
wmoses@mit.edu
MIT Thesis Defense

May 1, 2023

William S. Moses

1

Supercharging Programming Through Compiler Technology

Valentin Churavy Ludger Paehler Johannes
Doerfert Jan Hückelheim

Sri Hari Krishna
Narayanan

Michel
Schanen

Paul Hovland

Leila Ghaffari

Tim GymnichPraytush Das

Manuel
Drehwald

&
more

Charles E.
Leiserson

TB Schardl

Nicolas
Vasliache Alex Zinenko Theodoros

Theodoridis

Zach Devito Andrew Adams

Albert Cohen
Sven

Verdoolaege

Priya Goyal Ivan R. Ivanov Jens Domke Toshio Endo

Lorenzo
Chelini

Ruizhe Zhao

Ameer
Haj Ali Jenny

Huang
Ion

Stoica
Krste

Asanovic
John

Wawrzynek

The Programmer’s Burden

3

• The decline of Moore's law and an increasing
reliance on computation => explosion of
specialized software packages and hardware
architectures.

• Domain-experts must customize programs and
learn platform-specific API's, instead of working
on their intended problem.

• Rather than each user bearing this burden,
compilers can automatically generate fast,
portable, and composable programs!

Extending the Boundaries of Compilers

Enzyme: fast, parallel, and rewrite-free derivative generation; best student paper
@SC’22, SC’21, spotlight @NeurIPS’20; awarded multi-year DOE grant with LLNL 

Tapir: understand and optimize parallel programs; best paper @PPoPP’17, TOPC’19 

Polygeist: run GPU code on CPUs, 2.7x faster than expert-written code, preserve
program structure to leverage device parameters perform HLS; PPoPP’23, PACT’21

Tensor Comprehensions (TC): automatically generate fast tensor arithmetic; TACO’19

AutoPhase: ML-based optimization of programs/circuits; MLSys’20, FCCM’19
4

https://www.csail.mit.edu/news/mit-csail-phd-students-receive-best-student-paper-supercomputing-2022
https://www.llnl.gov/news/doe-funds-llnl-project-improve-differentiation-extreme-scale-science-applications

Extending the Boundaries of Compilers

Enzyme: fast, parallel, and rewrite-free derivative generation; best student paper
@SC’22, SC’21, spotlight @NeurIPS’20; awarded multi-year DOE grant with LLNL 

Tapir: understand and optimize parallel programs; best paper @PPoPP’17, TOPC’19 

Polygeist: run GPU code on CPUs, 2.7x faster than expert-written code, preserve
program structure to leverage device parameters perform HLS; PPoPP’23, PACT’21

Tensor Comprehensions (TC): automatically generate fast tensor arithmetic; TACO’19

AutoPhase: ML-based optimization of programs/circuits; MLSys’20, FCCM’19
5

https://www.csail.mit.edu/news/mit-csail-phd-students-receive-best-student-paper-supercomputing-2022
https://www.llnl.gov/news/doe-funds-llnl-project-improve-differentiation-extreme-scale-science-applications

AP Calculus: Revisited

• Derivatives compute the rate of change of a function’s output with respect to input(s)

• Derivatives are used widely across science

• Machine learning (back-propagation, Bayesian inference)

• Scientific computing (modeling, simulation, uncertainty quantification)

6 from Efficient Differentiation of Pixel Reconstruction Filters for Path-Space Differentiable Rendering,
SIGGRAPH Asia 2022, Zihan Yu et al

Target Reconstruction

https://dl.acm.org/doi/pdf/10.1145/3550454.3555500

Automatic Derivative Generation

• Derivatives can be generated automatically from definitions within programs 
 
 
 
 

• Unlike numerical approaches, automatic differentiation (AD) can compute the derivative of ALL
inputs (or outputs) at once, without approximation error!

7

AD

double relu3(double x) {
 if (x > 0)
 return pow(x,3)
 else
 return 0;
}

double grad_relu3(double x) {
 if (x > 0)
 return 3 * pow(x,2)
 else
 return 0;
}

// Numeric differentiation
// f’(x) approx [f(x+epsilon) - f(x)] / epsilon
double grad_input[100];

for (int i=0; i<100; i++) {
 double input2[100] = input;
 input2[i] += 0.01;
 grad_input[i] = (f(input2) - f(input))/0.001;
}

// Automatic differentiation
double grad_input[100];

grad_f(input, grad_input)

Existing AD Approaches (1/3)

• Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)

• Provide a new language designed to be differentiated

• Requires rewriting everything in the DSL and the DSL must support all operations in original
code

• Fast if DSL matches original code well import tensorflow as tf

x = tf.Variable(3.14)

with tf.GradientTape() as tape:
 out = tf.cond(x > 0,
 lambda: tf.math.pow(x,3),
 lambda: 0
)
print(tape.gradient(out, x).numpy())

double relu3(double val) {
 if (x > 0)
 return pow(x,3)
 else
 return 0;
}

Manually
Rewrite

Existing AD Approaches (2/3)

• Operator overloading (Adept, JAX)

• Differentiable versions of existing language constructs (double => adouble, np.sum => jax.sum)

• May require writing to use non-standard utilities

• Often dynamic: storing instructions/values to later be interpreted

// Rewrite to accept either
// double or adouble
template<typename T>
T relu3(T val) {
 if (x > 0)
 return pow(x,3)
 else
 return 0;
}

adept::Stack stack;
adept::adouble inp = 3.14;

// Store all instructions into stack
adept::adouble out(relu3(inp));
out.set_gradient(1.00);

// Interpret all stack instructions
double res = inp.get_gradient(3.14);

Existing AD Approaches (3/3)

• Source rewriting

• Statically analyze program to produce a new gradient function in the source language

• Re-implement parsing and semantics of given language

• Requires all code to be available ahead of time => hard to use with external libraries

Tapenade

// myfile.h
double relu3(double x) {
 if (x > 0)
 return pow(x,3)
 else
 return 0;
}

// myfile.c
double relu3(double x) {
 if (x > 0)
 return pow(x,3)
 else
 return 0;
}

// grad_myfile.h
double relu3(double x) {
 if (x > 0)
 return pow(x,3)
 else
 return 0;
}

// grad_myfile.c
double grad_relu3(double x) {
 if (x > 0)
 return 3 * pow(x,2)
 else
 return 0;
}

Existing Automatic Differentiation Pipelines

AD

CodeGen

Optimize

Lower

AD

AD

AD

11

Case Study: Vector Normalization

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n^2)
void norm(double[] out, double[] in) {

 for (int i=0; i<n; i++) {
 out[i] = in[i] / mag(in);
 }
}

12

Case Study: Vector Normalization

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n)
void norm(double[] out, double[] in) {
 double res = mag(in);
 for (int i=0; i<n; i++) {
 out[i] = in[i] / res;
 }
}

13

Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
res = mag(in)
for i=0..n {
 out[i] /= res
}

d_res = 0.0
for i=n..0 {
 d_res += d_out[i]…
}
∇mag(d_in, d_res)

O (n)
for i=0..n {
 out[i] /= mag(in)
}

14

Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
for i=0..n {
 out[i] /= mag(in)
}

res = mag(in)
for i=0..n {
 out[i] /= res
}

d_res = 0.0
for i=n..0 {
 d_res += d_out[i]…
}
∇mag(d_in, d_res)

O (n)

O (n2)
for i=0..n {
 out[i] /= mag(in)
}

AD
for i=n..0 {
 d_res = d_out[i]…
 ∇mag(d_in, d_res)
}

O (n2)

15

Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
for i=0..n {
 out[i] /= mag(in)
}

res = mag(in)
for i=0..n {
 out[i] /= res
}

d_res = 0.0
for i=n..0 {
 d_res += d_out[i]…
}
∇mag(d_in, d_res)

O (n)

O (n2)O (n2)
for i=0..n {
 out[i] /= mag(in)
}

AD
for i=n..0 {
 d_res = d_out[i]…
 ∇mag(d_in, d_res)
}

O (n2)
for i=n..0 {
 d_res = d_out[i]…
 ∇mag(d_in, d_res)
}

Optimize

16

Optimization & Automatic Differentiation

Differentiating after optimization can create asymptotically faster gradients!

Optimize

O (n2) O (n)

AD
for i=0..n {
 out[i] /= mag(in)
}

res = mag(in)
for i=0..n {
 out[i] /= res
}

d_res = 0.0
for i=n..0 {
 d_res += d_out[i]…
}
∇mag(d_in, d_res)

O (n)

O (n2)O (n2)
for i=0..n {
 out[i] /= mag(in)
}

AD
for i=n..0 {
 d_res = d_out[i]…
 ∇mag(d_in, d_res)
}

O (n2)
Optimize

for i=n..0 {
 d_res = d_out[i]…
 ∇mag(d_in, d_res)
}

17

Lower Enzyme .

Optimize

CodeGen

Optimize

 Enzyme Approach

Performing AD at low-level lets us work on optimized code!

18

Case Study: ReLU3

entry

cond.true

%result = phi [%call, cond.true], [0, entry]
ret %result

cond.end

%cmp = %x > 0
br %cmp, cond.true, cond.end

%call = pow(%x, 3)
br cond.end

double relu3(double x) {
 double result;
 if (x > 0)
 result = pow(x, 3);
 else
 result = 0;
 return result;
}

define double @relu3(double %x)

double diffe_relu3(double x) {
 return __enzyme_autodiff(relu3, x);
}

C Source LLVM

Enzyme Usage

19

Case Study: ReLU3

entry

cond.true

%result = phi [%call, cond.true], [0, entry]
ret %result

cond.end

%cmp = %x > 0
br %cmp, cond.true, cond.end

%call = pow(%x, 3)
br cond.end

define double @relu3(double %x)

Active Instructions

20

entry

cond.true

%result = phi [%call, cond.true], [0, entry]

; deleted return

%result’ = 1.0
br reverse_cond.end

cond.end

alloca %result’ = 0.0
alloca %call’ = 0.0
alloca %x’ = 0.0
%cmp = %x > 0
br %cmp, cond.true, cond.end

%call = pow(%x, 3)
br cond.end

define double @diffe_relu3(double %x, double %differet)

Allocate & zero
shadow memory for

active values

21

entry

cond.true

%result = phi [%call, cond.true], [0, entry]

; deleted return

%result’ = 1.0
br reverse_cond.end

cond.end

alloca %result’ = 0.0
alloca %call’ = 0.0
alloca %x’ = 0.0
%cmp = %x > 0
br %cmp, cond.true, cond.end

%call = pow(%x, 3)
br cond.end

define double @diffe_relu3(double %x, double %differet)

%tmp_res’ = load %result’
%call’ += if %x > 0 then %tmp_res’ else 0
store %result’ = 0.0
br %cmp, reverse_cond.true, reverse_entry

reverse_cond.end%df = 3 * pow(%x, 2)
%tmp_call’ = load %call
%x’ += %df * %tmp_call’
store %call’ = 0.0
br reverse_entry

%0 = load %x’
ret %0

reverse_entry

reverse_cond.true

Compute adjoints
for active instructions

22

entry

cond.true

%result = phi [%call, cond.true], [0, entry]

; deleted return

%result’ = 1.0
br reverse_cond.end

cond.end

alloca %result’ = 0.0
alloca %call’ = 0.0
alloca %x’ = 0.0
%cmp = %x > 0
br %cmp, cond.true, cond.end

%call = pow(%x, 3)
br cond.end

define double @diffe_relu3(double %x, double %differet)

%tmp_res’ = load %result’
%call’ += if %x > 0 then %tmp_res’ else 0
store %result’ = 0.0
br %cmp, reverse_cond.true, reverse_entry

reverse_cond.end%df = 3 * pow(%x, 2)
%tmp_call’ = load %call
%x’ += %df * %tmp_call’
store %call’ = 0.0
br reverse_entry

%0 = load %x’
ret %0

reverse_entry

reverse_cond.true

Compute adjoints
for active instructions

23

entry
%cmp = %x > 0
br %cmp, reverse_cond.true, reverse_entry

define double @diffe_relu3(double %x)

%3 = 3 * pow(%x, 2)
br reverse_entry

%0 = phi [%3, reverse_cond.true], [0, entry]
ret %0

reverse_entry
reverse_cond.true

Essentially the optimal hand-written gradient!

double diffe_relu3(double x) {
 double result;
 if (x > 0)
 result = 3 * pow(x, 2);
 else
 result = 0;
 return result;
}

Post
Optimization

24

Experimental Setup

Enzyme:

Ref:

Tapenade:

Adept: -O2

Enzyme .

Tapenade

Adept

• Collection of benchmarks from Microsoft’s ADBench suite and of technical interest

-O2

-O2-O2

-O2-O2

-O2 Enzyme . -O2

25

Speedup of Enzyme
H

ig
he

r i
s

Be
tte

r

Enzyme is 4.2x faster than Reference!
26

Automatic Differentiation & GPUs

• Prior work has not explored reverse mode AD of existing GPU kernels

1. Reversing parallel control flow can lead to incorrect results

2. Complex performance characteristics make it difficult to synthesize
efficient code

3. Resource limitations can prevent kernels from running at all

27

Efficient GPU Code
• For correctness, Enzyme may need to cache values in

order to compute the gradient

• The complexity of GPU memory means large caches
slow down the program by several orders of magnitude,
if it even fits at all

• Like the CPU, existing optimizations reduce the overhead

• Unlike the CPU, existing optimizations aren’t sufficient

• Novel GPU and AD-specific optimizations can speedup by
several orders of magnitude

28

// Forward Pass

out[i] = x[i] * x[i];

x[i] = 0.0f;

// Reverse (gradient) Pass

...
grad_x[i] += 2 * x[i] * grad_out[i];
...

Efficient Correct GPU Code
• For correctness, Enzyme may need to cache values in

order to compute the gradient

• The complexity of GPU memory means large caches
slow down the program by several orders of magnitude,
if it even fits at all

• Like the CPU, existing optimizations reduce the overhead

• Unlike the CPU, existing optimizations aren’t sufficient

• Novel GPU and AD-specific optimizations can speedup by
several orders of magnitude

29

double* x_cache = new double[…];

// Forward Pass

out[i] = x[i] * x[i];
x_cache[i] = x[i];

x[i] = 0.0f;

// Reverse (gradient) Pass

...
grad_x[i] += 2 * x_cache[i]
 * grad_out[i];
...

delete[] x_cache;

Cache Reduction Example
• By considering the dataflow graph

we can perform a min-cut to
approximate smaller cache sizes.

30

for(int i=0; i<10; i++) {
 double sum = x[i] + y[i];

 use(sum);
}

overwrite(x, y);
grad_overwrite(x, y);

for(int i=9; i>=0; i--) {
 ...
 grad_use(sum);
}

X Y

Sum

Overwritten:

Required for
Reverse:

XX

Cache Reduction Example

31

double* x_cache = new double[10];
double* y_cache = new double[10];

for(int i=0; i<10; i++) {
 double sum = x[i] + y[i];
 x_cache[i] = x[i];
 y_cache[i] = y[i];
 use(sum);
}

overwrite(x, y);
grad_overwrite(x, y);

for(int i=9; i>=0; i--) {
 double sum = x_cache[i] + y_cache[i];
 grad_use(sum);
}

• By considering the dataflow graph
we can perform a min-cut to
approximate smaller cache sizes.

X Y

Sum

Overwritten:

Required for
Reverse:

Naive Cache

Sum

Cache Reduction Example

32

double* sum_cache = new double[10];

for(int i=0; i<10; i++) {
 double sum = x[i] + y[i];
 sum_cache[i] = sum;

 use(sum);
}

overwrite(x, y);
grad_overwrite(x, y);

for(int i=9; i>=0; i--) {

 grad_use(sum_cache[i]);
}

• By considering the dataflow graph
we can perform a min-cut to
approximate smaller cache sizes.

X Y

Sum

Overwritten:

Required for
Reverse:

Smallest Cache

Novel AD + GPU Optimizations

• See our SC’21 paper for more (https://c.wsmoses.com/papers/EnzymeGPU.pdf) 
 Reverse-Mode Automatic Differentiation and Optimization of GPU Kernels via Enzyme. SC, 2021

• [AD] Cache LICM/CSE

• [AD] Min-Cut Cache Reduction

• [AD] Cache Forwarding

• [GPU] Merge Allocations

• [GPU] Heap-to-stack (and register)

• [GPU] Alias Analysis Properties of SyncThreads

• …
33

https://c.wsmoses.com/papers/EnzymeGPU.pdf

GPU Gradient Overhead

34

• Evaluation of both original code and gradient

• DG: Discontinuous-Galerkin integral (Julia)

• LBM: particle-based fluid dynamics
simulation

• LULESH: unstructured explicit shock
hydrodynamics solver

• XSBench & RSBench: Monte Carlo
simulations of particle transport
algorithms (memory & compute bound,
respectively)

XSBench

RSBench

LULESH

LBM (Parboil)

DG (CUDA)

DG (ROCm)

3.2

4.2

2.01

6.3

18.35

5.4

GPU Gradient Overhead

35

• Evaluation of both original code and gradient

• DG: Discontinuous-Galerkin integral (Julia)

• LBM: particle-based fluid dynamics
simulation

• LULESH: unstructured explicit shock
hydrodynamics solver

• XSBench & RSBench: Monte Carlo
simulations of particle transport
algorithms (memory & compute bound,
respectively)

XSBench

RSBench

LULESH

LBM (Parboil)

DG (CUDA)

DG (ROCm)

3.2

4.2

2.01

6.3

18.35

5.4

Bug in CUDA
Register Allocator

36

Forward (1x) 10x 100x 1000x OOM

XSBench

RSBench

LULESH

LBM

DG (CUDA)

DG (ROCm)
5.4⇥
o

1378.3⇥
o

116.6⇥
o

17.8⇥
o

19.87⇥
o

8.7⇥
o

6.4⇥
o

2979.1⇥
o

2.4⇥
o

2.0⇥
o

6372.2⇥
o

9.5⇥
o

4.7⇥
o

25.9⇥
o

16.3⇥
o

9.5⇥
o

3.2⇥
o

Overhead above Forward Pass

Unrolling

Unrolling MallocCoalescing PreOptimization

Allocator Recompute InlineCacheABI

SpecPHI PreOptimization

CacheLICM Inlining PreOpt

Templating PHI LoopBound PreOptimization

Ablation Analysis of Optimizations

37

Forward (1x) 10x 100x 1000x OOM

XSBench

RSBench

LULESH

LBM

DG (CUDA)

DG (ROCm)
5.4⇥
o

1378.3⇥
o

116.6⇥
o

17.8⇥
o

19.87⇥
o

8.7⇥
o

6.4⇥
o

2979.1⇥
o

2.4⇥
o

2.0⇥
o

6372.2⇥
o

9.5⇥
o

4.7⇥
o

25.9⇥
o

16.3⇥
o

9.5⇥
o

3.2⇥
o

Overhead above Forward Pass

Unrolling

Unrolling MallocCoalescing PreOptimization

Allocator Recompute InlineCacheABI

SpecPHI PreOptimization

CacheLICM Inlining PreOpt

Templating PHI LoopBound PreOptimization

Ablation Analysis of Optimizations

38

Forward (1x) 10x 100x 1000x OOM

XSBench

RSBench

LULESH

LBM

DG (CUDA)

DG (ROCm)
5.4⇥
o

1378.3⇥
o

116.6⇥
o

17.8⇥
o

19.87⇥
o

8.7⇥
o

6.4⇥
o

2979.1⇥
o

2.4⇥
o

2.0⇥
o

6372.2⇥
o

9.5⇥
o

4.7⇥
o

25.9⇥
o

16.3⇥
o

9.5⇥
o

3.2⇥
o

Overhead above Forward Pass

Unrolling

Unrolling MallocCoalescing PreOptimization

Allocator Recompute InlineCacheABI

SpecPHI PreOptimization

CacheLICM Inlining PreOpt

Templating PHI LoopBound PreOptimization

Ablation Analysis of Optimizations

39

Forward (1x) 10x 100x 1000x OOM

XSBench

RSBench

LULESH

LBM

DG (CUDA)

DG (ROCm)
5.4⇥
o

1378.3⇥
o

116.6⇥
o

17.8⇥
o

19.87⇥
o

8.7⇥
o

6.4⇥
o

2979.1⇥
o

2.4⇥
o

2.0⇥
o

6372.2⇥
o

9.5⇥
o

4.7⇥
o

25.9⇥
o

16.3⇥
o

9.5⇥
o

3.2⇥
o

Overhead above Forward Pass

Unrolling

Unrolling MallocCoalescing PreOptimization

Allocator Recompute InlineCacheABI

SpecPHI PreOptimization

CacheLICM Inlining PreOpt

Templating PHI LoopBound PreOptimization

Ablation Analysis of Optimizations

GPU AD is Intractable Without Optimization!

 Enzyme-Powered Applications

40

from Efficient Differentiation of Pixel Reconstruction Filters for Path-Space Differentiable Rendering,
SIGGRAPH Asia 2022, Zihan Yu et al

Target Reconstruction

from Comrade: High Performance Black-Hole Imaging JuliaCon 2022, 
Paul Tiede (Harvard)

>100x speedup! 
 
Prior: 
 5 days (cluster) 

Enzyme-Based:

 1 hour (laptop)

from CLIMA & NSF CSSI: Differentiable programming in Julia for Earth system modeling
(DJ4Earth) from Center for the Exascale Simulation of Materials in Extreme Environments

from MFEM Team at LLNL

from Differential Molecular Simulation with Molly.jl, EnzymeCon 2023, 
Joe Greener (Cambridge)

https://dl.acm.org/doi/pdf/10.1145/3550454.3555500
https://live.juliacon.org/talk/3LHDTD
https://clima.caltech.edu/
https://dj4earth.github.io/
https://dj4earth.github.io/
https://computing.mit.edu/cesmix/
https://www.llnl.gov/news/doe-funds-llnl-project-improve-differentiation-extreme-scale-science-applications
https://enzyme.mit.edu/conference

The HPC Landscape Today

• Cutting-edge scientific computing requires efficiently leveraging parallelism

• Multicore chips

• Distributed clusters

• Accelerators (e.g. GPUs, TPUs)

41

Case Study: Parallel Vector Normalization

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n^2)
void norm(double[] out, double[] in) {

 for (int i=0; i<n; i++) {
 out[i] = in[i] / mag(in);
 }
}

42

N = 64M

Case Study: Parallel Vector Normalization

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n^2)
void norm(double[] out, double[] in) {

 for (int i=0; i<n; i++) {
 out[i] = in[i] / mag(in);
 }
}

43

 Serial Running time: 0.312 s

N = 64M

Case Study: Parallel Vector Normalization

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n^2) work
void norm(double[] out, double[] in) {

 parallel_for (int i=0; i<n; i++) {
 out[i] = in[i] / mag(in);
 }
}

44

 Serial Running time: 0.312 s

N = 64M

A parallel loop replaces
the original serial loop

Case Study: Parallel Vector Normalization

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n^2) work
void norm(double[] out, double[] in) {

 parallel_for (int i=0; i<n; i++) {
 out[i] = in[i] / mag(in);
 }
}

45

 Serial Running time: 0.312 s

N = 64M

18-core Running time: 180.657s

A parallel loop replaces
the original serial loop

Case Study: Parallel Vector Normalization

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n^2) work
void norm(double[] out, double[] in) {

 parallel_for (int i=0; i<n; i++) {
 out[i] = in[i] / mag(in);
 }
}

46

 Serial Running time: 0.312 s

N = 64M

18-core Running time: 180.657s

 1-core Running time: 2600.287s

A parallel loop replaces
the original serial loop

Why the Parallel Slowdown?

47

CodeGenParallel
Lower Optimize

Frontend directly translates
parallel language constructs

Compiling Parallel Code

48

void norm(double[] out, double[] in)
{
 struct args_t args = { out, in };
 __cilkrts_pfor(body, args, 0, n);
}

void body(struct args_t args, int i)
{
 double *out = args.out;
 double *in = args.in;
 out[i] = in[i] / mag(in);
}

void norm(double[] out, double[] in)
{
 parallel_for (int i=0; i<n; i++) {
 out[i] = in[i] / mag(in);
 }
}

Parallel
Lower

Compiling Parallel Code

49

void norm(double[] out, double[] in)
{
 struct args_t args = { out, in };
 __cilkrts_pfor(body, args, 0, n);
}

void body(struct args_t args, int i)
{
 double *out = args.out;
 double *in = args.in;
 out[i] = in[i] / mag(in);
}

void norm(double[] out, double[] in)
{
 parallel_for (int i=0; i<n; i++) {
 out[i] = in[i] / mag(in);
 }
}

Parallel
Lower

X
The compiler doesn’t understand the
parallel runtime and cannot move mag

Compiling Parallel Code (Realistic)

50

int fib(int n) {
 if (n < 2) return n;
 int x, y;
 x = spawn fib(n - 1);
 y = fib(n - 2);
 sync;
 return x + y;
}

Parallel
Lower

int fib(int n) {
 __cilkrts_stack_frame_t sf;
 __cilkrts_enter_frame(&sf);
 if (n < 2) return n;
 int x, y;
 if (!setjmp(sf.ctx))
 spawn_fib(&x, n-1);
 y = fib(n-2);
 if (sf.flags & CILK_FRAME_UNSYNCHED)
 if (!setjmp(sf.ctx))
 __cilkrts_sync(&sf);
 int result = x + y;
 __cilkrts_pop_frame(&sf);
 if (sf.flags)
 __cilkrts_leave_frame(&sf);
 return result;
}

void spawn_fib(int *x, int n) {
 __cilkrts_stack_frame sf;
 __cilkrts_enter_frame_fast(&sf);
 __cilkrts_detach();
 *x = fib(n);
 __cilkrts_pop_frame(&sf);
 if (sf.flags)
 __cilkrts_leave_frame(&sf);
}

Idea: New Parallel Compilation Pipeline

51

CodeGenParallel
Lower Optimize

CodeGenParallel
Lower Optimize

New IR that encodes parallelism for optimization!

Parallel IR: A Bad Idea?

From “[LLVMdev] LLVM Parallel IR,” 2015:

• “[I]ntroducing [parallelism] into a so far ‘sequential’ IR will cause severe breakage and

headaches.”

• “[P]arallelism is invasive by nature and would have to influence most optimizations.” 

Other communications, 2016–2017:

• “There are a lot of information needs to be represented in IR for [back end]

transformations for OpenMP.” [Private communication]

• “If you support all [parallel programming features] in the IR, a *lot* [of LOC]…would

probably have to be modified in LLVM.” [[RFC] IR-level Region Annotations]

Example Previous Parallel IR

entry

join

 rv = phi [n, entry], [add, join]
 ret rv

exit

 br (n < 2), exit, if.else

 forkif.else

 x = fib(n - 1)
 br join

• Previous CFG-based parallel IR’s represented
tasks symmetrically.

int fib(int n) {
 if (n < 2) return n;
 int x, y;
 x = spawn fib(n - 1);
 y = fib(n - 2);
 sync;
 return x + y;
}

 y = fib(n - 2)
 br join

 join
 add = x + y
 br exit

Problem: The join block breaks implicit
assumptions made by the compiler.

Example: Values from all predecessors of a
join must be available at runtime [LMP97].

Tapir: Task-Based Asymmetric Parallel IR

entry

cont

 rv = phi [n, entry], [add, cont]
 ret rv

exit

 x = alloca int
 br (n < 2), exit, if.else

 detach det, contif.else

 x0 = fib(n - 1)
 store x = x0
 reattach cont

 y = fib(n - 2)
 sync
 x1 = load x
 add = x1 + y
 br exit

• Tapir models parallel tasks asymmetrically via
three new instructions: detach, reattach, and sync

• The successors of a detach may run in parallel.

• Code after a sync is guaranteed to have completed
previously detached tasks.

• Tapir simultaneously represents the serial and
parallel semantics of the program.

det

Tapir: Task-Based Asymmetric Parallel IR

entry

cont

 rv = phi [n, entry], [add, cont]
 ret rv

exit

 x = alloca int
 br (n < 2), exit, if.else

 detach det, contif.else

 x0 = fib(n - 1)
 store x = x0
 reattach cont

 y = fib(n - 2)
 sync
 x1 = load x
 add = x1 + y
 br exit

• Reasoning about parallelism is a minor change to reasoning about the serial projection.

det

entry

cont

 rv = phi [n, entry], [add, cont]
 ret rv

exit

 x = alloca int
 br (n < 2), exit, if.else

 br detif.else

 x0 = fib(n - 1)
 store x = x0
 br cont

 y = fib(n - 2)
 noop
 x1 = load x
 add = x1 + y
 br exit

det

Maintaining Correctness

entry

cont

 rv = phi [n, entry], [add, cont]
 ret rv

exit

 x = alloca int
 br (n < 2), exit, if.else

 detach det, contif.else

 x0 = fib(n - 1)
 store x = x0
 reattach cont

 y = fib(n - 2)
 sync
 x1 = load x
 add = x1 + y
 br exit

Problem: How does the compiler ensure that code
motion does not introduce a determinacy race into
otherwise race-free code?

● Consider moving memory operations around each
new instruction.

● Moving code above a detach or below a sync
serializes it and is always valid.

● Other potential races are handled by giving
detach, reattach, and sync appropriate attributes
and by slight modifications to mem2reg.

det

Maintaining Correctness

entry

cont

 rv = phi [n, entry], [add, cont]
 ret rv

exit

 x = alloca int
 br (n < 2), exit, if.else

 detach det, contif.else

 x0 = fib(n - 1)
 store x = x0
 reattach cont

 y = fib(n - 2)
 sync
 x1 = load x
 add = x1 + y
 br exit

Problem: How does the compiler ensure that code
motion does not introduce a determinacy race into
otherwise race-free code?

● Consider moving memory operations around each
new instruction.

● Moving code above a detach or below a sync
serializes it and is always valid.

● Other potential races are handled by giving
detach, reattach, and sync appropriate attributes
and by slight modifications to mem2reg.

det

Serial optimization passes
do not create bugs!

 Vector Normalization with a Parallel-Aware Compiler

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n^2) work
void norm(double[] out, double[] in) {

 parallel_for (int i=0; i<n; i++) {
 out[i] = in[i] / mag(in);
 }
}

58

 Serial Running time: 0.312 s

N = 64M

18-core Running time: 0.081 s

 1-core Running time: 0.321 s

A parallel loop replaces
the original serial loop Great work efficiency!

TS / T1 = 97%

 Vector Normalization with a Parallel-Aware Compiler

59

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TS
T1

Reference Tapir/LLVM

Ideal
efficiency

Decreasing difference between Tapir/LLVM and Reference

Revisiting The Programmer’s Burden

60

Revisiting The Programmer’s Burden (published at SC22)

61

Conclusions

• Explosion of specialized software packages and hardware architectures -> scientists spending
more time learning how to optimize programs and use platform-specific API’s than working on
their intended problem.

• Rather than burdening the user, compilers can automatically generate fast, portable, and
composable code.

• Enzyme generates fast derivatives of programs needed for science and machine learning,
without user rewriting

• Tapir understands the parallelism within programs, enabling existing optimizations to apply
with minimal modification.

• All these tools are open source and used in academia and industry and in disciplines that range
from climate science to physics to material science

62

Acknowledgements

• Thanks to my family for supporting me, including Marina Moses, John Moses, Sophia Moses,
and Panayoti Stefanidis.

• Many thanks to so many colleagues for help with this work including: Srini Devadas, James
Bradbury, Jed Brown, Alex Chernyakhovsky, Valentin Churavy, Lilly Chin, Hal Finkel, Marco
Foco, Leila Gharaffi, Laurent Hascoet, Patrick Heimback, Paul Hovland, Jan Hueckelheim, Mike
Innes, Tim Kaler, Charles Leiserson, Yingbo Ma, Ludger Paehler, Chris Rackauckas, TB Schardl,
Lizhou Sha, Yo Shavit, Dhash Shrivathsa, Nalini Singh, Vassil Vassilev, Sarah Williamson, Alex
Zinenko, Pat McCormick, George Stelle, Stephen Olivier, Joanna Balme, Eric Brown-Dymkosky,
Victor Guerrero, Stephen Jones, Andre Kessler, Adam Lichtl, Kevin Lung, Ken Museth, Nathan
Robertson, Youseef Marzouk, Kevin Sabo, Jesse Michel, Cat Zeng, Allison Tam, Kevin Kwok,
Will Bradbury, Alex Atanasov, Joe Murphy, Jamie Voros, Logan Engstrom, Douglas Kogut,
Jiahao Li, Bojan Serafimov, Carl Guo, Sanath Govindarajan, Walden Yan, Sage Simhon,
Chuyang Chen, Shakil Ahmed, Abhishek Vu, Chris Hill, Chris Peterson, Emma Batson, & more.

• Thank you to all my friends from MIT, TJ, NOVA, and beyond.
63

Valentin Churavy Ludger Paehler Johannes
Doerfert Jan Hückelheim

Sri Hari Krishna
Narayanan

Michel
Schanen

Paul Hovland

Leila Ghaffari

Tim GymnichPraytush Das

Manuel
Drehwald

&
more

Charles E.
Leiserson

TB Schardl

Nicolas
Vasliache Alex Zinenko Theodoros

Theodoridis

Zach Devito Andrew Adams

Albert Cohen
Sven

Verdoolaege

Priya Goyal Ivan R. Ivanov Jens Domke Toshio Endo

Lorenzo
Chelini

Ruizhe Zhao

Ameer
Haj Ali Jenny

Huang
Ion

Stoica
Krste

Asanovic
John

Wawrzynek

Acknowledgements

• This work was supported in part by a DOE Computational Sciences Graduate Fellowship DESC0019323.
This research was supported in part by LANL grant 531711; in part by the Applied Mathematics activity
within the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research Program,
under contract number DE-AC02-06CH11357; in part by the Exascale Computing Project (17-SC-20-SC).
Research was sponsored by the United States Air Force Research Laboratory and was accomplished under
Cooperative Agreement Number FA8750-19-2-1000.

• This work was funded and/or supported by NSF Cyberinfrastructure for Sustained Scientific Innovation
(CSSI) award numbers: 2104068, 2103942, and 2103804, Argonne Leadership Computing Facility, which is
a U.S. Department of Energy (DOE) Office of Science User Facility supported under Contract DE-
AC02-06CH11357, NSF (grants OAC-1835443, AGS-1835860, and AGS-1835881), DARPA under
agreement number HR0011-20-9-0016 (PaPPa), Schmidt Futures program, Paul G. Allen Family
Foundation, Charles Trimble, Audi Environmental Foundation, DOE, National Nuclear Security
Administration under Award Number DE-NA0003965, LANL grant 531711, and German Research Council
(DFG) under grant agreement No. 326472365.

• The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the United States Air Force or
the U.S. Government.65

Conclusions

• Explosion of specialized software packages and hardware architectures -> scientists spending
more time learning how to optimize programs and use platform-specific API’s than working on
their intended problem.

• Rather than burdening the user, compilers can automatically generate fast, portable, and
composable code.

• Enzyme generates fast derivatives of programs needed for science and machine learning,
without user rewriting

• Tapir understands the parallelism within programs, enabling existing optimizations to apply
with minimal modification.

• All these tools are open source and used in academia and industry and in disciplines that range
from climate science to physics to material science

66

Questions?

67

Challenges of Low-Level AD

• Low-level code lacks information necessary to compute adjoints

8: Pointer 0: Integer

68

void f(void* dst, void* src) {
 memcpy(dst, src, 8);
}

void grad_f(double* dst, double* dst’,
 double* src, double* src’) {
 // Forward Pass
 memcpy(dst, src, 8);

 // Reverse Pass
 src’[0] += dst’[0];
 dst’[0] = 0;
}

void grad_f(float* dst, float* dst’,
 float* src, float* src’) {
 // Forward Pass
 memcpy(dst, src, 8);

 // Reverse Pass
 src’[0] += dst’[0];
 dst’[0] = 0;
 src’[1] += dst’[1];
 dst’[1] = 0;
}

Type Analysis

struct MyType {
 double;
 int*;
}

x = MyType*;

0: Pointer
x

0: Double
8: Pointer

MyType

0: Integer

69

• New interprocedural dataflow analysis that detects the underlying type of data

• Each value has a set of memory offsets : type

• Perform series of fixed-point updates through instructions

types(x) = {[0]:Pointer, [0,0]:Double, [0,8]:Pointer, [0,8,0]:Integer}

Challenges of Parallel AD

• The adjoint of an instruction increments the derivative of its input

• Benign read race in forward pass => Write race in reverse pass (undefined behavior)

70

void set(double* ar, double val) {

 parallel_for(int i=0; i<10; i++)
 ar[i] = val;
}

double gradient_set(double* ar, double* d_ar,
 double val) {
 double d_val = 0.0;

 parallel_for(int i=0; i<10; i++)
 ar[i] = val;

 parallel_for(int i=0; i<10; i++) {
 d_val += d_ar[i];
 d_ar[i] = 0.0;
 }

 return d_val;
}

Read Race
Write Race

GPU Memory Hierarchy

71

Slower, larger amount of memory

Per Thread Per Block Per GPU

~Bytes ~KBs ~GBs

Register Shared Memory Global Memory

Use Limits Parallelism Use Limits Parallelism

Correct and Efficient Derivative Accumulation

Thread-local memory 

• Non-atomic load/store

72

__device__
void f(…) {

 // Thread-local var
 double y;

 …

 d_y += val;
}

Same memory location across
all threads (some shared mem)

• Parallel Reduction

Others [always legal fallback] 

• Atomic increment

// Same var for all threads
double y;

__device__
void f(…) {

 …

 reduce_add(&d_y, val);
}

__device__
// Unknown thread-aliasing
void f(double* y) {

 …

 atomic { d_y += val; }
}

Slower

Synchronization Primitives

73

codeA();

sync_threads;

codeB();

• Synchronization (sync_threads) ensures all threads finish executing
codeA before executing codeB

• Sync is only necessary if A and B may access to the same memory

• Assuming the original program is race-free, performing a sync at the
corresponding location in the reverse ensures correctness

• Prove correctness of algorithm by cases

Case 1: Store, Sync, Load

74

codeA(); // store %ptr

sync_threads;

codeB(); // load %ptr

…

diffe_codeB(); // atomicAdd %d_ptr

sync_threads;

diffe_codeA(); // load %d_ptr
 // store %d_ptr = 0

 Correct

• Load of d_ptr must happen after
all atomicAdds have completed

CUDA Example

75

__device__
void inner(float* a, float* x, float* y) {

 y[threadIdx.x] = a[0] * x[threadIdx.x];

}

__device__
void __enzyme_autodiff(void*, …);

__global__
void daxpy(float* a, float* da,
 float* x, float* dx,
 float* y, float* dy) {

 __enzyme_autodiff((void*)inner,
 a, da, x, dx, y, dy);

}

__device__
void diffe_inner(float* a, float* da,
 float* x, float* dx,
 float* y, float* dy) {
 // Forward Pass

 y[threadIdx.x] = a[0] * x[threadIdx.x];

 // Reverse Pass

 float dy = dy[threadIdx.x];
 dy[threadIdx.x] = 0.0f;

 float dx_tmp = a[0] * dy;
 atomic { dx[threadIdx.x] += dx_tmp; }

 float da_tmp = x[threadIdx.x] * dy;
 atomic { da[0] += da_tmp; }
}

CUDA Example

76

__device__
void inner(float* a, float* x, float* y) {

 y[threadIdx.x] = a[0] * x[threadIdx.x];

}

__device__
void __enzyme_autodiff(void*, …);

__global__
void daxpy(float* a, float* da,
 float* x, float* dx,
 float* y, float* dy) {

 __enzyme_autodiff((void*)inner,
 a, da, x, dx, y, dy);

}

__device__
void diffe_inner(float* a, float* da,
 float* x, float* dx,
 float* y, float* dy) {
 // Forward Pass

 y[threadIdx.x] = a[0] * x[threadIdx.x];

 // Reverse Pass

 float dy = dy[threadIdx.x];
 dy[threadIdx.x] = 0.0f;

 float dx_tmp = a[0] * dy;
 dx[threadIdx.x] += dx_tmp;

 float da_tmp = x[threadIdx.x] * dy;
 reduce_accumulate(&da[0], da_tmp);
}

CUDA.jl / AMDGPU.jl Example

77

function compute!(inp, out)
 s_D = @cuStaticSharedMem eltype(inp) (10, 10)
 ...
end

function grad_compute!(inp, out)
 Enzyme.autodiff_deferred(compute!, inp, out)
 return nothing
end

@cuda grad_compute!(Duplicated(inp, d_inp),
 Duplicated(out, d_out))

function compute!(inp, out)
 s_D = AMDGPU.alloc_special(…)
 ...
end

function grad_compute!(inp, out)
 Enzyme.autodiff_deferred(compute!, inp, out)
 return nothing
end

@rocm grad_compute!(Duplicated(inp, d_inp),
 Duplicated(out, d_out))

See Below For Full Code Examples
https://github.com/wsmoses/Enzyme-GPU-Tests/blob/main/DG/

Efficient GPU Code
• For correctness, Enzyme may need to cache values in

order to compute the gradient

• The complexity of GPU memory means large caches
slow down the program by several orders of magnitude,
if it even fits at all

• Like the CPU, existing optimizations reduce the overhead

• Unlike the CPU, existing optimizations aren’t sufficient

• Novel GPU and AD-specific optimizations can speedup by
several orders of magnitude

78

// Forward Pass

out[i] = x[i] * x[i];

x[i] = 0.0f;

// Reverse (gradient) Pass

...
grad_x[i] += 2 * x[i] * grad_out[i];
...

Allocation Merging

• Allocations (and any calls) on the
GPU are expensive

• Given two allocations in the same
scope, replace uses with a single
allocation

• Beneficial for not just AD, but any
GPU programs!

79

double* var1 = new double[N];
double* var2 = new double[M];

use(var1, var2);

delete[] var1;
delete[] var2;

double* var1 = new double[N + M];
double* var2 = var1 + N;

use(var1, var2);

delete[] var1;

• Tool for performing forward and reverse-mode AD of statically analyzable LLVM IR

• Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)

• 4.2x speedup over AD before optimization on CPU

• State-of-the art performance with existing tools

• First general purpose reverse-mode GPU AD

• Novel GPU and AD-specific optimizations improve runtime by several orders of magnitude

• Open source (enzyme.mit.edu & join our mailing list)!

• Ongoing work to support Mixed Mode, Batching, Checkpointing/Scheduling

 Enzyme

80

http://enzyme.mit.edu

PyTorch-Enzyme & TensorFlow-Enzyme

import torch
from torch_enzyme import enzyme

Create some initial tensor
inp = …

Apply foreign function to tensor
out = enzyme("test.c", “f").apply(inp)

Derive gradient
out.backward()
print(inp.grad)

import tensorflow as tf
from tf_enzyme import enzyme

Create some initial tensor
inp = tf.Variable(…)

Use external C code as a regular TF op
out = enzyme(inp, filename=“test.c",
 function=“f”)

Results is a TF tensor
out = tf.sigmoid(out)

// Input tensor + size, and output tensor
void f(float* inp, size_t n, float* out);

// diffe_dupnoneed specifies not recomputing the output
void diffef(float* inp, float* d_inp, size_t n, float* d_out) {
 __enzyme_autodiff(f, diffe_dup, inp, d_inp, n, diffe_dupnoneed, (float*)0, d_out);
}

81

Cache

• Adjoint instructions may require values from the forward pass

• e.g. ∇(x * y) => x dy + y dx

• For all values needed in the reverse, allocate memory in the forward pass to store the value

• Values computed inside loops are stored in an array indexed by the loop induction variable

• Array allocated statically if possible; otherwise dynamically realloc’d

When LLVM Doesn’t Cut It
• Enzyme relies on optimizations

such as LICM and CSE to eliminate
redundant loads, and thus
redundant caches.

• Since we instead need to preserve
values for the reverse pass, these
optimizations may not apply

83

for(int i=0; i<N; i++) {
 for(int j=0; j<M; j++) {
 use(array[i]);
 }
}

overwrite(array);

for(int i=0; i<N; i++) {
 for(int j=0; j<M; j++) {

 use(array[j]);
 }
}

overwrite(array);

When LLVM Doesn’t Cut It
• Enzyme relies on optimizations

such as LICM and CSE to eliminate
redundant loads, and thus
redundant caches.

• Since we instead need to preserve
values for the reverse pass, these
optimizations may not apply

• This requires far more caching than
necessary

84

double* cache = new double[N*M];

for(int i=0; i<N; i++) {
 for(int j=0; j<M; j++) {
 cache[i*M+j] = array[j];
 use(array[j]);
 }
}

overwrite(array);
grad_overwrite(array);

for(int i=0; i<N; i++) {
 for(int j=M-1; i<M; i++) {
 grad_use(cache[i*M+j], d_array[j]);
 }
}

When LLVM Doesn’t Cut It
• Enzyme relies on optimizations

such as LICM and CSE to eliminate
redundant loads, and thus
redundant caches.

• Since we instead need to preserve
values for the reverse pass, these
optimizations may not apply

• This requires far more caching than
necessary

• By analyzing the read/write
structure, we can hoist the cache.

85

double* cache = new double[M];
memcpy(cache, array, sizeof(double)*M);
for(int i=0; i<N; i++) {
 for(int j=0; j<M; j++) {

 use(array[j]);
 }
}

overwrite(array);
grad_overwrite(array);

for(int i=0; i<N; i++) {
 for(int j=M-1; i<M; i++) {
 grad_use(cache[j], d_array[j]);
 }
}

Cache

• Adjoint instructions may require values from the forward pass

• e.g. ∇(x * y) => x dy + y dx

• For all values needed in the reverse, allocate memory in the forward pass to store the value

• Values computed inside loops are stored in an array indexed by the loop induction variable

• Array allocated statically if possible; otherwise dynamically realloc’d

Case Study: Read Sum

entry

for.body

%result = phi [%call, cond.true], [0, entry]
ret %result

for.cleanup

br for.body

 %i = phi [0, entry], [%i.next, for.body]
 %total = phi [0.0, %entry], [%add, for.body]
 %call = @read()
 %0 = load %x[%i]
 %mul = %0 * %call
 %add = %mul + %total
 %i.next = %i + 1
 %exitcond = %i.next == 10
 br %exitcond, for.cleanup, for.body

double sum(double* x) {
 double total = 0;

 for(int i=0; i<10; i++)
 total += read() * x[i];

 return total;
}

define double @sum(double* %x)

void diffe_sum(double* x, double* xp) {
 return __enzyme_autodiff(sum, x, xp);
}

Case Study: Read Sum

entry

for.body

%result = phi [%call, cond.true], [0, entry]
ret %result

for.cleanup

br for.body

 %i = phi [0, entry], [%i.next, for.body]
 %total = phi [0.0, %entry], [%add, for.body]
 %call = @read()
 %0 = load %x[%i]
 %mul = %0 * %call
 %add = %mul + %total
 %i.next = %i + 1
 %exitcond = %i.next == 10
 br %exitcond, for.cleanup, for.body

define double @sum(double* %x)

Active Variables

Case Study: Read Sum

entry

for.body

%result = phi [%call, cond.true], [0, entry]
ret %result

for.cleanup

br for.body

 %i = phi [0, entry], [%i.next, for.body]
 %total = phi [0.0, %entry], [%add, for.body]
 %call = @read()
 %0 = load %x[%i]
 %mul = %0 * %call
 %add = %mul + %total
 %i.next = %i + 1
 %exitcond = %i.next == 10
 br %exitcond, for.cleanup, for.body

define double @sum(double* %x)

Each register in the
for loop represents a
distinct active variable

every iteration

entry

for.body

%result = phi [%call, cond.true], [0, entry]
ret %result

for.cleanup

alloca %x’ = 0.0
alloca %total’ = 0.0
alloca %0’ = 0.0
alloca %mul’ = 0.0
alloca %add’ = 0.0
alloca %result’ = 0.0

br for.body

 %i = phi [0, entry], [%i.next, for.body]
 %total = phi [0.0, %entry], [%add, for.body]
 %call = @read()
 %0 = load %x[%i]
 %mul = %0 * %call
 %add = %mul + %total
 %i.next = %i + 1
 %exitcond = %i.next == 10
 br %exitcond, for.cleanup, for.body

define double @diffe_sum(double* %x, double* %xp)

Allocate & zero
shadow memory
per active value

entry

for.body

%result = phi [%call, cond.true], [0, entry]
@free(%cache)
ret %result

for.cleanup

alloca %x’ = 0.0
alloca %total’ = 0.0
alloca %0’ = 0.0
alloca %mul’ = 0.0
alloca %add’ = 0.0
alloca %result’ = 0.0
%call_cache = @malloc(10 x double)
br for.body

 %i = phi [0, entry], [%i.next, for.body]
 %total = phi [0.0, %entry], [%add, for.body]
 %call = @read()
 store %call_cache[%i] = %call
 %0 = load %x[%i]
 %mul = %0 * %call
 %add = %mul + %total
 %i.next = %i + 1
 %exitcond = %i.next == 10
 br %exitcond, for.cleanup, for.body

define double @diffe_sum(double* %x, double* %xp)

Cache forward pass
variables for use in

reverse

entry

for.body

@free(%cache)
ret

exit

%call_cache = @malloc(10 x double)
br for.body

 %i = phi [0, entry], [%i.next, for.body]
 %total = phi [0.0, %entry], [%add, for.body]
 %call = @read()
 store %call_cache[%i] = %call
 %i.next = %i + 1
 %exitcond = %i.next == 10
 br %exitcond, reversefor.body, for.body

define void @diffe_sum(double* %x, double* %xp)

 %i' = phi [9, for.body], [%i’.next, reversefor.body]
 %i’.next = %i' - 1
 %cached_read = load %call_cache[%i’]
 store %xp[%i’] = %cached_read + %xp[%i’]
 %exit2 = %i = 0
 br %exitcond, %exit2, reversefor.body

reversefor.body

After lowering &
some optimizations

Case Study: Read Sum

entry %call0 = @read()
 store %xp[0] = %call0
 %call1 = @read()
 store %xp[1] = %call1
 %call2 = @read()
 store %xp[2] = %call2
 %call3 = @read()
 store %xp[3] = %call3
 %call4 = @read()
 store %xp[4] = %call4
 %call5 = @read()
 store %xp[5] = %call5
 %call6 = @read()
 store %xp[6] = %call6
 %call7 = @read()
 store %xp[7] = %call7
 %call8 = @read()
 store %xp[8] = %call8
 %call9 = @read()
 store %xp[9] = %call9
 ret

define void @diffe_sum(double* %x, double* %xp)

void diffe_sum(double* x, double* xp) {
 xp[0] = read();
 xp[1] = read();
 xp[2] = read();
 xp[3] = read();
 xp[4] = read();
 xp[5] = read();
 xp[6] = read();
 xp[7] = read();
 xp[8] = read();
 xp[9] = read();
}

After more
optimizations

CUDA Automatic Differentiation

• Enzyme enables differentiation of CPU programs without rewriting them in a DSL.

• Similarly, GPU programs cannot currently be differentiated without being rewritten in a
differentiable language (e.g. PyTorch).

• Enzyme enables reverse-mode AD of general existing GPU programs by:

• Resolving potential data race issues

• Differentiating parallel control (syncthreads)

• Differentiating CUDA intrinsics (e.g. threadIdx.x /llvm.nvvm.read.ptx.sreg.tid.x)

• Handling shared memory
94

CUDA Automatic Differentiation

• Most CUDA intrinsics [e.g. threadIdx.x] are inactive and recomputable and thus are
incorporated into Enzyme without any special handling

• Derivative of syncthreads is a syncthreads at the corresponding place in reverse pass

• Shared memory is handled by making a second shared memory allocation to act as the
shadow for any potentially active uses

95

Custom Derivatives & Multisource

• One can specify custom forward/reverse passes of functions by attaching metadata 
 
 

• Enzyme leverages LLVM’s link-time optimization (LTO) & “fat libraries” to ensure that LLVM
bitcode is available for all potential differentiated functions before AD

__attribute__((enzyme("augment", augment_func)))
__attribute__((enzyme("gradient", gradient_func)))
double func(double n);

96

Activity Analysis

• Determines what instructions could impact derivative computation

• Avoids taking meaningless or unnecessary derivatives (e.g. d/dx cpuid)

• Instruction is active iff it can propagate a differential value to its return or memory

• Build off of alias analysis & type analysis

• E.g. all read-only function that returns an integer are inactive since they cannot propagate
adjoints through the return or to any memory location

Compiler Analyses Better Optimize AD

• Existing

• Alias analysis results that prove a function does not write to memory, we can prove that
additional function calls do not need to be differentiated since they cannot impact the output

• Don’t cache equivalent values

• Statically allocate caches when a loop’s bounds can be determined in advance

98

Decomposing the “Tape”

• Performing AD on a function requires data structures to compute

• All values necessary to compute adjoints are available [cache]

• Place to store adjoints [shadow memory]

• Record instructions [we are static]

• Creating these directly in LLVM allows us to explicitly specify their behavior for optimization,
unlike approaches that call out to a library

• For more details look in paper

99

Conventional Wisdom: AD Only Feasible at High-Level

• Automatic Differentiation requires high level semantics to produce gradients

• Lack of high-level information can hinder performance of low-level AD

• “AD is more effective in high-level compiled languages (e.g. Julia, Swift, Rust, Nim) than
traditional ones such as C/C++, Fortran and LLVM IR […]” -Innes[1]

 

[1] Michael Innes. Don’t Unroll Adjoint: Differentiating SSA-Form Programs. arXiv preprint arXiv:1810.07951, 2018

100

Differentiation Is Key To Machine Learning

• Hinders application of ML to new domains

• Synthesizing gradients aims to close this gap

// PyTorch rewrite of nbody simulator
import torch

def step(bodies, dt):
 acc = []
 for i in range(len(bodies)):
 acc.push(torch.zeros([3]))
 for j in range(len(bodies)):
 if i == j: continue
 acc[i] += force(bodies[i], bodies[j]) /
 bodies[i].mass

 for i, body in enumerate(bodies):
 body.vel += acc[i] * dt
 body.pos += body.vel * dt

// C++ nbody simulator

void step(std::array<Planet> bodies, double dt) {
 vec3 acc[bodies.size()];
 for (size_t i=0; i<bodies.size(); i++) {
 acc[i] = vec3(0, 0, 0);
 for (size_t j=0; j<bodies.size(); j++) {
 if (i == j) continue;
 acc[i] += force(bodies[i], bodies[j]) /
 bodies[i].mass;
 }
 }
 for (size_t i=0; i<bodies.size(); i++) {
 bodies[i].vel += acc[i] * dt;
 bodies[i].pos += bodies[i].vel * dt;
 }
}

101

Case 3: Store, Sync, Store

102

codeA(); // store %ptr

sync_threads;

codeB(); // store %ptr

…

diffe_codeB(); // load %d_ptr
 // store %d_ptr = 0

sync_threads;

diffe_codeA(); // load %d_ptr
 // store %d_ptr = 0

 Correct

• All stores to d_ptr in diffe_B will
complete prior to diffe_A, ensuring
only the clobbering store has its
derivative incremented

Scalability Analysis (Fixed Thread Count)

103

0 100 200 300 400 500 600

6.35

6.4

6.45

Iterations

A
D

O
v
e
r
h
e
a
d
(
fa
c
t
o
r
)

LBM – Parboil (C & CUDA)

CUDA Example

104

__device__ void inner(float* a, float* x, float* y) {
 y[threadIdx.x] = a[0] * x[threadIdx.x];
}
__device__ void __enzyme_autodiff(void*, …);

__global__ void daxpy(float* a, float* da, float* x, float* dx, float* y, float* dy) {
 __enzyme_autodiff((void*)inner, a, da, x, dx, y, dy);
}

__device__ void diffe_inner(float* a, float* da, float* x, float* dx, float* y, float* dy) {
 y[threadIdx.x] = a[0] * x[threadIdx.x];

 float dy = dy[threadIdx.x];
 dy[threadIdx.x] = 0.0f;

 float dx_tmp = a[0] * dy;
 atomic { dx[threadIdx.x] += dx_tmp; }

 float da_tmp = x[threadIdx.x] * dy;
 atomic { da[0] += da_tmp; }
}

Existing AD Approaches (1/3)

• Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)

• Provide a new language designed to be differentiated

• Requires rewriting everything in the DSL and the DSL must support all operations in original
code

• Fast if DSL matches original code well

import tensorflow as tf

x = tf.Variable(3.14)

with tf.GradientTape() as tape:
 out = tf.math.square(x)

print(tape.gradient(out, x).numpy())

double square(double val) {
 return val * val;
}

Manually
Rewrite

Existing AD Approaches (3/3)

• Source rewriting

• Statically analyze program to produce a new gradient function in the source language

• Re-implement parsing and semantics of given language

• Requires all code to be available ahead of time => hard to use with external libraries

double square(double val) {
 return val * val;
}

Tool
Rewrite

double grad_square(double val) {
 return 2 * val;
}

$ tapenade -b -o out.c -head “square(val)/(out)" square.c

Parallel Automatic Differentiation in LLVM

107

%res = load %ptr

 %tmp = load %d_res
 store %d_res = 0
 atomic %d_ptr += %tmp

store %ptr = %val

 %tmp = load %d_ptr
 store %d_ptr = 0
 load/store %d_val += %tmp

• Shadow Registers %d_res and
%d_val are thread-local as they
shadow thread-local registers.

• No risk of races and no special
handling required.

• Both %ptr and shadow %d_ptr might
be raced upon and require analysis.

Case 2: Load, Sync, Store

108

codeA(); // load %ptr

sync_threads;

codeB(); // store %ptr

…

diffe_codeB(); // load %d_ptr
 // store %d_ptr = 0

sync_threads;

diffe_codeA(); // atomicAdd %d_ptr

 Correct

• All of the stores of d_ptr will
complete prior to any atomicAdds

No cross-thread race here since
that’s equivalent to a write race in B

Differentiation of SyncThreads

109

codeA(); // store %ptr

sync_threads;

codeB(); // store %ptr

…

diffe_codeB(); // load %d_ptr
 // store %d_ptr = 0

sync_threads;

diffe_codeA(); // load %d_ptr
 // store %d_ptr = 0

Case 3 [write sync write]

All uses of stores to d_ptr in diffe_B will
correctly complete prior to diffe_A

codeA(); // load %ptr

sync_threads;

codeB(); // load %ptr

…

diffe_codeB(); // atomicAdd %d_ptr

sync_threads;

diffe_codeA(); // atomicAdd %d_ptr

Case 4 [read sync read]

Original and differential sync unnecessary and
legal to include

Scalability Analysis (Fixed Work Per Thread)

110

0 2 4 6 8 10 12

5

10

15

20

Relative Problem Size

A
D

O
ve
rh
ea
d
(f
ac
to
r)

Discontinuous Galerkin (Julia & CUDA)
Discontinuous Galerkin (Julia & ROCm)

LULESH (C++ & CUDA)
RSBench (C & CUDA)
XSBench (C & CUDA)

0 2 4 6 8 10 12

5

10

15

20

Relative Problem Size

A
D

O
ve
rh
ea
d
(f
ac
to
r)

Discontinuous Galerkin (Julia & CUDA)
Discontinuous Galerkin (Julia & ROCm)

LULESH (C++ & CUDA)
RSBench (C & CUDA)
XSBench (C & CUDA)

Efficient Gradient Code

111

// Forward Pass

out[i] = x[i] * x[i];

x[i] = 0.0f;

// Reverse (gradient) Pass

...
grad_x[i] += 2 * x[i] * grad_out[i];
...

• For correctness, Enzyme may need to cache values in
order to compute the gradient

• Complex memory hierarchies, like on the GPU, cause
caches to slow down the program by several orders of
magnitude, if they even fit at all

• Existing optimizations reduce the overhead, but may not
be sufficient

• Novel AD-specific optimizations can speedup by several
orders of magnitude

Efficient Correct Gradient Code
• For correctness, Enzyme may need to cache values in

order to compute the gradient

• Complex memory hierarchies, like on the GPU, cause
caches to slow down the program by several orders of
magnitude, if they even fit at all

• Existing optimizations reduce the overhead, but may not
be sufficient

• Novel AD-specific optimizations can speedup by several
orders of magnitude

112

double* x_cache = new double[…];

// Forward Pass

out[i] = x[i] * x[i];
x_cache[i] = x[i];

x[i] = 0.0f;

// Reverse (gradient) Pass

...
grad_x[i] += 2 * x_cache[i]
 * grad_out[i];
...

delete[] x_cache;

Common Framework for Parallel AD (SC’22, Best Student Paper)

• Common infrastructure for supporting parallel AD (caching, race-resolution, gradient
accumulation) enables parallel differentiation independent of framework or language.

• Enables differentiation of a combination of GPU (e.g. CUDA, ROCm), CPU (OpenMP, Julia
Tasks, RAJA), Distributed (MPI, MPI.jl), and more

113

History of Parallel AD

• Prior AD tools are built with a single language and parallel framework in mind

• Differentiating code using multiple parallel frameworks is difficult or impossible!    

• Require AD-specific rewriting to specify extra information

• Run at a source-level, preventing optimizations from being applied

114

MPI AD

CUDA AD

OpenMP AD

void send(double* data, int size) {
 MPI_ISend(data, val);
}

void send(ADdouble* data, int size, void* buffer) {
 AD_MPI_ISend(data, val, buffer);
}

Lower Enzyme .

Optimize

CodeGen

Optimize

 Combining Parallelism with Differentiation

Performing AD in the compiler lets us build a common tool to
differentiate & optimize multiple parallel frameworks simultaneously!

115

 Parallelism-Preserving Differentiation

116

• Computing the adjoint of an instruction in the reverse
pass updates the derivative of the operands it used.

• Reversing the parallel dependency structure ensures
that for a given value all derivative updates are
performed before its definition

MPI_ISend
MPI_Recv

MPI_Wait

MPI_IRecv
MPI_Send

MPI_Wait

Data Caching
• Differentiation requires some values from the original

program for correctness

• Overwriting a value required for the derivative requires it to
be cached

• Recomputing a value can significantly reduce both
memory overhead and runtimes, if legal

• Parallel constructs (closures, thread-local vs global
memory) hinder such optimizations

• Remedy via novel parallel analyses and optimizations

117

// Forward Pass

out[i] = x[i] * x[i];

x[i] = 0.0f;

// Reverse (gradient) Pass

...
grad_x[i] += 2 * x[i] * grad_out[i];
...

Parallel Value Hoisting

118

void closure(double** outp, double** inp) {
 // Unknown aliasing between out/in
 double* out = *outp;
 double* in = *inp;
 int i = threadid();
 out[i] = in[i] * in[i];
}

…

double** outp = &out;
double** inp = ∈

kmpc_fork(closure, outp, inp);

#pragma omp parallel for
for(int i=0; i<10; i++) {
 out[i] = in[i] * in[i];
}

void closure(double* restrict out2,
 double* restrict in2) {

 // out/in known to not overlap
 out2[i] = in2[i] * in2[i];

}

…

double** outp = &out;
double** inp = ∈
double* out2 = *outp;
double* in2 = *inp;
kmpc_fork(closure, out2, inp2);

Parallel Value Hoisting

119

void closure(double** outp, double** inp) {
 // Unknown aliasing between out/in
 double* out = *outp;
 double* in = *inp;
 int i = threadid();
 out[i] = in[i] * in[i];
}

…

double** outp = &out;
double** inp = ∈

kmpc_fork(closure, outp, inp);

#pragma omp parallel for
for(int i=0; i<10; i++) {
 out[i] = in[i] * in[i];
}

void closure(double* restrict out2,
 double* restrict in2) {

 // out/in known to not overlap
 out2[i] = in2[i] * in2[i];

}

…

double** outp = &out;
double** inp = ∈
double* out2 = *outp;
double* in2 = *inp;
kmpc_fork(closure, out2, inp2);

Framework Generality

120

• Implemented hooks for several parallel frameworks:

• OpenMP

• MPI

• Julia Tasks

• existing GPU support (ROCM, CUDA)

• Supports any higher-level framework built off these primitives

• RAJA

• MPI.jl

• Julia @parallel

• …

Construct Generality

121

• Higher-level parallel utilities are automatically 
handled by existing support for parallelism

• Both source-level or manually written 
utilities are lowered to common form.

• If optimizations exist for higher-level utilities,
Enzyme supports overriding

• E.g. faster OpenMP parallel for, rather than
differentiating via separate support for
OpenMP parallel and work sharing loop

Evaluation

122

• Differentiated nine distinct versions of LULESH and miniBUDE applications, in a variety of
parallel frameworks, and in both C++ and Julia

• LULESH: unstructured hydrodynamics solver

• miniBUDE: computational kernels of a molecular docking engine

• Compare performance and scalability against non-differentiated code, as well as a state of
the art MPI AD tool (CoDiPack)

• Benchmarks available at: https://github.com/EnzymeAD/Enzyme-sc22

https://github.com/EnzymeAD/Enzyme-sc22

Evaluation Highlights: Strong Scaling (BUDE)

123

• Parallel optimizations enable Enzyme to keep the same scalability as the original program

Evaluation Highlights: Runtime Overhead (LULESH)

124

• Overhead is stable and small, independent of number of MPI nodes, or language/
framework

• Tool for performing reverse-mode (and forward mode) AD of statically analyzable LLVM IR

• Differentiates code in a variety of parallel frameworks (OpenMP, MPI, Julia Tasks, GPU), and
languages (C, C++, Fortran, Julia, Rust, Swift, etc)

• Parallel and AD-specific optimizations crucial for performance

• Keep similar scalability as non-differentiated code

• Open source (enzyme.mit.edu & join our mailing list)!

• Ongoing work to support Mixed Mode, Batching, Checkpointing, and more

 Enzyme

125

http://enzyme.mit.edu

 Enzyme: Fast, Parallel, and Rewrite-Free Derivatives

• Derivatives are ubiquitous in machine learning (training neural
networks, Bayesian inference), scientific computing (uncertainty
quantification, simulation)

• Enzyme synthesizes derivatives of arbitrary code within the compiler

• Differentiate code in any LLVM-based language (C/C++, Julia,

Rust, Swift, Fortran, Python, etc) without rewriting it!

• Operating after and alongside program optimization generates

asymptotically and empirically faster derivatives

• First automatic differentiation tool to handle arbitrary GPU kernels

• Best student paper @SC’22, SC’21, spotlight @NeurIPS’20; 
awarded multi-year DOE grant with LLNL

126

from Comrade: High Performance Black-Hole Imaging 
JuliaCon 2022, Paul Tiede (Harvard)

from Efficient Differentiation of Pixel Reconstruction Filters for Path-Space
Differentiable Rendering, SIGGRAPH Asia 2022, Zihan Yu et al

>100x speedup! 
 
Prior: 
 5 days (cluster) 

Enzyme-Based:

 1 hour (laptop)

Target Reconstruction

• Used by Harvard, Facebook, AMD, ANL, UT Austin, NASA, Dartmouth, CU Boulder, TU Munich,
and startups for climate simulation, material science, ML, and more!

https://www.llnl.gov/news/doe-funds-llnl-project-improve-differentiation-extreme-scale-science-applications
https://live.juliacon.org/talk/3LHDTD
https://dl.acm.org/doi/pdf/10.1145/3550454.3555500
https://dl.acm.org/doi/pdf/10.1145/3550454.3555500
https://dl.acm.org/doi/pdf/10.1145/3550454.3555500

Teaching: Combining Theory with Practice

My goal is to teach my students the principles behind modern systems and provide them with a
foundation for understanding any future systems they may encounter or even build themselves.

• Prior Experience: MIT Intro to Algorithms (twice-weekly recitations); created January mini-term
C/C++ course; guest lecture for graduate Data Analysis & Signal Processing course; and more

New Courses:

127

from Efficient Differentiation of Pixel Reconstruction Filters for Path-Space
Differentiable Rendering, SIGGRAPH Asia 2022, Zihan Yu et al

• Differential Programming: Code transformations enable using
code as a component of ML models. Gradient descend through
a physics simulation to find an optimal aircraft wing design! The
course will both teach foundational algorithms and provide
experience writing real differentiable programs.

• Parallel Performance Engineering: Modern computing requires efficiently using the performance
of multicore chips, clusters, and accelerators. Learn about both hardware constraints like pipeline
and caches and software constraints like allocators, needed to build and debug fast code.

https://dl.acm.org/doi/pdf/10.1145/3550454.3555500
https://dl.acm.org/doi/pdf/10.1145/3550454.3555500
https://dl.acm.org/doi/pdf/10.1145/3550454.3555500

Diversity Equity and Inclusion
• It is the duty of all professors to promote diversity, equity, and inclusion within Princeton and the broader community.

• Faculty members of systemically marginalized groups are historically expected to perform most inclusion work,
and are simultaneously judged more harshly spending less time on research as a result.

• Prior Experience:

• Worked in MIT’s Institute Community and Equity Office to support DEI initiatives. For example, I created
opportunities for students from disadvantaged backgrounds to interact with tenured faculty, arranged speakers,
wrote news articles.

• As president of MIT’s oldest computing club, I improved diversity and general attendance by 20% through various
initiatives (mentorship program, outreach, culture of positive learning, community-building projects). Awarded the
Golden Beaver and Karl Taylor Compton Prize, MIT’s highest student award.

• Future Initiatives:

• Studies have shown that mentorship programs are some of the most effective methods for improving diversity.

• Propose long-term research mentorship program for local high-school students, and cohort and other community
building for undergraduate and graduate students; low-barrier anonymous feedback in courses, research group,
and department128

Why Does Enzyme Use LLVM?

• Generic low-level compiler infrastructure with many
frontends

• “Cross platform assembly”

• Many backends (CPU, CUDA, AMDGPU, etc)

• Well-defined semantics

• Large collection of optimizations and analyses

129

Implementing Tapir/LLVM
Compiler component LLVM 4.0svn (lines) Tapir/LLVM (lines)

Instructions 105,995 943

Memory behavior 21,788 445

Optimizations 152,229 380

Parallelism lowering 0 3,782

Other 3,803,831 460

Total 4,083,843 6,010

�
1,768

130

Revisiting The Programmer’s Burden

131

Key Enabling Technology: Probabilistic Programming

Probabilistic Programming is a new paradigm for automating statistical and Bayesian reasoning

• Use requires rewriting entire applications in a probabilistic programming language (PPL), with
analyses performed on source code, if at all

• Inference requires running model functions many times, even if variables won’t change the
results.

• Idea: Moving into the compiler will enable performance and usability advantages.

132

@gen function model(N)
 m = @trace(normal(0.0, 1.0), :m)
 b = @trace(normal(0.0, 1.0), :b)
 predictions = []
 for i in 1:N
 push!(predictions,
 @trace(normal(i * m + b, 1.0), (:predict, i)))
 end
 return m, b, predictions
end

plot(simulate(model, 4))

Generalizing Support: Library-Specific Optimization

• All libraries have high-level semantics or properties that are not well-expressed within a given
programming language -> failure to optimize

• Provide lightweight source-level mechanisms that enable library-authors preserve, optimize,
and verify custom semantics

133

void foo(DataStructure& x) {
 print(size(x));
 insert(x);
 print(size(x));
}

define void @foo(ptr %x) {
 %2 = call @size(ptr %x)
 call @print(i32 %2)
 call @insert(ptr %x)
 ; %3 = add i32 %2, 1
 %3 = call @size(ptr %x)
 call @print(i32 %3)
 ret void
}

