Instead of Rewriting Foreign Code for Machine
Learning, Automatically Synthesize Fast Gradients
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Differentiation & Machine Learning

Computing derivatives is key to many machine learning algorithms

Existing approaches:
Rewrite all code in a differentiable DSL (PyTorch, TensorFlow, Taichi, etc)
Manually writing gradient functions

Hinders application of ML to new domains

Automatic differentiation (AD) aims to close this gap




Existing Automatic Differentiation Pipelines
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Optimization & Automatic Differentiation

Differentiating before optimizing can create asymptotically slower gradients.
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% Enzyme Approach

Perform AD on optimized, language-independent representation!
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Challenges of Low-Level AD

“AD is more effective in high-level compiled languages (e.g. Julia, Swift, Rust, Nim) than
traditional ones such as C/C++, Fortran and LLVM IR [...]” — Innes

Low-level code lacks information necessary to compute adjoints

Created new interprocedural analyses to derive information and optimize

struct Type { X Type
double; .
intx; 0: Pointer —|0: Double
J 3. Pointer —0: Integer

X = Type*;




Speedup of Enzyme
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PyTorch-Enzyme & TensorFlow-Enzyme

import torch import tensorflow as tf

from torch_enzyme import enzyme from tf_enzyme import enzyme

# Create some initial tensor inp = tf.Variable(..)

inp = .. # Use external C code as a regular TF op
# Apply foreign function to tensor out = enzyme(inp, filename=‘“test.c",

out = enzyme("test.c", “f").apply(inp) function=“f")

# Derive gradient # Results is a TF tensor

out.backward() out = tf.sigmoid(out)

print(inp.grad)

// Input tensor + size, and output tensor
void f(float* inp, size_t n, float* out);

// diffe_dupnoneed specifies not recomputing the output
void diffef(float* inp, float* d_inp, size_t n, float* d_out) {
__enzyme_autodiff(f, diffe_dup, inp, d_inp, n, diffe_dupnoneed, (float*)0, d_out);

}




% Enzyme

Tool for performing reverse-mode AD of statically analyzable LLVM IR

Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)
4.2x speedup over AD before optimization

State-of-the art performance with existing tools

PyTorch-Enzyme & TensorFlow-Enzyme lets researchers use foreign code in ML workflow

Open source (enzyme.mit.edu & join our mailing list)

For more information come to our poster & spotlight presentation!


http://enzyme.mit.edu

END




