
Instead of Rewriting Foreign Code for Machine
Learning, Automatically Synthesize Fast Gradients

wmoses@mit.edu
NeurIPS ’20 Poster Preview

December 2020

William S. Moses Valentin Churavy

Differentiation & Machine Learning

• Computing derivatives is key to many machine learning algorithms

• Existing approaches:

• Rewrite all code in a differentiable DSL (PyTorch, TensorFlow, Taichi, etc)

• Manually writing gradient functions

• Hinders application of ML to new domains

• Automatic differentiation (AD) aims to close this gap

Existing Automatic Differentiation Pipelines

AD

CodeGen

Optimize

Lower

AD

AD

AD

Optimization & Automatic Differentiation
Differentiating before optimizing can create asymptotically slower gradients.

Optimize

O (n2) O (n)

AD
for i=0..n {
 out[i] /= mag(in)
}

res = mag(in)
for i=0..n {
 out[i] /= res
}

d_res = 0.0
for i=n..0 {
 d_res += d_out[i]…
}
d_mag(d_in, d_res)

O (n)

O (n2)O (n2)
for i=0..n {
 out[i] /= mag(in)
} AD

for i=n..0 {
 d_res = d_out[i]…
 d_mag(d_in, d_res)
}

O (n2)
for i=n..0 {
 d_res = d_out[i]…
 d_mag(d_in, d_res)
}

Optimize

Lower Enzyme .

Optimize

CodeGen

Optimize

 Enzyme Approach

Perform AD on optimized, language-independent representation!

Challenges of Low-Level AD

• “AD is more effective in high-level compiled languages (e.g. Julia, Swift, Rust, Nim) than
traditional ones such as C/C++, Fortran and LLVM IR [...]” – Innes

• Low-level code lacks information necessary to compute adjoints

• Created new interprocedural analyses to derive information and optimize

struct Type {
 double;
 int*;
}

x = Type*;

0: Pointer
x

0: Double
8: Pointer

Type

0: Integer

Speedup of Enzyme
H

ig
he

r i
s

Be
tte

r

Enzyme is 4.2x faster than Reference!

PyTorch-Enzyme & TensorFlow-Enzyme

import torch
from torch_enzyme import enzyme

Create some initial tensor
inp = …

Apply foreign function to tensor
out = enzyme("test.c", “f").apply(inp)

Derive gradient
out.backward()
print(inp.grad)

import tensorflow as tf
from tf_enzyme import enzyme

inp = tf.Variable(…)
Use external C code as a regular TF op

out = enzyme(inp, filename=“test.c",
 function=“f”)

Results is a TF tensor
out = tf.sigmoid(out)

// Input tensor + size, and output tensor
void f(float* inp, size_t n, float* out);

// diffe_dupnoneed specifies not recomputing the output
void diffef(float* inp, float* d_inp, size_t n, float* d_out) {
 __enzyme_autodiff(f, diffe_dup, inp, d_inp, n, diffe_dupnoneed, (float*)0, d_out);
}

• Tool for performing reverse-mode AD of statically analyzable LLVM IR

• Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)

• 4.2x speedup over AD before optimization

• State-of-the art performance with existing tools

• PyTorch-Enzyme & TensorFlow-Enzyme lets researchers use foreign code in ML workflow

• Open source (enzyme.mit.edu & join our mailing list)

• For more information come to our poster & spotlight presentation!

 Enzyme

http://enzyme.mit.edu

END

