Thinking Fast and Correct: Automated Rewriting of

Numerical Code through Compiler Augmentation

Siyuan

o

SBrant Qian?

Vimarsh Sathia? Jan Huckelheim? Paul Hovland?

siyuang4@illinois.edu

1 University of lllinois Urbana-Champaign, USA

2 Argonne National Laboratory, USA
CGO 2026
Feb. 3, 2026

- 4
e

William S. Moses'

Optimizing numerical code is challenging at three levels:
Context, Scope, and Scale.
Profiling + Compiler Optimization are the key.

Context: Where You Change Matters

double sum = 0.0;

for (double x : xs) {
double val = sigmoid(exp(x));
sum += val;

Context: Where You Change Matters

double sum = 0.0;

for (double x : xs) {
double val = sigmoid(exp(x));
sum += val;

J

double sum = ; -

for (double x : xs) { Lower Activation:
float val = sigmoidf(expf(x)); 1.6x speedup
sum += val; error += 1e-12 (safe!)

Context: Where You Change Matters

double sum = 0.0;

for (double x : xs) {
double val = sigmoid(exp(x));
sum += val;

J

double sum = 0.0;

for (double x : xs) { Lower Activation:
float val = sigmoidf (expf(x)); 1.6x speedup

: sum += val; error += 1e-12 (safe!)

float sum = 0.0f;
for (double x : xs) {

float val = sigmoidf (expf(x)); Lower Reduction: '
sum += val; error += 1e-4 (danger!)

Context: Where You Change Matters

double sum = 0.0;
for (double x : xs) { - | |
double val = sigmoid(exp(x)); Profiling just 10 iterations:

sum += val; Reduction is 10* X more sensitive*

J

double sum = 0.0;

for (double x : xs) { Lower Activation:
float val = sigmoidf (expf(x)); 1.6x speedup

: sum += val; error += 1e-12 (safe!)

float sum = 0.0f;
for (double x : xs) {

float val = sigmoidf (expf(x)); Lower Reduction: '
sum += val; error += 1e-4 (danger!)

" ADAPT metric (Menon et al. ’18).

Context: Structured Critical Value Hypothesis

double sum = 0.0;
for (double x : xs) { - | |
double val = sigmoid(exp(x)); Profiling just 10 iterations:

sum += val; Reduction is 10* X more sensitive*

)

double sum =

for (double x : xs) { N
float val = sigmoidf(expf(x)): Accuracy-ctritical values are often

sum += val; structural (e.g., reduction,
) cancellation, one-hot, thresholds).
A small surrogate profile
float sum = 0.0f;

for (double x : xs) { reveals key information.

float val = sigmoidf (expf(x));
sum += val;

Scope: Precision Isn’t the Only Knob

FP32 (Original Order) Fast X Wrong
(1e8 + 1) - 1e8 = 1.0000000e8 - 1e8 — 0

+1 rounded away

Scope: Precision Isn’t the Only Knob

FP32 (Original Order) Fast
(1e8 + 1) - 1e8 — 1.0000000e8 - 1e8 — 0

+1 rounded away

FP64 (Same Order) Costly
(1e8 + 1) - 1e8 = 1.00000001e8 - 1e8 — 1

Correct

Use FP64
(Tradeoff!)

Scope: Precision Isn’t the Only Knob

10

FP32 (Original Order) Fast
(1e8 + 1) - 1e8 — 1.0000000e8 - 1e8 — 0

+1 rounded away

FP64 (Same Order) Costly
(1e8 + 1) - 1e8 = 1.00000001e8 - 1e8 — 1

FP32 (Reassociated) Fast
(1e8-1e8)+1 —-20+1 - 1

Correct

Correct

Use FP64
(Tradeoff!)

Algebraic Rewrite
(circumvents tradeoff

but requires context)

Scale: The Math Is in the Mess

double foo(double x) { Math behind control flow,

??“t(’)l(iy@:@? 95 memory /0,
y = pOW'(X 3) 5 function calls, ...;
return y: existing source/binary-level

} tools fall.

11

Scale: The Math Is in the Mess

double foo(double x) { Math behind control flow,

??Ut()}(iy@f@?'@; ~ memory VO,
y = pow(x. 3): | l"unctlon Callg,
return y: existing source/binary-level
} tools fall.

A production compiler makes math
explicit through optimizations
(SimplifyCFG, mem2reg, inlining, ...)

12

Scale: The Math Is in the Mess

double foo(double x) { Math behind control flow,

??u?iiy@f@?'@; ~ memory VO,
y = pow(x. 3): | l"unctlon Callg,
return y: existing source/binary-level
} tools fall.

define double @foo(double %x) {
- A production compiler makes math

%p = call double @powi(explicit through optimizations

couble #X, 132 3) SimplifyCFG, mem2reg, inlinin
%r = call double @max((plity) g, g, ...)

double 0.0, double %p)
ret double %r

}

13

Scale: The Math Is in the Mess

double foo(double x) { Math behind control flow,

(ij?u?}(iy@f@?'@; ~ memory VO,
y = pow(x. 3): | l"unctlon Callg,
return y: existing source/binary-level
} tools fall.

define double @foo(double %x) {
- A production compiler makes math

%p = call double @powi(explicit through optimizations

couble #X, 132 3) SimplifyCFG, mem2reg, inlinin
%r = call double @max((plity) g, g, ...)

double 0.0, double %p)
ret double %r

}

14

Aha, caller wants max(0, x°)

15

Can we automate numerical rewriting technigues in compilers”?

How much performance are we leaving on the table due to
suboptimal choices of precision and expressions?

Our Answer — Poseidon

The first framework that automates numerical rewrites within a production compiler

16

Our Answer — Poseidon

The first framework that automates numerical rewrites within a production compiler

First Compile: Instrument user program to collect numerical context

First Compilation

Input Pre- Optlmlze Profiling 3
Program “ Pass Profile

17

18

Our Answer — Poseidon

The first framework that automates numerical rewrites within a production compiler

Second Compile: Perform full-application scale numerical rewrites

First Compilation
Input Pre-Optimize | (Profiling .
Program i Pass) Profile k
Second Compilation :
4) é) !
. (@ N -
. y \ y :
Output Post-Optimize | A =) _E
Program (L) < L \j) <--

Profiling Pass

19

Perform pre-optimizations to expose underlying math
Emit profiles: execution counts, running sums of values/gradients per instruction

First Compilation

Input Pre-Optimize Profiling >
Program || >» Pass Profile

Second Compilation

Output
Program

Post-Optimize
)

Subgraph Extraction

20

Similarly, perform pre-optimizations to expose underlying math

Rewrite Regions: floating-point def-use subgraph (linear-time flood fill)

First Compilation
Input > Pre-Optimize
Program | > “

Second Compilation

a) Sub h
> [@ pbeh || | <

rﬁ_ (Post-Optimize [.] -— [@ } <--

e |

Output
Program

Candidate Generation

Algebraic rewrites from external tools (e.g., Herbie)
Profile-guided precision changes

Fully extensible!

First Compilation

Input S Pre-Optimize
Program > “

] > L Profile ~™ ™"
Second Compilation

- Candid
> | | > Gl
y

A

Post-Optimize

—
A

J«<©

Candidate Evaluation

Goal: predict candidate’s performance/accuracy impact using the profile
Cost: Sum over instructions of (cost x execution count)

Accuracy: Sum over instructions of (local error x global sensitivity)

First Compilation
Input S Pre-Optimize g A
Program > “ > Profile k
. v, !
Second Compilation :
~ -) é) !
. N -
- y § J :

Output
Program

A

.

Post-Optimize g) [o~ Candidate)
(€ L \J Evaluation

22

23

Solver (Global Selection of Rewrites)

Objective: minimize predicted global error given a set of cost-error pairs

Similar to knapsack: dynamic programming builds a cost—error frontier

First Compilation
Input S Pre-Optimize g A
- B
. v, !
Second Compilation :
4 D [) 1
. (@ N -
. y - J :
Output Post-Optimize [A [om) _E
Program (L) < L \j) <--

24

Can we automate numerical rewriting technigues in compilers?

How much performance are we leaving on the table due to

suboptimal choices of precision and expressions’?

> L Profile

Input
Program

Output
Program

Pre-Optimize
>

>

Post-Optimize
o

First Compilation

.

Profiling
Pass

Second Compilation

r

.

Subgraph

Extraction

r

r

.

. Solver

L

Candidate)

Generation

J

\

[o
L
_

Candidate)

Evaluation

J

A

|

A

Evaluation

Structured Critical Value Hypothesis: small surrogate profiles reveal numerical structure

Coverage (FPBench): Accuracy improvements on 58% of benchmarks;
Maximum speedup of 1.82x (error < 1e-6)

Quaternion Differentiator: 1.46x speedup (error < 1e-6)

LULESH: Bitwise-identical to MPFR-512 in FP64: no substantial slowdown

25

26

Evaluation: Quaternion Differentiator

Given the original program,
Poseidon produces tradeoffs

10~ ok

10—13

Relative Error

10—15

10—17

.

0.024 0.026 0.028 0.030 0.032 0.034 0.036
Runtime (second)

Lower is more accurate; left is faster

0.0338

*

0.040

27

Evaluation: Quaternion Differentiator

Given the original program,
Poseidon produces tradeoffs

Trade accuracy for performance *

with error of 6e-7 107 o

10—13

Relative Error

10—15

10—17

S

0.024 0.026 0.028 0.030 0.032 0.034 0.036
Runtime (second)

Lower is more accurate; left is faster

0.0338

*

0.040

Evaluation: Quaternion Differentiator

Given the original program,
Poseidon produces tradeoffs

Trade accuracy for performance
with error of 6e-7
Trade performance for accuracy

Error reduced by 27%
with 1.13x more compute time

28

Relative Error

10~

10—11

10—13

10—15

10—17

0.024

.

0.026 0.028 0.030 0.032 0.034 0.036
Runtime (second)

Lower is more accurate; left is faster

0.03

Evaluation: LULESH

Large DOE proxy application that simulates Lagrangian hydrodynamics

5600+ LOC with over 200 loops

Original (FP64): 12 ULPs* off

* Ground truth: 64-bit rounding of M

29

oF

Relative Error

R-512 computation.

107
Native Program

MPFR Program
Optimal Error

10~

1071
10717 Fm «** ___
10720 489.96%
1072
1074
20 30 40 50 60 70 80 90 100

Significands

30

Evaluation: LULESH

Large DOE proxy application that simulates Lagrangian hydrodynamics

5600+ LOC with over 200 loops
Original (FP64): 12 ULPs* off

Poseidon (FP64): Optimal*
FP64 error; little slowdown

* Ground truth: 64-bit rounding of M

oF

Native Program
MPFR Program
------- Optimal Error

Relative Error

20 30 40 50 60 70 30 90 100

Significands

R-512 computation.

Evaluation: LULESH

Large DOE proxy application that simulates Lagrangian hydrodynamics

107

5600+ LOC with over 200 loops

Native Program
MPFR Program
Optimal Error

—_ -

CD| -}
—_ |
W O

Original (FP64): 12 ULPs* off

p—

<
—
~

Poseidon (FP64): Optimal*
FP64 error; little slowdown

Relative Error

FP80: 6.79x slower; still 2 ULPs™* off

MPFR-74: slower 20 30 40 50 60 70 30 90 100
Significands

+ Ground truth: 64-bit rounding of MPFR-512 computation.

32

¢ Poseidon (Open Source on GitHub: PRONTOLab/Poseidon)

The first framework that automates numerical rewrites within a production compiler
Profiling + Compiler Optimization provides context, scope, and scale

Outsized performance benefit without sacrificing the accuracy, and vice versa

First Compilation

Input Pre-Optimize _ Profiling v .

Program | Pass Profile k

. J |

Second Compilation !

! Sub h i Candidate I

ubgrap :

> Extraction > Generation | €~ -

_ Y _ y :

Output Post-Optimize | A " o Candidate | _E

Program (. Solver E i \ Evaluation) <--
. W,

https://github.com/PRONTOLab/Poseidon

Evaluation: Quaternion Differentiator

PT + AR: Precision Tuning + Algebraic Rewrites

PT. Precision Tuning only 107
e
| | 10 i
AR: Algebraic Rewrites only |
O *
- —
PT + AR has the best frontier! s e | e
= :
E 10—13 .
~ PT + AR Fempe = e
10_15 EEEE PT ‘:':’*:
10 ' i
A Baseline ia

0.024 0.026 0.028 0.030 0.032 0.034 0.036 0.038 0.040
Runtime (second)

| ower-left is better
33

34

Evaluation: Artificial Bound Increases

107 ¥ w FaFan¥¥¥
* AdRe
IR T3IE %% ofakelallo Rl L6
0 [* Kk s
t% * ’ * h k kW
ORUES & Ak PR
5 *k Kok K L 0 -
S 0-11] ' ' * Q.
AT TR S S 98
= : |
® 10713 i I 1,z§
2 * ok ok ok ok k ook ok ok o
10715 Sk K Kk kK KKK kK Kk 1.1
10-17- % Optimized (larger is faster) : i 1.0
Y R EE R I I T

108 10~ 10° 10* 108 102 1016
Range-Scaling Factor ()
Fig. 11: Optimized dquat programs under varying range-
scaling factors. Stars represent Pareto-optimal programs. Ver-
tically aligned stars share the same factor. Lighter hues and

larger stars indicate better runtime performance. Red dashed
lines represent a = 0.1 and o = 10.

