
Tapir: Embedding Fork-Join Parallelism
into LLVM’s Intermediate Representation

William S. Moses, Tao B. Schardl, Charles E. Leiserson
Why existing compilers for parallel code suck and how to fix them

Compilers are wonderful tools that allow us to write code in high-level
languages. We also depend on them to optimize our code. The difference
between a good and bad compiler can be enormous. A poor compiler can
have serious adverse consequences for applications that demand efficiency.
For example, in Fig 1. a single change in compiler optimization level can
lead to an order-of magnitude improvement in the performance of a simple
image processing pipeline.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TS
T1

Reference Tapir/LLVM

Ideal
efficiency

Image Processing Runtime

-O0

-O1

Seconds

0 1250 2500 3750 5000

612.65

4513.59

Fig 1. Comparing the performance of an image processing toolkit on different compiler optimization
levels. A single change in optimization level can make an order-of-magnitude improvement.

The Birth of Multicore

0.01

1

100

10000

Year

1980 1990 2000 2010 2020

Core Count
Clock Speed

WHAT A GOOD COMPILER CAN DO

MULTICORE PROCESSORS

For the past several decades, we have been able to rely on Moore’s law to
provide us with improvements in performance by roughly doubling the
clock speed of processors every few years. Stemming from fundamental
physical limitations on power, however, the performance of individual
cores is no longer improving at the rate it once was. As a way to cope with
power limitations, semiconductor vendors add many processing cores to a
single machine in order to continue to scale performance.

Fig 2. Here, we graph
the clock speed of
individual cores with
time, as well as the
number of cores
available on a single
semiconductor
processor chip.
Around 2005, clock
speeds level out as a
result of power
limitations. At roughly
the same time, we see
the number of cores
start to rise.

TAPIR: PARALLELISM IN THE COMPILERWHERE COMPILERS FAIL

__attribute__((const))
double norm(const double *A, int n);

void normalize(double *restrict out,
 const double *restrict in, int n) {
 cilk_for (int i = 0; i < n; ++i)
 out[i] = in[i] / norm(in, n);
}

Fig 3. Cilk code to normalize a vector in parallel. The cilk_for keyword denotes that iterations of
the loop can run independently.

Modern compilers allow programmers to easily write parallel code with
high-level frameworks such as OpenMP and Cilk. In these frameworks,
programmers specify tasks that may be run in parallel, such as the
iterations of the loop in Fig 3.

Vector Normalization Runtime

Serial

18-core

1-core

Seconds

0 750 1500 2250 3000

2600.287
180.657

0.312

Fig 4. Time it takes to normalize a vector using the serial and parallel versions of the code in Fig
3. Surprisingly, the serial version runs faster than the parallel version.

Although current compilers can successfully compile and run parallel
code, they suffer from a major flaw: they can't optimize them well.
Sometimes these parallel programs run much slower than a comparable
serial version, as in Fig 4. In this example, the compiler is unable to
perform loop-invariant code motion as shown in Fig 5. Consequently, the
parallel program performs many unnecessarily calls to the norm
function.

void normalize(double *restrict out,
 const double *restrict in, int n) {
 double tmp = norm(in, n);
 cilk_for (int i = 0; i < n; ++i)
 out[i] = in[i] / tmp;
}

Fig 5. An optimized version of the normalize code from Fig 4. In this code, loop-invariant code
motion is performed, allowing iterations of the for loop to avoid having to make multiple calls to
the expensive norm function.

EVALUATION

Fig 7. An evaluation of the work efficiency of parallel codes with and without the Tapir
representation. For a third of these benchmarks, Tapir reaches ideal efficiency, while the
reference implementation falls short. Moreover, Tapir typically improves efficiency across the
board.

Frontend Optimization CodeGen

Source Code

Parallelism
Now

Tapir
Parallelism

LLVM IR Optimized
IR

Executable

Compilers aren’t able to optimize parallel code well because they have
no way of representing the parallel semantics of programs. As a result,
they extract parallel programs into separate functions that they then pass
as arguments to a parallel runtime. This confusing way of representing a
program prevents the compiler from being able to do any of its standard
analysis and optimization.

Fig 6. The pipeline for compiling parallel programs with and without Tapir. Parallel programs are
currently lowered to runtime calls before any optimizations are able to occur. Tapir is able to
represent the parallelism in compiler, allowing it to be lowered to runtime calls after optimization.

Tapir allows the compiler to represent parallel programs as a natural
extension to serial code without a dependency between parallel tasks.
Existing compiler optimizations work with Tapir with zero or minimal
modification. In fact, to add Tapir constructs to the LLVM compiler
required modifying only 0.1% of the 4-million-line codebase.

C
on
sis
te

nt
* Complete *

W
ell D

ocum
ented*Easyto

Re
us
e
* *

Evaluated

*
Po
P
*

Ar
t ifact *

A
EC

P
PWon Best Paper at the 2017 Conference on

Principles and Practice of Parallel Programming

