
LLVM in the age of LLMs: Machine 
Learning for IR, Optimization, & More

AI4Dev Workshop @ SC’23
Nov 13, 2023

William S. Moses

University of Illinois, Urbana Champaign
wsmoses@Illinois.edu



This Talk



This Talk
• An introduction to an assortment of interesting and relevant ML and compiler 

literature leading to why the community is focused on LLM’s



This Talk
• An introduction to an assortment of interesting and relevant ML and compiler 

literature leading to why the community is focused on LLM’s
• Will provide an intuition for effectively combining compilers + ML through a 

series of personal case studies



This Talk
• An introduction to an assortment of interesting and relevant ML and compiler 

literature leading to why the community is focused on LLM’s
• Will provide an intuition for effectively combining compilers + ML through a 

series of personal case studies
• A biased view of interesting places for the field to go.



This Talk
• An introduction to an assortment of interesting and relevant ML and compiler 

literature leading to why the community is focused on LLM’s
• Will provide an intuition for effectively combining compilers + ML through a 

series of personal case studies
• A biased view of interesting places for the field to go.

This Talk is Not



This Talk
• An introduction to an assortment of interesting and relevant ML and compiler 

literature leading to why the community is focused on LLM’s
• Will provide an intuition for effectively combining compilers + ML through a 

series of personal case studies
• A biased view of interesting places for the field to go.

This Talk is Not
• A comprehensive look at all the related literature (aka not your next paper’s related 

work section)



This Talk
• An introduction to an assortment of interesting and relevant ML and compiler 

literature leading to why the community is focused on LLM’s
• Will provide an intuition for effectively combining compilers + ML through a 

series of personal case studies
• A biased view of interesting places for the field to go.

This Talk is Not
• A comprehensive look at all the related literature (aka not your next paper’s related 

work section)
• An intro course on ML for HPC



This Talk
• An introduction to an assortment of interesting and relevant ML and compiler 

literature leading to why the community is focused on LLM’s
• Will provide an intuition for effectively combining compilers + ML through a 

series of personal case studies
• A biased view of interesting places for the field to go.

This Talk is Not
• A comprehensive look at all the related literature (aka not your next paper’s related 

work section)
• An intro course on ML for HPC
• Your PhD thesis



This Talk
• An introduction to an assortment of interesting and relevant ML and compiler 

literature leading to why the community is focused on LLM’s
• Will provide an intuition for effectively combining compilers + ML through a 

series of personal case studies
• A biased view of interesting places for the field to go.

This Talk is Not
• A comprehensive look at all the related literature (aka not your next paper’s related 

work section)
• An intro course on ML for HPC
• Your PhD thesis
• … Or is it? (https://grad.illinois.edu/admissions/apply)

https://grad.illinois.edu/admissions/apply




Beaver hiking up a mountain in 
the style of Monet (DALLE)

DeepL Translator



Why is AI so successful now (and not 20 years ago)?



Why is AI so successful now (and not 20 years ago)?

How do we emulate that success in program optimization?



Why is AI so successful now (and not 20 years ago)?

How do we emulate that success in program optimization?

 …and push even further?



Early Successful Efforts in AI

• “Good Old Fashioned AI” (GOFAI) aka Symbolic AI
• Can we build AI by writing a sufficiently expressive set of rules?
• Led to creation of LISP programming language, computer time 

sharing, and many more “non-AI” 



Early Successful Efforts in AI

• “Good Old Fashioned AI” (GOFAI) aka Symbolic AI
• Can we build AI by writing a sufficiently expressive set of rules?
• Led to creation of LISP programming language, computer time 

sharing, and many more “non-AI” 

• Analyzing language by modelling stages of language 
(tokenizing, features, etc)
• Parse Tree
 



Early Successful Efforts in AI

* + ..

• “Good Old Fashioned AI” (GOFAI) aka Symbolic AI
• Can we build AI by writing a sufficiently expressive set of rules?
• Led to creation of LISP programming language, computer time 

sharing, and many more “non-AI” 

• Analyzing language by modelling stages of language 
(tokenizing, features, etc)
• Parse Tree

• Sophisticated filters to identify information in images
• Canny Edge Detection (1986)

 



Early Successful Efforts in AI

• “Good Old Fashioned AI” (GOFAI) aka Symbolic AI
• Can we build AI by writing a sufficiently expressive set of rules?
• Led to creation of LISP programming language, computer time 

sharing, and many more “non-AI” 

• Analyzing language by modelling stages of language 
(tokenizing, features, etc)
• Parse Tree

• Sophisticated filters to identify information in images
• Canny Edge Detection (1986)

• Artificial Neural Networks



Early AI <-> Compiler Optimization



Early AI <-> Compiler Optimization
y(i) = A(i,j) * x(j)

for (int32_t i0 = 0; i0 < ((A1_dimension + 31) / 32); i0++) {
    for (int32_t i1 = 0; i1 < 32; i1++) {
      int32_t i = i0 * 32 + i1;
      double tjy_val = 0.0;
      for (int32_t jA = A2_pos[i]; jA < A2_pos[(i + 1)]; jA++) {
        int32_t j = A2_crd[jA];
        tjy_val += A_vals[jA] * x_vals[j];
      }
      y_vals[i] = tjy_val;
    }
  }
}

• GOFAI
    &
Program
Transformations



Early AI <-> Compiler Optimization
y(i) = A(i,j) * x(j)

for (int32_t i0 = 0; i0 < ((A1_dimension + 31) / 32); i0++) {
    for (int32_t i1 = 0; i1 < 32; i1++) {
      int32_t i = i0 * 32 + i1;
      double tjy_val = 0.0;
      for (int32_t jA = A2_pos[i]; jA < A2_pos[(i + 1)]; jA++) {
        int32_t j = A2_crd[jA];
        tjy_val += A_vals[jA] * x_vals[j];
      }
      y_vals[i] = tjy_val;
    }
  }
}

• GOFAI
    &
Program
Transformations

• Early NLP
    &
Program AST/IR



Early AI <-> Compiler Optimization
y(i) = A(i,j) * x(j)

for (int32_t i0 = 0; i0 < ((A1_dimension + 31) / 32); i0++) {
    for (int32_t i1 = 0; i1 < 32; i1++) {
      int32_t i = i0 * 32 + i1;
      double tjy_val = 0.0;
      for (int32_t jA = A2_pos[i]; jA < A2_pos[(i + 1)]; jA++) {
        int32_t j = A2_crd[jA];
        tjy_val += A_vals[jA] * x_vals[j];
      }
      y_vals[i] = tjy_val;
    }
  }
}

• GOFAI
    &
Program
Transformations

• Early NLP
    &
Program AST/IR

• Coarse Filters
   &
Program Metrics 

f1 has 100 instructions
f2 has 10 instructions
f3 has 1000 instructions



Early Successful Efforts in AI

• “Good Old Fashioned AI” (GOFAI) aka Symbolic AI
• Can we build AI by writing a sufficiently expressive set of rules?
• Led to creation of LISP programming language, computer time 

sharing, and many more “non-AI” 

• Analyzing language by modelling stages of language 
(tokenizing, features, etc)
• Parse Tree

• Sophisticated filters to identify information in images
• Canny Edge Detection (1986)

• Artificial Neural Networks



Early Successful Efforts in AI

• “Good Old Fashioned AI” (GOFAI) aka Symbolic AI
• Can we build AI by writing a sufficiently expressive set of rules?
• Led to creation of LISP programming language, computer time 

sharing, and many more “non-AI” 

• Analyzing language by modelling stages of language 
(tokenizing, features, etc)
• Parse Tree

• Sophisticated filters to identify information in images
• Canny Edge Detection (1986)

• Artificial Neural Networks



Early Successful Efforts in AI
• Symbolic AI lost out as it is bottlenecked by the need to manually specify 

transformations



Early Successful Efforts in AI
• Symbolic AI lost out as it is bottlenecked by the need to manually specify 

transformations
• Fortunately in compilers we never have to manually specify transformations

y(i) = A(i,j) * x(j)

int compute(taco_tensor_t *y, taco_tensor_t *A, taco_tensor_t *x) {
  int y1_dimension = (int)(y->dimensions[0]);
  double* restrict y_vals = (double*)(y->vals);
  int A1_dimension = (int)(A->dimensions[0]);
  int* restrict A2_pos = (int*)(A->indices[1][0]);
  int* restrict A2_crd = (int*)(A->indices[1][1]);
  double* restrict A_vals = (double*)(A->vals);
  int x1_dimension = (int)(x->dimensions[0]);
  double* restrict x_vals = (double*)(x->vals);

  #pragma omp parallel for schedule(runtime)
  for (int32_t i0 = 0; i0 < ((A1_dimension + 31) / 32); i0++) {
    for (int32_t i1 = 0; i1 < 32; i1++) {
      int32_t i = i0 * 32 + i1;
      if (i >= A1_dimension)
        continue;

      double tjy_val = 0.0;
      for (int32_t jA = A2_pos[i]; jA < A2_pos[(i + 1)]; jA++) {
        int32_t j = A2_crd[jA];
        tjy_val += A_vals[jA] * x_vals[j];
      }
      y_vals[i] = tjy_val;
    }
  }
  return 0;



Early Successful Efforts in AI
• Symbolic AI lost out as it is bottlenecked by the need to manually specify 

transformations
• Fortunately in compilers we never have to manually specify transformations

y(i) = A(i,j) * x(j)

int compute(taco_tensor_t *y, taco_tensor_t *A, taco_tensor_t *x) {
  int y1_dimension = (int)(y->dimensions[0]);
  double* restrict y_vals = (double*)(y->vals);
  int A1_dimension = (int)(A->dimensions[0]);
  int* restrict A1_pos = (int*)(A->indices[0][0]);
  int* restrict A1_crd = (int*)(A->indices[0][1]);
  int* restrict A2_pos = (int*)(A->indices[1][0]);
  int* restrict A2_crd = (int*)(A->indices[1][1]);
  double* restrict A_vals = (double*)(A->vals);
  int x1_dimension = (int)(x->dimensions[0]);
  double* restrict x_vals = (double*)(x->vals);

  #pragma omp parallel for schedule(static)
  for (int32_t py = 0; py < y1_dimension; py++) {
    y_vals[py] = 0.0;
  }

  #pragma omp parallel for schedule(runtime)
  for (int32_t i0 = 0; i0 < ((A1_dimension + 31) / 32); i0++) {
    int32_t pA1_begin = i0 * 32;
    int32_t iA = taco_binarySearchAfter(A1_crd, A1_pos[0], A1_pos[1], 
pA1_begin);
    int32_t pA1_end = A1_pos[1];
    int32_t iA0 = A1_crd[iA];
    int32_t i = A1_crd[iA];
    int32_t i1 = i - i0 * 32;
    int32_t i1_end = 32;

    while (iA < pA1_end && i1 < i1_end) {
      iA0 = A1_crd[iA];
      i = A1_crd[iA];
      if (iA0 == i) {
        double tjy_val = 0.0;
        for (int32_t jA = A2_pos[iA]; jA < A2_pos[(iA + 1)]; jA++) {
          int32_t j = A2_crd[jA];
          tjy_val += A_vals[jA] * x_vals[j];
        }
        y_vals[i] = tjy_val;
      }
      iA += (int32_t)(iA0 == i);
      iA0 = A1_crd[iA];
      i = A1_crd[iA];
      i1 = i - i0 * 32;
    }
  }
  return 0;
}

int compute(taco_tensor_t *y, taco_tensor_t *A, taco_tensor_t *x) {
  int y1_dimension = (int)(y->dimensions[0]);
  double* restrict y_vals = (double*)(y->vals);
  int A1_dimension = (int)(A->dimensions[0]);
  int* restrict A2_pos = (int*)(A->indices[1][0]);
  int* restrict A2_crd = (int*)(A->indices[1][1]);
  double* restrict A_vals = (double*)(A->vals);
  int x1_dimension = (int)(x->dimensions[0]);
  double* restrict x_vals = (double*)(x->vals);

  #pragma omp parallel for schedule(runtime)
  for (int32_t i0 = 0; i0 < ((A1_dimension + 31) / 32); i0++) {
    for (int32_t i1 = 0; i1 < 32; i1++) {
      int32_t i = i0 * 32 + i1;
      if (i >= A1_dimension)
        continue;

      double tjy_val = 0.0;
      for (int32_t jA = A2_pos[i]; jA < A2_pos[(i + 1)]; jA++) {
        int32_t j = A2_crd[jA];
        tjy_val += A_vals[jA] * x_vals[j];
      }
      y_vals[i] = tjy_val;
    }
  }
  return 0;
}

int compute(taco_tensor_t *y, taco_tensor_t *A, taco_tensor_t *x) {
  int y1_dimension = (int)(y->dimensions[0]);
  double* restrict y_vals = (double*)(y->vals);
  int A1_dimension = (int)(A->dimensions[0]);
  int* restrict A1_pos = (int*)(A->indices[0][0]);
  int* restrict A1_crd = (int*)(A->indices[0][1]);
  int* restrict A2_pos = (int*)(A->indices[1][0]);
  int* restrict A2_crd = (int*)(A->indices[1][1]);
  double* restrict A_vals = (double*)(A->vals);
  int* restrict x1_pos = (int*)(x->indices[0][0]);
  int* restrict x1_crd = (int*)(x->indices[0][1]);
  double* restrict x_vals = (double*)(x->vals);

  #pragma omp parallel for schedule(static)
  for (int32_t py = 0; py < y1_dimension; py++) {
    y_vals[py] = 0.0;
  }

  #pragma omp parallel for schedule(runtime)
  for (int32_t i0 = 0; i0 < ((A1_dimension + 31) / 32); i0++) {
    int32_t pA1_begin = i0 * 32;
    int32_t iA = taco_binarySearchAfter(A1_crd, A1_pos[0], A1_pos[1], 
pA1_begin);
    int32_t pA1_end = A1_pos[1];
    int32_t iA0 = A1_crd[iA];
    int32_t i = A1_crd[iA];
    int32_t i1 = i - i0 * 32;
    int32_t i1_end = 32;

    while (iA < pA1_end && i1 < i1_end) {
      iA0 = A1_crd[iA];
      i = A1_crd[iA];
      if (iA0 == i) {
        double tjy_val = 0.0;
        int32_t jA = A2_pos[iA];
        int32_t pA2_end = A2_pos[(iA + 1)];
        int32_t jx = x1_pos[0];
        int32_t px1_end = x1_pos[1];

        while (jA < pA2_end && jx < px1_end) {
          int32_t jA0 = A2_crd[jA];
          int32_t jx0 = x1_crd[jx];
          int32_t j = TACO_MIN(jA0,jx0);
          if (jA0 == j && jx0 == j) {
            tjy_val += A_vals[jA] * x_vals[jx];
          }
          jA += (int32_t)(jA0 == j);
          jx += (int32_t)(jx0 == j);
        }
        y_vals[i] = tjy_val;
      }
      iA += (int32_t)(iA0 == i);
      iA0 = A1_crd[iA];
      i = A1_crd[iA];
      i1 = i - i0 * 32;
    }
  }
  return 0;
}

…



Extending the reasoning of compilers
• Manually specified transformations are the bread and butter of compilers (we 

tend to call the ”optimization passes”)
• Very GOFAI style-symbolic reasoning of “we can prove program A is faster than 

program B”
• Often extend this to say if we think A is faster than B

• Compilers are rampant with manually specified heuristics of when we think A is 
faster than B … and often get it wrong (or at least for some people)
• Hundreds of arbitrarily chosen flags, orderings, etc.
• A change to optimization pass ordering led to a 50% performance reduction for 

NVPTX (https://bugs.llvm.org/show_bug.cgi?id=52037)

…

https://bugs.llvm.org/show_bug.cgi?id=52037


Automated transformations within compilers

• Much work early work focused on using ML to automate the “coarse 
reasoning” of input programs, and select parameters for the fastest program
• Advantage:  all output programs are correct

• Tensor Comprehensions (2017) used genetic algorithms to pick schedules 
(achieved 90+% of peak)
• End-to-end Deep Learning of Optimization Heuristics (2017) used LSTM 

networks to predict

• Yet, you still need to manually specify the structure of the output programs



Future of Optimization + ML
1. Automated Transformations

2.

3.



(Deep) Reinforcement Learning
• The significant area of AI research in the mid-late 2010’s

• Achieved state of the art skill at various games including Go,
StarCraft, Atari games, etc

• Given a state s and set of possible actions actions(s), pick the optimal action a  
that maximizes a (often end-game) reward.



(Deep) Reinforcement Learning
• The significant area of AI research in the mid-late 2010’s

• Achieved state of the art skill at various games including Go,
StarCraft, Atari games, etc

• Given a state s and set of possible actions actions(s), pick the optimal action a  
that maximizes a (often end-game) reward.

• Idea: we can model each GOFAI-style compiler optimization as one of these 
actions!



Reinforcement Learning for Compilers
• AutoPhase (2019) used deep RL to predict optimal LLVM compiler pass orderings

• Achieved 28% boost beyond O3, with promising generality results
• At the time, no good way to represent the program in a way that can be analyzed by the 

network
• Demonstrates the significant data and compute problem within RL: bottlenecked by the 

iterations through the reward/action simulator

• Learning to optimize halide with tree search and random programs (2019) used 
beam search (e.g. greedily take the top k)
• ProTuner (2020) used plain old Monte Carlo Tree Search (MCTS) to search for 

schedules

• MLGO (2021) use policy gradients and evolution strategies to optimize for size 
(7% reduction beyond Oz)



Future of Optimization + ML
1. Automated Transformations

2. Neural Program Representation

3.



Unsupervised Learning + Transformers
• Earlier approaches were bottlenecked by the amount of labeled data  
• Train on a large corpus of unlabeled data (all of the internet) & fine-tune 

on a small dataset (some sample phrases in two languages)
• Transformers enable efficient contextual access without serializing inputs
• This is the secret sauce behind modern LLMs (like GPT).

Unlabeled Data General Model
Pretraining

Task
Translate English to French

+
Fine-tune Model

Fine Tuning
La

ng
ua

ge

Fr
en

ch
 to

 E
ng

lis
h



How well can Transformers compile code?

• Goal: Determine effectiveness of end-to-end optimization / generation of 
low level programs
• Enabling Transformers to Understand Low-Level Programs (IEEE HPEC ’22)

https://ieeexplore.ieee.org/abstract/document/9926313
• Whole program analysis and optimization with transformers 
• Leverage autogenerated and unlabeled training data from compiler (clang)
• Build novel LLVM-specific specific optimizations for better training

La
ng

ua
ge

https://ieeexplore.ieee.org/abstract/document/9926313


Why ML on Low-Level Code Is Hard

%5 = phi i64 [ 0, %2 ], [ %11, %4 ]
%6 = getelementptr inbounds double, double* %1, i64 %5
%7 = load double, double* %6, align 8, !tbaa !4
%8 = call double @mag(double* noundef %1) #2
%9 = fdiv double %7, %8
%10 = getelementptr inbounds double, double* %0, i64 %5
store double %9, double* %10, align 8, !tbaa !4
%11 = add nuw nsw i64 %5, 1
%12 = icmp eq i64 %11, 100
br i1 %12, label %end, label %loop

ret void

define void @norm(double* noalias %0, double* noalias %1)
  br label %loop

declare double @mag(double* readonly) argmemonly //Compute magnitude in O(n)
double mag(double[] x) ) { … }

//Compute norm in O(n^2)
void norm(double[] out, double[] in) {

  for (int i=0; i<n; i++) {
out[i] = in[i] / mag(in);

}
}

• More verbose and precise semantics
• -> Ensures that optimizations can be performed (moving mag outside loop 

requires mag to be readonly)

Loop invariant code motion 
(LICM) 



Case study: Translating C to (Optimized) LLVM

double relu3(double x) {
double result;
if (x > 0)
result = pow(x, 3);

else
result = 0;

return result;
}

define double @relu3(double %0) {

%2 = fcmp ogt double %0, 0

br %2, label %3 , label %5

3: 

%4 = tail call double @pow (%0, double 
3)

br label %5

5:

%6 = phi [%4, %3], [0, %1]

ret %6

}



Data & Results
• Csmith (randomly generated compilable C programs) (Yang et al., 2011)
• Project CodeNet (web scrape of competitive programming online judging 

websites) (Puri et al., 2021)
• AnghaBench (1 million selected and cleaned compilable GitHub C programs) 

(de Silva et al., 2021)

Csmith Project CodeNet AnghaBench

Training Accuracy 90.73% 93.66% 99.03%

Reference Match N/A 5.76 13.33%

BLEU Score (0~100) 43.39 51.01 69.21

Model evaluation result on the 3 datasets 



Preprocessing Modification & Optimizations
• Expanding preprocessing directives with clang –E such as pasting the definition of 

imported libraries, compile-time constants, and more.

• Reduce redundancies in program grammar while making sure to faithfully restore 
the original

 
%4 = load i32**, i32*** %2 %4 = load i32** %2

#ifdef AARCH64
#define size_t int64_t
#else 
#define size_t int32_t
#endif 
size_t getsize(); int64_t getsize();



Preprocessing Modification, cont. 
• Prefix Notation 

• A * B + C / D => + * A B / C D 
• Prefix notation previously shown effective for mathematics (Griffith & Kalita, 2019)

• Writing out definitions of global variables so they can be recoverable on the function 
level, which makes the programs more complex

{ [4 x i8], i32, { i8, i32 }} STRUCT 5 ARR 3 4 x i8 i32 STRUCT 2 i8 i32 

%struct.1 = type { i32, i32, i64 }
...
%2 = alloca %struct.1, i64 %1

%struct.1 = type { i32, i32, i64 }
...
%2 = alloca { i32, i32, i64 }, i64 %1



Ablation Analysis

Original Cleaned Prefix Prefix & Global -O1

Training 
Accuracy 99.03% 97.84% 99.60% 99.36% 97.87%

Reference 
Match 13.33% 21.15% 49.57% 38.61% 38.73%

BLEU Score 
(0~100) 69.21 72.48 87.68 82.55 77.03

Compilation 
Acc. 14.97% N/A N/A 43.07% N/A

Ablation studies of model evaluation result on AnghaBench dataset

• The various cleanup simplifies LLVM IR programs and boosts accuracy, while 
the expansion of global variables ensures compilation but reduces accuracy



Future of Optimization + ML
1. Automated Transformations

2. Neural Program Representation

3. Unlabeled Data



Future of Optimization + ML
1. Automated Transformations

2. Neural Program Representation

3. Unlabeled Data [1]

[1] ComPile: A Large IR Dataset from Production Sources (2023), 

Aiden Grossman, Ludger Paehler, Konstantinos Parasyris, Tal Ben-Nun, Jacob Hegna, William Moses, Jose 
M Monsalve Diaz, Mircea Trofin, Johannes Doerfert

https://arxiv.org/search/cs?searchtype=author&query=Grossman,+A
https://arxiv.org/search/cs?searchtype=author&query=Paehler,+L
https://arxiv.org/search/cs?searchtype=author&query=Parasyris,+K
https://arxiv.org/search/cs?searchtype=author&query=Ben-Nun,+T
https://arxiv.org/search/cs?searchtype=author&query=Hegna,+J
https://arxiv.org/search/cs?searchtype=author&query=Moses,+W
https://arxiv.org/search/cs?searchtype=author&query=Diaz,+J+M+M
https://arxiv.org/search/cs?searchtype=author&query=Diaz,+J+M+M
https://arxiv.org/search/cs?searchtype=author&query=Trofin,+M
https://arxiv.org/search/cs?searchtype=author&query=Doerfert,+J


Problems in AI (including for Code)
• Language models are designed to predict tokens that are seem likely to appear at 

the next location
• This means that when they respond to queries, they aren’t really ``solving’’ the 

problem in the conventional sense, and may output answers that seem 
reasonable, but make no sense (hallucinations).
• This is exacerbated for symbolic reasoning tasks like math, or programming

…the very tasks the first AI systems were designed to do 



Future of Optimization + ML
1. Automated Transformations

2. Neural and Symbolic Program Representation

3. Unlabeled Data



Summary
• AI and optimization have a long, and very intertwined history
• There have been many interesting optimization + ML studies, many of which have 

followed corresponding trends in AI
• However, we’re still quite far from the “dream” compiler that auto optimizes all of 

your code perfectly well
• To get there we will need to look not just at the current trends, but also the history 

of these fields
• There’s a lot of opportunity for work here, please reach out if interested!


