_end = 32; while (iA < pA1\_end && i1 < i1\_end) {
 iA0 = A1 crd[iA];</pre> i = A1 crd[iA]; if (iA0 == i) { double tjy val = 0.0; double cjy val city, int32\_t jA = A2\_pos[iA]; int32\_t pA2\_end = A2\_pos[(iA + 1)]; int32\_t jx = x1\_pos[0]; int32\_t px1\_end = x1\_pos[1]; while (iA < pA2 end && ix < px1 end) { int32\_t jA0 = A2\_crd[jA]; int32\_t jX0 = x1\_crd[jX]; int32\_t j = TACO\_MIN(jA0,jx0); if (jA0 == j && jx0 == j) tjy\_val += A\_vals[jA] \* x\_vals[jx]; iA += (int32 t)(iA0 == i); jx += (int32 t) (jx0 == j); y\_vals[i] = tjy\_val; iA += (int32\_t)(iA0 == i); iA0 = A1\_crd[iA]; i = A1 crd[iA]; i1 = i - i0 \* 32; return 0;

...

# Extending the reasoning of compilers

- Manually specified transformations are the bread and butter of compilers (we tend to call the "optimization passes")
- Very GOFAI style-symbolic reasoning of "we can prove program A is faster than program B"
  - Often extend this to say if we *think* A is faster than B
- Compilers are rampant with manually specified heuristics of when we think A is faster than B ... and often get it wrong (or at least for some people)

...

- Hundreds of arbitrarily chosen flags, orderings, etc.
- A change to optimization pass ordering led to a 50% performance reduction for NVPTX (<u>https://bugs.llvm.org/show\_bug.cgi?id=52037</u>)

### Automated transformations within compilers

- Much work early work focused on using ML to automate the "coarse reasoning" of input programs, and select parameters for the fastest program
- Advantage: all output programs are correct
- Tensor Comprehensions (2017) used genetic algorithms to pick schedules (achieved 90+% of peak)
- End-to-end Deep Learning of Optimization Heuristics (2017) used LSTM networks to predict
- Yet, you still need to manually specify the structure of the output programs

### Future of Optimization + ML

1. Automated Transformations

2.

3.

# (Deep) Reinforcement Learning

- The significant area of AI research in the mid-late 2010's
- Achieved state of the art skill at various games including Go, StarCraft, Atari games, etc



 Given a state s and set of possible actions actions(s), pick the optimal action a that maximizes a (often end-game) reward.

# (Deep) Reinforcement Learning

- The significant area of AI research in the mid-late 2010's
- Achieved state of the art skill at various games including Go, StarCraft, Atari games, etc



- Given a state s and set of possible actions actions(s), pick the optimal action a that maximizes a (often end-game) reward.
- Idea: we can model each GOFAI-style compiler optimization as one of these actions!

# Reinforcement Learning for Compilers

- AutoPhase (2019) used deep RL to predict optimal LLVM compiler pass orderings
  - Achieved 28% boost beyond O3, with promising generality results
  - At the time, no good way to represent the program in a way that can be analyzed by the network
  - Demonstrates the significant data and compute problem within RL: bottlenecked by the iterations through the reward/action simulator
- Learning to optimize halide with tree search and random programs (2019) used beam search (e.g. greedily take the top k)
- ProTuner (2020) used plain old Monte Carlo Tree Search (MCTS) to search for schedules
- MLGO (2021) use policy gradients and evolution strategies to optimize for size (7% reduction beyond Oz)

### Future of Optimization + ML

- 1. Automated Transformations
- 2. Neural Program Representation

### Unsupervised Learning + Transformers

- Earlier approaches were bottlenecked by the amount of labeled data
- Train on a large corpus of unlabeled data (all of the internet) & fine-tune on a small dataset (some sample phrases in two languages)
- Transformers enable efficient contextual access without serializing inputs
- This is the secret sauce behind modern LLMs (like GPT).



### How well can Transformers compile code?

- Goal: Determine effectiveness of end-to-end optimization / generation of low level programs
- Enabling Transformers to Understand Low-Level Programs (IEEE HPEC '22) <u>https://ieeexplore.ieee.org/abstract/document/9926313</u>
- Whole program analysis and optimization with transformers
- Leverage autogenerated and unlabeled training data from compiler (clang)
- Build novel LLVM-specific specific optimizations for better training

### Why ML on Low-Level Code Is Hard



ret void

- More verbose and precise semantics
- -> Ensures that optimizations can be performed (moving mag outside loop requires mag to be readonly)

# Case study: Translating C to (Optimized) LLVM



### Data & Results

- Csmith (randomly generated compilable C programs) (Yang et al., 2011)
- Project CodeNet (web scrape of competitive programming online judging websites) (Puri et al., 2021)
- AnghaBench (1 million selected and cleaned compilable GitHub C programs) (de Silva et al., 2021)

| Model evaluation | result on t | the 3 datasets |
|------------------|-------------|----------------|
|------------------|-------------|----------------|

|                    | Csmith | Project CodeNet | AnghaBench |
|--------------------|--------|-----------------|------------|
| Training Accuracy  | 90.73% | 93.66%          | 99.03%     |
| Reference Match    | N/A    | 5.76            | 13.33%     |
| BLEU Score (0~100) | 43.39  | 51.01           | 69.21      |

# Preprocessing Modification & Optimizations

• Expanding preprocessing directives with clang –E such as pasting the definition of imported libraries, compile-time constants, and more.



 Reduce redundancies in program grammar while making sure to faithfully restore the original



### Preprocessing Modification, cont.

- Prefix Notation
  - A \* B + C / D => + \* A B / C D
  - Prefix notation previously shown effective for mathematics (Griffith & Kalita, 2019)



• Writing out definitions of global variables so they can be recoverable on the function level, which makes the programs more complex

```
%struct.1 = type { i32, i32, i64 }
...
%2 = alloca %struct.1, i64 %1
%struct.1 = type { i32, i32, i64 }
...
%2 = alloca { i32, i32, i64 }, i64 %1
```

### Ablation Analysis

Ablation studies of model evaluation result on AnghaBench dataset

|                       | Original | Cleaned | Prefix | Prefix & Global | -01    |
|-----------------------|----------|---------|--------|-----------------|--------|
| Training<br>Accuracy  | 99.03%   | 97.84%  | 99.60% | 99.36%          | 97.87% |
| Reference<br>Match    | 13.33%   | 21.15%  | 49.57% | 38.61%          | 38.73% |
| BLEU Score<br>(0~100) | 69.21    | 72.48   | 87.68  | 82.55           | 77.03  |
| Compilation<br>Acc.   | 14.97%   | N/A     | N/A    | 43.07%          | N/A    |

• The various cleanup simplifies LLVM IR programs and boosts accuracy, while the expansion of global variables ensures compilation but reduces accuracy

### Future of Optimization + ML

- 1. Automated Transformations
- 2. Neural Program Representation
- 3. Unlabeled Data

### Future of Optimization + ML

- 1. Automated Transformations
- 2. Neural Program Representation
- 3. Unlabeled Data [1]

[1] ComPile: A Large IR Dataset from Production Sources (2023),

<u>Aiden Grossman, Ludger Paehler, Konstantinos Parasyris, Tal Ben-Nun, Jacob Hegna, William Moses, Jose M Monsalve Diaz, Mircea Trofin, Johannes Doerfert</u>

# Problems in AI (including for Code)

- Language models are designed to predict tokens that are seem likely to appear at the next location
- This means that when they respond to queries, they aren't really ``solving'' the problem in the conventional sense, and may output answers that seem reasonable, but make no sense (hallucinations).
- This is exacerbated for symbolic reasoning tasks like math, or programming ...the very tasks the first AI systems were designed to do

### Future of Optimization + ML

- 1. Automated Transformations
- 2. Neural *and Symbolic* Program Representation
- 3. Unlabeled Data

### Summary

- Al and optimization have a long, and very intertwined history
- There have been many interesting optimization + ML studies, many of which have followed corresponding trends in AI
- However, we're still quite far from the "dream" compiler that auto optimizes all of your code perfectly well
- To get there we will need to look not just at the current trends, but also the history of these fields
- There's a lot of opportunity for work here, please reach out if interested!