Instead of Rewriting Foreign Code for Machine
Learning, Automatically Synthesize Fast Gradients

0

-

7 bl

éﬁ :
y

- 4
Q™

William S. Moses Valentin Churavy
wmoses@mit.edu H
NeurlPS '20 Poster Preview I I
T CSAIL December 2020

Differentiation & Machine Learning

Computing derivatives is key to many machine learning algorithms

Existing approaches:
Rewrite all code in a differentiable DSL (PyTorch, TensorFlow, Taichi, etc)
Manually writing gradient functions

Hinders application of ML to new domains

Automatic differentiation (AD) aims to close this gap

Existing Automatic Differentiation Pipelines

Optimize

CodeGen

Optimization & Automatic Differentiation

Differentiating before optimizing can create asymptotically slower gradients.

0 (n?) O (n) O (n)
for i=0..n { o = mag(in) o @é@
[i] /= mag(in) Optimize for 1=0..n { AD “dres - { [i]
) : [1] /=) ’
— — S d_mag()
2
O (n?) O (n*) O (n*)
for i=0..n { for =n.;@ t for i=n..0 {
SESL A [i]. - — [i].
} AD : d_mag() Optimize d_mag(
e e J

% Enzyme Approach

Perform AD on optimized, language-independent representation!

Optimize Optimize

Enzyme a>
LIVM

CodeGen

Challenges of Low-Level AD

“AD is more effective in high-level compiled languages (e.g. Julia, Swift, Rust, Nim) than
traditional ones such as C/C++, Fortran and LLVM IR [...]” — Innes

Low-level code lacks information necessary to compute adjoints

Created new interprocedural analyses to derive information and optimize

struct Type { X Type
double; .
intx; 0: Pointer —|0: Double
J 3. Pointer —0: Integer

X = Type*;

Speedup of Enzyme

B Enzyme
I Ref
B Tapenade
B Adept

Higher Is Better

X

LSTM BA GMM Euler RK4 FFT Bruss

/\

0.0-

Enzyme Is 4.2x faster than Reference!

0,

PyTorch-Enzyme & TensorFlow-Enzyme

import torch import tensorflow as tf

from torch_enzyme import enzyme from tf_enzyme import enzyme

Create some initial tensor inp = tf.Variable(..)

inp = .. # Use external C code as a regular TF op
Apply foreign function to tensor out = enzyme(inp, filename=‘“test.c",

out = enzyme("test.c", “f").apply(inp) function=“f")

Derive gradient # Results is a TF tensor

out.backward() out = tf.sigmoid(out)

print(inp.grad)

// Input tensor + size, and output tensor
void f(float* inp, size_t n, float* out);

// diffe_dupnoneed specifies not recomputing the output
void diffef(float* inp, float* d_inp, size_t n, float* d_out) {
__enzyme_autodiff(f, diffe_dup, inp, d_inp, n, diffe_dupnoneed, (float*)0, d_out);

}

% Enzyme

Tool for performing reverse-mode AD of statically analyzable LLVM IR

Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)
4.2x speedup over AD before optimization

State-of-the art performance with existing tools

PyTorch-Enzyme & TensorFlow-Enzyme lets researchers use foreign code in ML workflow

Open source (enzyme.mit.edu & join our mailing list)

For more information come to our poster & spotlight presentation!

http://enzyme.mit.edu

END

