
1 University of Illinois Urbana-Champaign, USA
2 Argonne National Laboratory, USA

CGO 2026
Feb. 3, 2026

William S. Moses1

1

Thinking Fast and Correct: Automated Rewriting of
Numerical Code through Compiler Augmentation

Jan Hückelheim2 Paul Hovland2Vimarsh Sathia1Siyuan Brant Qian1

siyuanq4@illinois.edu

2

Optimizing numerical code is challenging at three levels:
Context, Scope, and Scale.

Profiling + Compiler Optimization are the key.

Context: Where You Change Matters

3

double sum = 0.0;
for (double x : xs) {
 double val = sigmoid(exp(x));
 sum += val;
}

Context: Where You Change Matters

4

double sum = 0.0;
for (double x : xs) {
 double val = sigmoid(exp(x));
 sum += val;
}

double sum = 0.0;
for (double x : xs) {
 float val = sigmoidf(expf(x));
 sum += val;
}

Lower Activation:
1.6× speedup

error +≈ 1e-12 (safe!)

Context: Where You Change Matters

5

double sum = 0.0;
for (double x : xs) {
 double val = sigmoid(exp(x));
 sum += val;
}

double sum = 0.0;
for (double x : xs) {
 float val = sigmoidf(expf(x));
 sum += val;
}

float sum = 0.0f;
for (double x : xs) {
 float val = sigmoidf(expf(x));
 sum += val;
}

Lower Reduction:
error +≈ 1e-4 (danger!)

Lower Activation:
1.6× speedup

error +≈ 1e-12 (safe!)

Context: Where You Change Matters

6

double sum = 0.0;
for (double x : xs) {
 double val = sigmoid(exp(x));
 sum += val;
}

double sum = 0.0;
for (double x : xs) {
 float val = sigmoidf(expf(x));
 sum += val;
}

float sum = 0.0f;
for (double x : xs) {
 float val = sigmoidf(expf(x));
 sum += val;
}

Lower Reduction:
error +≈ 1e-4 (danger!)

Lower Activation:
1.6× speedup

error +≈ 1e-12 (safe!)

Profiling just 10 iterations:
Reduction is more sensitive*! 104 ×

* ADAPT metric (Menon et al. ’18).

Context: Structured Critical Value Hypothesis

7

double sum = 0.0;
for (double x : xs) {
 double val = sigmoid(exp(x));
 sum += val;
}

double sum = 0.0;
for (double x : xs) {
 float val = sigmoidf(expf(x));
 sum += val;
}

float sum = 0.0f;
for (double x : xs) {
 float val = sigmoidf(expf(x));
 sum += val;
}

Accuracy-critical values are often
structural (e.g., reduction,
cancellation, one-hot, thresholds).
A small surrogate profile
reveals key information.

Profiling just 10 iterations:
Reduction is more sensitive*! 104 ×

Scope: Precision Isn’t the Only Knob

8

FP32 (Original Order)
(1e8 + 1) - 1e8 → 1.0000000e8 - 1e8 → 0

⚡ Fast ❌ Wrong

+1 rounded away

FP64 (Same Order)
(1e8 + 1) - 1e8 → 1.00000001e8 - 1e8 → 1

🐢 Costly ✅ Correct

Scope: Precision Isn’t the Only Knob

9

FP32 (Original Order)
(1e8 + 1) - 1e8 → 1.0000000e8 - 1e8 → 0

⚡ Fast ❌ Wrong

+1 rounded away

Use FP64
(Tradeoff!)

Scope: Precision Isn’t the Only Knob

10

FP32 (Reassociated)
(1e8 - 1e8) + 1 → 0 + 1 → 1

⚡ Fast ✅ Correct Algebraic Rewrite
(circumvents tradeoff
but requires context)

FP32 (Original Order)
(1e8 + 1) - 1e8 → 1.0000000e8 - 1e8 → 0

⚡ Fast ❌ Wrong

+1 rounded away

FP64 (Same Order)
(1e8 + 1) - 1e8 → 1.00000001e8 - 1e8 → 1

🐢 Costly ✅ Correct Use FP64
(Tradeoff!)

Scale: The Math Is in the Mess

11

double foo(double x) {
 double y = 0.0;
 if (x > 0.0)
 y = pow(x, 3);
 return y;
}

Math behind control flow,
memory I/O,

function calls, …;
existing source/binary-level

tools fail.

Scale: The Math Is in the Mess

12

double foo(double x) {
 double y = 0.0;
 if (x > 0.0)
 y = pow(x, 3);
 return y;
}

A production compiler makes math
explicit through optimizations

(SimplifyCFG, mem2reg, inlining, …)

Math behind control flow,
memory I/O,

function calls, …;
existing source/binary-level

tools fail.

define double @foo(double %x) {
entry:
 %p = call double @powi(
 double %x, i32 3)
 %r = call double @max(
 double 0.0, double %p)
 ret double %r
}

Scale: The Math Is in the Mess

13

double foo(double x) {
 double y = 0.0;
 if (x > 0.0)
 y = pow(x, 3);
 return y;
}

A production compiler makes math
explicit through optimizations

(SimplifyCFG, mem2reg, inlining, …)

Math behind control flow,
memory I/O,

function calls, …;
existing source/binary-level

tools fail.

Scale: The Math Is in the Mess

14

double foo(double x) {
 double y = 0.0;
 if (x > 0.0)
 y = pow(x, 3);
 return y;
}

A production compiler makes math
explicit through optimizations

(SimplifyCFG, mem2reg, inlining, …)

Math behind control flow,
memory I/O,

function calls, …;
existing source/binary-level

tools fail.

Aha, caller wants !max(0, x3)

define double @foo(double %x) {
entry:
 %p = call double @powi(
 double %x, i32 3)
 %r = call double @max(
 double 0.0, double %p)
 ret double %r
}

15

Can we automate numerical rewriting techniques in compilers?

How much performance are we leaving on the table due to
suboptimal choices of precision and expressions?

• The first framework that automates numerical rewrites within a production compiler

Our Answer — Poseidon

16

• The first framework that automates numerical rewrites within a production compiler

• First Compile: Instrument user program to collect numerical context

Our Answer — Poseidon

17

Pre-Optimize>_ Profiling
Pass

First Compilation

Pre-Optimize>_

>_

Profiling
Pass

Second Compilation

First Compilation

Candidate
Generation

Candidate
Evaluation

Subgraph
Extraction

Solver
Post-Optimize

Profile
Input
Program

Output
Program

Profile
Input
Program

• The first framework that automates numerical rewrites within a production compiler

• Second Compile: Perform full-application scale numerical rewrites

Our Answer — Poseidon

18

Pre-Optimize>_

>_

Profiling
Pass

Second Compilation

First Compilation

Candidate
Generation

Candidate
Evaluation

Subgraph
Extraction

Solver
Post-Optimize

Profile
Input
Program

Output
Program

Profiling Pass

• Perform pre-optimizations to expose underlying math

• Emit profiles: execution counts, running sums of values/gradients per instruction

19

Pre-Optimize>_

>_

Profiling
Pass

Second Compilation

First Compilation

Candidate
Generation

Candidate
Evaluation

Subgraph
Extraction

Solver
Post-Optimize

Profile
Input
Program

Output
Program

• Similarly, perform pre-optimizations to expose underlying math

• Rewrite Regions: floating-point def–use subgraph (linear-time flood fill)

Subgraph Extraction

20

Pre-Optimize>_

>_

Profiling
Pass

Second Compilation

First Compilation

Candidate
Generation

Candidate
Evaluation

Subgraph
Extraction

Solver
Post-Optimize

Profile
Input
Program

Output
Program

Candidate Generation

• Algebraic rewrites from external tools (e.g., Herbie)

• Profile-guided precision changes

• Fully extensible!

21

Pre-Optimize>_

>_

Profiling
Pass

Second Compilation

First Compilation

Candidate
Generation

Candidate
Evaluation

Subgraph
Extraction

Solver
Post-Optimize

Profile
Input
Program

Output
Program

Candidate Evaluation

• Goal: predict candidate’s performance/accuracy impact using the profile

• Cost: Sum over instructions of (cost × execution count)

• Accuracy: Sum over instructions of (local error × global sensitivity)

22

Pre-Optimize>_

>_

Profiling
Pass

Second Compilation

First Compilation

Candidate
Generation

Candidate
Evaluation

Subgraph
Extraction

Solver
Post-Optimize

Profile
Input
Program

Output
Program

Solver (Global Selection of Rewrites)

• Objective: minimize predicted global error given a set of cost-error pairs

• Similar to knapsack: dynamic programming builds a cost–error frontier

• When

•

23

Pre-Optimize>_

>_

Profiling
Pass

Second Compilation

First Compilation

Candidate
Generation

Candidate
Evaluation

Subgraph
Extraction

Solver
Post-Optimize

Profile
Input
Program

Output
Program

24

Can we automate numerical rewriting techniques in compilers?

How much performance are we leaving on the table due to
suboptimal choices of precision and expressions?

Pre-Optimize>_

>_

Profiling
Pass

Second Compilation

First Compilation

Candidate
Generation

Candidate
Evaluation

Subgraph
Extraction

Solver
Post-Optimize

Profile
Input
Program

Output
Program

Evaluation

• Structured Critical Value Hypothesis: small surrogate profiles reveal numerical structure

• Coverage (FPBench): Accuracy improvements on 58% of benchmarks;  
 Maximum speedup of 1.82× (error < 1e-6)

• Quaternion Differentiator: 1.46× speedup (error < 1e-6)

• LULESH: Bitwise-identical to MPFR-512 in FP64; no substantial slowdown

25

• Given the original program, 
Poseidon produces tradeoffs

Evaluation: Quaternion Differentiator

26

0.024 0.026 0.028 0.030 0.032 0.034 0.036 0.038 0.040
Runtime (second)

10�17

10�15

10�13

10�11

10�9

10�7

Re
la

tiv
e

Er
ro

r

Lower is more accurate; left is faster

• Given the original program, 
Poseidon produces tradeoffs

• Trade accuracy for performance

• 1.46× with error of 6e-7

Evaluation: Quaternion Differentiator

27

0.024 0.026 0.028 0.030 0.032 0.034 0.036 0.038 0.040
Runtime (second)

10�17

10�15

10�13

10�11

10�9

10�7

Re
la

tiv
e

Er
ro

r

Lower is more accurate; left is faster

• Given the original program, 
Poseidon produces tradeoffs

• Trade accuracy for performance

• 1.46× with error of 6e-7

• Trade performance for accuracy

• Error reduced by 27%  
with 1.13× more compute time

Evaluation: Quaternion Differentiator

28

0.024 0.026 0.028 0.030 0.032 0.034 0.036 0.038 0.040
Runtime (second)

10�17

10�15

10�13

10�11

10�9

10�7

Re
la

tiv
e

Er
ro

r

Lower is more accurate; left is faster

• Large DOE proxy application that simulates Lagrangian hydrodynamics

• 5600+ LOC with over 200 loops

• Original (FP64): 12 ULPs* of

Evaluation: LULESH

29 * Ground truth: 64-bit rounding of MPFR-512 computation.

20 30 40 50 60 70 80 90 100
Significands

10�29

10�25

10�21

10�17

10�13

10�9

10�5

Re
la

tiv
e

Er
ro

r

489.96⇥

1.00⇥
1.00⇥ 6.79⇥

Native Program
MPFR Program
Optimal Error

• Large DOE proxy application that simulates Lagrangian hydrodynamics

• 5600+ LOC with over 200 loops

• Original (FP64): 12 ULPs* off

• Poseidon (FP64): Optimal*  
FP64 error; little slowdown

Evaluation: LULESH

30 * Ground truth: 64-bit rounding of MPFR-512 computation.

20 30 40 50 60 70 80 90 100
Significands

10�29

10�25

10�21

10�17

10�13

10�9

10�5

Re
la

tiv
e

Er
ro

r

489.96⇥

1.00⇥
1.00⇥ 6.79⇥

Native Program
MPFR Program
Optimal Error

• Large DOE proxy application that simulates Lagrangian hydrodynamics

• 5600+ LOC with over 200 loops

• Original (FP64): 12 ULPs* off

• Poseidon (FP64): Optimal*  
FP64 error; little slowdown

• FP80: 6.79× slower; still 2 ULPs* off

• MPFR-74: ~500× slower 20 30 40 50 60 70 80 90 100
Significands

10�29

10�25

10�21

10�17

10�13

10�9

10�5

Re
la

tiv
e

Er
ro

r

489.96⇥

1.00⇥
1.00⇥ 6.79⇥

Native Program
MPFR Program
Optimal Error

Evaluation: LULESH

31 * Ground truth: 64-bit rounding of MPFR-512 computation.

• The first framework that automates numerical rewrites within a production compiler

• Profiling + Compiler Optimization provides context, scope, and scale

• Outsized performance benefit without sacrificing the accuracy, and vice versa

 Poseidon (Open Source on GitHub: PRONTOLab/Poseidon)

32

Pre-Optimize>_

>_

Profiling
Pass

Second Compilation

First Compilation

Candidate
Generation

Candidate
Evaluation

Subgraph
Extraction

Solver
Post-Optimize

Profile
Input
Program

Output
Program

https://github.com/PRONTOLab/Poseidon

Evaluation: Quaternion Differentiator

• PT + AR: Precision Tuning + Algebraic Rewrites

• PT: Precision Tuning only

• AR: Algebraic Rewrites only

• PT + AR has the best frontier!

33
Lower-left is better

Evaluation: Artificial Bound Increases

34

