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Optimizing numerical code is challenging at three levels:
Context, Scope, and Scale.
Profiling + Compiler Optimization are the key.




Context: Where You Change Matters

double sum = 0.0;

for (double x : xs) {
double val = sigmoid(exp(x));
sum += val;
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Context: Where You Change Matters

double sum = 0.0;
for (double x : xs) { - | |
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double sum = 0.0;

for (double x : xs) { Lower Activation:
float val = sigmoidf (expf(x)); 1.6x speedup

: sum += val; error += 1e-12 (safe!)

float sum = 0.0f;
for (double x : xs) {

float val = sigmoidf (expf(x)); Lower Reduction: '
sum += val; error += 1e-4 (danger!)

" ADAPT metric (Menon et al. ’18).




Context: Structured Critical Value Hypothesis

double sum = 0.0;
for (double x : xs) { - | |
double val = sigmoid(exp(x)); Profiling just 10 iterations:

sum += val; Reduction is 10* X more sensitive*

)

double sum =

for (double x : xs) { N
float val = sigmoidf(expf(x)): Accuracy-ctritical values are often

sum += val; structural (e.g., reduction,
) cancellation, one-hot, thresholds).
A small surrogate profile
float sum = 0.0f;

for (double x : xs) { reveals key information.

float val = sigmoidf (expf(x));
sum += val;




Scope: Precision Isn’t the Only Knob

FP32 (Original Order) Fast X Wrong
(1e8 + 1) - 1e8 = 1.0000000e8 - 1e8 — 0

+1 rounded away
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FP32 (Original Order) Fast
(1e8 + 1) - 1e8 — 1.0000000e8 - 1e8 — 0

+1 rounded away

FP64 (Same Order)  Costly
(1e8 + 1) - 1e8 = 1.00000001e8 - 1e8 — 1

FP32 (Reassociated) Fast
(1e8-1e8)+1 —-20+1 - 1

Correct

Correct

Use FP64
(Tradeoff!)

Algebraic Rewrite
(circumvents tradeoff

but requires context)




Scale: The Math Is in the Mess

double foo(double x) { Math behind control flow,

??“t(’)l(iy@:@? 95 memory /0,
y = pOW'(X 3) 5 function calls, ...;
return y: existing source/binary-level

} tools fall.
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A production compiler makes math
explicit through optimizations
(SimplifyCFG, mem2reg, inlining, ...)
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Aha, caller wants max(0, x°)
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Can we automate numerical rewriting technigues in compilers”?

How much performance are we leaving on the table due to
suboptimal choices of precision and expressions?




Our Answer — Poseidon

The first framework that automates numerical rewrites within a production compiler
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Our Answer — Poseidon

The first framework that automates numerical rewrites within a production compiler

First Compile: Instrument user program to collect numerical context

First Compilation

Input Pre- Optlmlze Profiling 3
Program “ Pass Profile
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Our Answer — Poseidon

The first framework that automates numerical rewrites within a production compiler

Second Compile: Perform full-application scale numerical rewrites

First Compilation
Input Pre-Optimize | ( Profiling .
Program i Pass ) Profile k
Second Compilation :
4 ) é ) !
. (@ N -
. y \ y :
Output Post-Optimize | A = ) _E
Program ( L ) < L \j ) <--




Profiling Pass
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Perform pre-optimizations to expose underlying math
Emit profiles: execution counts, running sums of values/gradients per instruction

First Compilation

Input Pre-Optimize Profiling >
Program || >» Pass Profile

Second Compilation

Output
Program

Post-Optimize
)




Subgraph Extraction
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Similarly, perform pre-optimizations to expose underlying math

Rewrite Regions: floating-point def-use subgraph (linear-time flood fill)

First Compilation
Input > Pre-Optimize
Program | > “

Second Compilation

a) Sub h
> [ @ pbeh || | <

rﬁ_ (Post-Optimize [ . ] -— [ @ } <--

e |

Output
Program




Candidate Generation

Algebraic rewrites from external tools (e.g., Herbie)
Profile-guided precision changes

Fully extensible!

First Compilation

Input S Pre-Optimize
Program > “

] > L Profile ~™ ™"
Second Compilation

- Candid
> | | > Gl
y

A

Post-Optimize

—
A

J«<©




Candidate Evaluation

Goal: predict candidate’s performance/accuracy impact using the profile
Cost: Sum over instructions of (cost x execution count)

Accuracy: Sum over instructions of (local error x global sensitivity)

First Compilation
Input S Pre-Optimize g A
Program > “ > Profile k
. v, !
Second Compilation :
~ - ) é ) !
. N -
- y § J :

Output
Program

A

.

Post-Optimize g ) [ o~ Candidate )
( € L \J Evaluation
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Solver (Global Selection of Rewrites)

Objective: minimize predicted global error given a set of cost-error pairs

Similar to knapsack: dynamic programming builds a cost—error frontier

First Compilation
Input S Pre-Optimize g A
- B
. v, !
Second Compilation :
4 D [ ) 1
. (@ N -
. y - J :
Output Post-Optimize [ A [ om ) _E
Program ( L ) < L \j ) <--
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Can we automate numerical rewriting technigues in compilers?

How much performance are we leaving on the table due to

suboptimal choices of precision and expressions’?
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Evaluation

Structured Critical Value Hypothesis: small surrogate profiles reveal numerical structure

Coverage (FPBench): Accuracy improvements on 58% of benchmarks;
Maximum speedup of 1.82x (error < 1e-6)

Quaternion Differentiator: 1.46x speedup (error < 1e-6)

LULESH: Bitwise-identical to MPFR-512 in FP64: no substantial slowdown
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Evaluation: Quaternion Differentiator

Given the original program,
Poseidon produces tradeoffs

10~ ok
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10—17

.

0.024 0.026 0.028 0.030 0.032 0.034 0.036
Runtime (second)

Lower is more accurate; left is faster

0.0338

*

0.040
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Evaluation: Quaternion Differentiator

Given the original program,
Poseidon produces tradeoffs

Trade accuracy for performance
with error of 6e-7
Trade performance for accuracy

Error reduced by 27%
with 1.13x more compute time
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Relative Error
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Evaluation: LULESH

Large DOE proxy application that simulates Lagrangian hydrodynamics

5600+ LOC with over 200 loops

Original (FP64): 12 ULPs* off

* Ground truth: 64-bit rounding of M
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Relative Error

R-512 computation.

107
Native Program

MPFR Program
Optimal Error
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10720 489.96%
1072
1074
20 30 40 50 60 70 80 90 100

# Significands




30

Evaluation: LULESH

Large DOE proxy application that simulates Lagrangian hydrodynamics

5600+ LOC with over 200 loops
Original (FP64): 12 ULPs* off

Poseidon (FP64): Optimal*
FP64 error; little slowdown

* Ground truth: 64-bit rounding of M

oF

Native Program
MPFR Program
------- Optimal Error

Relative Error

20 30 40 50 60 70 30 90 100

# Significands

R-512 computation.



Evaluation: LULESH

Large DOE proxy application that simulates Lagrangian hydrodynamics

107

5600+ LOC with over 200 loops

Native Program
MPFR Program
Optimal Error

—_ -

CD| -}
—_ |
W O

Original (FP64): 12 ULPs* off

p—

<
—
~

Poseidon (FP64): Optimal*
FP64 error; little slowdown

Relative Error

FP80: 6.79x slower; still 2 ULPs™* off

MPFR-74: slower 20 30 40 50 60 70 30 90 100
# Significands

+  Ground truth: 64-bit rounding of MPFR-512 computation.
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¢ Poseidon (Open Source on GitHub: PRONTOLab/Poseidon)

The first framework that automates numerical rewrites within a production compiler
Profiling + Compiler Optimization provides context, scope, and scale

Outsized performance benefit without sacrificing the accuracy, and vice versa

First Compilation

Input Pre-Optimize _ Profiling v .

Program | Pass Profile k

. J |

Second Compilation !

! Sub h i Candidate I

ubgrap :

> Extraction > Generation | €~ -

\_ Y \_ y :

Output Post-Optimize | A " o Candidate | _E

Program ( . Solver E i \ Evaluation ) <--
. W,



https://github.com/PRONTOLab/Poseidon

Evaluation: Quaternion Differentiator

PT + AR: Precision Tuning + Algebraic Rewrites

PT. Precision Tuning only 107
e
| | 10 i
AR: Algebraic Rewrites only |
O *
- —
PT + AR has the best frontier! s e | e
= :
E 10—13 .
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10_15 EEEE PT ‘:':’*:
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Runtime (second)

| ower-left is better
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Evaluation: Artificial Bound Increases
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Fig. 11: Optimized dquat programs under varying range-
scaling factors. Stars represent Pareto-optimal programs. Ver-
tically aligned stars share the same factor. Lighter hues and

larger stars indicate better runtime performance. Red dashed
lines represent a = 0.1 and o = 10.




