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The Programmer’s Burden
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• The decline of Moore's law and an increasing 
reliance on computation => explosion of 
specialized software packages and hardware 
architectures.


• Domain-experts must customize programs and 
learn platform-specific API's, instead of working 
on their intended problem.


• Rather than each user bearing this burden, 
compilers can automatically generate fast, 
portable, and composable programs!



Extending the Boundaries of Compilers

Enzyme: fast, parallel, and rewrite-free derivative generation; best student paper 
@SC’22, SC’21, spotlight @NeurIPS’20; awarded multi-year DOE grant with LLNL 

Tapir: understand and optimize parallel programs; best paper @PPoPP’17, TOPC’19 

Polygeist: run GPU code on CPUs, 2.7x faster than expert-written code, preserve 
program structure to leverage device parameters perform HLS; PPoPP’23, PACT’21


Tensor Comprehensions (TC): automatically generate fast tensor arithmetic; TACO’19


AutoPhase: ML-based optimization of programs/circuits; MLSys’20, FCCM’19
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AP Calculus: Revisited

• Derivatives compute the rate of change of a function’s output with respect to input(s)


• Derivatives are used widely across science


• Machine learning (back-propagation, Bayesian inference)


• Scientific computing (modeling, simulation, uncertainty quantification)

6 from Efficient Differentiation of Pixel Reconstruction Filters for Path-Space Differentiable Rendering, 
SIGGRAPH Asia 2022, Zihan Yu et al

Target Reconstruction

https://dl.acm.org/doi/pdf/10.1145/3550454.3555500


Automatic Derivative Generation

• Derivatives can be generated automatically from definitions within programs 
 
 
 
 

• Unlike numerical approaches, automatic differentiation (AD) can compute the derivative of ALL 
inputs (or outputs) at once, without approximation error!
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AD

double relu3(double x) { 
  if (x > 0) 
    return pow(x,3) 
  else 
    return 0; 
}

double grad_relu3(double x) { 
  if (x > 0) 
    return 3 * pow(x,2) 
  else 
    return 0; 
}

// Numeric differentiation 
// f’(x) approx [f(x+epsilon) - f(x)] / epsilon 
double grad_input[100]; 

for (int i=0; i<100; i++) { 
  double input2[100] = input; 
  input2[i] += 0.01; 
  grad_input[i] = (f(input2) - f(input))/0.001; 
}

// Automatic differentiation 
double grad_input[100]; 

grad_f(input, grad_input)



Existing AD Approaches (1/3)

• Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)


• Provide a new language designed to be differentiated


• Requires rewriting everything in the DSL and the DSL must support all operations in original 
code


• Fast if DSL matches original code well import tensorflow as tf 

x = tf.Variable(3.14) 

with tf.GradientTape() as tape: 
  out = tf.cond(x > 0, 
           lambda: tf.math.pow(x,3), 
           lambda: 0 
        ) 
print(tape.gradient(out, x).numpy())

double relu3(double val) { 
  if (x > 0) 
    return pow(x,3) 
  else 
    return 0; 
}

Manually 
Rewrite



Existing AD Approaches (2/3)

• Operator overloading (Adept, JAX)


• Differentiable versions of existing language constructs (double => adouble, np.sum => jax.sum)


• May require writing to use non-standard utilities


• Often dynamic: storing instructions/values to later be interpreted

// Rewrite to accept either 
//    double or adouble 
template<typename T> 
T relu3(T val) { 
  if (x > 0) 
    return pow(x,3) 
  else 
    return 0; 
}

adept::Stack stack; 
adept::adouble inp = 3.14; 

// Store all instructions into stack 
adept::adouble out(relu3(inp)); 
out.set_gradient(1.00); 

// Interpret all stack instructions 
double res = inp.get_gradient(3.14);



Existing AD Approaches (3/3)

• Source rewriting


• Statically analyze program to produce a new gradient function in the source language


• Re-implement parsing and semantics of given language


• Requires all code to be available ahead of time => hard to use with external libraries

Tapenade

// myfile.h 
double relu3(double x) { 
  if (x > 0) 
    return pow(x,3) 
  else 
    return 0; 
}

// myfile.c 
double relu3(double x) { 
  if (x > 0) 
    return pow(x,3) 
  else 
    return 0; 
}

// grad_myfile.h 
double relu3(double x) { 
  if (x > 0) 
    return pow(x,3) 
  else 
    return 0; 
}

// grad_myfile.c 
double grad_relu3(double x) { 
  if (x > 0) 
    return 3 * pow(x,2) 
  else 
    return 0; 
}



Existing Automatic Differentiation Pipelines

AD

CodeGen

Optimize

Lower

AD

AD

AD
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Case Study: Vector Normalization

//Compute magnitude in O(n) 
double mag(double[] x); 

//Compute norm in O(n^2) 
void norm(double[] out, double[] in) { 

  for (int i=0; i<n; i++) { 
    out[i] = in[i] / mag(in); 
  } 
}

12



Case Study: Vector Normalization

//Compute magnitude in O(n) 
double mag(double[] x); 

//Compute norm in O(n) 
void norm(double[] out, double[] in) { 
  double res = mag(in); 
  for (int i=0; i<n; i++) { 
    out[i] = in[i] / res; 
  } 
}

13



Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
res = mag(in) 
for i=0..n { 
  out[i] /= res 
}

d_res = 0.0  
for i=n..0 { 
  d_res += d_out[i]… 
} 
∇mag(d_in, d_res)

O (n)
for i=0..n { 
  out[i] /= mag(in) 
}
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Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
for i=0..n { 
  out[i] /= mag(in) 
}

res = mag(in) 
for i=0..n { 
  out[i] /= res 
}

d_res = 0.0  
for i=n..0 { 
  d_res += d_out[i]… 
} 
∇mag(d_in, d_res)

O (n)

O (n2)
for i=0..n { 
  out[i] /= mag(in) 
}

AD
for i=n..0 { 
  d_res = d_out[i]… 
  ∇mag(d_in, d_res) 
}

O (n2)
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Optimization & Automatic Differentiation

Optimize
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AD
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Optimize
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Optimization & Automatic Differentiation

Differentiating after optimization can create asymptotically faster gradients!

Optimize

O (n2) O (n)

AD
for i=0..n { 
  out[i] /= mag(in) 
}

res = mag(in) 
for i=0..n { 
  out[i] /= res 
}

d_res = 0.0  
for i=n..0 { 
  d_res += d_out[i]… 
} 
∇mag(d_in, d_res)

O (n)

O (n2)O (n2)
for i=0..n { 
  out[i] /= mag(in) 
}

AD
for i=n..0 { 
  d_res = d_out[i]… 
  ∇mag(d_in, d_res) 
}

O (n2)
Optimize

for i=n..0 { 
  d_res = d_out[i]… 
  ∇mag(d_in, d_res) 
}

17



Lower Enzyme   .

Optimize

CodeGen

Optimize

       Enzyme Approach

Performing AD at low-level lets us work on optimized code!
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Case Study: ReLU3

entry

cond.true

%result = phi [%call, cond.true], [0, entry] 
ret %result

cond.end

%cmp = %x > 0 
br %cmp, cond.true, cond.end

%call = pow(%x, 3) 
br cond.end

double relu3(double x) { 
  double result; 
  if (x > 0) 
    result = pow(x, 3); 
  else 
    result = 0; 
  return result; 
}

define double @relu3(double %x)

double diffe_relu3(double x) { 
  return __enzyme_autodiff(relu3, x); 
}

C Source LLVM 

Enzyme Usage

19



Case Study: ReLU3

entry

cond.true

%result = phi [%call, cond.true], [0, entry] 
ret %result

cond.end

%cmp = %x > 0 
br %cmp, cond.true, cond.end

%call = pow(%x, 3) 
br cond.end

define double @relu3(double %x)

Active Instructions

20



entry

cond.true

%result = phi [%call, cond.true], [0, entry] 

; deleted return 

%result’ = 1.0 
br reverse_cond.end

cond.end

alloca %result’ = 0.0 
alloca %call’   = 0.0 
alloca %x’      = 0.0 
%cmp = %x > 0 
br %cmp, cond.true, cond.end

%call = pow(%x, 3) 
br cond.end

define double @diffe_relu3(double %x, double %differet)

Allocate & zero 
shadow memory for 

active values

21



entry

cond.true

%result = phi [%call, cond.true], [0, entry] 

; deleted return 

%result’ = 1.0 
br reverse_cond.end

cond.end

alloca %result’ = 0.0 
alloca %call’   = 0.0 
alloca %x’      = 0.0 
%cmp = %x > 0 
br %cmp, cond.true, cond.end

%call = pow(%x, 3) 
br cond.end

define double @diffe_relu3(double %x, double %differet)

%tmp_res’ = load %result’ 
%call’ += if %x > 0 then %tmp_res’ else 0 
store %result’ = 0.0 
br %cmp, reverse_cond.true, reverse_entry

reverse_cond.end%df = 3 * pow(%x, 2) 
%tmp_call’ = load %call 
%x’ += %df * %tmp_call’ 
store %call’ = 0.0 
br reverse_entry

%0 = load %x’ 
ret %0

reverse_entry

reverse_cond.true

Compute adjoints 
for active instructions
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entry

cond.true

%result = phi [%call, cond.true], [0, entry] 

; deleted return 
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define double @diffe_relu3(double %x, double %differet)
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%call’ += if %x > 0 then %tmp_res’ else 0 
store %result’ = 0.0 
br %cmp, reverse_cond.true, reverse_entry

reverse_cond.end%df = 3 * pow(%x, 2) 
%tmp_call’ = load %call 
%x’ += %df * %tmp_call’ 
store %call’ = 0.0 
br reverse_entry

%0 = load %x’ 
ret %0

reverse_entry

reverse_cond.true

Compute adjoints 
for active instructions
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entry
%cmp = %x > 0 
br %cmp, reverse_cond.true, reverse_entry

define double @diffe_relu3(double %x)

%3 = 3 * pow(%x, 2) 
br reverse_entry

%0 = phi [%3, reverse_cond.true], [0, entry] 
ret %0

reverse_entry
reverse_cond.true

Essentially the optimal hand-written gradient!

double diffe_relu3(double x) { 
  double result; 
  if (x > 0) 
    result = 3 * pow(x, 2); 
  else 
    result = 0; 
  return result; 
}

Post 
Optimization

24



Experimental Setup

Enzyme:

Ref:

Tapenade:

Adept: -O2

Enzyme      .

Tapenade

Adept

• Collection of benchmarks from Microsoft’s ADBench suite and of technical interest

-O2

-O2-O2

-O2-O2

-O2 Enzyme      . -O2

25



Speedup of Enzyme 
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Enzyme is 4.2x faster than Reference!
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Automatic Differentiation & GPUs

• Prior work has not explored reverse mode AD of existing GPU kernels


1. Reversing parallel control flow can lead to incorrect results


2. Complex performance characteristics make it difficult to synthesize 
efficient code


3. Resource limitations can prevent kernels from running at all

27



Efficient GPU Code
• For correctness, Enzyme may need to cache values in 

order to compute the gradient


• The complexity of GPU memory means large caches 
slow down the program by several orders of magnitude, 
if it even fits at all


• Like the CPU, existing optimizations reduce the overhead


• Unlike the CPU, existing optimizations aren’t sufficient


• Novel GPU and AD-specific optimizations can speedup by 
several orders of magnitude

28

 
// Forward Pass 

out[i] = x[i] * x[i]; 

x[i] = 0.0f; 
 
// Reverse (gradient) Pass 

... 
grad_x[i] += 2 * x[i] * grad_out[i]; 
... 



Efficient Correct GPU Code
• For correctness, Enzyme may need to cache values in 

order to compute the gradient


• The complexity of GPU memory means large caches 
slow down the program by several orders of magnitude, 
if it even fits at all


• Like the CPU, existing optimizations reduce the overhead


• Unlike the CPU, existing optimizations aren’t sufficient


• Novel GPU and AD-specific optimizations can speedup by 
several orders of magnitude

29

double* x_cache = new double[…]; 
 
// Forward Pass 

out[i] = x[i] * x[i]; 
x_cache[i] = x[i]; 

x[i] = 0.0f; 
 
// Reverse (gradient) Pass 

... 
grad_x[i] += 2 * x_cache[i] 
               * grad_out[i]; 
... 

delete[] x_cache;



Cache Reduction Example
• By considering the dataflow graph 

we can perform a min-cut to 
approximate smaller cache sizes.

30

for(int i=0; i<10; i++) { 
  double sum = x[i] + y[i]; 

  use(sum); 
} 

overwrite(x, y); 
grad_overwrite(x, y); 

for(int i=9; i>=0; i--) { 
  ... 
  grad_use(sum); 
} 

X Y

Sum

Overwritten:

Required for 
Reverse:



XX

Cache Reduction Example

31

double* x_cache = new double[10]; 
double* y_cache = new double[10]; 

for(int i=0; i<10; i++) { 
  double sum = x[i] + y[i]; 
  x_cache[i] = x[i]; 
  y_cache[i] = y[i]; 
  use(sum); 
} 

overwrite(x, y); 
grad_overwrite(x, y); 

for(int i=9; i>=0; i--) { 
  double sum = x_cache[i] + y_cache[i]; 
  grad_use(sum); 
} 

• By considering the dataflow graph 
we can perform a min-cut to 
approximate smaller cache sizes.

X Y

Sum

Overwritten:

Required for 
Reverse:

Naive Cache



Sum

Cache Reduction Example
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double* sum_cache = new double[10]; 

for(int i=0; i<10; i++) { 
  double sum = x[i] + y[i]; 
  sum_cache[i] = sum; 

  use(sum); 
} 

overwrite(x, y); 
grad_overwrite(x, y); 

for(int i=9; i>=0; i--) { 

  grad_use(sum_cache[i]); 
} 

• By considering the dataflow graph 
we can perform a min-cut to 
approximate smaller cache sizes.

X Y

Sum

Overwritten:

Required for 
Reverse:

Smallest Cache



Novel AD + GPU Optimizations

• See our SC’21 paper for more (https://c.wsmoses.com/papers/EnzymeGPU.pdf) 
    Reverse-Mode Automatic Differentiation and Optimization of GPU Kernels via Enzyme. SC, 2021


• [AD] Cache LICM/CSE


• [AD] Min-Cut Cache Reduction


• [AD] Cache Forwarding


• [GPU] Merge Allocations


• [GPU] Heap-to-stack (and register)


• [GPU] Alias Analysis Properties of SyncThreads


• …
33

https://c.wsmoses.com/papers/EnzymeGPU.pdf


GPU Gradient Overhead
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• Evaluation of both original code and gradient


• DG: Discontinuous-Galerkin integral (Julia)


• LBM: particle-based fluid dynamics 
simulation


• LULESH: unstructured explicit shock 
hydrodynamics solver


• XSBench & RSBench: Monte Carlo 
simulations of particle transport 
algorithms (memory & compute bound, 
respectively)

XSBench

RSBench

LULESH

LBM (Parboil)

DG (CUDA)

DG (ROCm)

3.2

4.2

2.01

6.3

18.35

5.4



GPU Gradient Overhead
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• Evaluation of both original code and gradient


• DG: Discontinuous-Galerkin integral (Julia)


• LBM: particle-based fluid dynamics 
simulation


• LULESH: unstructured explicit shock 
hydrodynamics solver


• XSBench & RSBench: Monte Carlo 
simulations of particle transport 
algorithms (memory & compute bound, 
respectively)

XSBench

RSBench

LULESH

LBM (Parboil)

DG (CUDA)

DG (ROCm)

3.2

4.2

2.01

6.3

18.35

5.4

Bug in CUDA 
Register Allocator



36

Forward (1x) 10x 100x 1000x OOM

XSBench

RSBench

LULESH

LBM

DG (CUDA)

DG (ROCm)
5.4⇥
o

1378.3⇥
o

116.6⇥
o

17.8⇥
o

19.87⇥
o

8.7⇥
o

6.4⇥
o

2979.1⇥
o

2.4⇥
o

2.0⇥
o

6372.2⇥
o

9.5⇥
o

4.7⇥
o

25.9⇥
o

16.3⇥
o

9.5⇥
o

3.2⇥
o

Overhead above Forward Pass

Unrolling

Unrolling MallocCoalescing PreOptimization

Allocator Recompute InlineCacheABI

SpecPHI PreOptimization

CacheLICM Inlining PreOpt

Templating PHI LoopBound PreOptimization

Ablation Analysis of Optimizations
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Ablation Analysis of Optimizations

GPU AD is Intractable Without Optimization!



       Enzyme-Powered Applications
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from Efficient Differentiation of Pixel Reconstruction Filters for Path-Space Differentiable Rendering, 
SIGGRAPH Asia 2022, Zihan Yu et al

Target Reconstruction

from Comrade: High Performance Black-Hole Imaging JuliaCon 2022, 
Paul Tiede (Harvard)

>100x speedup! 
 
Prior: 
  5 days (cluster) 

Enzyme-Based:

 1 hour (laptop)

from CLIMA & NSF CSSI: Differentiable programming in Julia for Earth system modeling 
(DJ4Earth) from Center for the Exascale Simulation of Materials in Extreme Environments

from MFEM Team at LLNL

from Differential Molecular Simulation with Molly.jl, EnzymeCon 2023, 
Joe Greener (Cambridge)

https://dl.acm.org/doi/pdf/10.1145/3550454.3555500
https://live.juliacon.org/talk/3LHDTD
https://clima.caltech.edu/
https://dj4earth.github.io/
https://dj4earth.github.io/
https://computing.mit.edu/cesmix/
https://www.llnl.gov/news/doe-funds-llnl-project-improve-differentiation-extreme-scale-science-applications
https://enzyme.mit.edu/conference


The HPC Landscape Today

• Cutting-edge scientific computing requires efficiently leveraging parallelism


• Multicore chips


• Distributed clusters


• Accelerators (e.g. GPUs, TPUs)

41



Case Study: Parallel Vector Normalization

//Compute magnitude in O(n) 
double mag(double[] x); 

//Compute norm in O(n^2) 
void norm(double[] out, double[] in) { 

  for (int i=0; i<n; i++) { 
    out[i] = in[i] / mag(in); 
  } 
}

42

N = 64M



Case Study: Parallel Vector Normalization

//Compute magnitude in O(n) 
double mag(double[] x); 

//Compute norm in O(n^2) 
void norm(double[] out, double[] in) { 

  for (int i=0; i<n; i++) { 
    out[i] = in[i] / mag(in); 
  } 
}

43

   Serial Running time:      0.312 s

N = 64M



Case Study: Parallel Vector Normalization

//Compute magnitude in O(n) 
double mag(double[] x); 

//Compute norm in O(n^2) work 
void norm(double[] out, double[] in) { 

  parallel_for (int i=0; i<n; i++) { 
    out[i] = in[i] / mag(in); 
  } 
}

44

   Serial Running time:      0.312 s

N = 64M

A parallel loop replaces 
the original serial loop



Case Study: Parallel Vector Normalization

//Compute magnitude in O(n) 
double mag(double[] x); 

//Compute norm in O(n^2) work 
void norm(double[] out, double[] in) { 

  parallel_for (int i=0; i<n; i++) { 
    out[i] = in[i] / mag(in); 
  } 
}
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   Serial Running time:      0.312 s

N = 64M

18-core Running time:   180.657s

A parallel loop replaces 
the original serial loop



Case Study: Parallel Vector Normalization

//Compute magnitude in O(n) 
double mag(double[] x); 

//Compute norm in O(n^2) work 
void norm(double[] out, double[] in) { 

  parallel_for (int i=0; i<n; i++) { 
    out[i] = in[i] / mag(in); 
  } 
}
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   Serial Running time:      0.312 s

N = 64M

18-core Running time:   180.657s

  1-core Running time: 2600.287s

A parallel loop replaces 
the original serial loop



Why the Parallel Slowdown?

47

CodeGenParallel 
Lower Optimize

Frontend directly translates 
parallel language constructs



Compiling Parallel Code
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void norm(double[] out, double[] in) 
{ 
  struct args_t args = { out, in }; 
  __cilkrts_pfor(body, args, 0, n); 
} 

void body(struct args_t args, int i) 
{ 
  double *out = args.out; 
  double *in = args.in; 
  out[i] = in[i] / mag(in); 
}

void norm(double[] out, double[] in) 
{ 
  parallel_for (int i=0; i<n; i++) { 
    out[i] = in[i] / mag(in); 
  } 
}

Parallel 
Lower



Compiling Parallel Code

49

void norm(double[] out, double[] in) 
{ 
  struct args_t args = { out, in }; 
  __cilkrts_pfor(body, args, 0, n); 
} 

void body(struct args_t args, int i) 
{ 
  double *out = args.out; 
  double *in = args.in; 
  out[i] = in[i] / mag(in); 
}

void norm(double[] out, double[] in) 
{ 
  parallel_for (int i=0; i<n; i++) { 
    out[i] = in[i] / mag(in); 
  } 
}

Parallel 
Lower

X
The compiler doesn’t understand the  
parallel runtime and cannot move mag



Compiling Parallel Code (Realistic)
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int fib(int n) { 
  if (n < 2) return n; 
  int x, y; 
  x = spawn fib(n - 1); 
  y = fib(n - 2); 
  sync; 
  return x + y; 
}

Parallel 
Lower

int fib(int n) { 
  __cilkrts_stack_frame_t sf; 
  __cilkrts_enter_frame(&sf); 
  if (n < 2) return n; 
  int x, y; 
  if (!setjmp(sf.ctx)) 
    spawn_fib(&x, n-1); 
  y = fib(n-2); 
  if (sf.flags & CILK_FRAME_UNSYNCHED) 
    if (!setjmp(sf.ctx)) 
      __cilkrts_sync(&sf); 
  int result = x + y; 
  __cilkrts_pop_frame(&sf); 
  if (sf.flags) 
    __cilkrts_leave_frame(&sf); 
  return result; 
} 

void spawn_fib(int *x, int n) { 
  __cilkrts_stack_frame sf; 
  __cilkrts_enter_frame_fast(&sf); 
  __cilkrts_detach(); 
  *x = fib(n); 
  __cilkrts_pop_frame(&sf); 
  if (sf.flags) 
    __cilkrts_leave_frame(&sf); 
}



Idea: New Parallel Compilation Pipeline
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CodeGenParallel 
Lower Optimize

CodeGenParallel 
Lower Optimize

New IR that encodes parallelism for optimization!



Parallel IR: A Bad Idea?

From “[LLVMdev] LLVM Parallel IR,” 2015:

• “[I]ntroducing [parallelism] into a so far ‘sequential’ IR will cause severe breakage and 

headaches.”

• “[P]arallelism is invasive by nature and would have to influence most optimizations.” 

Other communications, 2016–2017:

• “There are a lot of information needs to be represented in IR for [back end] 

transformations for OpenMP.” [Private communication]

• “If you support all [parallel programming features] in the IR, a *lot* [of LOC]…would 

probably have to be modified in LLVM.” [[RFC] IR-level Region Annotations]



Example Previous Parallel IR

entry

join

  rv = phi [ n, entry ], [ add, join ] 
  ret rv

exit

  br (n < 2), exit, if.else

 forkif.else

  x = fib(n - 1) 
  br join

• Previous CFG-based parallel IR’s represented 
tasks symmetrically. 

int fib(int n) { 
  if (n < 2) return n; 
  int x, y; 
  x = spawn fib(n - 1); 
  y = fib(n - 2); 
  sync; 
  return x + y; 
}

  y = fib(n - 2) 
  br join

  join 
  add = x + y 
  br exit

Problem: The join block breaks implicit 
assumptions made by the compiler.


Example: Values from all predecessors of a 
join must be available at runtime [LMP97]. 



Tapir: Task-Based Asymmetric Parallel IR

entry

cont

  rv = phi [ n, entry ], [ add, cont ] 
  ret rv

exit

  x = alloca int 
  br (n < 2), exit, if.else

 detach det, contif.else

  x0 = fib(n - 1) 
  store x = x0 
  reattach cont

  y = fib(n - 2) 
  sync 
  x1 = load x 
  add = x1 + y 
  br exit

• Tapir models parallel tasks asymmetrically via 
three new instructions: detach, reattach, and sync


• The successors of a detach may run in parallel.


• Code after a sync is guaranteed to have completed 
previously detached tasks.


• Tapir simultaneously represents the serial and 
parallel semantics of the program.


det



Tapir: Task-Based Asymmetric Parallel IR

entry

cont

  rv = phi [ n, entry ], [ add, cont ] 
  ret rv

exit

  x = alloca int 
  br (n < 2), exit, if.else

 detach det, contif.else

  x0 = fib(n - 1) 
  store x = x0 
  reattach cont

  y = fib(n - 2) 
  sync 
  x1 = load x 
  add = x1 + y 
  br exit

• Reasoning about parallelism is a minor change to reasoning about the serial projection.

det

entry

cont

  rv = phi [ n, entry ], [ add, cont ] 
  ret rv

exit

  x = alloca int 
  br (n < 2), exit, if.else

 br detif.else

  x0 = fib(n - 1) 
  store x = x0 
  br cont

  y = fib(n - 2) 
  noop 
  x1 = load x 
  add = x1 + y 
  br exit

det



Maintaining Correctness

entry

cont

  rv = phi [ n, entry ], [ add, cont ] 
  ret rv

exit

  x = alloca int 
  br (n < 2), exit, if.else

 detach det, contif.else

  x0 = fib(n - 1) 
  store x = x0 
  reattach cont

  y = fib(n - 2) 
  sync 
  x1 = load x 
  add = x1 + y 
  br exit

Problem: How does the compiler ensure that code 
motion does not introduce a determinacy race into 
otherwise race-free code?


● Consider moving memory operations around each 
new instruction.


● Moving code above a detach or below a sync 
serializes it and is always valid.


● Other potential races are handled by giving 
detach, reattach, and sync appropriate attributes 
and by slight modifications to mem2reg.

det



Maintaining Correctness

entry

cont

  rv = phi [ n, entry ], [ add, cont ] 
  ret rv

exit

  x = alloca int 
  br (n < 2), exit, if.else

 detach det, contif.else

  x0 = fib(n - 1) 
  store x = x0 
  reattach cont

  y = fib(n - 2) 
  sync 
  x1 = load x 
  add = x1 + y 
  br exit

Problem: How does the compiler ensure that code 
motion does not introduce a determinacy race into 
otherwise race-free code?


● Consider moving memory operations around each 
new instruction.


● Moving code above a detach or below a sync 
serializes it and is always valid.


● Other potential races are handled by giving 
detach, reattach, and sync appropriate attributes 
and by slight modifications to mem2reg.

det

Serial optimization passes 
do not create bugs!



      Vector Normalization with a Parallel-Aware Compiler

//Compute magnitude in O(n) 
double mag(double[] x); 

//Compute norm in O(n^2) work 
void norm(double[] out, double[] in) { 

  parallel_for (int i=0; i<n; i++) { 
    out[i] = in[i] / mag(in); 
  } 
}

58

   Serial Running time:      0.312 s

N = 64M

18-core Running time:      0.081 s

  1-core Running time:      0.321 s

A parallel loop replaces 
the original serial loop Great work efficiency! 

TS / T1 = 97%



      Vector Normalization with a Parallel-Aware Compiler
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Revisiting The Programmer’s Burden
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Revisiting The Programmer’s Burden (published at SC22)
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Conclusions

• Explosion of specialized software packages and hardware architectures -> scientists spending 
more time learning how to optimize programs and use platform-specific API’s than working on 
their intended problem.


• Rather than burdening the user, compilers can automatically generate fast, portable, and 
composable code.


• Enzyme generates fast derivatives of programs needed for science and machine learning, 
without user rewriting 

• Tapir understands the parallelism within programs, enabling existing optimizations to apply 
with minimal modification.


• All these tools are open source and used in academia and industry and in disciplines that range 
from climate science to physics to material science
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Conclusions

• Explosion of specialized software packages and hardware architectures -> scientists spending 
more time learning how to optimize programs and use platform-specific API’s than working on 
their intended problem.


• Rather than burdening the user, compilers can automatically generate fast, portable, and 
composable code.


• Enzyme generates fast derivatives of programs needed for science and machine learning, 
without user rewriting 

• Tapir understands the parallelism within programs, enabling existing optimizations to apply 
with minimal modification.


• All these tools are open source and used in academia and industry and in disciplines that range 
from climate science to physics to material science
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Questions?
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Challenges of Low-Level AD

• Low-level code lacks information necessary to compute adjoints

8: Pointer 0: Integer

68

void f(void* dst, void* src) { 
  memcpy(dst, src, 8); 
}

void grad_f(double* dst, double* dst’, 
            double* src, double* src’) { 
  // Forward Pass 
  memcpy(dst, src, 8); 

  // Reverse Pass 
  src’[0] += dst’[0]; 
  dst’[0] = 0; 
}

void grad_f(float* dst, float* dst’, 
            float* src, float* src’) { 
  // Forward Pass 
  memcpy(dst, src, 8); 

  // Reverse Pass 
  src’[0] += dst’[0]; 
  dst’[0] = 0; 
  src’[1] += dst’[1]; 
  dst’[1] = 0; 
}



Type Analysis

struct MyType { 
  double; 
  int*; 
} 

x = MyType*;

0: Pointer
x

0: Double
8: Pointer

MyType

0: Integer

69

• New interprocedural dataflow analysis that detects the underlying type of data


• Each value has a set of memory offsets : type


• Perform series of fixed-point updates through instructions

types(x) = {[0]:Pointer, [0,0]:Double, [0,8]:Pointer, [0,8,0]:Integer}



Challenges of Parallel AD

• The adjoint of an instruction increments the derivative of its input


• Benign read race in forward pass => Write race in reverse pass (undefined behavior)

70

void set(double* ar, double val) { 

  parallel_for(int i=0; i<10; i++) 
    ar[i] = val; 
}

double gradient_set(double* ar, double* d_ar, 
                    double val) { 
  double d_val = 0.0; 

  parallel_for(int i=0; i<10; i++) 
    ar[i] = val; 

  parallel_for(int i=0; i<10; i++) { 
    d_val += d_ar[i]; 
    d_ar[i] = 0.0; 
  } 

  return d_val; 
}

Read Race
Write Race



GPU Memory Hierarchy
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Slower, larger amount of memory

Per Thread Per Block Per GPU

~Bytes ~KBs ~GBs

Register Shared Memory Global Memory

Use Limits Parallelism Use Limits Parallelism



Correct and Efficient Derivative Accumulation

Thread-local memory 

• Non-atomic load/store

72

__device__ 
void f(…) { 

  // Thread-local var 
  double y; 
 
  … 

  d_y += val; 
}

Same memory location across 
all threads (some shared mem)


• Parallel Reduction

Others [always legal fallback] 

• Atomic increment

// Same var for all threads 
double y; 
 
__device__ 
void f(…) { 
 
  … 

  reduce_add(&d_y, val); 
}

 
__device__ 
// Unknown thread-aliasing 
void f(double* y) { 
 
  … 

  atomic { d_y += val; } 
} 
 

Slower



Synchronization Primitives

73

codeA(); 

sync_threads; 

codeB(); 

• Synchronization (sync_threads) ensures all threads finish executing 
codeA before executing codeB


• Sync is only necessary if A and B may access to the same memory


• Assuming the original program is race-free, performing a sync at the 
corresponding location in the reverse ensures correctness


• Prove correctness of algorithm by cases



Case 1: Store, Sync, Load

74

codeA(); // store %ptr 

sync_threads; 

codeB(); // load %ptr 

… 

diffe_codeB(); // atomicAdd %d_ptr 

sync_threads; 

diffe_codeA(); // load %d_ptr 
               // store %d_ptr = 0 

          Correct


• Load of d_ptr must happen after 
all atomicAdds have completed




CUDA Example
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__device__  
void inner(float* a, float* x, float* y) { 

  y[threadIdx.x] = a[0] * x[threadIdx.x]; 
 
} 

__device__  
void __enzyme_autodiff(void*, …); 

__global__ 
void daxpy(float* a, float* da, 
           float* x, float* dx, 
           float* y, float* dy) { 

  __enzyme_autodiff((void*)inner, 
                    a, da, x, dx, y, dy); 
 
}

__device__ 
void diffe_inner(float* a, float* da, 
                 float* x, float* dx, 
                 float* y, float* dy) { 
  // Forward Pass 

  y[threadIdx.x] = a[0] * x[threadIdx.x]; 
 
  // Reverse Pass 

  float dy = dy[threadIdx.x]; 
  dy[threadIdx.x] = 0.0f; 

  float dx_tmp = a[0] * dy; 
  atomic { dx[threadIdx.x] += dx_tmp; } 

  float da_tmp = x[threadIdx.x] * dy; 
  atomic { da[0] += da_tmp; } 
} 



CUDA Example
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__device__  
void inner(float* a, float* x, float* y) { 

  y[threadIdx.x] = a[0] * x[threadIdx.x]; 
 
} 

__device__  
void __enzyme_autodiff(void*, …); 

__global__ 
void daxpy(float* a, float* da, 
           float* x, float* dx, 
           float* y, float* dy) { 

  __enzyme_autodiff((void*)inner, 
                    a, da, x, dx, y, dy); 
 
}

__device__ 
void diffe_inner(float* a, float* da, 
                 float* x, float* dx, 
                 float* y, float* dy) { 
  // Forward Pass 

  y[threadIdx.x] = a[0] * x[threadIdx.x]; 
 
  // Reverse Pass 

  float dy = dy[threadIdx.x]; 
  dy[threadIdx.x] = 0.0f; 

  float dx_tmp = a[0] * dy; 
  dx[threadIdx.x] += dx_tmp; 

  float da_tmp = x[threadIdx.x] * dy; 
  reduce_accumulate(&da[0], da_tmp); 
} 



CUDA.jl / AMDGPU.jl Example
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function compute!(inp, out) 
    s_D = @cuStaticSharedMem eltype(inp) (10, 10) 
    ... 
end 

function grad_compute!(inp, out) 
    Enzyme.autodiff_deferred(compute!, inp, out) 
    return nothing 
end 

@cuda grad_compute!(Duplicated(inp, d_inp),  
                    Duplicated(out, d_out))

function compute!(inp, out) 
    s_D = AMDGPU.alloc_special(…) 
    ... 
end 

function grad_compute!(inp, out) 
    Enzyme.autodiff_deferred(compute!, inp, out) 
    return nothing 
end 

@rocm grad_compute!(Duplicated(inp, d_inp),  
                    Duplicated(out, d_out))

See Below For Full Code Examples
https://github.com/wsmoses/Enzyme-GPU-Tests/blob/main/DG/



Efficient GPU Code
• For correctness, Enzyme may need to cache values in 

order to compute the gradient


• The complexity of GPU memory means large caches 
slow down the program by several orders of magnitude, 
if it even fits at all


• Like the CPU, existing optimizations reduce the overhead


• Unlike the CPU, existing optimizations aren’t sufficient


• Novel GPU and AD-specific optimizations can speedup by 
several orders of magnitude

78

 
// Forward Pass 

out[i] = x[i] * x[i]; 

x[i] = 0.0f; 
 
// Reverse (gradient) Pass 

... 
grad_x[i] += 2 * x[i] * grad_out[i]; 
... 



Allocation Merging

• Allocations (and any calls) on the 
GPU are expensive


• Given two allocations in the same 
scope, replace uses with a single 
allocation


• Beneficial for not just AD, but any 
GPU programs!

79

double* var1 = new double[N]; 
double* var2 = new double[M]; 

use(var1, var2); 

delete[] var1; 
delete[] var2;

double* var1 = new double[N + M]; 
double* var2 = var1 + N; 

use(var1, var2); 

delete[] var1; 



• Tool for performing forward and reverse-mode AD of statically analyzable LLVM IR


• Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)


• 4.2x speedup over AD before optimization on CPU


• State-of-the art performance with existing tools


• First general purpose reverse-mode GPU AD


• Novel GPU and AD-specific optimizations improve runtime by several orders of magnitude


• Open source (enzyme.mit.edu & join our mailing list)!


• Ongoing work to support Mixed Mode, Batching, Checkpointing/Scheduling

       Enzyme

80

http://enzyme.mit.edu


PyTorch-Enzyme & TensorFlow-Enzyme

import torch 
from torch_enzyme import enzyme  

# Create some initial tensor 
inp = … 

# Apply foreign function to tensor 
out = enzyme("test.c", “f").apply(inp) 

# Derive gradient 
out.backward() 
print(inp.grad)

import tensorflow as tf 
from tf_enzyme import enzyme 

# Create some initial tensor 
inp = tf.Variable(…) 

# Use external C code as a regular TF op  
out = enzyme(inp, filename=“test.c", 
                  function=“f”) 

# Results is a TF tensor 
out = tf.sigmoid(out)

// Input tensor + size, and output tensor  
void f(float* inp, size_t n, float* out); 

// diffe_dupnoneed specifies not recomputing the output 
void diffef(float* inp, float* d_inp, size_t n, float* d_out) {  
  __enzyme_autodiff(f, diffe_dup, inp, d_inp, n, diffe_dupnoneed, (float*)0, d_out); 
}

81



Cache

• Adjoint instructions may require values from the forward pass


• e.g. ∇(x * y) => x dy + y dx


• For all values needed in the reverse, allocate memory in the forward pass to store the value


• Values computed inside loops are stored in an array indexed by the loop induction variable


• Array allocated statically if possible; otherwise dynamically realloc’d



When LLVM Doesn’t Cut It
• Enzyme relies on optimizations 

such as LICM and CSE to eliminate 
redundant loads, and thus 
redundant caches.


• Since we instead need to preserve 
values for the reverse pass, these 
optimizations may not apply

83

for(int i=0; i<N; i++) { 
  for(int j=0; j<M; j++) { 
    use(array[i]); 
  } 
} 

overwrite(array);

for(int i=0; i<N; i++) { 
  for(int j=0; j<M; j++) { 
    
    use(array[j]); 
  } 
} 

overwrite(array); 

   



When LLVM Doesn’t Cut It
• Enzyme relies on optimizations 

such as LICM and CSE to eliminate 
redundant loads, and thus 
redundant caches.


• Since we instead need to preserve 
values for the reverse pass, these 
optimizations may not apply


• This requires far more caching than 
necessary

84

double* cache = new double[N*M]; 

for(int i=0; i<N; i++) { 
  for(int j=0; j<M; j++) { 
    cache[i*M+j] = array[j]; 
    use(array[j]); 
  } 
} 

overwrite(array); 
grad_overwrite(array); 

for(int i=0; i<N; i++) { 
  for(int j=M-1; i<M; i++) { 
    grad_use(cache[i*M+j], d_array[j]); 
  } 
} 



When LLVM Doesn’t Cut It
• Enzyme relies on optimizations 

such as LICM and CSE to eliminate 
redundant loads, and thus 
redundant caches.


• Since we instead need to preserve 
values for the reverse pass, these 
optimizations may not apply


• This requires far more caching than 
necessary


• By analyzing the read/write 
structure, we can hoist the cache.

85

double* cache = new double[M]; 
memcpy(cache, array, sizeof(double)*M); 
for(int i=0; i<N; i++) { 
  for(int j=0; j<M; j++) { 

    use(array[j]); 
  } 
} 

overwrite(array); 
grad_overwrite(array); 

for(int i=0; i<N; i++) { 
  for(int j=M-1; i<M; i++) { 
    grad_use(cache[j], d_array[j]); 
  } 
} 



Cache

• Adjoint instructions may require values from the forward pass


• e.g. ∇(x * y) => x dy + y dx


• For all values needed in the reverse, allocate memory in the forward pass to store the value


• Values computed inside loops are stored in an array indexed by the loop induction variable


• Array allocated statically if possible; otherwise dynamically realloc’d



Case Study: Read Sum

entry

for.body

%result = phi [ %call, cond.true], [0, entry] 
ret %result

for.cleanup

br for.body

  %i = phi [ 0, entry ], [ %i.next, for.body ] 
  %total = phi [ 0.0, %entry ], [ %add, for.body ] 
  %call = @read() 
  %0 = load %x[%i] 
  %mul = %0 * %call 
  %add = %mul + %total 
  %i.next = %i + 1 
  %exitcond = %i.next == 10 
  br %exitcond, for.cleanup, for.body

double sum(double* x) { 
  double total = 0; 

  for(int i=0; i<10; i++) 
    total += read() * x[i]; 

  return total; 
}

define double @sum(double* %x)

void diffe_sum(double* x, double* xp) { 
  return __enzyme_autodiff(sum, x, xp); 
}



Case Study: Read Sum

entry

for.body

%result = phi [%call, cond.true], [0, entry] 
ret %result

for.cleanup

br for.body

  %i = phi [ 0, entry ], [ %i.next, for.body ] 
  %total = phi [ 0.0, %entry ], [ %add, for.body ] 
  %call = @read() 
  %0 = load %x[%i] 
  %mul = %0 * %call 
  %add = %mul + %total 
  %i.next = %i + 1 
  %exitcond = %i.next == 10 
  br %exitcond, for.cleanup, for.body

define double @sum(double* %x)

Active Variables



Case Study: Read Sum

entry

for.body

%result = phi [%call, cond.true], [0, entry] 
ret %result

for.cleanup

br for.body

  %i = phi [ 0, entry ], [ %i.next, for.body ] 
  %total = phi [ 0.0, %entry ], [ %add, for.body ] 
  %call = @read() 
  %0 = load %x[%i] 
  %mul = %0 * %call 
  %add = %mul + %total 
  %i.next = %i + 1 
  %exitcond = %i.next == 10 
  br %exitcond, for.cleanup, for.body

define double @sum(double* %x)

Each register in the 
for loop represents a 
distinct active variable 

every iteration



entry

for.body

%result = phi [ %call, cond.true], [0, entry] 
ret %result

for.cleanup

alloca %x’      = 0.0 
alloca %total’  = 0.0 
alloca %0’      = 0.0 
alloca %mul’    = 0.0 
alloca %add’    = 0.0 
alloca %result’ = 0.0 
 
br for.body

  %i = phi [ 0, entry ], [ %i.next, for.body ] 
  %total = phi [ 0.0, %entry ], [ %add, for.body ] 
  %call = @read() 
  %0 = load %x[%i] 
  %mul = %0 * %call 
  %add = %mul + %total 
  %i.next = %i + 1 
  %exitcond = %i.next == 10 
  br %exitcond, for.cleanup, for.body

define double @diffe_sum(double* %x, double* %xp)

Allocate & zero  
shadow memory 
per active value



entry

for.body

%result = phi [ %call, cond.true], [0, entry] 
@free(%cache) 
ret %result

for.cleanup

alloca %x’      = 0.0 
alloca %total’  = 0.0 
alloca %0’      = 0.0 
alloca %mul’    = 0.0 
alloca %add’    = 0.0 
alloca %result’ = 0.0 
%call_cache = @malloc(10 x double) 
br for.body

  %i = phi [ 0, entry ], [ %i.next, for.body ] 
  %total = phi [ 0.0, %entry ], [ %add, for.body ] 
  %call = @read() 
  store %call_cache[%i] = %call 
  %0 = load %x[%i] 
  %mul = %0 * %call 
  %add = %mul + %total 
  %i.next = %i + 1 
  %exitcond = %i.next == 10 
  br %exitcond, for.cleanup, for.body

define double @diffe_sum(double* %x, double* %xp)

Cache forward pass 
variables for use in 

reverse



entry

for.body

@free(%cache) 
ret

exit

%call_cache = @malloc(10 x double) 
br for.body

  %i = phi [ 0, entry ], [ %i.next, for.body ] 
  %total = phi [ 0.0, %entry ], [ %add, for.body ] 
  %call = @read() 
  store %call_cache[%i] = %call 
  %i.next = %i + 1 
  %exitcond = %i.next == 10 
  br %exitcond, reversefor.body, for.body

define void @diffe_sum(double* %x, double* %xp)

  %i' = phi [ 9, for.body ], [ %i’.next, reversefor.body ] 
  %i’.next = %i' - 1 
  %cached_read = load %call_cache[%i’] 
  store %xp[%i’] = %cached_read + %xp[%i’] 
  %exit2 = %i = 0 
  br %exitcond, %exit2, reversefor.body

reversefor.body

After lowering & 
some optimizations 



Case Study: Read Sum

entry  %call0 = @read() 
 store %xp[0] = %call0 
 %call1 = @read() 
 store %xp[1] = %call1 
 %call2 = @read() 
 store %xp[2] = %call2 
 %call3 = @read() 
 store %xp[3] = %call3 
 %call4 = @read() 
 store %xp[4] = %call4 
 %call5 = @read() 
 store %xp[5] = %call5 
 %call6 = @read() 
 store %xp[6] = %call6 
 %call7 = @read() 
 store %xp[7] = %call7 
 %call8 = @read() 
 store %xp[8] = %call8 
 %call9 = @read() 
 store %xp[9] = %call9 
 ret

define void @diffe_sum(double* %x, double* %xp)

void diffe_sum(double* x, double* xp) { 
   xp[0] = read(); 
   xp[1] = read(); 
   xp[2] = read(); 
   xp[3] = read(); 
   xp[4] = read(); 
   xp[5] = read(); 
   xp[6] = read(); 
   xp[7] = read(); 
   xp[8] = read(); 
   xp[9] = read(); 
}

After more 
optimizations 



CUDA Automatic Differentiation

• Enzyme enables differentiation of CPU programs without rewriting them in a DSL.


• Similarly, GPU programs cannot currently be differentiated without being rewritten in a 
differentiable language (e.g. PyTorch).


• Enzyme enables reverse-mode AD of general existing GPU programs by:


• Resolving potential data race issues


• Differentiating parallel control (syncthreads)


• Differentiating CUDA intrinsics (e.g. threadIdx.x /llvm.nvvm.read.ptx.sreg.tid.x)


• Handling shared memory
94



CUDA Automatic Differentiation

• Most CUDA intrinsics [e.g. threadIdx.x] are inactive and recomputable and thus are 
incorporated into Enzyme without any special handling


• Derivative of syncthreads is a syncthreads at the corresponding place in reverse pass


• Shared memory is handled by making a second shared memory allocation to act as the 
shadow for any potentially active uses
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Custom Derivatives & Multisource

• One can specify custom forward/reverse passes of functions by attaching metadata 
 
 

• Enzyme leverages LLVM’s link-time optimization (LTO) & “fat libraries” to ensure that LLVM 
bitcode is available for all potential differentiated functions before AD

__attribute__((enzyme("augment", augment_func))) 
__attribute__((enzyme("gradient", gradient_func))) 
double func(double n);
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Activity Analysis

• Determines what instructions could impact derivative computation


• Avoids taking meaningless or unnecessary derivatives (e.g. d/dx cpuid)


• Instruction is active iff it can propagate a differential value to its return or memory


• Build off of alias analysis & type analysis


• E.g. all read-only function that returns an integer are inactive since they cannot propagate 
adjoints through the return or to any memory location



Compiler Analyses Better Optimize AD

• Existing 


• Alias analysis results that prove a function does not write to memory, we can prove that 
additional function calls do not need to be differentiated since they cannot impact the output


• Don’t cache equivalent values


• Statically allocate caches when a loop’s bounds can be determined in advance
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Decomposing the “Tape”

• Performing AD on a function requires data structures to compute 


• All values necessary to compute adjoints are available [cache]


• Place to store adjoints [shadow memory]


• Record instructions [we are static]


• Creating these directly in LLVM allows us to explicitly specify their behavior for optimization, 
unlike approaches that call out to a library


• For more details look in paper
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Conventional Wisdom: AD Only Feasible at High-Level

• Automatic Differentiation requires high level semantics to produce gradients


• Lack of high-level information can hinder performance of low-level AD


• “AD is more effective in high-level compiled languages (e.g. Julia, Swift, Rust, Nim) than 
traditional ones such as C/C++, Fortran and LLVM IR […]” -Innes[1]


 

[1] Michael Innes. Don’t Unroll Adjoint: Differentiating SSA-Form Programs. arXiv preprint arXiv:1810.07951, 2018
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Differentiation Is Key To Machine Learning

• Hinders application of ML to new domains


• Synthesizing gradients aims to close this gap

// PyTorch rewrite of nbody simulator 
import torch 

def step(bodies, dt): 
  acc = [] 
  for i in range(len(bodies)): 
    acc.push(torch.zeros([3])) 
    for j in range(len(bodies)): 
      if i == j: continue 
      acc[i] += force(bodies[i], bodies[j]) / 
                         bodies[i].mass 

  for i, body in enumerate(bodies): 
    body.vel += acc[i] * dt 
    body.pos += body.vel * dt 

// C++ nbody simulator 

void step(std::array<Planet> bodies, double dt) { 
  vec3 acc[bodies.size()]; 
  for (size_t i=0; i<bodies.size(); i++) { 
    acc[i] = vec3(0, 0, 0); 
    for (size_t j=0; j<bodies.size(); j++) { 
      if (i == j) continue; 
      acc[i] += force(bodies[i], bodies[j]) /      
                         bodies[i].mass; 
    } 
  } 
  for (size_t i=0; i<bodies.size(); i++) { 
    bodies[i].vel += acc[i] * dt; 
    bodies[i].pos += bodies[i].vel * dt; 
  } 
}
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Case 3: Store, Sync, Store
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codeA(); // store %ptr 

sync_threads; 

codeB(); // store %ptr 

… 

diffe_codeB(); // load %d_ptr 
               // store %d_ptr = 0 

sync_threads; 

diffe_codeA(); // load %d_ptr 
               // store %d_ptr = 0 

          Correct


• All stores to d_ptr in diffe_B will 
complete prior to diffe_A, ensuring 
only the clobbering store has its 
derivative incremented



Scalability Analysis (Fixed Thread Count)
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CUDA Example
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__device__ void inner(float* a, float* x, float* y) { 
  y[threadIdx.x] = a[0] * x[threadIdx.x]; 
} 
__device__ void __enzyme_autodiff(void*, …); 

__global__ void daxpy(float* a, float* da, float* x, float* dx, float* y, float* dy) { 
  __enzyme_autodiff((void*)inner, a, da, x, dx, y, dy); 
}

__device__ void diffe_inner(float* a, float* da, float* x, float* dx, float* y, float* dy) { 
  y[threadIdx.x] = a[0] * x[threadIdx.x]; 

  float dy = dy[threadIdx.x]; 
  dy[threadIdx.x] = 0.0f; 

  float dx_tmp = a[0] * dy; 
  atomic { dx[threadIdx.x] += dx_tmp; } 

  float da_tmp = x[threadIdx.x] * dy; 
  atomic { da[0] += da_tmp; } 
} 



Existing AD Approaches (1/3)

• Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)


• Provide a new language designed to be differentiated


• Requires rewriting everything in the DSL and the DSL must support all operations in original 
code


• Fast if DSL matches original code well

import tensorflow as tf 

x = tf.Variable(3.14) 

with tf.GradientTape() as tape: 
  out = tf.math.square(x) 

print(tape.gradient(out, x).numpy())

double square(double val) { 
  return val * val; 
}

Manually 
Rewrite



Existing AD Approaches (3/3)

• Source rewriting


• Statically analyze program to produce a new gradient function in the source language


• Re-implement parsing and semantics of given language


• Requires all code to be available ahead of time => hard to use with external libraries

double square(double val) { 
  return val * val; 
}

Tool 
Rewrite

double grad_square(double val) { 
  return 2 * val; 
}

$ tapenade -b -o out.c -head “square(val)/(out)" square.c



Parallel Automatic Differentiation in LLVM
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%res = load %ptr

  %tmp = load %d_res 
  store %d_res = 0 
  atomic %d_ptr += %tmp

store %ptr = %val

  %tmp = load %d_ptr 
  store %d_ptr = 0 
  load/store %d_val += %tmp

• Shadow Registers %d_res and 
%d_val are thread-local as they 
shadow thread-local registers.


• No risk of races and no special 
handling required.


• Both %ptr and shadow %d_ptr might 
be raced upon and require analysis.



Case 2: Load, Sync, Store
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codeA(); // load %ptr 

sync_threads; 

codeB(); // store %ptr 

… 

diffe_codeB(); // load %d_ptr 
               // store %d_ptr = 0 

sync_threads; 

diffe_codeA(); // atomicAdd %d_ptr 

          Correct


• All of the stores of d_ptr will 
complete prior to any atomicAdds

No cross-thread race here since 
that’s equivalent to a write race in B



Differentiation of SyncThreads
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codeA(); // store %ptr 

sync_threads; 

codeB(); // store %ptr 

… 

diffe_codeB(); // load %d_ptr 
               // store %d_ptr = 0 

sync_threads; 

diffe_codeA(); // load %d_ptr 
               // store %d_ptr = 0 

Case 3 [write sync write]

All uses of stores to d_ptr in diffe_B will 
correctly complete prior to diffe_A

codeA(); // load %ptr 

sync_threads; 

codeB(); // load %ptr 

… 

diffe_codeB(); // atomicAdd %d_ptr 

sync_threads; 

diffe_codeA(); // atomicAdd %d_ptr 

Case 4 [read sync read]

Original and differential sync unnecessary and 
legal to include



Scalability Analysis (Fixed Work Per Thread)
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Efficient Gradient Code
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// Forward Pass 

out[i] = x[i] * x[i]; 

x[i] = 0.0f; 
 
// Reverse (gradient) Pass 

... 
grad_x[i] += 2 * x[i] * grad_out[i]; 
... 

• For correctness, Enzyme may need to cache values in 
order to compute the gradient


• Complex memory hierarchies, like on the GPU, cause 
caches to slow down the program by several orders of 
magnitude, if they even fit at all


• Existing optimizations reduce the overhead, but may not 
be sufficient


• Novel AD-specific optimizations can speedup by several 
orders of magnitude



Efficient Correct Gradient Code
• For correctness, Enzyme may need to cache values in 

order to compute the gradient


• Complex memory hierarchies, like on the GPU, cause 
caches to slow down the program by several orders of 
magnitude, if they even fit at all


• Existing optimizations reduce the overhead, but may not 
be sufficient


• Novel AD-specific optimizations can speedup by several 
orders of magnitude
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double* x_cache = new double[…]; 
 
// Forward Pass 

out[i] = x[i] * x[i]; 
x_cache[i] = x[i]; 

x[i] = 0.0f; 
 
// Reverse (gradient) Pass 

... 
grad_x[i] += 2 * x_cache[i] 
               * grad_out[i]; 
... 

delete[] x_cache;



Common Framework for Parallel AD (SC’22, Best Student Paper)

• Common infrastructure for supporting parallel AD (caching, race-resolution, gradient 
accumulation) enables parallel differentiation independent of framework or language.


• Enables differentiation of a combination of GPU (e.g. CUDA, ROCm), CPU (OpenMP, Julia 
Tasks, RAJA), Distributed (MPI, MPI.jl), and more
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History of Parallel AD

• Prior AD tools are built with a single language and parallel framework in mind

• Differentiating code using multiple parallel frameworks is difficult or impossible!    

• Require AD-specific rewriting to specify extra information


• Run at a source-level, preventing optimizations from being applied
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MPI AD

CUDA AD

OpenMP AD

void send(double* data, int size) { 
  MPI_ISend(data, val); 
}

void send(ADdouble* data, int size, void* buffer) { 
  AD_MPI_ISend(data, val, buffer); 
}



Lower Enzyme   .

Optimize

CodeGen

Optimize

       Combining Parallelism with Differentiation

Performing AD in the compiler lets us build a common tool to 
differentiate & optimize multiple parallel frameworks simultaneously!
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       Parallelism-Preserving Differentiation

116

• Computing the adjoint of an instruction in the reverse 
pass updates the derivative of the operands it used.


• Reversing the parallel dependency structure ensures 
that for a given value all derivative updates are 
performed before its definition

MPI_ISend
MPI_Recv

MPI_Wait

MPI_IRecv
MPI_Send

MPI_Wait



Data Caching
• Differentiation requires some values from the original 

program for correctness


• Overwriting a value required for the derivative requires it to 
be cached


• Recomputing a value can significantly reduce both 
memory overhead and runtimes, if legal


• Parallel constructs (closures, thread-local vs global 
memory) hinder such optimizations


• Remedy via novel parallel analyses and optimizations
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// Forward Pass 

out[i] = x[i] * x[i]; 

x[i] = 0.0f; 
 
// Reverse (gradient) Pass 

... 
grad_x[i] += 2 * x[i] * grad_out[i]; 
... 



Parallel Value Hoisting
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void closure(double** outp, double** inp) { 
  // Unknown aliasing between out/in 
  double* out = *outp; 
  double* in = *inp; 
  int i = threadid(); 
  out[i] = in[i] * in[i]; 
} 

… 

double** outp = &out; 
double** inp = &in; 
 

kmpc_fork(closure, outp, inp);

#pragma omp parallel for 
for(int i=0; i<10; i++) { 
  out[i] = in[i] * in[i]; 
}

void closure(double* restrict out2, 
             double* restrict in2) { 

  // out/in known to not overlap 
  out2[i] = in2[i] * in2[i]; 
 
} 

… 

double** outp = &out; 
double** inp = &in; 
double* out2 = *outp; 
double* in2 = *inp; 
kmpc_fork(closure, out2, inp2);



Parallel Value Hoisting
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void closure(double** outp, double** inp) { 
  // Unknown aliasing between out/in 
  double* out = *outp; 
  double* in = *inp; 
  int i = threadid(); 
  out[i] = in[i] * in[i]; 
} 

… 

double** outp = &out; 
double** inp = &in; 
 

kmpc_fork(closure, outp, inp);

#pragma omp parallel for 
for(int i=0; i<10; i++) { 
  out[i] = in[i] * in[i]; 
}

void closure(double* restrict out2, 
             double* restrict in2) { 

  // out/in known to not overlap 
  out2[i] = in2[i] * in2[i]; 
 
} 

… 

double** outp = &out; 
double** inp = &in; 
double* out2 = *outp; 
double* in2 = *inp; 
kmpc_fork(closure, out2, inp2);



Framework Generality
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• Implemented hooks for several parallel frameworks:


• OpenMP


• MPI


• Julia Tasks


• existing GPU support (ROCM, CUDA)


• Supports any higher-level framework built off these primitives


• RAJA


• MPI.jl


• Julia @parallel


• …



Construct Generality
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• Higher-level parallel utilities are automatically 
handled by existing support for parallelism


• Both source-level or manually written 
utilities are lowered to common form.


• If optimizations exist for higher-level utilities, 
Enzyme supports overriding


• E.g. faster OpenMP parallel for, rather than 
differentiating via separate support for 
OpenMP parallel and work sharing loop



Evaluation
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• Differentiated nine distinct versions of LULESH and miniBUDE applications, in a variety of 
parallel frameworks, and in both C++ and Julia


• LULESH: unstructured hydrodynamics solver


• miniBUDE: computational kernels of a molecular docking engine


• Compare performance and scalability against non-differentiated code, as well as a state of 
the art MPI AD tool (CoDiPack)


• Benchmarks available at: https://github.com/EnzymeAD/Enzyme-sc22

https://github.com/EnzymeAD/Enzyme-sc22


Evaluation Highlights: Strong Scaling (BUDE)
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• Parallel optimizations enable Enzyme to keep the same scalability as the original program



Evaluation Highlights: Runtime Overhead (LULESH)
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• Overhead is stable and small, independent of number of MPI nodes, or language/
framework



• Tool for performing reverse-mode (and forward mode) AD of statically analyzable LLVM IR


• Differentiates code in a variety of parallel frameworks (OpenMP, MPI, Julia Tasks, GPU), and 
languages (C, C++, Fortran, Julia, Rust, Swift, etc)


• Parallel and AD-specific optimizations crucial for performance


• Keep similar scalability as non-differentiated code


• Open source (enzyme.mit.edu & join our mailing list)!


• Ongoing work to support Mixed Mode, Batching, Checkpointing, and more

       Enzyme
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http://enzyme.mit.edu


         Enzyme: Fast, Parallel, and Rewrite-Free Derivatives

• Derivatives are ubiquitous in machine learning (training neural 
networks, Bayesian inference), scientific computing (uncertainty 
quantification, simulation)


• Enzyme synthesizes derivatives of arbitrary code within the compiler

• Differentiate code in any LLVM-based language (C/C++, Julia, 

Rust, Swift, Fortran, Python, etc) without rewriting it!

• Operating after and alongside program optimization generates 

asymptotically and empirically faster derivatives

• First automatic differentiation tool to handle arbitrary GPU kernels


• Best student paper @SC’22, SC’21, spotlight @NeurIPS’20; 
awarded multi-year DOE grant with LLNL
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from Comrade: High Performance Black-Hole Imaging 
JuliaCon 2022, Paul Tiede (Harvard)

from Efficient Differentiation of Pixel Reconstruction Filters for Path-Space 
Differentiable Rendering, SIGGRAPH Asia 2022, Zihan Yu et al

>100x speedup! 
 
Prior: 
  5 days (cluster) 

Enzyme-Based:

 1 hour (laptop)

Target Reconstruction

• Used by Harvard, Facebook, AMD, ANL, UT Austin, NASA, Dartmouth, CU Boulder, TU Munich, 
and startups for climate simulation, material science, ML, and more!

https://www.llnl.gov/news/doe-funds-llnl-project-improve-differentiation-extreme-scale-science-applications
https://live.juliacon.org/talk/3LHDTD
https://dl.acm.org/doi/pdf/10.1145/3550454.3555500
https://dl.acm.org/doi/pdf/10.1145/3550454.3555500
https://dl.acm.org/doi/pdf/10.1145/3550454.3555500


Teaching: Combining Theory with Practice

My goal is to teach my students the principles behind modern systems and provide them with a 
foundation for understanding any future systems they may encounter or even build themselves. 

• Prior Experience: MIT Intro to Algorithms (twice-weekly recitations); created January mini-term 
C/C++ course; guest lecture for graduate Data Analysis & Signal Processing course; and more


New Courses:
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from Efficient Differentiation of Pixel Reconstruction Filters for Path-Space 
Differentiable Rendering, SIGGRAPH Asia 2022, Zihan Yu et al

• Differential Programming: Code transformations enable using 
code as a component of ML models. Gradient descend through 
a physics simulation to find an optimal aircraft wing design! The 
course will both teach foundational algorithms and provide 
experience writing real differentiable programs.

• Parallel Performance Engineering: Modern computing requires efficiently using the performance 
of multicore chips, clusters, and accelerators. Learn about both hardware constraints like pipeline 
and caches and software constraints like allocators, needed to build and debug fast code.

https://dl.acm.org/doi/pdf/10.1145/3550454.3555500
https://dl.acm.org/doi/pdf/10.1145/3550454.3555500
https://dl.acm.org/doi/pdf/10.1145/3550454.3555500


Diversity Equity and Inclusion
• It is the duty of all professors to promote diversity, equity, and inclusion within Princeton and the broader community.


• Faculty members of systemically marginalized groups are historically expected to perform most inclusion work, 
and are simultaneously judged more harshly spending less time on research as a result.


• Prior Experience:


• Worked in MIT’s Institute Community and Equity Office to support DEI initiatives. For example, I created 
opportunities for students from disadvantaged backgrounds to interact with tenured faculty, arranged speakers, 
wrote news articles.


• As president of MIT’s oldest computing club, I improved diversity and general attendance by 20% through various 
initiatives (mentorship program, outreach, culture of positive learning, community-building projects). Awarded the 
Golden Beaver and Karl Taylor Compton Prize, MIT’s highest student award.


• Future Initiatives:


• Studies have shown that mentorship programs are some of the most effective methods for improving diversity.


• Propose long-term research mentorship program for local high-school students, and cohort and other community 
building for undergraduate and graduate students; low-barrier anonymous feedback in courses, research group, 
and department128



Why Does Enzyme Use LLVM?

• Generic low-level compiler infrastructure with many 
frontends


• “Cross platform assembly”


• Many backends (CPU, CUDA, AMDGPU, etc)


• Well-defined semantics


• Large collection of optimizations and analyses
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Implementing Tapir/LLVM
Compiler component LLVM 4.0svn (lines) Tapir/LLVM (lines)

Instructions 105,995 943

Memory behavior 21,788 445

Optimizations 152,229 380

Parallelism lowering 0 3,782

Other 3,803,831 460

Total 4,083,843 6,010

�
1,768
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Revisiting The Programmer’s Burden
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Key Enabling Technology: Probabilistic Programming

Probabilistic Programming is a new paradigm for automating statistical and Bayesian reasoning


• Use requires rewriting entire applications in a probabilistic programming language (PPL), with 
analyses performed on source code, if at all


• Inference requires running model functions many times, even if variables won’t change the 
results.


• Idea: Moving into the compiler will enable performance and usability advantages.

132

@gen function model(N) 
  m = @trace(normal(0.0, 1.0), :m) 
  b = @trace(normal(0.0, 1.0), :b) 
  predictions = [] 
  for i in 1:N 
    push!(predictions, 
      @trace(normal(i * m + b, 1.0), (:predict, i))) 
  end 
  return m, b, predictions 
end 
  
plot(simulate(model, 4))



Generalizing Support: Library-Specific Optimization

• All libraries have high-level semantics or properties that are not well-expressed within a given 
programming language -> failure to optimize


• Provide lightweight source-level mechanisms that enable library-authors preserve, optimize, 
and verify custom semantics

133

void foo(DataStructure& x) { 
  print(size(x)); 
  insert(x); 
  print(size(x)); 
}

define void @foo(ptr %x) { 
  %2 = call @size(ptr %x) 
  call @print(i32 %2) 
  call @insert(ptr %x) 
  ; %3 = add i32 %2, 1 
  %3 = call @size(ptr %x) 
  call @print(i32 %3) 
  ret void 
} 


