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Optimizing numerical code is challenging at three levels: 
Context, Scope, and Scale. 

Profiling + Compiler Optimization are the key.



Context: Where You Change Matters 
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double sum = 0.0; 
for (double x : xs) { 
    double val = sigmoid(exp(x)); 
    sum += val; 
} 
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Lower Activation:  
1.6× speedup 

error +≈ 1e-12 (safe!)
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double sum = 0.0; 
for (double x : xs) { 
    double val = sigmoid(exp(x)); 
    sum += val; 
} 

double sum = 0.0; 
for (double x : xs) { 
    float val = sigmoidf(expf(x)); 
    sum += val; 
} 

float sum = 0.0f; 
for (double x : xs) { 
    float val = sigmoidf(expf(x)); 
    sum += val; 
} 

Lower Reduction: 
error +≈ 1e-4 (danger!)

Lower Activation:  
1.6× speedup 

error +≈ 1e-12 (safe!)

Profiling just 10 iterations: 
Reduction is  more sensitive*! 104 ×

* ADAPT metric (Menon et al. ’18).



Context: Structured Critical Value Hypothesis
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double sum = 0.0; 
for (double x : xs) { 
    double val = sigmoid(exp(x)); 
    sum += val; 
} 

double sum = 0.0; 
for (double x : xs) { 
    float val = sigmoidf(expf(x)); 
    sum += val; 
} 

float sum = 0.0f; 
for (double x : xs) { 
    float val = sigmoidf(expf(x)); 
    sum += val; 
} 

Accuracy-critical values are often 
structural (e.g., reduction, 
cancellation, one-hot, thresholds). 
A small surrogate profile 
reveals key information.

Profiling just 10 iterations: 
Reduction is  more sensitive*! 104 ×



Scope: Precision Isn’t the Only Knob
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FP32 (Original Order) 
(1e8 + 1) - 1e8 →  1.0000000e8 - 1e8 → 0

⚡ Fast ❌ Wrong

+1 rounded away



FP64 (Same Order) 
(1e8 + 1) - 1e8 → 1.00000001e8 - 1e8 → 1

🐢 Costly ✅ Correct
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FP32 (Original Order) 
(1e8 + 1) - 1e8 →  1.0000000e8 - 1e8 → 0

⚡ Fast ❌ Wrong

+1 rounded away

Use FP64 
(Tradeoff!)



Scope: Precision Isn’t the Only Knob
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FP32 (Reassociated) 
(1e8 - 1e8) + 1 → 0 + 1 → 1

⚡ Fast ✅ Correct Algebraic Rewrite 
(circumvents tradeoff 
but requires context)

FP32 (Original Order) 
(1e8 + 1) - 1e8 →  1.0000000e8 - 1e8 → 0

⚡ Fast ❌ Wrong

+1 rounded away

FP64 (Same Order) 
(1e8 + 1) - 1e8 → 1.00000001e8 - 1e8 → 1

🐢 Costly ✅ Correct Use FP64 
(Tradeoff!)



Scale: The Math Is in the Mess
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double foo(double x) { 
  double y = 0.0; 
  if (x > 0.0) 
    y = pow(x, 3); 
  return y; 
}

Math behind control flow, 
memory I/O, 

function calls, …; 
existing source/binary-level  

tools fail.
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define double @foo(double %x) { 
entry: 
  %p = call double @powi( 
    double %x, i32 3) 
  %r = call double @max( 
    double 0.0, double %p) 
  ret double %r 
}
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Scale: The Math Is in the Mess
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double foo(double x) { 
  double y = 0.0; 
  if (x > 0.0) 
    y = pow(x, 3); 
  return y; 
}

A production compiler makes math 
explicit through optimizations 

(SimplifyCFG, mem2reg, inlining, …)

Math behind control flow, 
memory I/O, 

function calls, …; 
existing source/binary-level  

tools fail.

Aha, caller wants !max(0, x3)

define double @foo(double %x) { 
entry: 
  %p = call double @powi( 
    double %x, i32 3) 
  %r = call double @max( 
    double 0.0, double %p) 
  ret double %r 
}
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Can we automate numerical rewriting techniques in compilers? 

How much performance are we leaving on the table due to 
suboptimal choices of precision and expressions?



• The first framework that automates numerical rewrites within a production compiler

Our Answer — Poseidon
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• The first framework that automates numerical rewrites within a production compiler


• First Compile: Instrument user program to collect numerical context

Our Answer — Poseidon
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• The first framework that automates numerical rewrites within a production compiler


• Second Compile: Perform full-application scale numerical rewrites

Our Answer — Poseidon
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Profiling Pass

• Perform pre-optimizations to expose underlying math


• Emit profiles: execution counts, running sums of values/gradients per instruction
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• Similarly, perform pre-optimizations to expose underlying math


• Rewrite Regions: floating-point def–use subgraph (linear-time flood fill)

Subgraph Extraction
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Candidate Generation

• Algebraic rewrites from external tools (e.g., Herbie)


• Profile-guided precision changes


• Fully extensible!
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Candidate Evaluation

• Goal: predict candidate’s performance/accuracy impact using the profile


• Cost: Sum over instructions of (cost × execution count) 

• Accuracy: Sum over instructions of (local error × global sensitivity)
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Solver (Global Selection of Rewrites)

• Objective: minimize predicted global error given a set of cost-error pairs


• Similar to knapsack: dynamic programming builds a cost–error frontier 

• When


•
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Can we automate numerical rewriting techniques in compilers? 

How much performance are we leaving on the table due to 
suboptimal choices of precision and expressions?
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Evaluation

• Structured Critical Value Hypothesis: small surrogate profiles reveal numerical structure


• Coverage (FPBench): Accuracy improvements on 58% of benchmarks;  
                                   Maximum speedup of 1.82× (error < 1e-6)


• Quaternion Differentiator: 1.46× speedup (error < 1e-6)


• LULESH: Bitwise-identical to MPFR-512 in FP64; no substantial slowdown
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• Given the original program, 
Poseidon produces tradeoffs

Evaluation: Quaternion Differentiator
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• Given the original program, 
Poseidon produces tradeoffs


• Trade accuracy for performance


• 1.46× with error of 6e-7

Evaluation: Quaternion Differentiator
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• Given the original program, 
Poseidon produces tradeoffs


• Trade accuracy for performance


• 1.46× with error of 6e-7


• Trade performance for accuracy


• Error reduced by 27%  
with 1.13× more compute time

Evaluation: Quaternion Differentiator
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• Large DOE proxy application that simulates Lagrangian hydrodynamics


• 5600+ LOC with over 200 loops


• Original (FP64): 12 ULPs* of

Evaluation: LULESH

29 * Ground truth: 64-bit rounding of MPFR-512 computation.
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• Large DOE proxy application that simulates Lagrangian hydrodynamics


• 5600+ LOC with over 200 loops


• Original (FP64): 12 ULPs* off


• Poseidon (FP64): Optimal*  
FP64 error; little slowdown


• FP80: 6.79× slower; still 2 ULPs* off
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Evaluation: LULESH

31 * Ground truth: 64-bit rounding of MPFR-512 computation.



• The first framework that automates numerical rewrites within a production compiler


• Profiling + Compiler Optimization provides context, scope, and scale


• Outsized performance benefit without sacrificing the accuracy, and vice versa

       Poseidon (Open Source on GitHub: PRONTOLab/Poseidon)
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Evaluation: Quaternion Differentiator

• PT + AR: Precision Tuning + Algebraic Rewrites


• PT: Precision Tuning only


• AR: Algebraic Rewrites only


• PT + AR has the best frontier!
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Lower-left is better



Evaluation: Artificial Bound Increases
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