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AP Calculus: Revisited

• Derivatives compute the rate of change of a function’s output with respect to input(s)


• Derivatives are used widely across science


• Machine learning (back-propagation, Bayesian inference)


• Scientific computing (modeling, simulation, uncertainty quantification)

3 from Efficient Differentiation of Pixel Reconstruction Filters for Path-Space Differentiable Rendering, 
SIGGRAPH Asia 2022, Zihan Yu et al

Target Reconstruction

https://dl.acm.org/doi/pdf/10.1145/3550454.3555500


       AD-Powered Applications
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from Efficient Differentiation of Pixel Reconstruction Filters for Path-Space Differentiable Rendering, 
SIGGRAPH Asia 2022, Zihan Yu et al

Target Reconstruction

from Comrade: High Performance Black-Hole Imaging JuliaCon 2022, 
Paul Tiede (Harvard)

from CLIMA & NSF CSSI: Differentiable programming in Julia for Earth system modeling 
(DJ4Earth) from Center for the Exascale Simulation of Materials in Extreme Environments

from MFEM Team at LLNL

from Differential Molecular Simulation with Molly.jl, EnzymeCon 2023, 
Joe Greener (Cambridge)

https://dl.acm.org/doi/pdf/10.1145/3550454.3555500
https://live.juliacon.org/talk/3LHDTD
https://clima.caltech.edu/
https://dj4earth.github.io/
https://dj4earth.github.io/
https://computing.mit.edu/cesmix/
https://www.llnl.gov/news/doe-funds-llnl-project-improve-differentiation-extreme-scale-science-applications
https://enzyme.mit.edu/conference


Automatic Derivative Generation

• Derivatives can be generated automatically from definitions within programs 
 
 
 
 

• Unlike numerical approaches, automatic differentiation (AD) can compute the derivative of ALL 
inputs (or outputs) at once, without approximation error!
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AD

double relu3(double x) { 
  if (x > 0) 
    return pow(x,3) 
  else 
    return 0; 
}

double grad_relu3(double x) { 
  if (x > 0) 
    return 3 * pow(x,2) 
  else 
    return 0; 
}

// Numeric differentiation 
// f’(x) approx [f(x+epsilon) - f(x)] / epsilon 
double grad_input[100]; 

for (int i=0; i<100; i++) { 
  double input2[100] = input; 
  input2[i] += 0.01; 
  grad_input[i] = (f(input2) - f(input))/0.001; 
}

// Automatic differentiation 
double grad_input[100]; 

grad_f(input, grad_input)



Existing AD Approaches (1/3)

• Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)


• Provide a new language designed to be differentiated


• Requires rewriting everything in the DSL and the DSL must support all operations in original 
code


• Fast if DSL matches original code well import tensorflow as tf 

x = tf.Variable(3.14) 

with tf.GradientTape() as tape: 
  out = tf.cond(x > 0, 
           lambda: tf.math.pow(x,3), 
           lambda: 0 
        ) 
print(tape.gradient(out, x).numpy())

double relu3(double val) { 
  if (x > 0) 
    return pow(x,3) 
  else 
    return 0; 
}

Manually 
Rewrite



Existing AD Approaches (2/3)

• Operator overloading (Adept, JAX)


• Differentiable versions of existing language constructs (double => adouble, np.sum => jax.sum)


• May require writing to use non-standard utilities


• Often dynamic: storing instructions/values to later be interpreted

// Rewrite to accept either 
//    double or adouble 
template<typename T> 
T relu3(T val) { 
  if (x > 0) 
    return pow(x,3) 
  else 
    return 0; 
}

adept::Stack stack; 
adept::adouble inp = 3.14; 

// Store all instructions into stack 
adept::adouble out(relu3(inp)); 
out.set_gradient(1.00); 

// Interpret all stack instructions 
double res = inp.get_gradient(3.14);



Existing AD Approaches (3/3)

• Source rewriting


• Statically analyze program to produce a new gradient function in the source language


• Re-implement parsing and semantics of given language


• Requires all code to be available ahead of time => hard to use with external libraries

Tapenade

// myfile.h 
double relu3(double x) { 
  if (x > 0) 
    return pow(x,3) 
  else 
    return 0; 
}

// myfile.c 
double relu3(double x) { 
  if (x > 0) 
    return pow(x,3) 
  else 
    return 0; 
}

// grad_myfile.h 
double relu3(double x) { 
  if (x > 0) 
    return pow(x,3) 
  else 
    return 0; 
}

// grad_myfile.c 
double grad_relu3(double x) { 
  if (x > 0) 
    return 3 * pow(x,2) 
  else 
    return 0; 
}



Existing Automatic Differentiation Pipelines

AD

CodeGen

Optimize

Lower

AD

AD

AD
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Case Study: Vector Normalization

//Compute magnitude in O(n) 
double mag(double[] x); 

//Compute norm in O(n^2) 
void norm(double[] out, double[] in) { 

  for (int i=0; i<n; i++) { 
    out[i] = in[i] / mag(in); 
  } 
}
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Case Study: Vector Normalization

//Compute magnitude in O(n) 
double mag(double[] x); 

//Compute norm in O(n) 
void norm(double[] out, double[] in) { 
  double res = mag(in); 
  for (int i=0; i<n; i++) { 
    out[i] = in[i] / res; 
  } 
}
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Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
res = mag(in) 
for i=0..n { 
  out[i] /= res 
}

d_res = 0.0  
for i=n..0 { 
  d_res += d_out[i]… 
} 
∇mag(d_in, d_res)

O (n)
for i=0..n { 
  out[i] /= mag(in) 
}
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Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
for i=0..n { 
  out[i] /= mag(in) 
}

res = mag(in) 
for i=0..n { 
  out[i] /= res 
}

d_res = 0.0  
for i=n..0 { 
  d_res += d_out[i]… 
} 
∇mag(d_in, d_res)

O (n)

O (n2)
for i=0..n { 
  out[i] /= mag(in) 
}

AD
for i=n..0 { 
  d_res = d_out[i]… 
  ∇mag(d_in, d_res) 
}

O (n2)
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Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
for i=0..n { 
  out[i] /= mag(in) 
}

res = mag(in) 
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  out[i] /= res 
}

d_res = 0.0  
for i=n..0 { 
  d_res += d_out[i]… 
} 
∇mag(d_in, d_res)

O (n)

O (n2)O (n2)
for i=0..n { 
  out[i] /= mag(in) 
}

AD
for i=n..0 { 
  d_res = d_out[i]… 
  ∇mag(d_in, d_res) 
}
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for i=n..0 { 
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Optimize
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Optimization & Automatic Differentiation

Differentiating after optimization can create asymptotically faster gradients!

Optimize

O (n2) O (n)

AD
for i=0..n { 
  out[i] /= mag(in) 
}

res = mag(in) 
for i=0..n { 
  out[i] /= res 
}

d_res = 0.0  
for i=n..0 { 
  d_res += d_out[i]… 
} 
∇mag(d_in, d_res)

O (n)

O (n2)O (n2)
for i=0..n { 
  out[i] /= mag(in) 
}

AD
for i=n..0 { 
  d_res = d_out[i]… 
  ∇mag(d_in, d_res) 
}

O (n2)
Optimize

for i=n..0 { 
  d_res = d_out[i]… 
  ∇mag(d_in, d_res) 
}
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Lower Enzyme   .

Optimize

CodeGen

Optimize

       Enzyme Approach

Performing AD at low-level lets us work on optimized code!
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Experimental Setup

Enzyme:

Ref:

Tapenade:

Adept: -O2

Enzyme      .

Tapenade

Adept

• Collection of benchmarks from Microsoft’s ADBench suite and of technical interest

-O2

-O2-O2

-O2-O2

-O2 Enzyme      . -O2
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Speedup of Enzyme 
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Enzyme is 4.2x faster than Reference!
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Automatic Differentiation & GPUs

• Prior work has not explored reverse mode AD of existing GPU kernels


1. Reversing parallel control flow can lead to incorrect results


2. Complex performance characteristics make it difficult to synthesize 
efficient code


3. Resource limitations can prevent kernels from running at all

19



Efficient GPU Code
• For correctness, Enzyme may need to cache values in 

order to compute the gradient


• The complexity of GPU memory means large caches 
slow down the program by several orders of magnitude, 
if it even fits at all


• Like the CPU, existing optimizations reduce the overhead


• Unlike the CPU, existing optimizations aren’t sufficient


• Novel GPU and AD-specific optimizations can speedup by 
several orders of magnitude

20

 
// Forward Pass 

out[i] = x[i] * x[i]; 

x[i] = 0.0f; 
 
// Reverse (gradient) Pass 

... 
grad_x[i] += 2 * x[i] * grad_out[i]; 
... 



Efficient Correct GPU Code
• For correctness, Enzyme may need to cache values in 

order to compute the gradient


• The complexity of GPU memory means large caches 
slow down the program by several orders of magnitude, 
if it even fits at all


• Like the CPU, existing optimizations reduce the overhead


• Unlike the CPU, existing optimizations aren’t sufficient


• Novel GPU and AD-specific optimizations can speedup by 
several orders of magnitude
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double* x_cache = new double[…]; 
 
// Forward Pass 

out[i] = x[i] * x[i]; 
x_cache[i] = x[i]; 

x[i] = 0.0f; 
 
// Reverse (gradient) Pass 

... 
grad_x[i] += 2 * x_cache[i] 
               * grad_out[i]; 
... 

delete[] x_cache;



Cache Reduction Example
• By considering the dataflow graph 

we can perform a min-cut to 
approximate smaller cache sizes.
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for(int i=0; i<10; i++) { 
  double sum = x[i] + y[i]; 

  use(sum); 
} 

overwrite(x, y); 
grad_overwrite(x, y); 

for(int i=9; i>=0; i--) { 
  ... 
  grad_use(sum); 
} 

X Y

Sum

Overwritten:

Required for 
Reverse:



XX

Cache Reduction Example
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double* x_cache = new double[10]; 
double* y_cache = new double[10]; 

for(int i=0; i<10; i++) { 
  double sum = x[i] + y[i]; 
  x_cache[i] = x[i]; 
  y_cache[i] = y[i]; 
  use(sum); 
} 

overwrite(x, y); 
grad_overwrite(x, y); 

for(int i=9; i>=0; i--) { 
  double sum = x_cache[i] + y_cache[i]; 
  grad_use(sum); 
} 

• By considering the dataflow graph 
we can perform a min-cut to 
approximate smaller cache sizes.

X Y

Sum

Overwritten:

Required for 
Reverse:

Naive Cache



Sum

Cache Reduction Example
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double* sum_cache = new double[10]; 

for(int i=0; i<10; i++) { 
  double sum = x[i] + y[i]; 
  sum_cache[i] = sum; 

  use(sum); 
} 

overwrite(x, y); 
grad_overwrite(x, y); 

for(int i=9; i>=0; i--) { 

  grad_use(sum_cache[i]); 
} 

• By considering the dataflow graph 
we can perform a min-cut to 
approximate smaller cache sizes.

X Y

Sum

Overwritten:

Required for 
Reverse:

Smallest Cache



Novel AD + GPU Optimizations

• See our SC’21 paper for more (https://c.wsmoses.com/papers/EnzymeGPU.pdf) 
    Reverse-Mode Automatic Differentiation and Optimization of GPU Kernels via Enzyme. SC, 2021


• [AD] Cache LICM/CSE


• [AD] Min-Cut Cache Reduction


• [AD] Cache Forwarding


• [GPU] Merge Allocations


• [GPU] Heap-to-stack (and register)


• [GPU] Alias Analysis Properties of SyncThreads


• …
25

https://c.wsmoses.com/papers/EnzymeGPU.pdf


GPU Gradient Overhead
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• Evaluation of both original code and gradient


• DG: Discontinuous-Galerkin integral (Julia)


• LBM: particle-based fluid dynamics 
simulation


• LULESH: unstructured explicit shock 
hydrodynamics solver


• XSBench & RSBench: Monte Carlo 
simulations of particle transport 
algorithms (memory & compute bound, 
respectively)

XSBench

RSBench

LULESH

LBM (Parboil)

DG (CUDA)

DG (ROCm)

3.2

4.2

2.01

6.3

18.35

5.4



GPU Gradient Overhead
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• Evaluation of both original code and gradient


• DG: Discontinuous-Galerkin integral (Julia)


• LBM: particle-based fluid dynamics 
simulation


• LULESH: unstructured explicit shock 
hydrodynamics solver


• XSBench & RSBench: Monte Carlo 
simulations of particle transport 
algorithms (memory & compute bound, 
respectively)

XSBench

RSBench

LULESH

LBM (Parboil)

DG (CUDA)

DG (ROCm)

3.2

4.2

2.01

6.3

18.35

5.4

Bug in CUDA 
Register Allocator
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Forward (1x) 10x 100x 1000x OOM

XSBench

RSBench

LULESH

LBM

DG (CUDA)

DG (ROCm)
5.4⇥
o

1378.3⇥
o

116.6⇥
o

17.8⇥
o

19.87⇥
o

8.7⇥
o

6.4⇥
o

2979.1⇥
o

2.4⇥
o

2.0⇥
o

6372.2⇥
o

9.5⇥
o

4.7⇥
o

25.9⇥
o

16.3⇥
o

9.5⇥
o

3.2⇥
o

Overhead above Forward Pass

Unrolling

Unrolling MallocCoalescing PreOptimization

Allocator Recompute InlineCacheABI

SpecPHI PreOptimization

CacheLICM Inlining PreOpt

Templating PHI LoopBound PreOptimization

Ablation Analysis of Optimizations
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Allocator Recompute InlineCacheABI
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Templating PHI LoopBound PreOptimization

Ablation Analysis of Optimizations

GPU AD is Intractable Without Optimization!



       Enzyme-Powered Applications
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from Efficient Differentiation of Pixel Reconstruction Filters for Path-Space Differentiable Rendering, 
SIGGRAPH Asia 2022, Zihan Yu et al

Target Reconstruction

from Comrade: High Performance Black-Hole Imaging JuliaCon 2022, 
Paul Tiede (Harvard)

>100x speedup! 
 
Prior: 
  5 days (cluster) 

Enzyme-Based:

 1 hour (laptop)

from CLIMA & NSF CSSI: Differentiable programming in Julia for Earth system modeling 
(DJ4Earth) from Center for the Exascale Simulation of Materials in Extreme Environments

from MFEM Team at LLNL

from Differential Molecular Simulation with Molly.jl, EnzymeCon 2023, 
Joe Greener (Cambridge)

https://dl.acm.org/doi/pdf/10.1145/3550454.3555500
https://live.juliacon.org/talk/3LHDTD
https://clima.caltech.edu/
https://dj4earth.github.io/
https://dj4earth.github.io/
https://computing.mit.edu/cesmix/
https://www.llnl.gov/news/doe-funds-llnl-project-improve-differentiation-extreme-scale-science-applications
https://enzyme.mit.edu/conference


       Enzyme-Powered Applications
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Target Reconstruction



• Tool for performing reverse-mode (and forward mode) AD of statically analyzable LLVM IR


• Differentiates code in a variety of parallel frameworks (OpenMP, MPI, Julia Tasks, GPU), and 
languages (C, C++, Fortran, Julia, Rust, Swift, etc)


• Parallel and AD-specific optimizations crucial for performance


• Keep similar scalability as non-differentiated code


• Open source (enzyme.mit.edu & join our mailing list)!


• Ongoing work to support Mixed Mode, Batching, Checkpointing, and more

       Enzyme
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http://enzyme.mit.edu


A Growing Enzyme Community (EnzymeCon 2023)

• 40 attendees spanning developers, users, and everywhere in between.

• 17 great talks from AD 
internals, to algorithms, to 
climate science, to physics, 
and beyond (https://
enzyme.mit.edu/conference).


• Talks live streamed to YouTube 
(to be split individually soon):

• Day 1 Link

• Day 2 Link 

https://enzyme.mit.edu/conference
https://enzyme.mit.edu/conference
https://www.youtube.com/watch?v=ubIDJAbIXAc
https://youtube.com/live/NB7xUHQNox8?feature=share
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