

Multi-Accelerator Automatic Differentiation

William S. Moses

wsmoses@illinois.edu

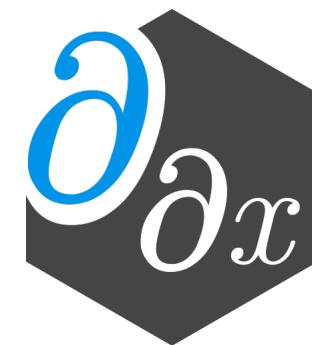
PPoPP DiffPP

Feb 1, 2026

William S. Moses^{†§}, Mosè Giordano[★], Avik Pal[‡], Gregory Wagner[‡], Ivan R Ivanov, Paul Berg[▽],
Johannes Blaschke, Jules Merckx[△], Arpit Jaiswal[◆], Patrick Heimbach[#], Son Vu, Sergio
Sanchez-Ramirez[◊], Simone Silvestri, Nora Loose[◆], Ivan Ho, Vimarsh Sathia[†], Jan Hueckelheim[◆],
Johannes De Fine Licht, Kevin Gleason[§], Ludovic Rass, Gabriel Baraldi, Dhruv Apte[#], Lorenzo
Chelini[◆], Jacques Pienaar[§], Gaetan Lounes, Valentin Churavy, Sri Hari Krishna Narayanan[◆], Navid
Constantinou, William R. Magro[§], Michel Schanen[◆], Alexis Montoison[◆], Alan Edelman[‡], Samarth
Narang, Tobias Grosser, Keno Fischer[¤], Robert Hundt[§], Albert Cohen[§], Oleksandr Zinenko^{§ *}
UIUC[†], Google[§], UCL[★], MIT[‡], NVIDIA[◆], UT Austin[#], [C]Worthy[◆], BSC[◊], Argonne National Laboratory[◆],
LBNL[◊], Cambridge[¤], JuliaHub[¤], University of Mainz[#], BFH[▽], Ghent University[△]

Outline

- Compiler-Based Differentiation (Enzyme-LLVM)
- Modern Computing Infrastructure
- Raising Primal Code to Run on Accelerators
- Distributed Accelerated Differentiation

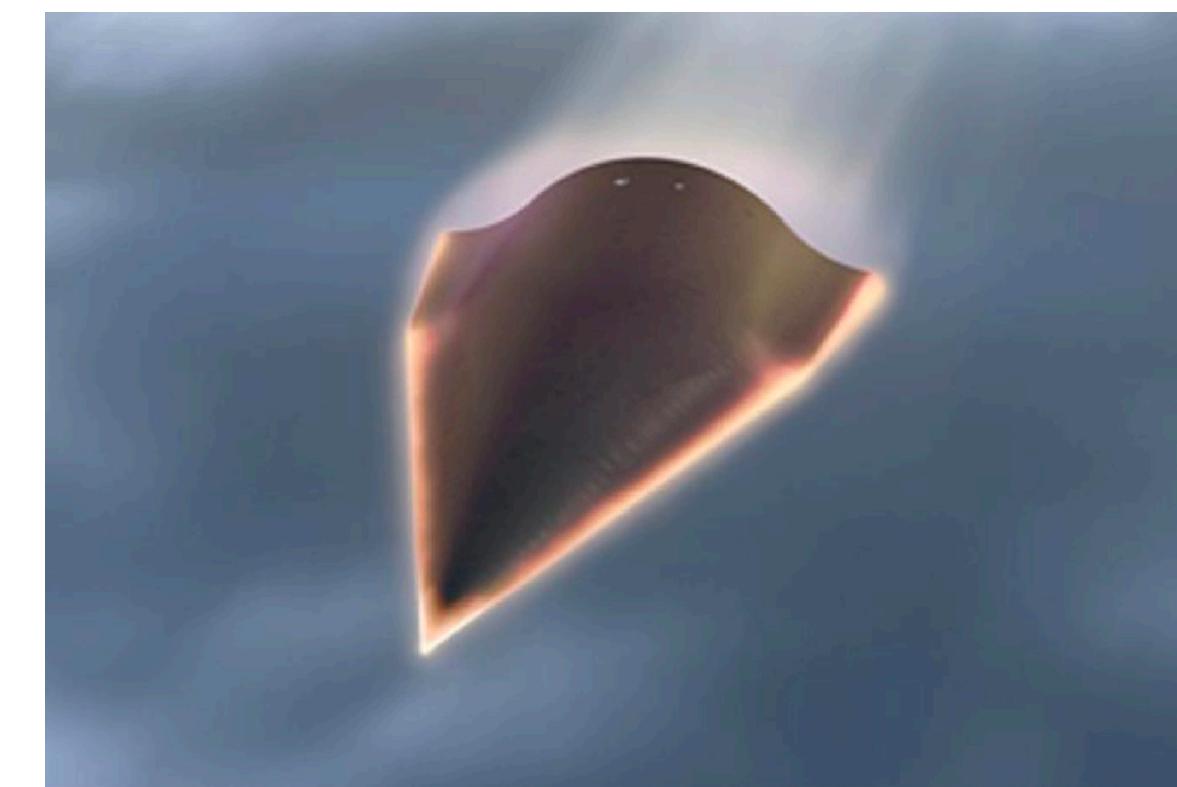


Differentiation: Connecting Science and AI

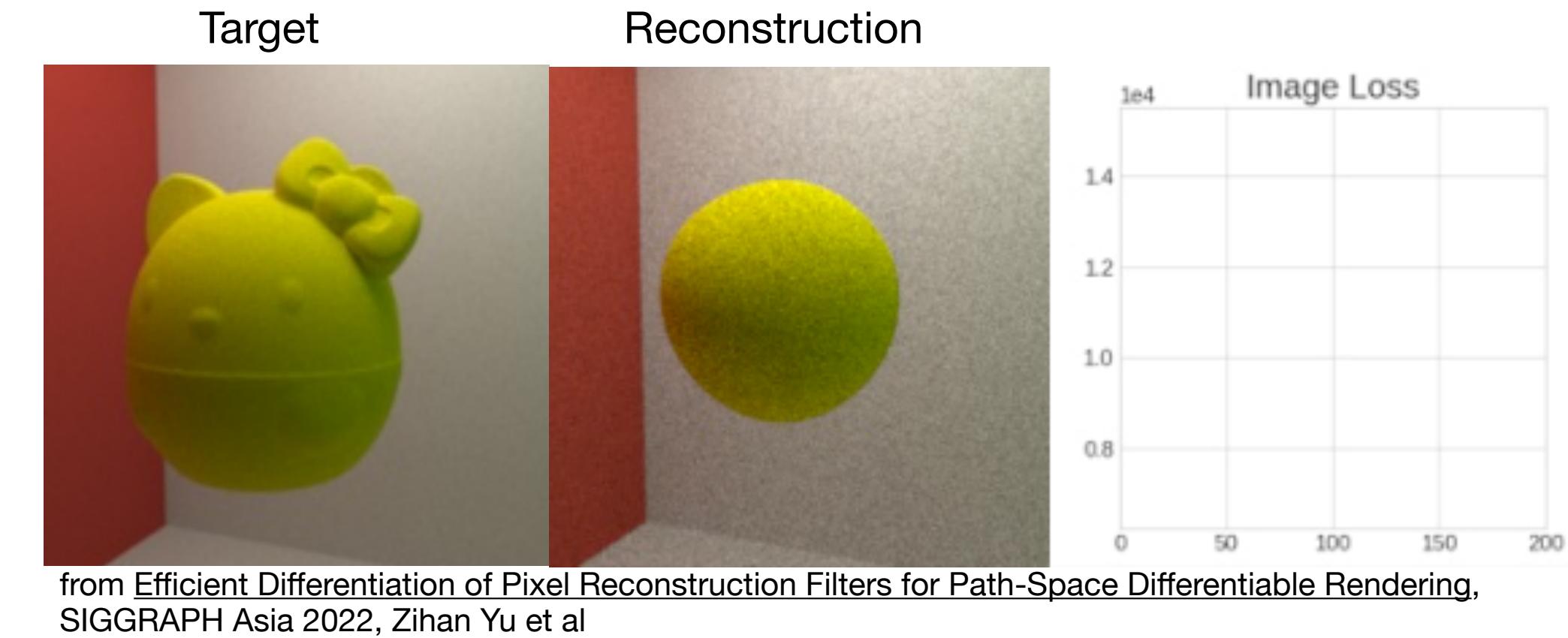
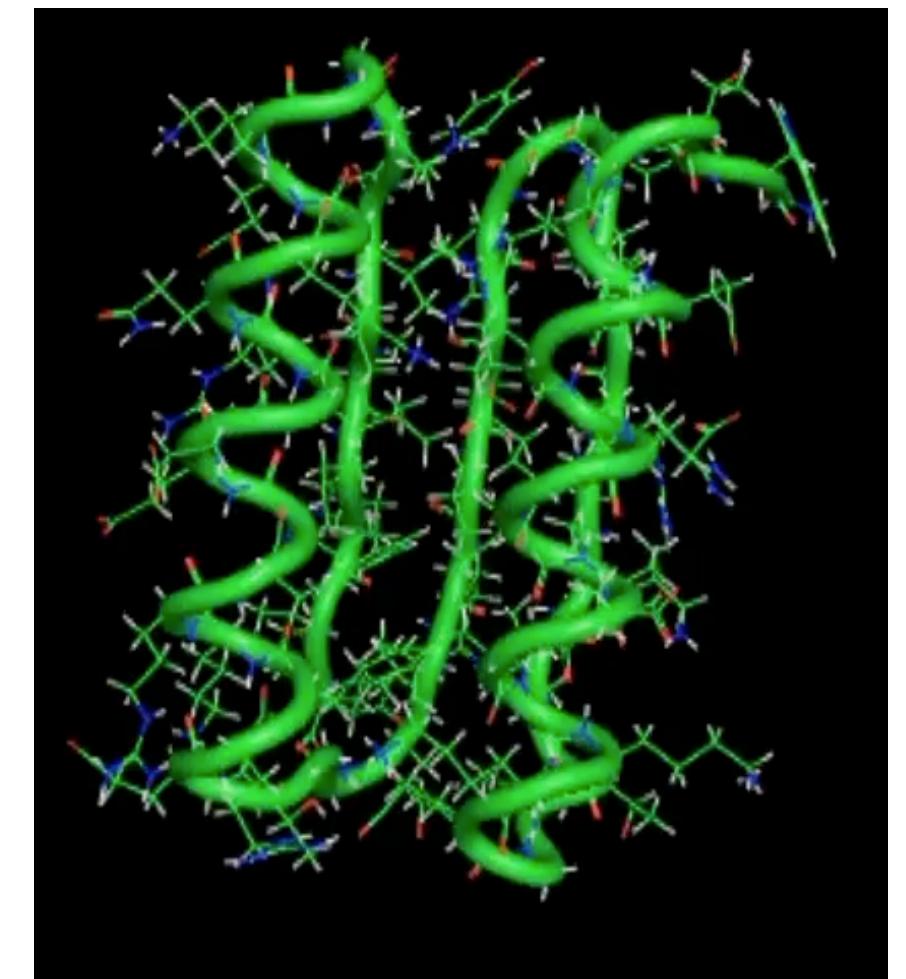
Derivatives are key to science + ML

- Scientific Computing: UQ, Differential Equation, Error Analysis
- Machine Learning: Back-Propagation, Bayesian Inference

from [CLIMA & NSF CSSI: Differentiable programming in Julia for Earth system modeling \(DJ4Earth\)](#)



from [Center for the Exascale Simulation of Materials in Extreme Environments](#)

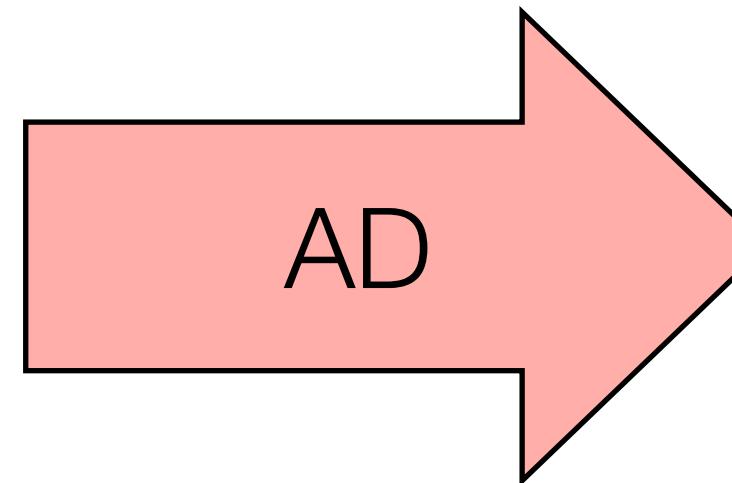


from [Differential Molecular Simulation with Molly.jl](#), EnzymeCon 2023, Joe Greener (Cambridge)

Automatic Derivative Generation

- Derivatives can be generated automatically from definitions within programs

```
double relu3(double x) {  
    if (x > 0)  
        return pow(x, 3)  
    else  
        return 0;  
}
```



```
double grad_relu3(double x) {  
    if (x > 0)  
        return 3 * pow(x, 2)  
    else  
        return 0;  
}
```

- Unlike numerical approaches, automatic differentiation (AD) can compute the derivative of ALL inputs (or outputs) at once, without approximation error!

```
// Numeric differentiation  
// f'(x) approx [f(x+epsilon) - f(x)] / epsilon  
double grad_input[100];  
  
for (int i=0; i<100; i++) {  
    double input2[100] = input;  
    input2[i] += 0.01;  
    grad_input[i] = (f(input2) - f(input))/0.001;  
}
```

```
// Automatic differentiation  
double grad_input[100];  
  
grad_f(input, grad_input)
```

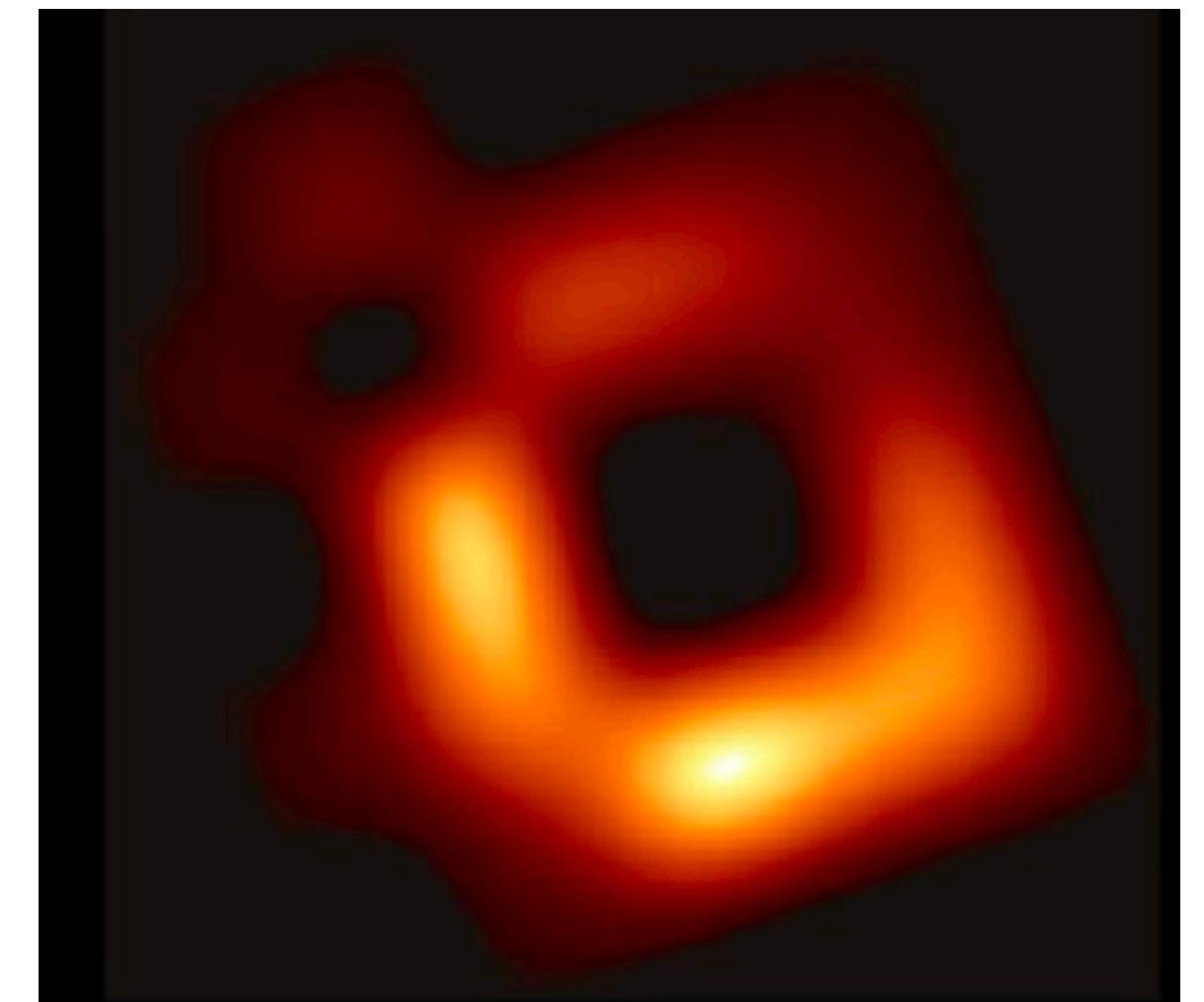
Differentiation is Expensive

Derivatives are the most costly and difficult to use algorithms

Differentiation is Expensive

Derivatives are the most costly and difficult to use algorithms

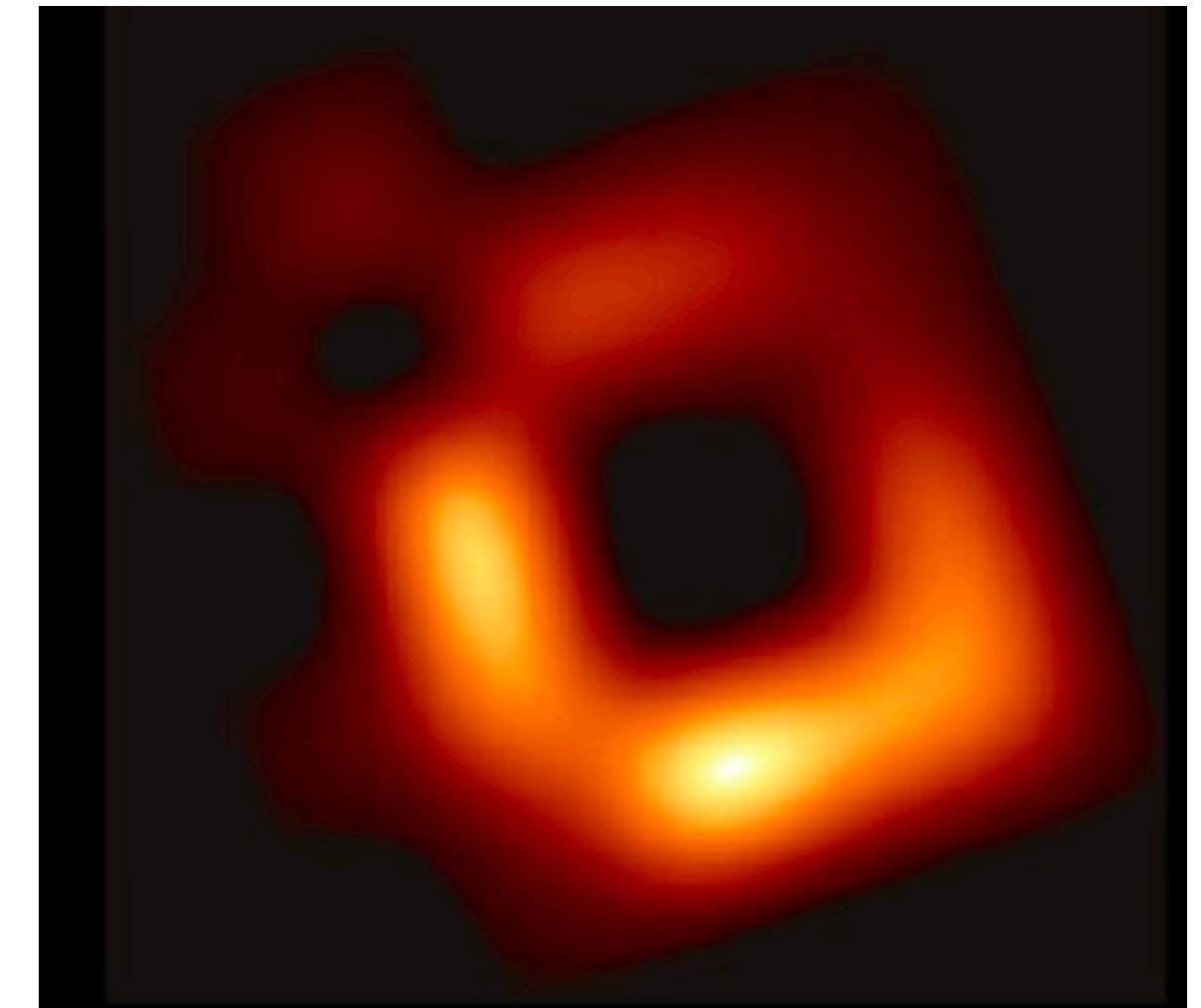
Reconstructed image of M87
~1 week on cluster
Majority runtime is derivative



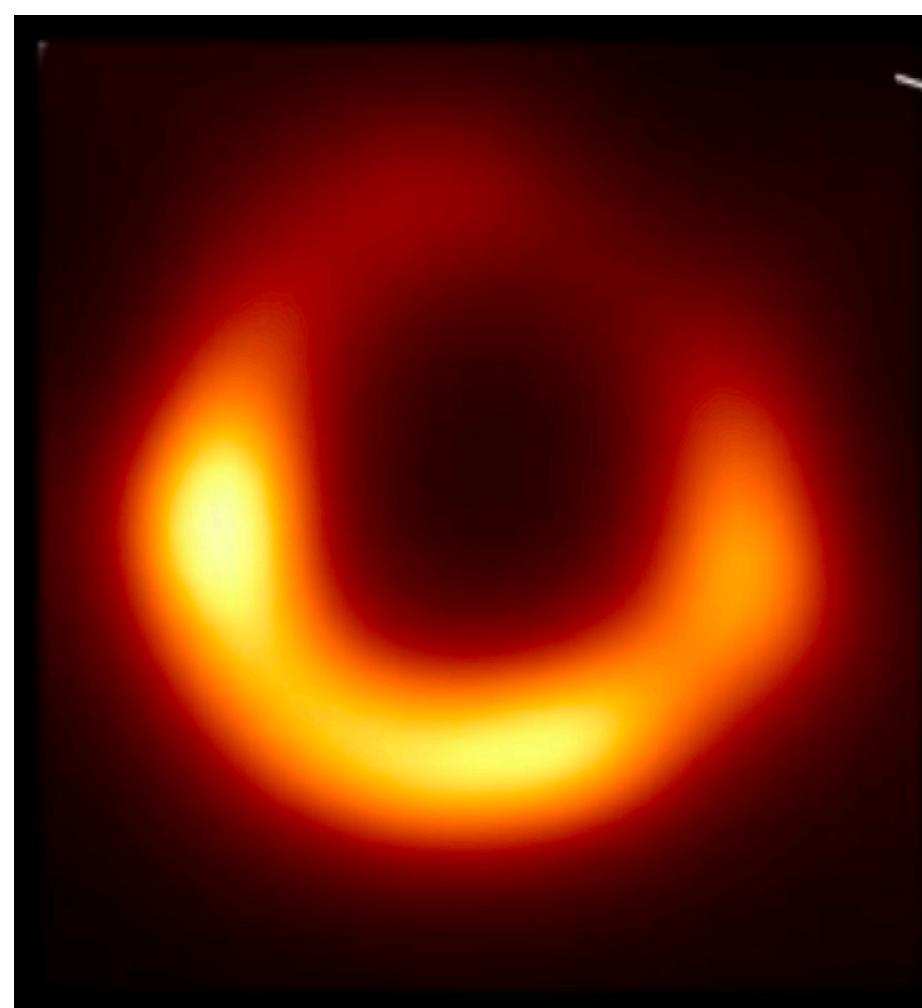
Differentiation is Expensive

Derivatives are the most costly and difficult to use algorithms

Reconstructed image of M87
~1 week on cluster
Majority runtime is derivative



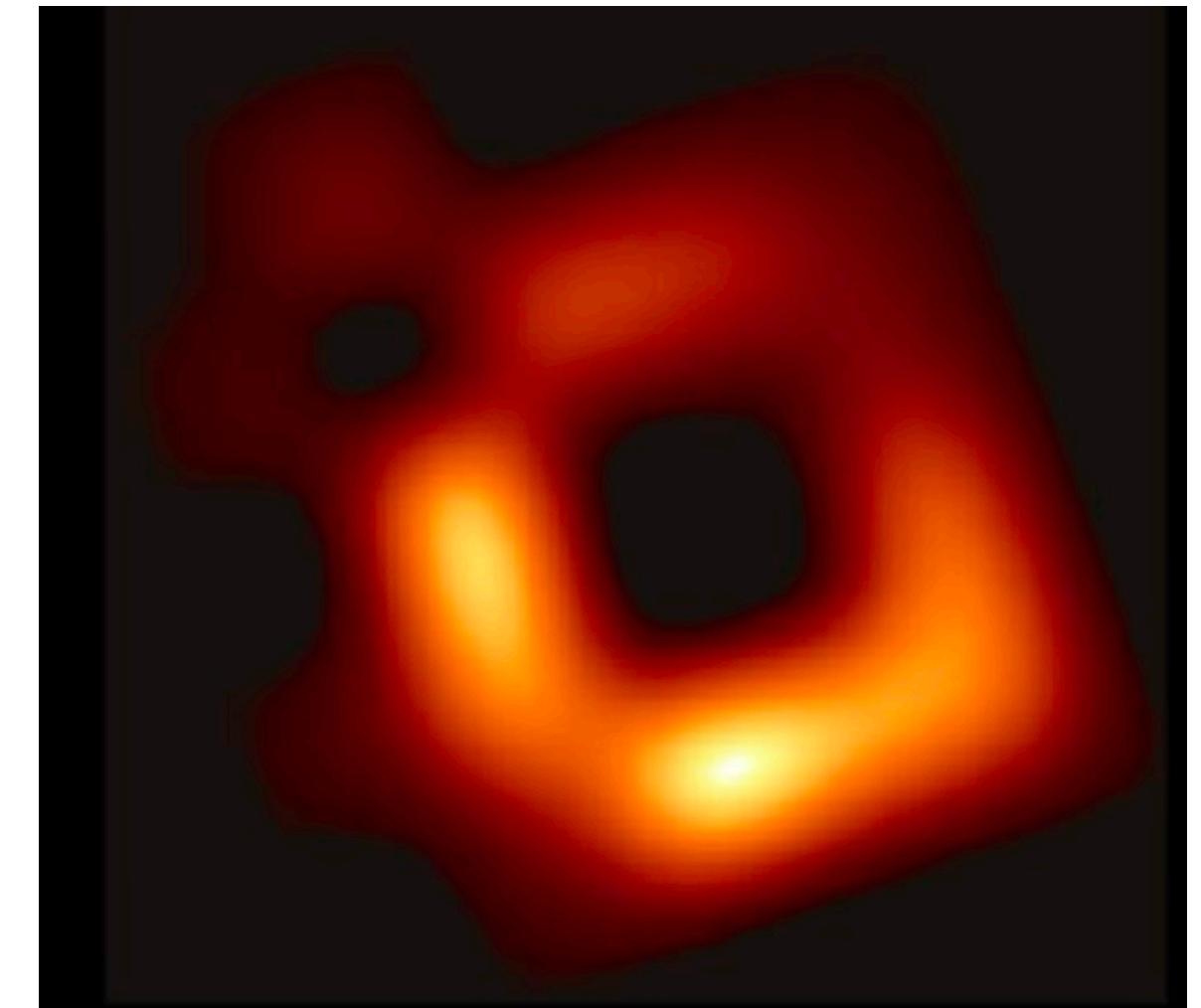
With Enzyme differentiation:
1 hour on 1 thread



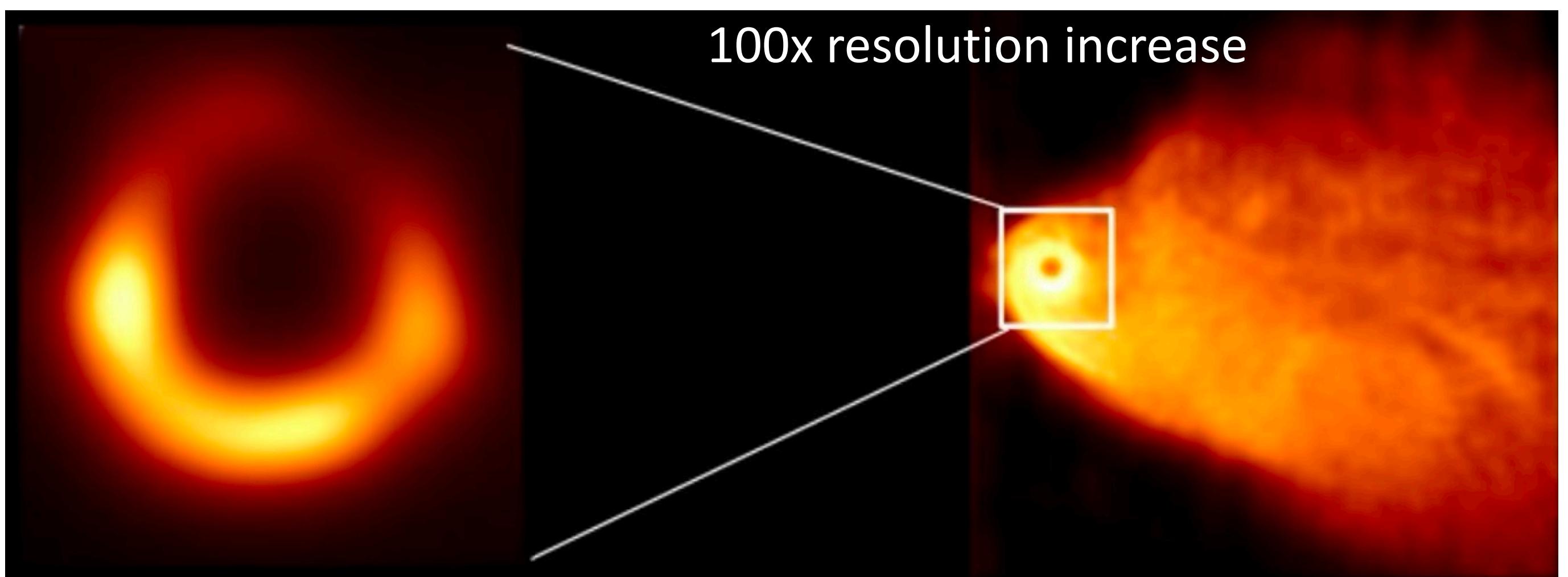
Differentiation is Expensive

Derivatives are the most costly and difficult to use algorithms

Reconstructed image of M87
~1 week on cluster
Majority runtime is derivative



With Enzyme differentiation:
1 hour on 1 thread



100x resolution increase

Existing AD Approaches (1/3)

- Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)
 - Provide a new language designed to be differentiated
 - Requires rewriting everything in the DSL and the DSL must support all operations in original code
 - Fast if DSL matches original code well

```
double relu3(double val) {  
    if (x > 0)  
        return pow(x, 3)  
    else  
        return 0;  
}
```

Manually
Rewrite

```
import tensorflow as tf  
  
x = tf.Variable(3.14)  
  
with tf.GradientTape() as tape:  
    out = tf.cond(x > 0,  
                  lambda: tf.math.pow(x, 3),  
                  lambda: 0  
    )  
    print(tape.gradient(out, x).numpy())
```

Existing AD Approaches (2/3)

- Operator overloading (Adept, JAX)
 - Differentiable versions of existing language constructs (double => adouble, np.sum => jax.sum)
 - May require writing to use non-standard utilities
 - Often dynamic: storing instructions/values to later be interpreted

```
// Rewrite to accept either
//   double or adouble
template<typename T>
T relu3(T val) {
    if (x > 0)
        return pow(x,3)
    else
        return 0;
}
```

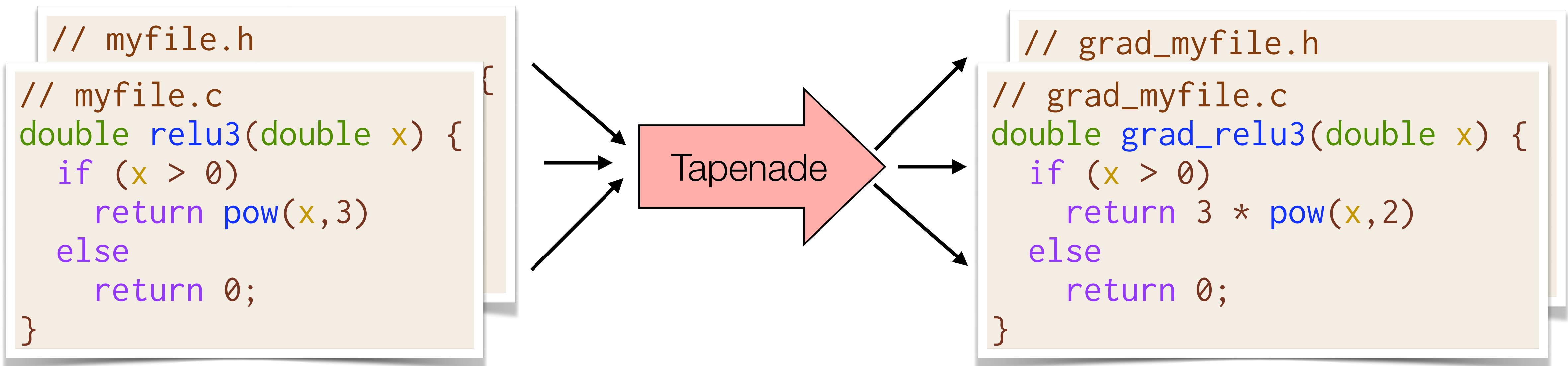
```
adept::Stack stack;
adept::adouble inp = 3.14;

// Store all instructions into stack
adept::adouble out(relu3(inp));
out.set_gradient(1.00);

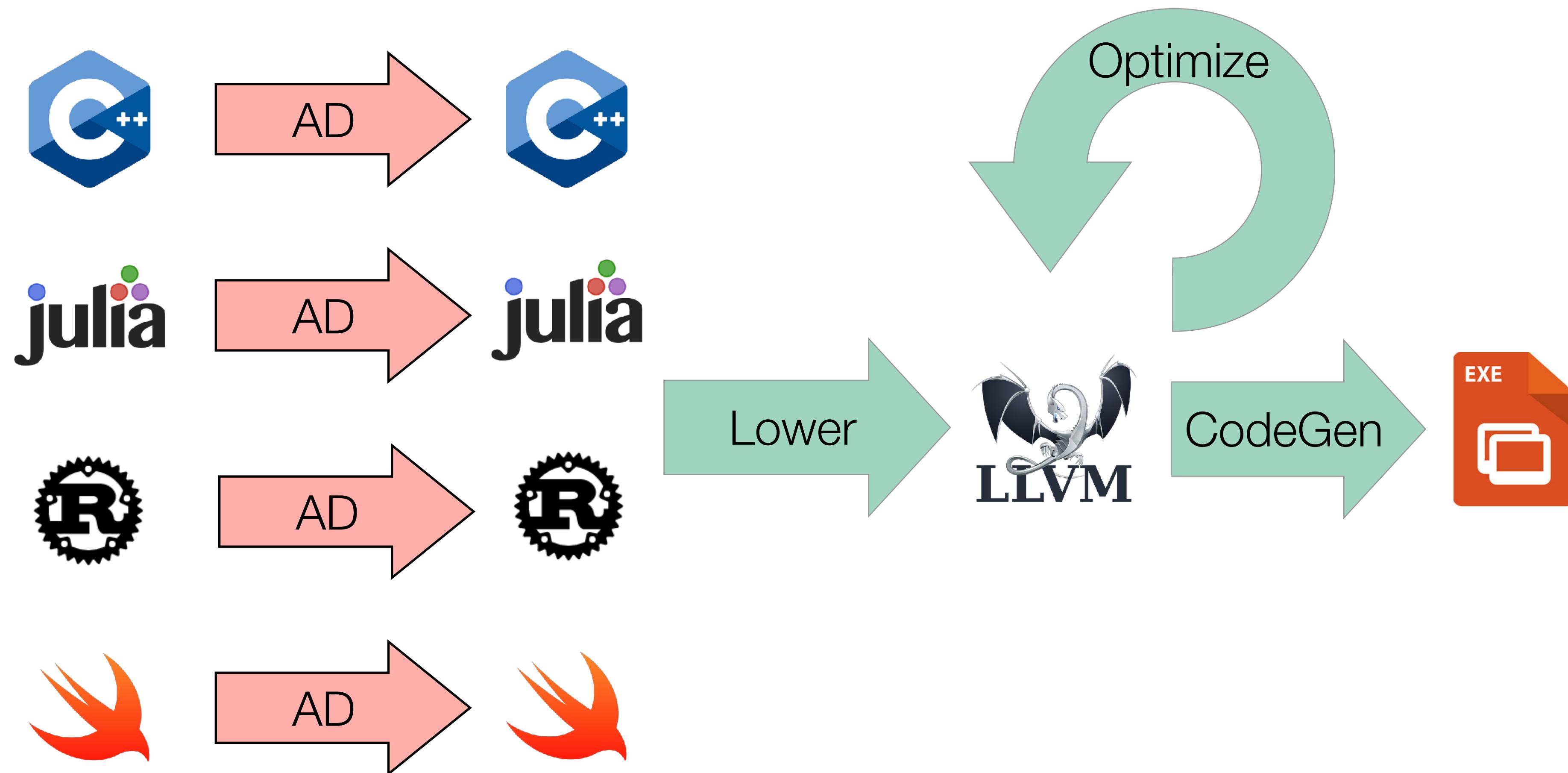
// Interpret all stack instructions
double res = inp.get_gradient(3.14);
```

Existing AD Approaches (3/3)

- Source rewriting
 - Statically analyze program to produce a new gradient function in the source language
 - Re-implement parsing and semantics of given language
 - Requires all code to be available ahead of time => hard to use with external libraries

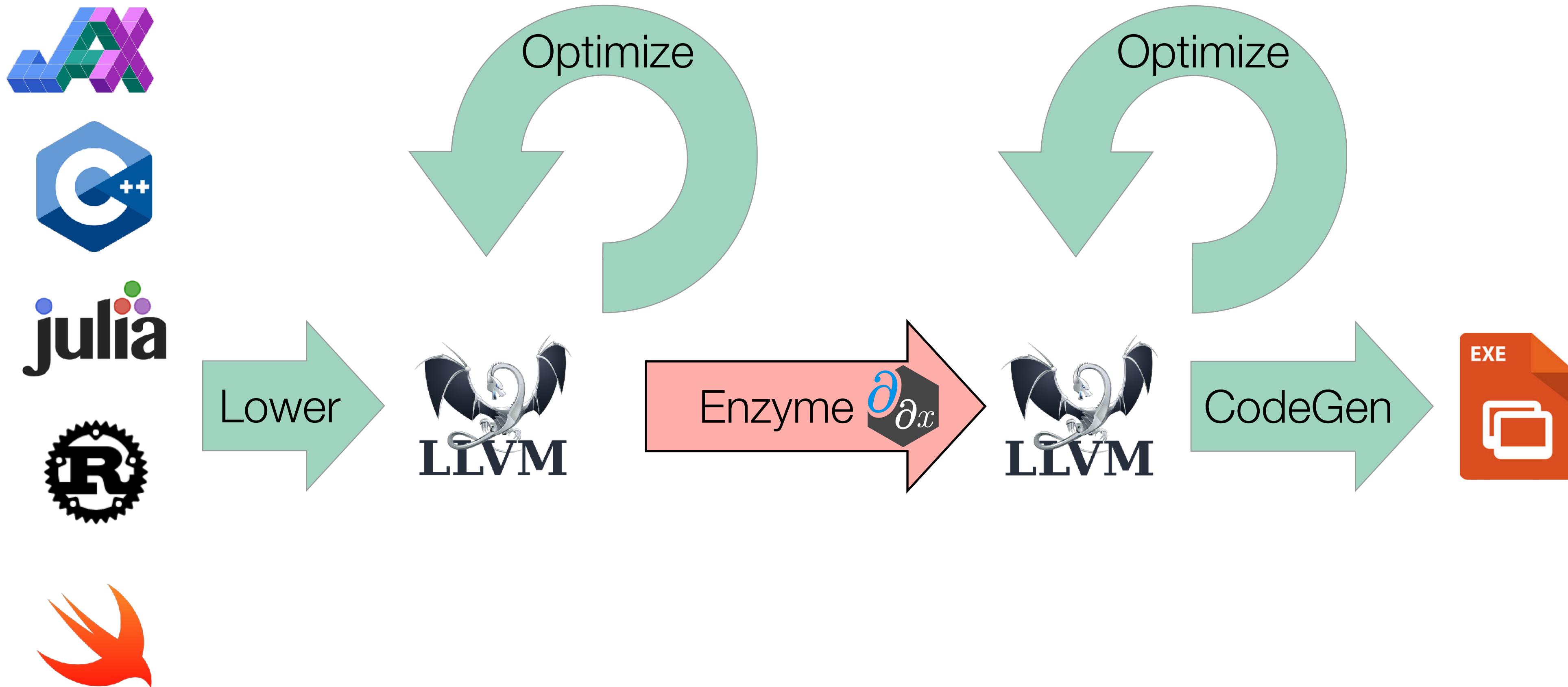


Existing Automatic Differentiation Pipelines



Enzyme Approach

Performing AD at low-level lets us work on *optimized* code!



Case Study: Vector Normalization

```
//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n^2)
void norm(double[] out, double[] in) {

    for (int i=0; i<n; i++) {
        out[i] = in[i] / mag(in);
    }
}
```

Case Study: Vector Normalization

```
//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n)
void norm(double[] out, double[] in) {
    double res = mag(in); ←
    for (int i=0; i<n; i++) {
        out[i] = in[i] / res;
    }
}
```

Optimization & Automatic Differentiation

$$O(n^2)$$

```
for i=0..n {  
    out[i] /= mag(in)  
}
```

Optimize

$$O(n)$$

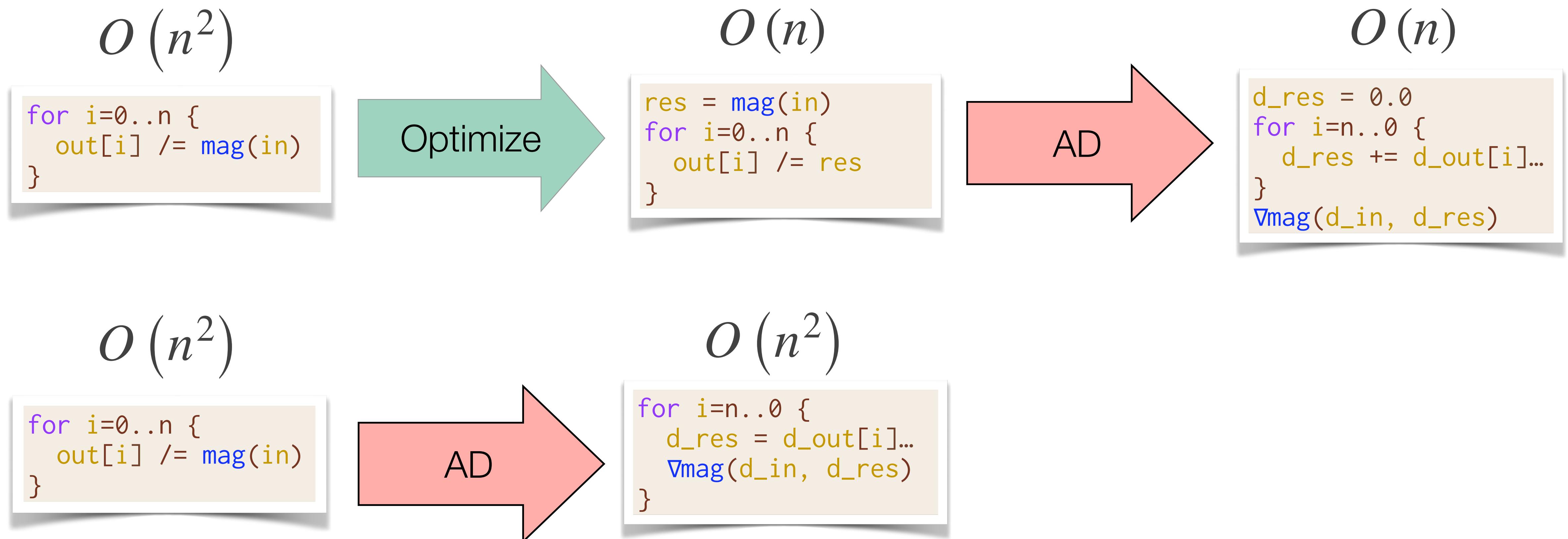
```
res = mag(in)  
for i=0..n {  
    out[i] /= res  
}
```

AD

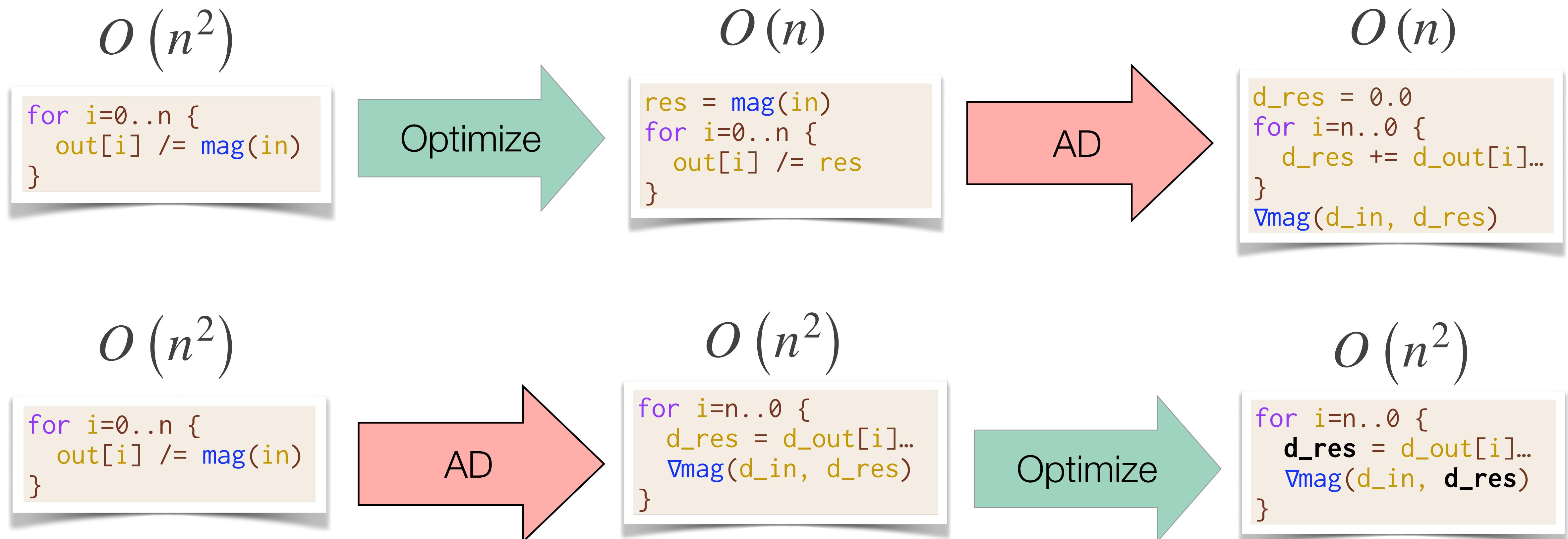
$$O(n)$$

```
d_res = 0.0  
for i=n..0 {  
    d_res += d_out[i]...  
}  
∇mag(d_in, d_res)
```

Optimization & Automatic Differentiation

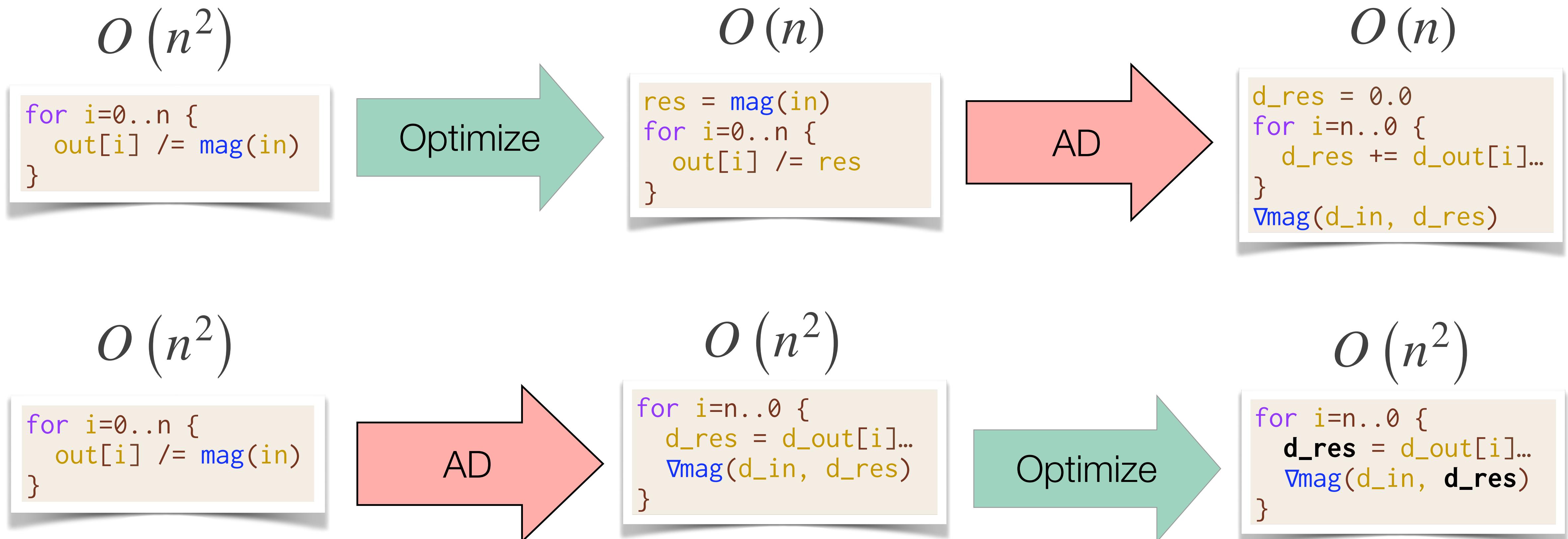


Optimization & Automatic Differentiation



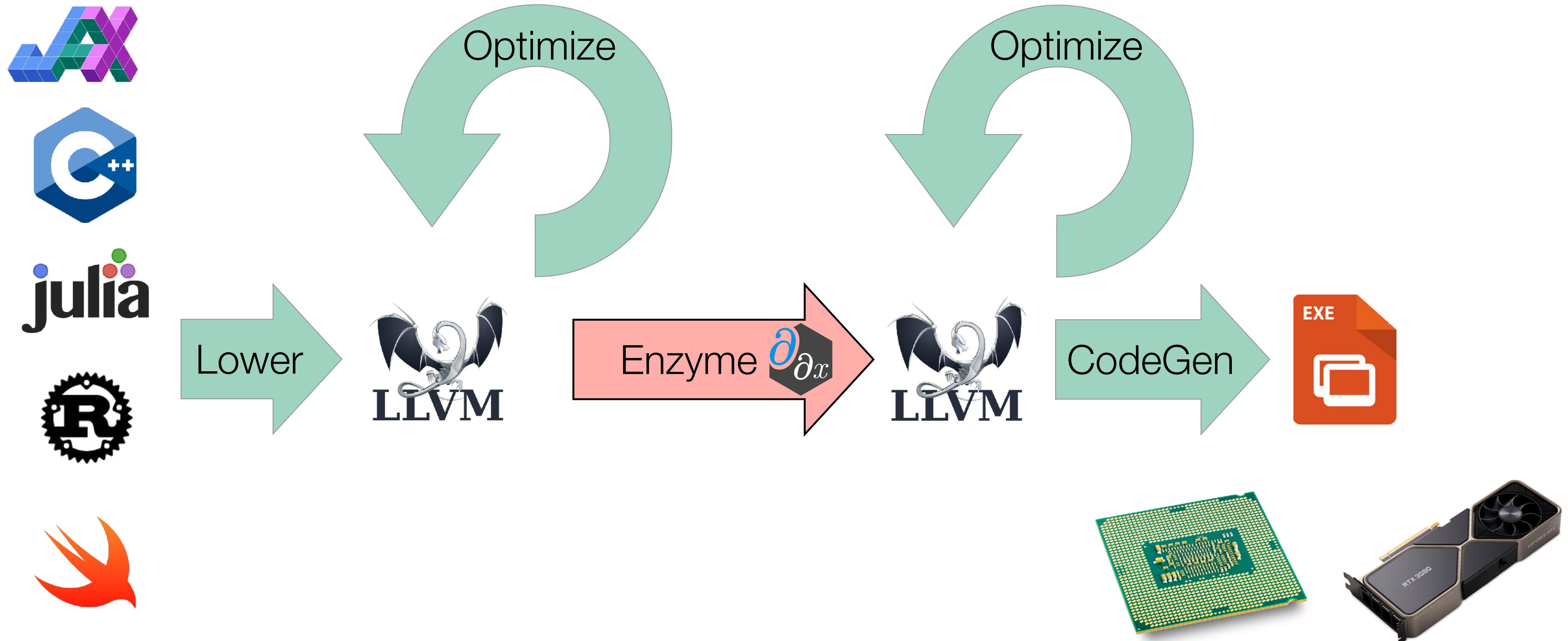
Optimization & Automatic Differentiation

Differentiating after optimization can create ***asymptotically faster*** gradients!



$\frac{\partial}{\partial x}$ Enzyme Approach

Performing AD at low-level lets us work on *optimized* code!



Automatic Differentiation & GPUs [MCPHNSD @ SC'21]

- Prior work has not explored reverse mode AD of existing GPU kernels
 - 1. Reversing parallel control flow can lead to incorrect results
 - 2. Complex performance characteristics make it difficult to synthesize efficient code
 - 3. Resource limitations can prevent kernels from running at all

Challenges of Parallel AD

- The adjoint of an instruction increments the derivative of its input
- Benign read race in forward pass => Write race in reverse pass (undefined behavior)

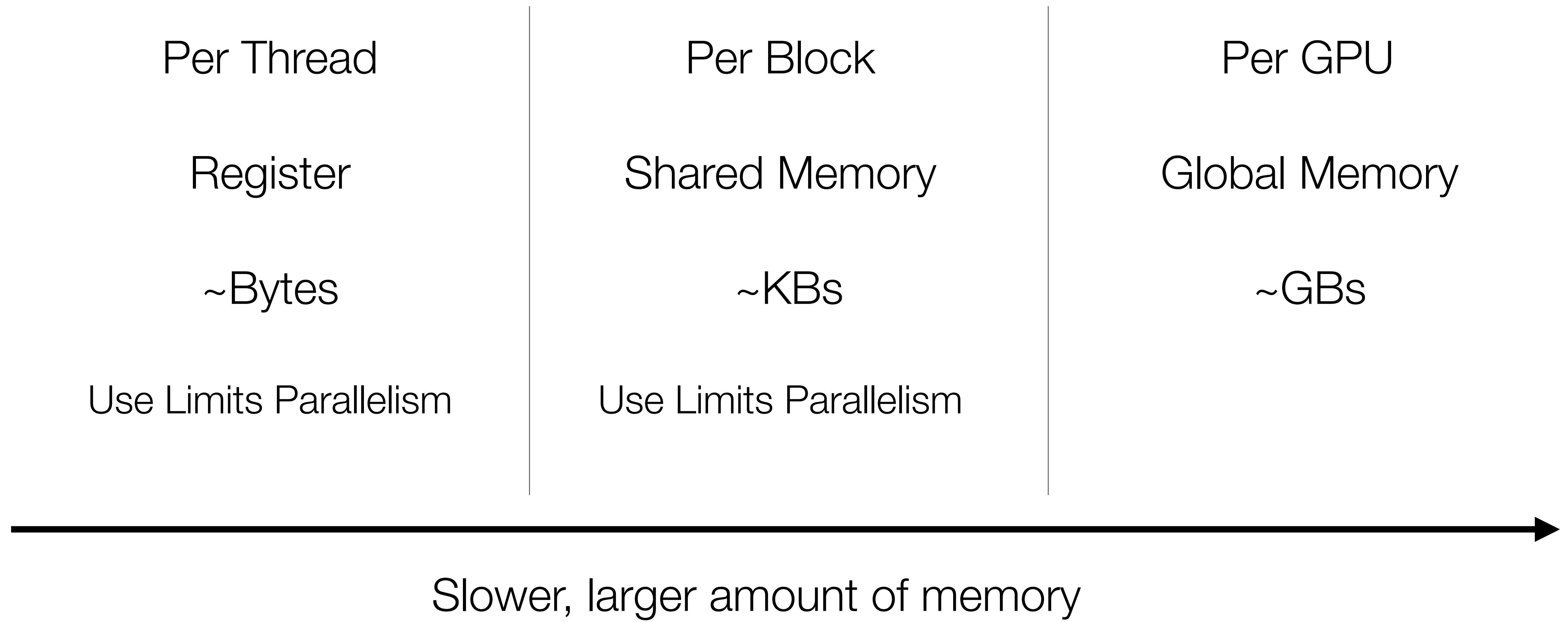
```
void set(double* ar, double val) {  
    parallel_for(int i=0; i<10; i++)  
        ar[i] = val;  
}
```

Read Race

Write Race

```
double gradient_set(double* ar, double* d_ar,  
                    double val) {  
    double d_val = 0.0;  
  
    parallel_for(int i=0; i<10; i++)  
        ar[i] = val;  
  
    parallel_for(int i=0; i<10; i++) {  
        d_val += d_ar[i];  
        d_ar[i] = 0.0;  
    }  
    return d_val;  
}
```

GPU Memory Hierarchy



Correct and Efficient Derivative Accumulation

Thread-local memory

- Non-atomic load/store

```
__device__  
void f(...) {  
  
    // Thread-local var  
    double y;  
  
    ...  
  
    d_y += val;  
}
```

Same memory location across
all threads (some shared mem)

- Parallel Reduction

```
// Same var for all threads  
double y;  
  
__device__  
void f(...) {  
  
    ...  
  
    reduce_add(&d_y, val);  
}
```

Others [always legal fallback]

- Atomic increment

```
__device__  
// Unknown thread-aliasing  
void f(double* y) {  
  
    ...  
  
    atomic { d_y += val; }  
}
```

Slower

Synchronization Primitives

- Synchronization (`sync_threads`) ensures all threads finish executing `codeA` before executing `codeB`
- Sync is only necessary if A and B may access to the same memory
- Assuming the original program is race-free, performing a sync at the corresponding location in the reverse ensures correctness
- Prove correctness of algorithm by cases

```
codeA();  
sync_threads;  
codeB();
```

Case 1: Store, Sync, Load

```
codeA(); // store %ptr
sync_threads;

codeB(); // load %ptr
...
diffe_codeB(); // atomicAdd %d_ptr
sync_threads;

diffe_codeA(); // load %d_ptr
               // store %d_ptr = 0
```


Correct

- Load of d_ptr must happen after all atomicAdds have completed

CUDA Example

```
__device__
void inner(float* a, float* x, float* y) {
    y[threadIdx.x] = a[0] * x[threadIdx.x];
}

__device__
void __enzyme_autodiff(void*, ...);

__global__
void daxpy(float* a, float* da,
           float* x, float* dx,
           float* y, float* dy) {
    __enzyme_autodiff((void*)inner,
                      a, da, x, dx, y, dy);
}
```

```
__device__
void diffe_inner(float* a, float* da,
                  float* x, float* dx,
                  float* y, float* dy) {
    // Forward Pass
    y[threadIdx.x] = a[0] * x[threadIdx.x];
    // Reverse Pass
    float dy = dy[threadIdx.x];
    dy[threadIdx.x] = 0.0f;
    float dx_tmp = a[0] * dy;
    atomic { dx[threadIdx.x] += dx_tmp; }
    float da_tmp = x[threadIdx.x] * dy;
    atomic { da[0] += da_tmp; }
}
```

CUDA Example

```
__device__
void inner(float* a, float* x, float* y) {
    y[threadIdx.x] = a[0] * x[threadIdx.x];
}

__device__
void __enzyme_autodiff(void*, ...);

__global__
void daxpy(float* a, float* da,
           float* x, float* dx,
           float* y, float* dy) {
    __enzyme_autodiff((void*)inner,
                      a, da, x, dx, y, dy);
}
```

```
__device__
void diffe_inner(float* a, float* da,
                  float* x, float* dx,
                  float* y, float* dy) {
    // Forward Pass
    y[threadIdx.x] = a[0] * x[threadIdx.x];
    // Reverse Pass
    float dy = dy[threadIdx.x];
    dy[threadIdx.x] = 0.0f;
    float dx_tmp = a[0] * dy;
    dx[threadIdx.x] += dx_tmp;
    float da_tmp = x[threadIdx.x] * dy;
    reduce_accumulate(&da[0], da_tmp);
}
```

CUDA.jl / AMDGPU.jl Example

```
function compute!(inp, out)
    s_D = @cuStaticSharedMem eltype(inp) (10, 10)
    ...
end

function grad_compute!(inp, out)
    Enzyme.autodiff_deferred(compute!, inp, out)
    return nothing
end

@cuda grad_compute!(Duplicated(inp, d_inp),
                    Duplicated(out, d_out))
```

```
function compute!(inp, out)
    s_D = AMDGPU.alloc_special...
    ...
end

function grad_compute!(inp, out)
    Enzyme.autodiff_deferred(compute!, inp, out)
    return nothing
end

@rocm grad_compute!(Duplicated(inp, d_inp),
                    Duplicated(out, d_out))
```

See Below For Full Code Examples

<https://github.com/wsmoses/Enzyme-GPU-Tests/blob/main/DG/>

Efficient GPU Code

- For correctness, Enzyme may need to cache values in order to compute the gradient
 - The complexity of GPU memory means large caches slow down the program by several orders of magnitude, if it even fits at all
- Like the CPU, existing optimizations reduce the overhead
- Unlike the CPU, existing optimizations aren't sufficient
- Novel GPU and AD-specific optimizations can speedup by several orders of magnitude

```
// Forward Pass
out[i] = x[i] * x[i];
x[i] = 0.0f;

// Reverse (gradient) Pass
...
grad_x[i] += 2 * x[i] * grad_out[i];
...
```

Efficient Correct GPU Code

- For correctness, Enzyme may need to cache values in order to compute the gradient
 - The complexity of GPU memory means large caches slow down the program by several orders of magnitude, if it even fits at all
- Like the CPU, existing optimizations reduce the overhead
- Unlike the CPU, existing optimizations aren't sufficient
- Novel GPU and AD-specific optimizations can speedup by several orders of magnitude

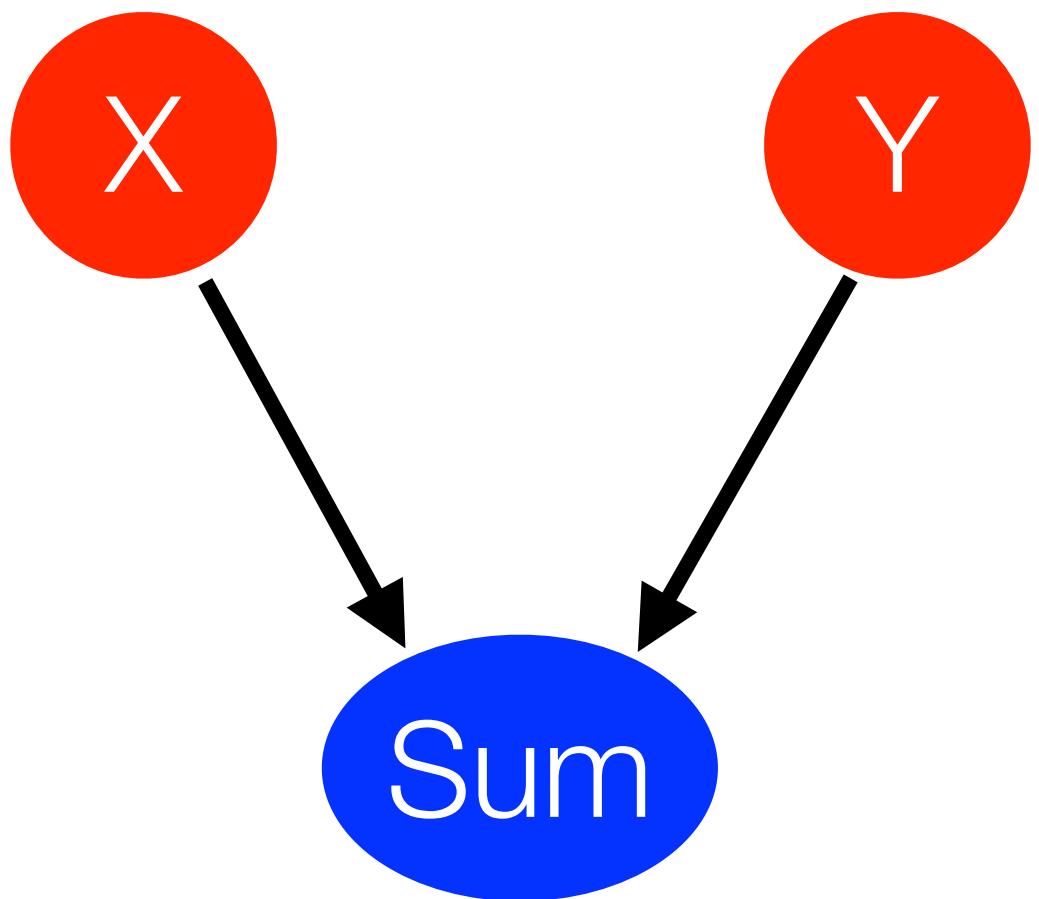
```
double* x_cache = new double[...];  
  
// Forward Pass  
  
out[i] = x[i] * x[i];  
x_cache[i] = x[i];  
  
x[i] = 0.0f;  
  
// Reverse (gradient) Pass  
  
...  
grad_x[i] += 2 * x_cache[i] * grad_out[i];  
...  
  
delete[] x_cache;
```

Cache Reduction Example

- By considering the dataflow graph we can perform a min-cut to approximate smaller cache sizes.

Overwritten:

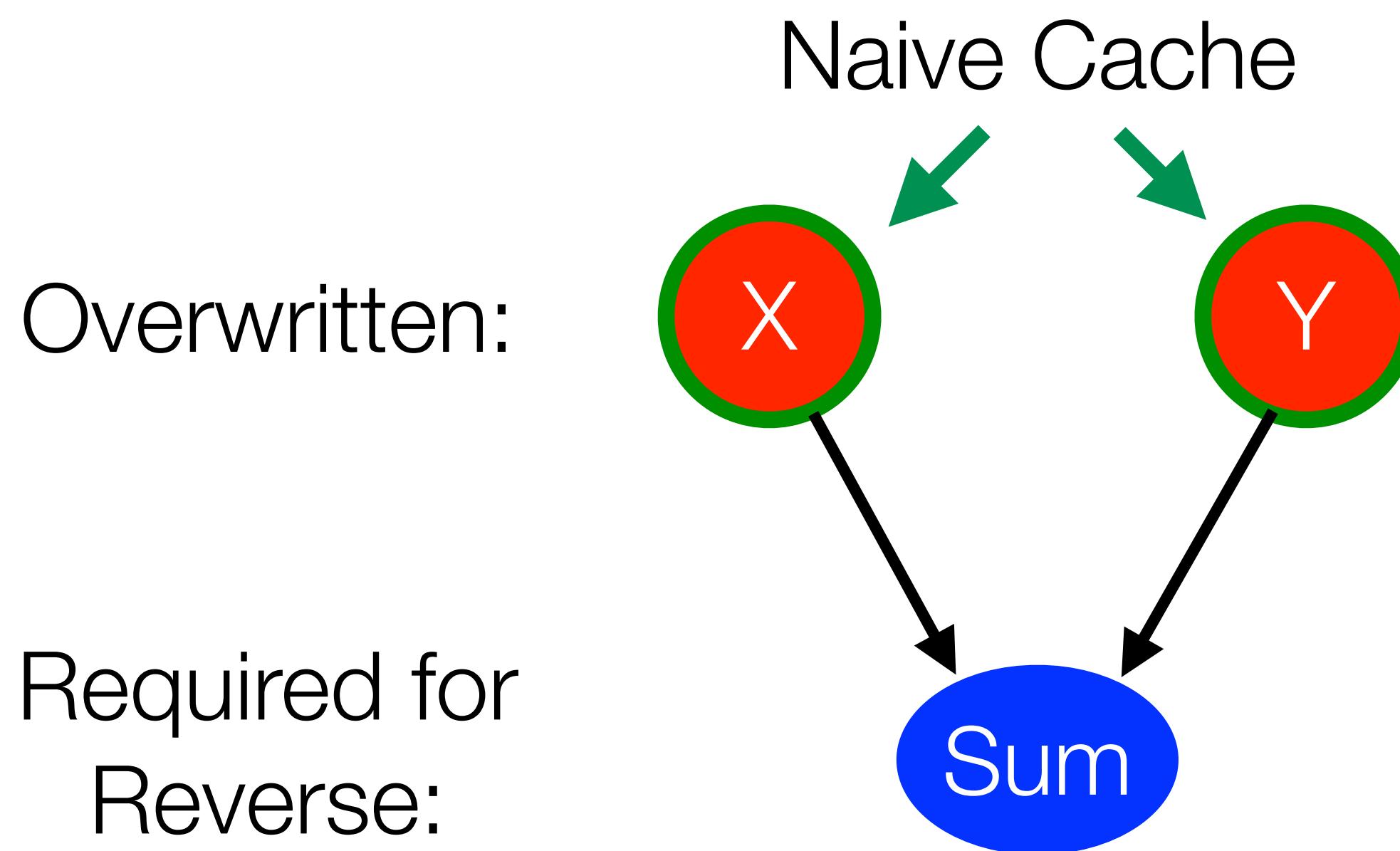
Required for
Reverse:



```
for(int i=0; i<10; i++) {  
    double sum = x[i] + y[i];  
  
    use(sum);  
}  
  
overwrite(x, y);  
grad_overwrite(x, y);  
  
for(int i=9; i>=0; i--) {  
    ...  
    grad_use(sum);  
}
```

Cache Reduction Example

- By considering the dataflow graph we can perform a min-cut to approximate smaller cache sizes.



```
double* x_cache = new double[10];
double* y_cache = new double[10];

for(int i=0; i<10; i++) {
    double sum = x[i] + y[i];
    x_cache[i] = x[i];
    y_cache[i] = y[i];
    use(sum);
}

overwrite(x, y);
grad_overwrite(x, y);

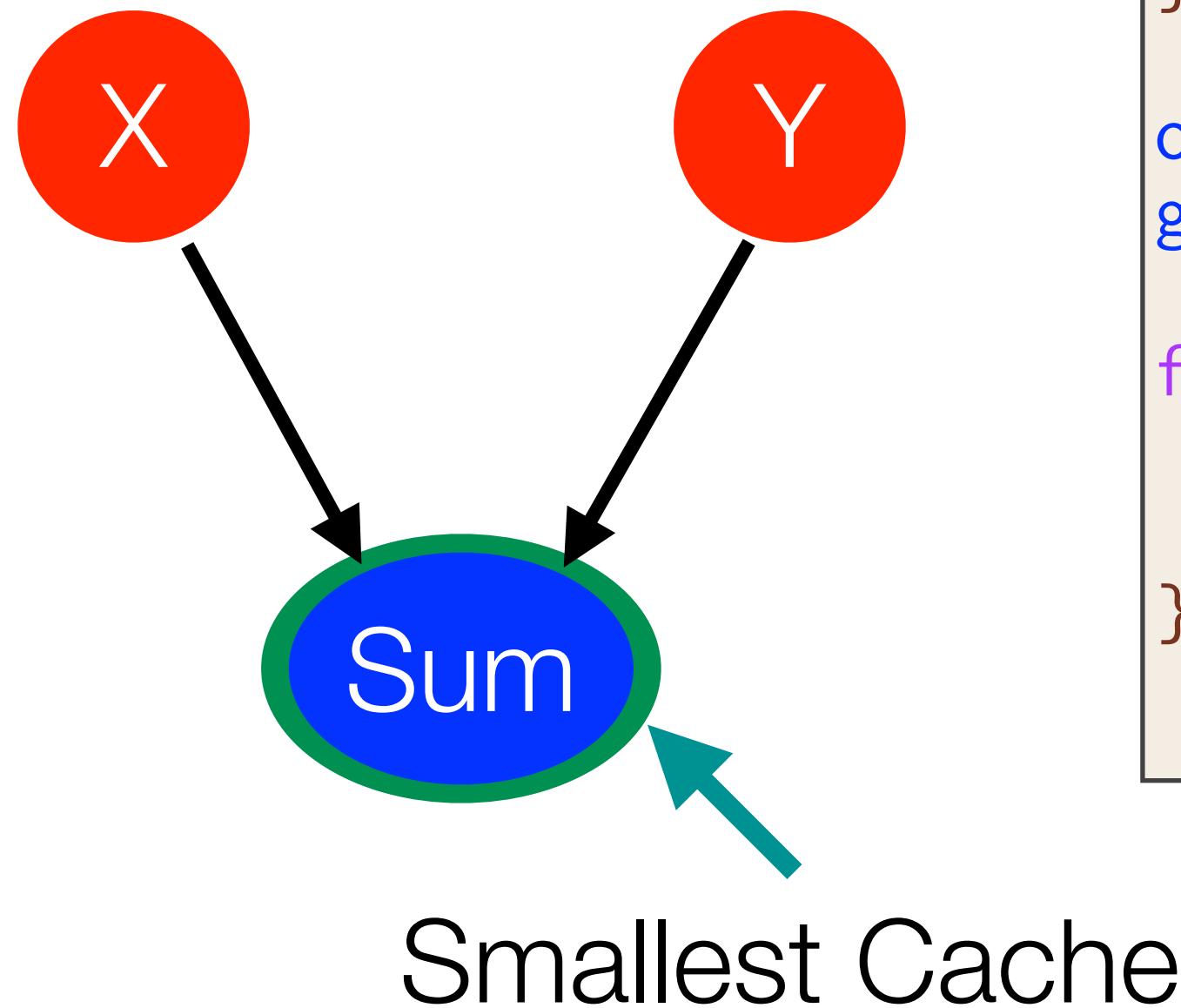
for(int i=9; i>=0; i--) {
    double sum = x_cache[i] + y_cache[i];
    grad_use(sum);
}
```

Cache Reduction Example

- By considering the dataflow graph we can perform a min-cut to approximate smaller cache sizes.

Overwritten:

Required for
Reverse:



```
double* sum_cache = new double[10];  
  
for(int i=0; i<10; i++) {  
    double sum = x[i] + y[i];  
    sum_cache[i] = sum;  
  
    use(sum);  
}  
  
overwrite(x, y);  
grad_overwrite(x, y);  
  
for(int i=9; i>=0; i--) {  
  
    grad_use(sum_cache[i]);  
}
```

Allocation Merging

- Allocations (and any calls) on the GPU are expensive
- Given two allocations in the same scope, replace uses with a single allocation
- Beneficial for not just AD, but any GPU programs!

```
double* var1 = new double[N];
double* var2 = new double[M];

use(var1, var2);

delete[] var1;
delete[] var2;
```

```
double* var1 = new double[N + M];
double* var2 = var1 + N;

use(var1, var2);

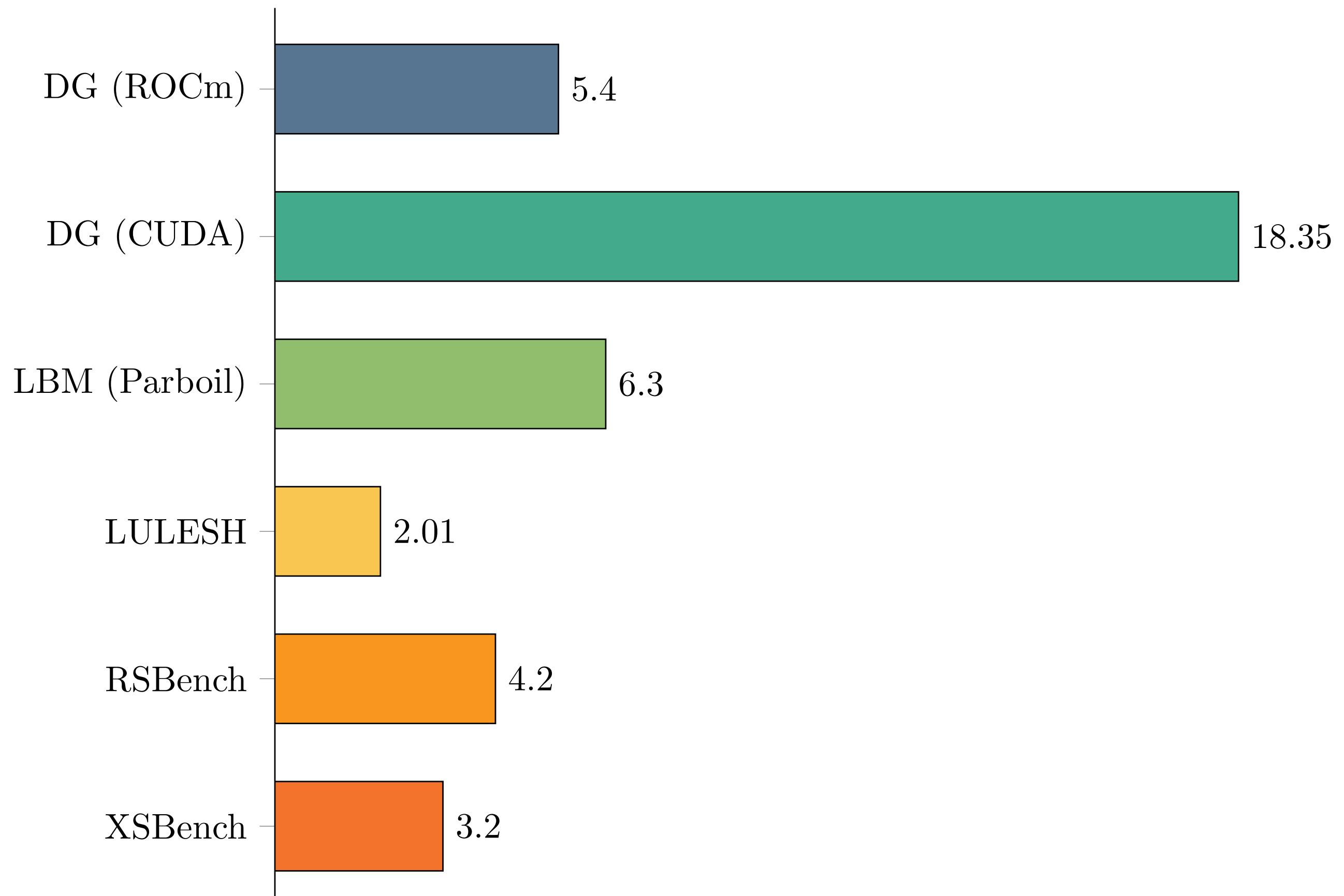
delete[] var1;
```

Novel AD + GPU Optimizations

- See our SC'21 paper for more (<https://c.wsmoses.com/papers/EnzymeGPU.pdf>)
Reverse-Mode Automatic Differentiation and Optimization of GPU Kernels via Enzyme. SC, 2021
- [AD] Cache LICM/CSE
- [AD] Min-Cut Cache Reduction
- [AD] Cache Forwarding
- [GPU] Merge Allocations
- [GPU] Heap-to-stack (and register)
- [GPU] Alias Analysis Properties of SyncThreads
- ...

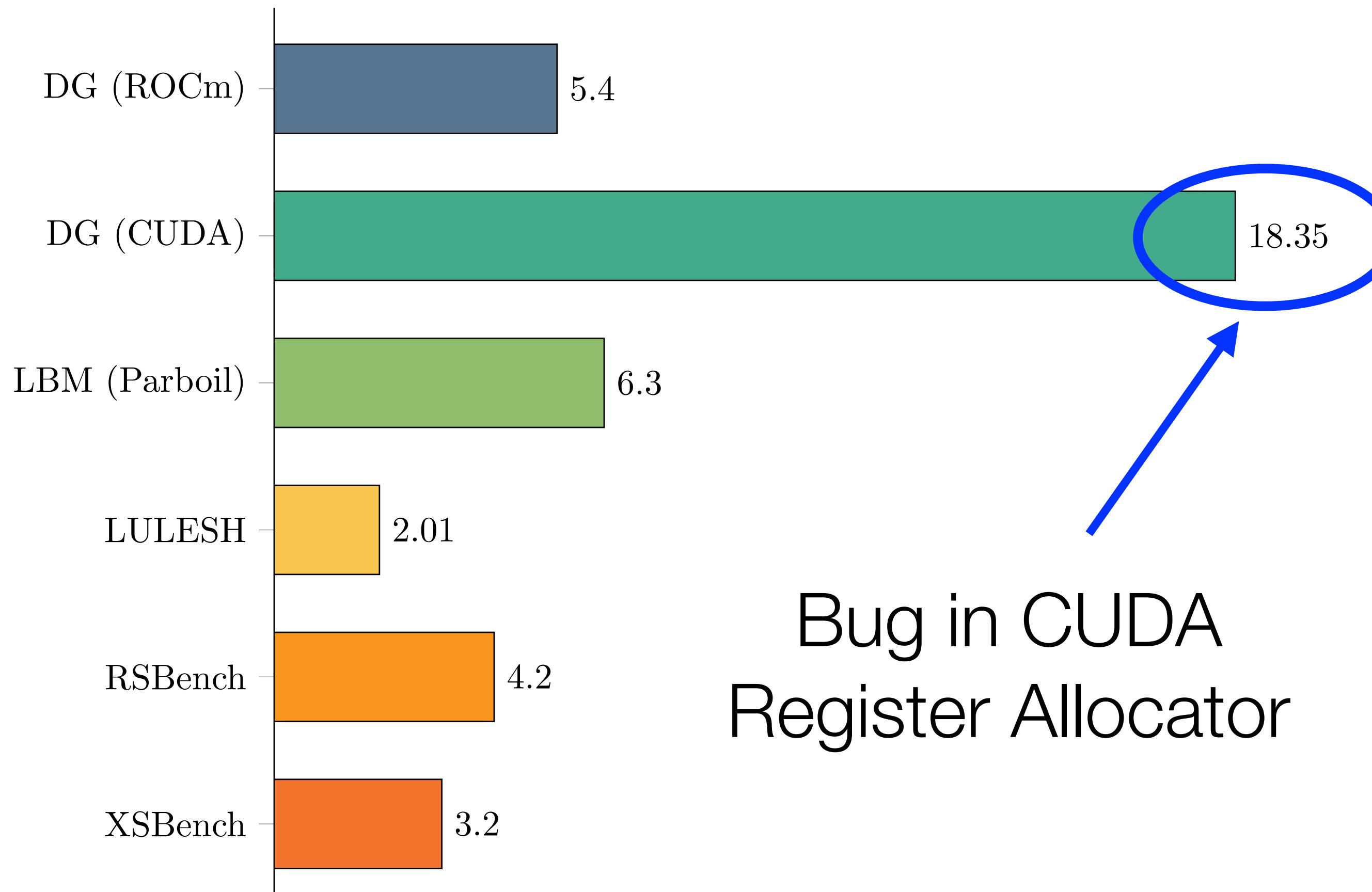
GPU Gradient Overhead [MCPHNMJ'21]

- Evaluation of both original code and gradient
 - DG: Discontinuous-Galerkin integral (Julia)
 - LBM: particle-based fluid dynamics simulation
 - LULESH: unstructured explicit shock hydrodynamics solver
 - XSbench & RSbench: Monte Carlo simulations of particle transport algorithms (memory & compute bound, respectively)

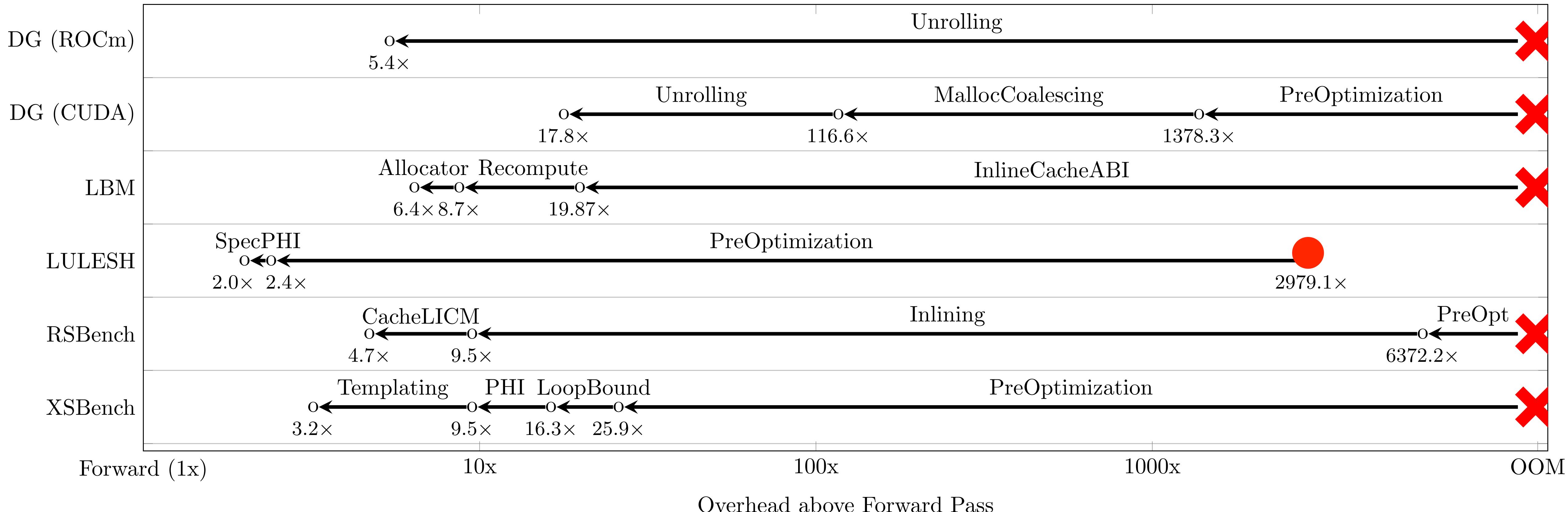


GPU Gradient Overhead [MCPHNMJ'21]

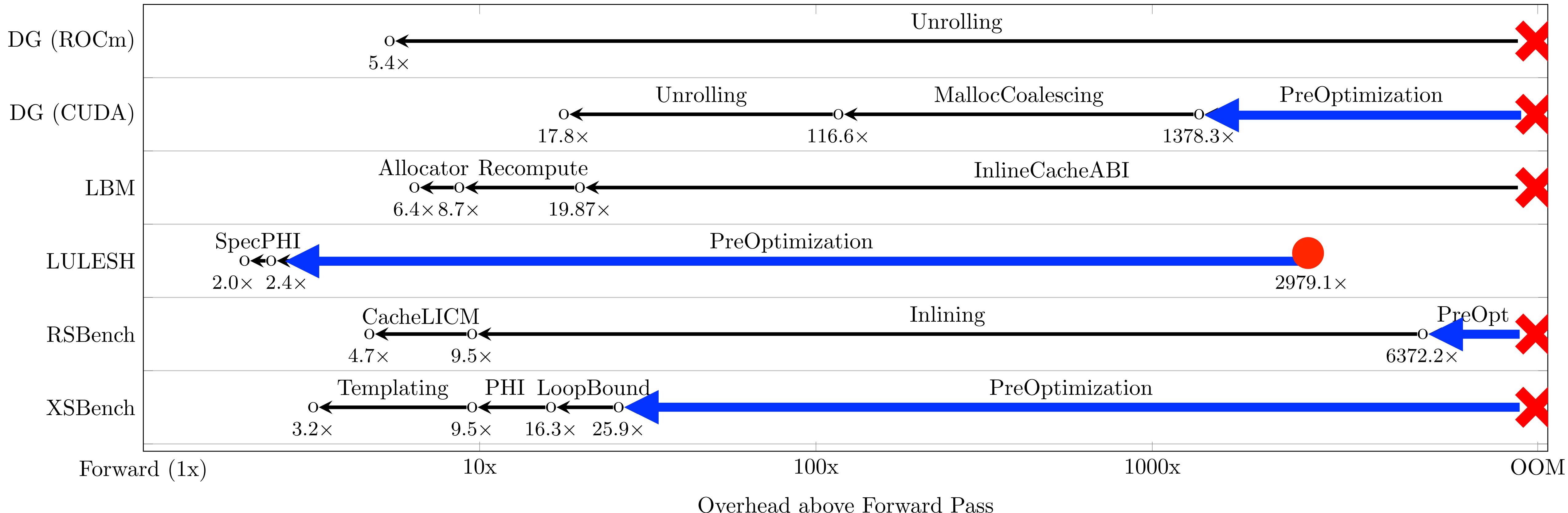
- Evaluation of both original code and gradient
 - DG: Discontinuous-Galerkin integral (Julia)
 - LBM: particle-based fluid dynamics simulation
 - LULESH: unstructured explicit shock hydrodynamics solver
 - XSbench & RSbench: Monte Carlo simulations of particle transport algorithms (memory & compute bound, respectively)



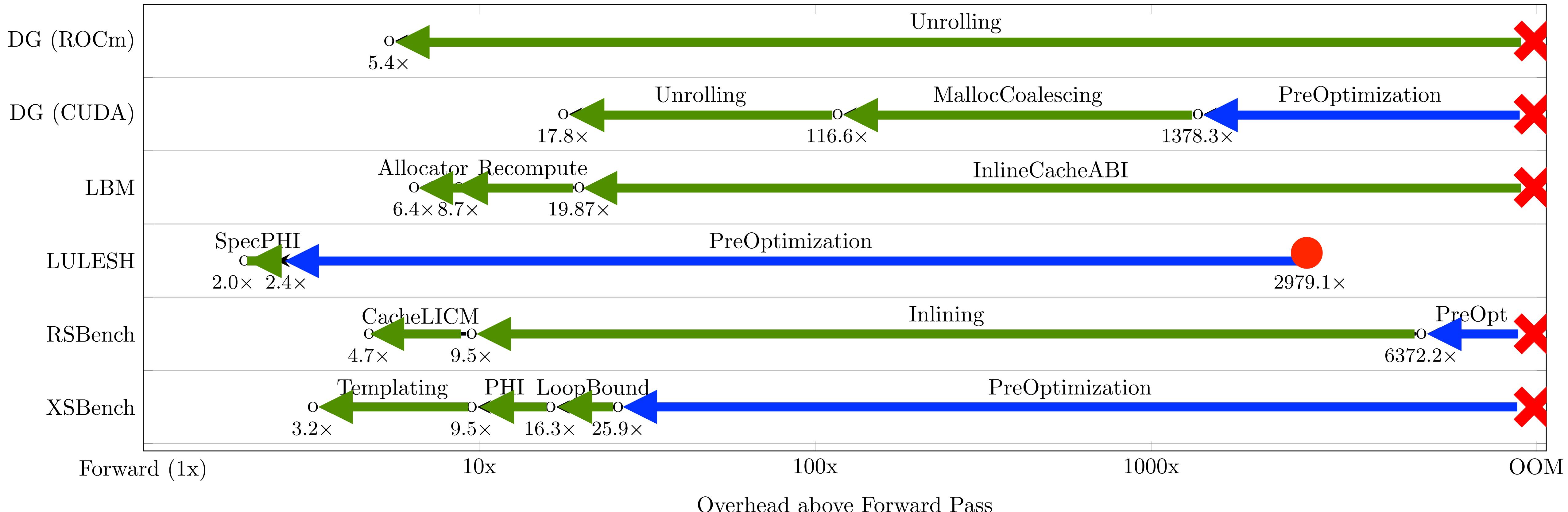
Ablation Analysis of Optimizations



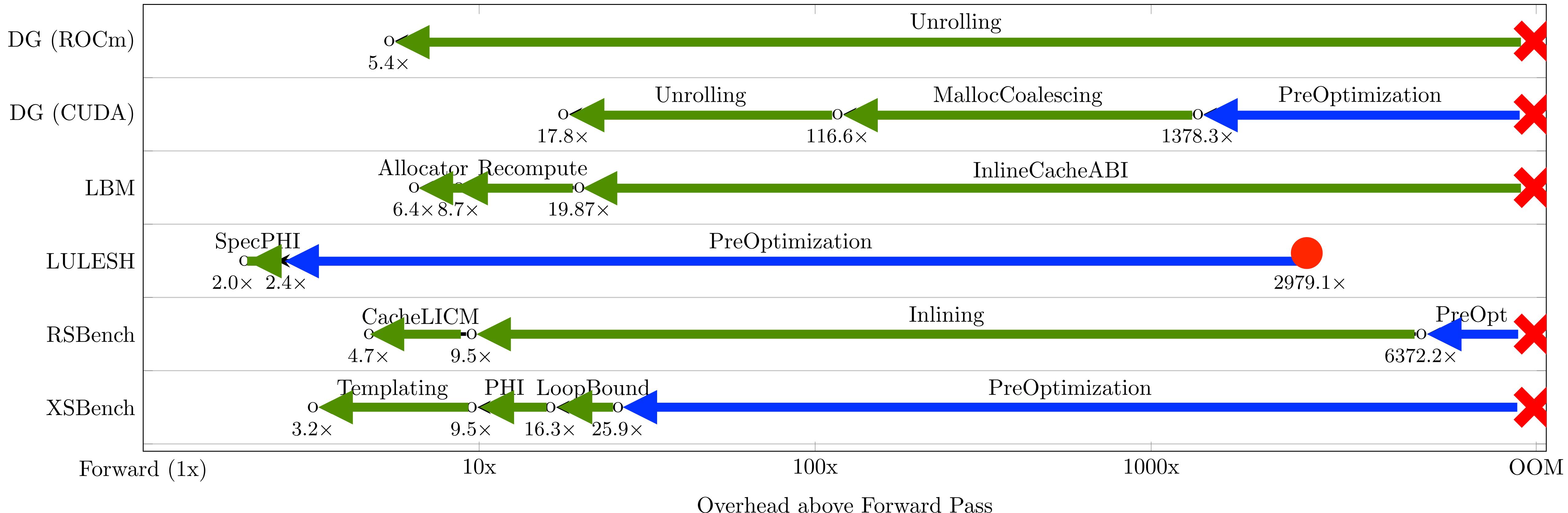
Ablation Analysis of Optimizations



Ablation Analysis of Optimizations



Ablation Analysis of Optimizations



GPU AD is Intractable Without Optimization!

Computing Hardware is No Longer For Everybody

Computing Hardware is No Longer For Everybody

NVIDIA Puts Grace Blackwell on Every Desk and at Every AI Developer's Fingertips

NVIDIA Project DIGITS With New GB10 Superchip Debuts as World's Smallest AI Supercomputer Capable of Running 200B-Parameter Models

Computing Hardware is No Longer For Everybody

Exclusive: Meta begins testing its first in-house AI training chip

By Katie Paul and [Krystal Hu](#)

March 11, 2025 2:37 PM GMT+1 · Updated March 11, 2025

[1/2] The logo of Meta Platforms' business group is seen in Brussels, Belgium December 6, 2022. REUTERS/Yves Herman/File Photo [Purchase Licensing Rights](#)

NVIDIA Puts Grace Blackwell on Every Desk and at Every AI Developer's Fingertips

NVIDIA Project DIGITS With New GB10 Superchip Debuts as World's Smallest AI Supercomputer Capable of Running 200B-Parameter Models

Computing Hardware is No Longer For Everybody

Exclusive: Meta begins testing its first in-house AI training chip

By Katie Paul and Krystal Hu

March 11, 2025 2:37 PM GMT+1 · Updated March 11, 2025

[1/2] The logo of Meta Platforms' business group is seen in Brussels, Belgium December 6, 2022. REUTERS/Yves Herman/File Photo [Purchase Licensing Rights](#)

ANTHROPIC

Claude ▾ API ▾ Solutions ▾ Research ▾ Commitments ▾ Learn ▾ News Try Claude

Product

Claude 3.5 Haiku on AWS Trainium2 and model distillation in Amazon Bedrock

Dec 3, 2024 • 3 min read

NVIDIA Puts Grace Blackwell on Every Desk and at Every AI Developer's Fingertips

NVIDIA Project DIGITS With New GB10 Superchip Debuts as World's Smallest AI Supercomputer Capable of Running 200B-Parameter Models

Computing Hardware is No Longer For Everybody

Exclusive: Meta begins testing its first in-house AI training chip

By Katie Paul and Krystal Hu

March 11, 2025 2:37 PM GMT+1 · Updated March 11, 2025

[1/2] The logo of Meta Platforms' business group is seen in Brussels, Belgium December 6, 2022. REUTERS/Yves Herman/File Photo [Purchase Licensing Rights](#)

NVIDIA Puts Grace Blackwell on Every Desk and at Every AI Developer's Fingertips

NVIDIA Project DIGITS With New GB10 Superchip Debuts as World's Smallest AI Supercomputer Capable of Running 200B-Parameter Models

ANTHROPIC

Claude ▾ API ▾ Solutions ▾ Research ▾ Commitments ▾ Learn ▾ News Try Claude

Product

Claude 3.5 Haiku on AWS Trainium2 and model distillation in Amazon Bedrock

Dec 3, 2024 • 3 min read

Elon Musk's xAI is reportedly trying to borrow \$12,000,000,000 for even more Nvidia GPUs, an impulse all PC gamers can truly understand

News By [Andy Edser](#) published 23 July 2025

I've checked down the back of the sofa, and I'm not sure I can cover it.

Computing Hardware is No Longer For Everybody

Exclusive: Meta begins testing its first in-house AI training chip

By Katie Paul and Krystal Hu

March 11, 2025 2:37 PM GMT+1 · Updated March 11, 2025

[1/2] The logo of Meta Platforms' business group is seen in Brussels, Belgium December 6, 2022. REUTERS/Yves Herman/File Photo [Purchase Licensing Rights](#)

NVIDIA Puts Grace Blackwell on Every Desk and at Every AI Developer's Fingertips

NVIDIA Project DIGITS With New GB10 Superchip Debuts as World's Smallest AI Supercomputer Capable of Running 200B-Parameter Models

ANTHROPIC

Claude ▾ API ▾ Solutions ▾ Research ▾ Commitments ▾ Learn ▾ News

Try Claude

Claude 3.5 Haiku on AWS Tr Product
running 100 million GPUs in the future -
model distillation in Amazon 100x more than it plans to run by December
2025

Dec 3, 2024 • 3 min read

News By Efosa Udinmwen published July 26, 2025

OpenAI scale-up will give its investors something to think about

Elon Musk's xAI is reportedly trying to borrow \$12,000,000,000 for even more Nvidia GPUs, an impulse all PC gamers can truly understand

News By Andy Edser published 23 July 2025

I've checked down the back of the sofa, and I'm not sure I can cover it.

Computing Hardware is No Longer For Everybody

Exclusive: Meta begins testing its first in-house AI training chip

By Katie Paul and Krystal Hu

March 11, 2025 2:37 PM GMT+1 · Updated March 11, 2025

[1/2] The logo of Meta Platforms' business group is seen in Brussels, Belgium. Herman/File Photo Purchase Licensing Rights

NVIDIA Puts Grace Blackwell on Every Desk and at Every AI Developer's Fingertips

NVIDIA Project DIGITS With New GB10 Superchip Debuts as World's Smallest AI Supercomputer Capable of Running 200B-Parameter Models

ANTHROPIC

Claude ▾ API ▾ Solutions ▾ Research ▾ Commitments ▾ Learn ▾ News

Try Claude

OpenAI's Sam Altman is dreaming of Claude 2.5 Haiku on AWS T4 running 100 million GPUs in the future - run by December

Ironwood: The first Google TPU for the age of inference

- When scaled to 9,216 chips per pod for a total of 42.5 Exaflops, Ironwood supports more than 24x the compute power of the world's largest supercomputer – El Capitan – which offers just 1.7 Exaflops per pod. Ironwood delivers the massive parallel processing power necessary for the most demanding AI workloads, such as super large size dense LLM or MoE models with thinking capabilities for training and inference. Each individual chip boasts peak compute of 4,614 TFLOPs. This represents a monumental leap in AI capability. Ironwood's memory and network architecture ensures that the right data is always available to support peak performance at this massive scale.

nothing to think about

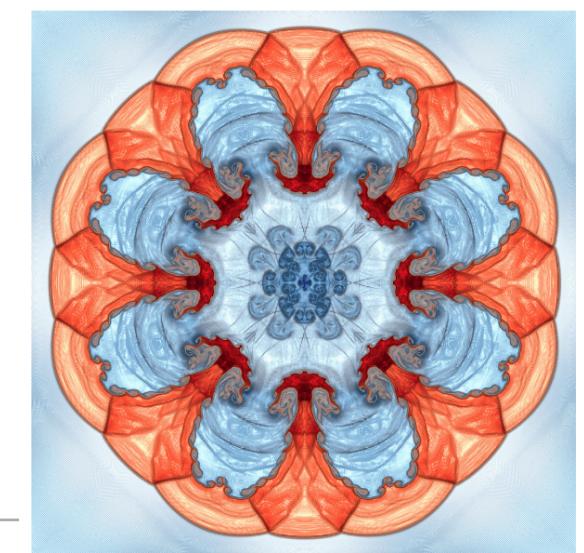
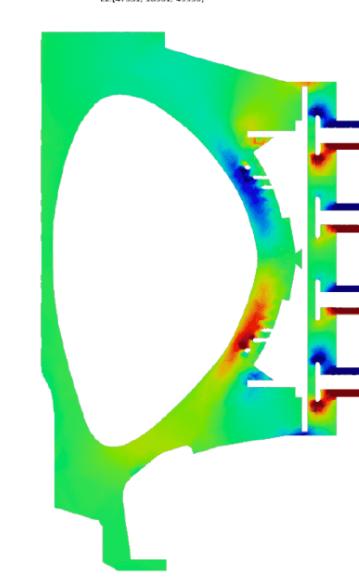
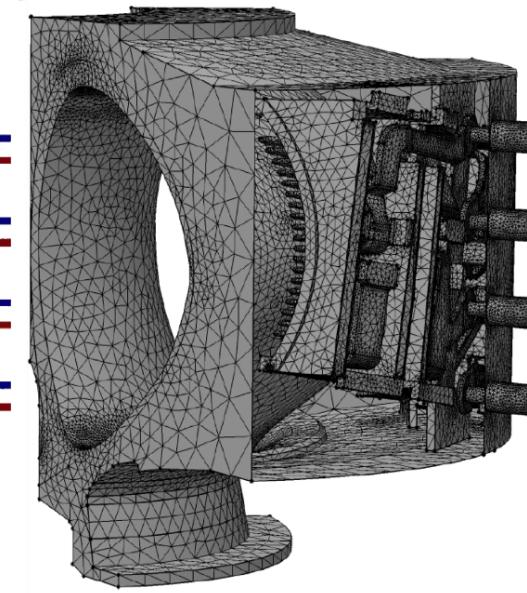
more NVIDIA GPUs, an impulse all PC gamers can truly understand

News By Andy Edser published 23 July 2025

I've checked down the back of the sofa, and I'm not sure I can cover it.

 Comments (2)

Lingua Franca of Scientific Computing



- Scientists do not write TPU* code

```
__global__
void AddNodeForcesFromElems_kernel( Index_t numNode,
Index_t padded_numNode,
const Int_t* nodeElemCount,
const Int_t* nodeElemStart,
const Index_t* nodeElemCornerList,
const Real_t* fx_elem,
const Real_t* fy_elem,
const Real_t* fz_elem,
Real_t* fx_node,
Real_t* fy_node,
Real_t* fz_node,
const Int_t num_threads)
{
    int tid=blockDim.x*blockIdx.x+threadIdx.x;
    if (tid < num_threads)
    {
        Index_t g_i = tid;
        Int_t count=nodeElemCount[g_i];
        Int_t start=nodeElemStart[g_i];
        Real_t fx,fy,fz;
        fx=fy=fz=Real_t(0.0);

        for (int j=0;j<count;j++)
        {
            Index_t pos=nodeElemCornerList[start+j]; // Uncoalesced access here
            fx += fx_elem[pos];
            fy += fy_elem[pos];
            fz += fz_elem[pos];
        }

        fx_node[g_i]=fx;
        fy_node[g_i]=fy;
        fz_node[g_i]=fz;
    }
}
```

Lingua Franca of Scientific Computing

- Scientists do not write TPU* code
 - BIG (MFEM library alone is 737K LOC)

```
__global__
void AddNodeForcesFromElems_kernel( Index_t numNode,
Index_t padded_numNode,
const Int_t* nodeElemCount,
const Int_t* nodeElemStart,
const Index_t* nodeElemCornerList,
const Real_t* fx_elem,
const Real_t* fy_elem,
const Real_t* fz_elem,
Real_t* fx_node,
Real_t* fy_node,
Real_t* fz_node,
const Int_t num_threads)

{
    int tid=blockDim.x*blockIdx.x+threadIdx.x;
    if (tid < num_threads)
    {
        Index_t g_i = tid;
        Int_t count=nodeElemCount[g_i];
        Int_t start=nodeElemStart[g_i];
        Real_t fx,fy,fz;
        fx=fy=fz=Real_t(0.0);

        for (int j=0;j<count;j++)
        {
            Index_t pos=nodeElemCornerList[start+j]; // Uncoalesced access here
            fx += fx_elem[pos];
            fy += fy_elem[pos];
            fz += fz_elem[pos];
        }

        fx_node[g_i]=fx;
        fy_node[g_i]=fy;
        fz_node[g_i]=fz;
    }
}
```

Lingua Franca of Scientific Computing

- Scientists do not write TPU* code
 - BIG (MFEM library alone is 737K LOC)
 - Templatized

```
__global__
void AddNodeForcesFromElems_kernel( Index_t numNode,
Index_t padded_numNode,
const Int_t* nodeElemCount,
const Int_t* nodeElemStart,
const Index_t* nodeElemCornerList,
const Real_t* fx_elem,
const Real_t* fy_elem,
const Real_t* fz_elem,
Real_t* fx_node,
Real_t* fy_node,
Real_t* fz_node,
const Int_t num_threads)

{
    int tid=blockDim.x*blockIdx.x+threadIdx.x;
    if (tid < num_threads)
    {
        Index_t g_i = tid;
        Int_t count=nodeElemCount[g_i];
        Int_t start=nodeElemStart[g_i];
        Real_t fx,fy,fz;
        fx=fy=fz=Real_t(0.0);

        for (int j=0;j<count;j++)
        {
            Index_t pos=nodeElemCornerList[start+j]; // Uncoalesced access here
            fx += fx_elem[pos];
            fy += fy_elem[pos];
            fz += fz_elem[pos];
        }

        fx_node[g_i]=fx;
        fy_node[g_i]=fy;
        fz_node[g_i]=fz;
    }
}
```

Lingua Franca of Scientific Computing

- Scientists do not write TPU* code
 - BIG (MFEM library alone is 737K LOC)
 - Templatized
 - Not in Python

```
__global__
void AddNodeForcesFromElems_kernel( Index_t numNode,
Index_t padded_numNode,
const Int_t* nodeElemCount,
const Int_t* nodeElemStart,
const Index_t* nodeElemCornerList,
const Real_t* fx_elem,
const Real_t* fy_elem,
const Real_t* fz_elem,
Real_t* fx_node,
Real_t* fy_node,
Real_t* fz_node,
const Int_t num_threads)

{
    int tid=blockDim.x*blockIdx.x+threadIdx.x;
    if (tid < num_threads)
    {
        Index_t g_i = tid;
        Int_t count=nodeElemCount[g_i];
        Int_t start=nodeElemStart[g_i];
        Real_t fx,fy,fz;
        fx=fy=fz=Real_t(0.0);

        for (int j=0;j<count;j++)
        {
            Index_t pos=nodeElemCornerList[start+j]; // Uncoalesced access here
            fx += fx_elem[pos];
            fy += fy_elem[pos];
            fz += fz_elem[pos];
        }

        fx_node[g_i]=fx;
        fy_node[g_i]=fy;
        fz_node[g_i]=fz;
    }
}
```

Lingua Franca of Scientific Computing

- Scientists do not write TPU* code
 - BIG (MFEM library alone is 737K LOC)
 - Templatized
 - Not in Python
 - Sometimes* in CUDA

```
template <>
struct RajaCuWrap<3>
{
    template <const int BLCK = MFEM_CUDA_BLOCKS, typename DBODY>
    static void run(const int N, DBODY &d_body,
                   const int X, const int Y, const int Z, const int G)
    {
        RajaCuWrap3D(N, d_body, X, Y, Z, G);
    }
};
```

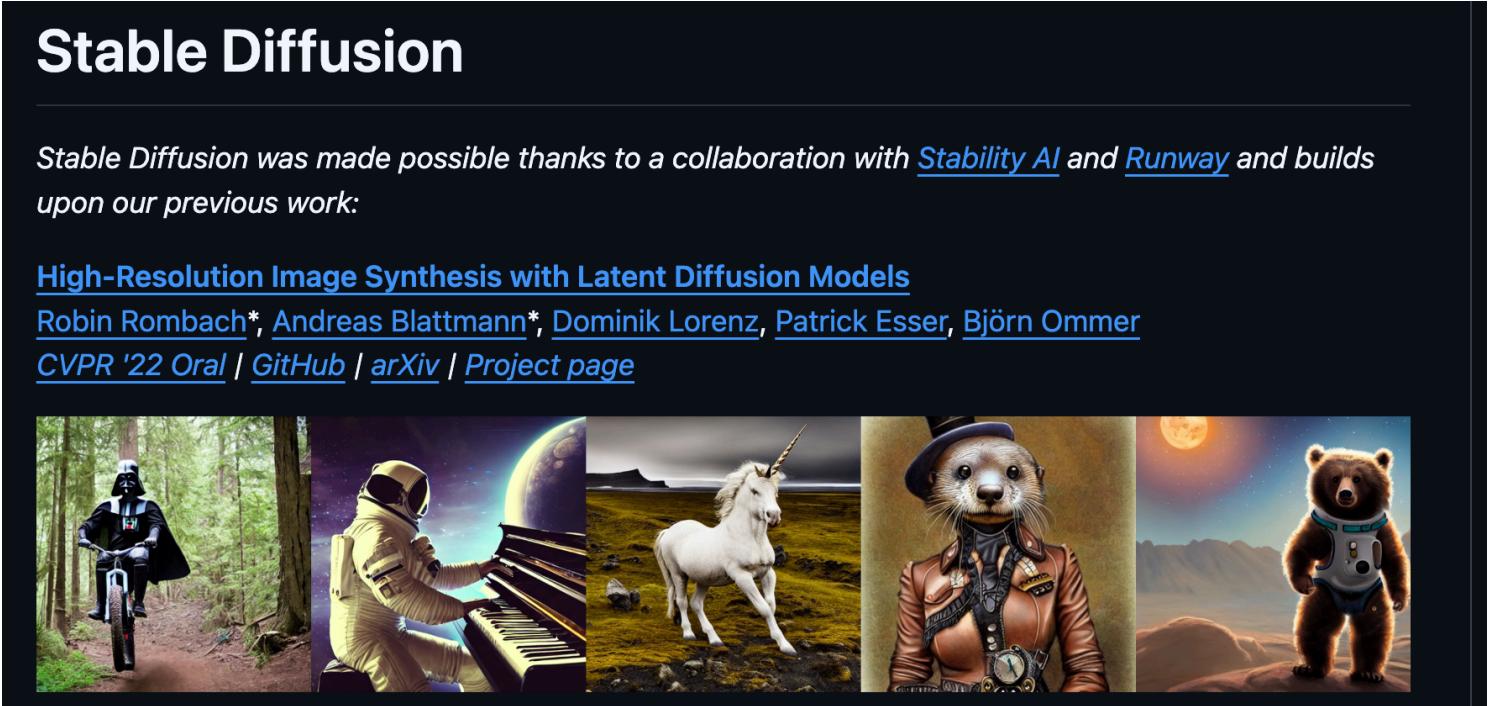
```
__global__
void AddNodeForcesFromElems_kernel( Index_t numNode,
                                     Index_t padded_numNode,
                                     const Int_t* nodeElemCount,
                                     const Int_t* nodeElemStart,
                                     const Index_t* nodeElemCornerList,
                                     const Real_t* fx_elem,
                                     const Real_t* fy_elem,
                                     const Real_t* fz_elem,
                                     Real_t* fx_node,
                                     Real_t* fy_node,
                                     Real_t* fz_node,
                                     const Int_t num_threads)
{
    int tid=blockDim.x*blockIdx.x+threadIdx.x;
    if (tid < num_threads)
    {
        Index_t g_i = tid;
        Int_t count=nodeElemCount[g_i];
        Int_t start=nodeElemStart[g_i];
        Real_t fx,fy,fz;
        fx=fy=fz=Real_t(0.0);

        for (int j=0;j<count;j++)
        {
            Index_t pos=nodeElemCornerList[start+j]; // Uncoalesced access here
            fx += fx_elem[pos];
            fy += fy_elem[pos];
            fz += fz_elem[pos];
        }

        fx_node[g_i]=fx;
        fy_node[g_i]=fy;
        fz_node[g_i]=fz;
    }
}
```

How do we write ML Accelerator code now?

How do we write ML Accelerator code now?



How do we write ML Accelerator code now?

Stable Diffusion

Stable Diffusion was made possible thanks to a collaboration with [Stability AI](#) and [Runway](#) and builds upon our previous work:

High-Resolution Image Synthesis with Latent Diffusion Models
Robin Rombach*, Andreas Blattmann*, Dominik Lorenz, Patrick Esser, Björn Ommer
[CVPR '22 Oral](#) | [GitHub](#) | [arXiv](#) | [Project page](#)

A row of five generated images: a Darth Vader cyclist, an astronaut playing a piano, a white unicorn, a dressed-up otter, and a bear in a spacesuit.

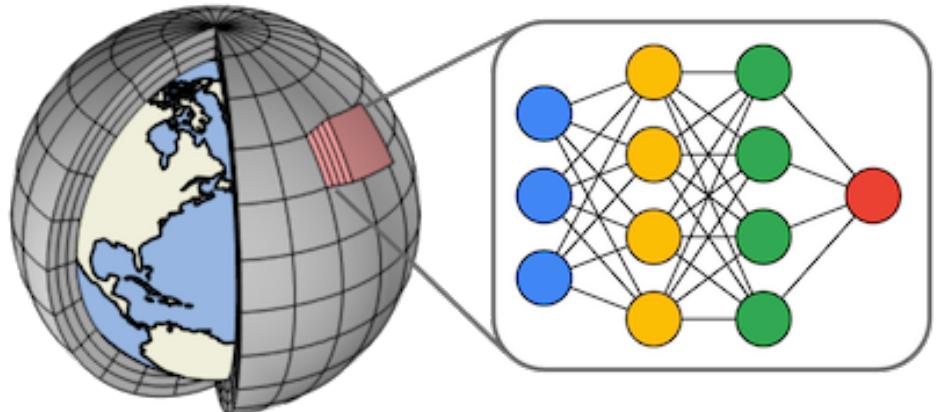
JAX, M.D.

Accelerated, Differentiable, Molecular Dynamics

[Quickstart](#) | [Reference docs](#) | [Paper](#) | [NeurIPS 2020](#)

 Build passing DOI [10.5281/zenodo.14220247](#) pypi [v0.2.8](#) license Apache 2.0

Molecular dynamics is a workhorse of modern computational condensed matter physics. It is frequently used to simulate materials to observe how small scale interactions can give rise to complex large-scale phenomenology. Most molecular dynamics packages (e.g. HOOMD Blue or LAMMPS) are complicated, specialized pieces of code.



NeuralGCM

The logo for jaxspec, featuring a cartoon tiger head and the word "jaxspec".

 SLACK

 jaxspec is still in early release: expect bugs, breaking API changes, undocumented features and lack of functionalities

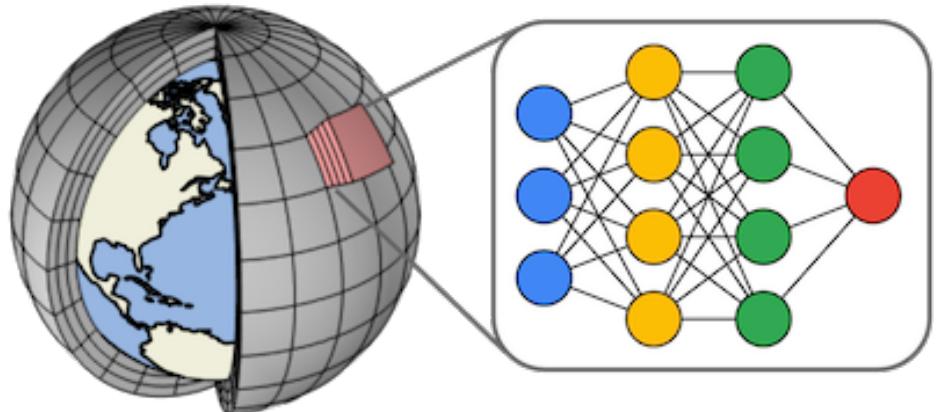
jaxspec is an X-ray spectral fitting library built in pure Python. It can currently load an X-ray spectrum (in the OGIP standard), define a spectral model from the implemented components, and calculate the best parameters using state-of-the-art Bayesian approaches. It is built on top of JAX to provide just-in-time compilation and automatic differentiation of the spectral models, enabling the use of sampling algorithm such as NUTS.

How do we write ML Accelerator code now?

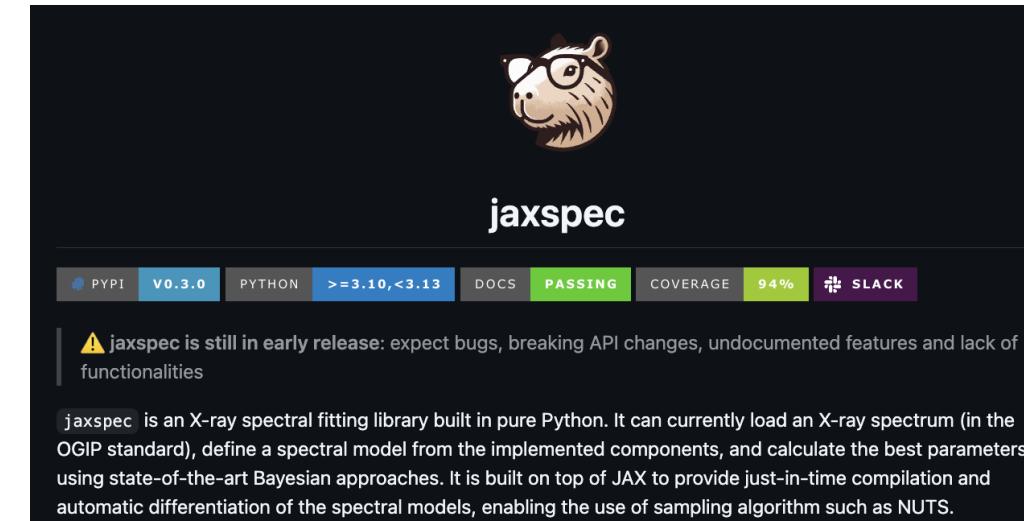
Stable Diffusion

Stable Diffusion was made possible thanks to a collaboration with [Stability AI](#) and [Runway](#) and builds upon our previous work:

High-Resolution Image Synthesis with Latent Diffusion Models
Robin Rombach*, Andreas Blattmann*, Dominik Lorenz, Patrick Esser, Björn Ommer
[CVPR '22 Oral](#) | [GitHub](#) | [arXiv](#) | [Project page](#)

A row of five generated images: a Darth Vader cyclist, an astronaut playing a piano, a white unicorn, a polar bear in a top hat, and a brown bear in a spacesuit.

NeuralGCM

The jaxspec logo, featuring a cartoon tiger head and the text "jaxspec". Below the logo are build status badges for PyPI (v0.3.0), Python (>=3.10, <3.13), Docs (PASSING), Coverage (94%), and Slack.

jaxspec
jaxspec is an X-ray spectral fitting library built in pure Python. It can currently load an X-ray spectrum (in the OGIP standard), define a spectral model from the implemented components, and calculate the best parameters using state-of-the-art Bayesian approaches. It is built on top of JAX to provide just-in-time compilation and automatic differentiation of the spectral models, enabling the use of sampling algorithm such as NUTS.

Rewrite it in JAX/PyTorch!

The Exascale Computing Project (ECP) **ECP by the Numbers**

The ECP ran from 2016–2024 and was the largest software research, development, and deployment project managed to date by the US Department of Energy (DOE). The \$1.8 billion project was a joint effort by the DOE Office of Science and the National Nuclear Security Administration that funded nearly 2,800 multidisciplinary individuals over the lifetime of the project to uplift the high-performance computing community toward capable exascale platforms, software, and application codes. The outcome was the delivery of an exascale computing ecosystem to provide breakthrough solutions that address future challenges in energy assurance, economic competitiveness, healthcare, and scientific discovery, as well as growing security threats. The ECP exascale ecosystem includes DOE mission-critical application codes, the underlying supporting software technologies, and mechanisms for their deployment and integration.

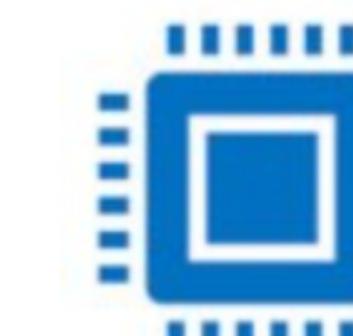
ECP was a grand convergence of advances in modeling and simulation, software tools and libraries, data analytics, machine learning, and artificial intelligence in support of delivering the world's first capable exascale ecosystem.

The payoff is here: exascale computing is revolutionizing nearly every domain of science.

Created to develop the nation's first capable exascale computing ecosystem, this unprecedented DOE research, development, and deployment project has already made a huge impact on computational science:

2,800 collaborators funded to develop exascale applications, software, and hardware.

Game-changing results in a broad spectrum of science and engineering application areas.



2 different GPU architectures now proven to work with exascale environments.

First and only open-source scientific software stack developed for scalability and available across all HPC platforms, including cloud computing.

The Exascale Computing Project (ECP) ECP by the Numbers

The ECP ran from **2016–2024** and was the largest software research, development, and deployment project managed to date by the US Department of Energy (DOE). The **\$1.8 billion** project was a joint effort by the DOE Office of Science and the National Nuclear Security Administration that funded nearly 2,800 multidisciplinary individuals over the lifetime of the project to uplift the high-performance computing community toward capable exascale platforms, software, and application codes. The outcome was the delivery of an exascale computing ecosystem to provide breakthrough solutions that address future challenges in energy assurance, economic competitiveness, healthcare, and scientific discovery, as well as growing security threats. The ECP exascale ecosystem includes DOE mission-critical application codes, the underlying supporting software technologies, and mechanisms for their deployment and integration.

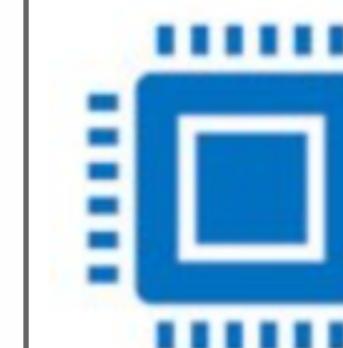
ECP was a grand convergence of advances in modeling and simulation, software tools and libraries, data analytics, machine learning, and artificial intelligence in support of delivering the world's first capable exascale ecosystem.

The payoff is here: exascale computing is revolutionizing nearly every domain of science.

Created to develop the nation's first capable exascale computing ecosystem, this unprecedented DOE research, development, and deployment project has already made a huge impact on computational science:

2,800 collaborators funded to develop exascale applications, software, and hardware.

Game-changing results in a broad spectrum of science and engineering application areas.



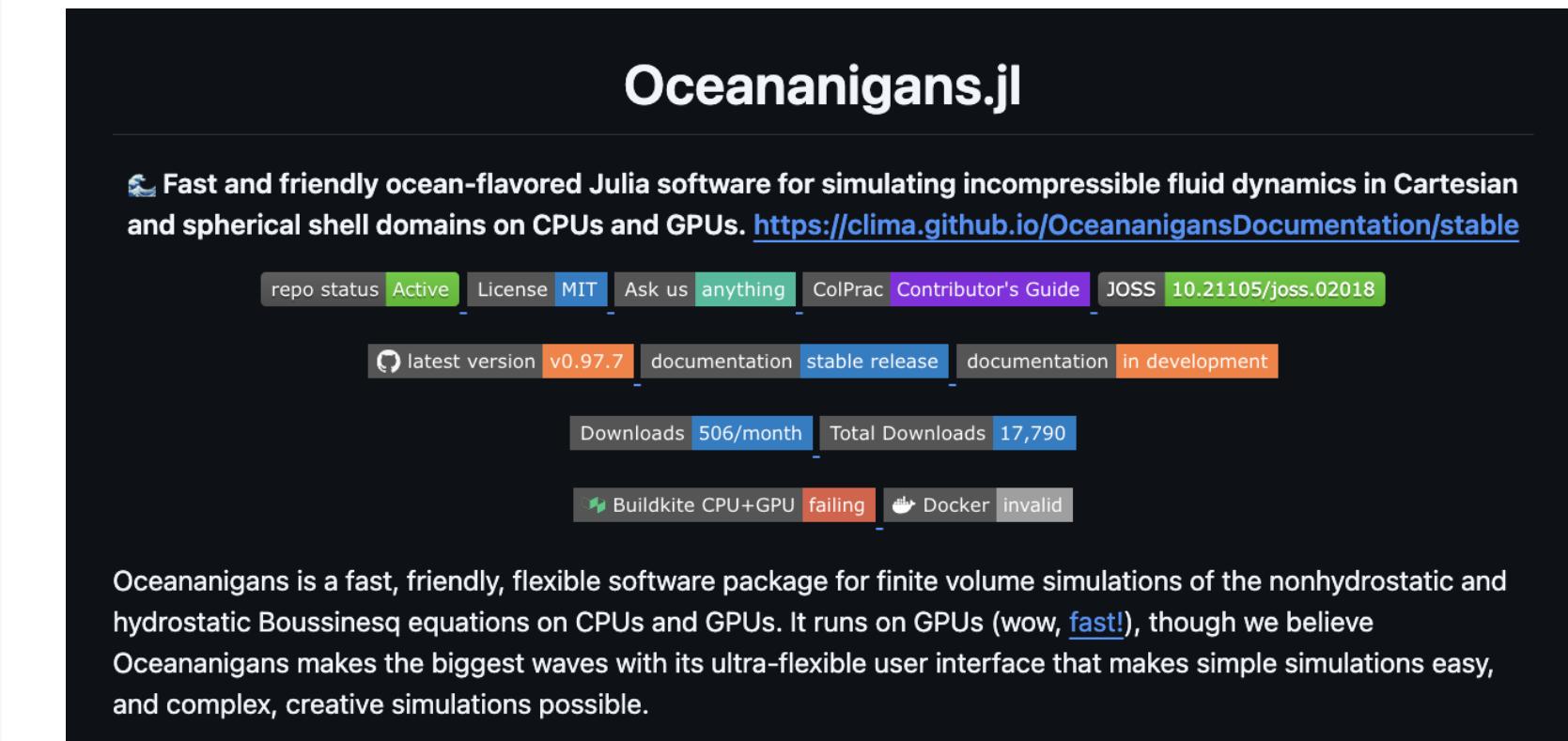
2 different GPU architectures now proven to work with exascale environments.

First and only open-source scientific software stack developed for scalability and available across all HPC platforms, including cloud computing.

Looking More Deeply at Scientific Code

```
function stencil_kernel(y, x)
    i = threadIdx().x + (blockIdx().x - 1) * blockDim().x
    if i <= length(x) - 2
        y[i] = x[i] - 2 * x[i + 1] + x[i + 2]
    end
end

function model(...)
    @cuda threads=... blocks=... stencil_kernel(y, x)
    @cuda threads=... blocks=... stencil_kernel(x, y)
end
```

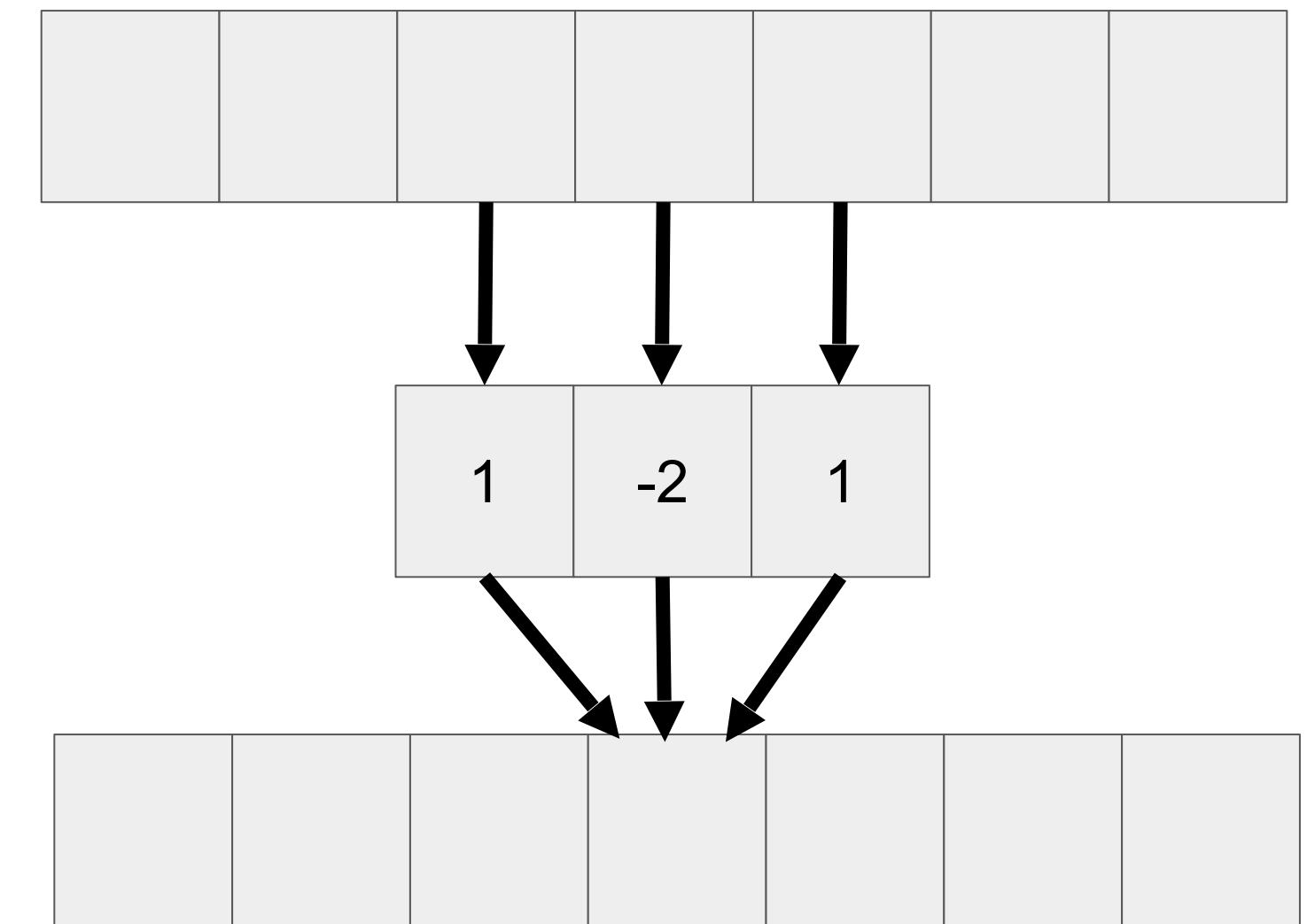


> 277 such kernels

Looking More Deeply at Scientific Code

```
function stencil_kernel(y, x)
    i = threadIdx().x + (blockIdx().x - 1) * blockDim().x
    if i <= length(x) - 2
        y[i] = x[i] - 2 * x[i + 1] + x[i + 2]
    end
end

function model(...)
    @cuda threads=... blocks=... stencil_kernel(y, x)
    @cuda threads=... blocks=... stencil_kernel(x, y)
end
```



> 277 such kernels

CUDA to Accelerator IR (StableHLO)

- New framework for raising and optimizing the structure within existing kernels to stablehlo!
- 1) Compile Kernels to LLVM
- 2) Raise the underlying structure in MLIR
- 3) Multi-dimensionalize it into tensor operators
- 4) Optimize
- Compiled single-node CUDA version of code to execute on thousands of distributed TPUs and GPUs

```
function stencil_kernel(y, x)
  i = threadIdx().x + (blockIdx().x - 1) * blockDim().x
  if i <= length(x) - 2
    y[i] = x[i] - 2 * x[i+1] + x[i+2]
  end
end

function model(...)
  @cuda threads=... blocks=... stencil_kernel(y, x)
  @cuda threads=... blocks=... stencil_kernel(x, y)
end
```

Compilation

```
define void @julia_difference_kernel_890({}* %y, {*} %x) {
top:
%3 = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
%4 = add nuw nsw i32 %3, 1
...
br i1 %.not, label %common.ret, label %L31
}
```

Raising

```
func.func @kernel(%y : memref<100xf64>, %x : memref<100xf64>) {
  affine.parallel %arg1 = 0 to 100 {
    %x1 = affine.load %x[%arg1]
    %x2 = affine.load %x[%arg1 + 1]
    ...
    affine.store %sum, %y[%arg1]
  }
}
```

Multi-Dimensionalization

```
%x1 = stablehlo.slice %x[1:98]
%x2 = stablehlo.slice %x[2:99]
%mul = stablehlo.multiply %x2, tensor<2.0>
%add = stablehlo.add %x1, %mu
```

Optimization

```
res = stablehlo.convolve %x, tensor<[1.0, -4.0, 6.0, -4.0, 1.0]>
```

GPU Programming via LLVM

- Mainstream compilers do not have a high-level representation of parallelism, making optimization difficult or impossible
- This is accentuated for GPU programs where the kernel is kept in a separate module & synchronization is a barrier to optimization.

```
__global__ void normalize(int *out, int* in, int n) {
    int tid = blockIdx.x;
    if (tid < n)
        out[tid] = in[tid] / sum(in, n);
}

void launch(int *out, int* in, int n) {
    normalize<<<n>>>(d_out, d_in, n);
}
```

Host Code

```
target triple = "x86_64-unknown-linux-gnu"

define void @_Z6launchPiS_i(i32* %out,
                            i32* %in,
                            i32 %n) {
    call i32 @_pushCallConfiguration(...)
    call i32 @_cudaLaunch @_device_stub, ...
    ret void
}
```

Device Code

```
target triple = "nvptx"

define void @_Z9normalize(i32* %out,
                         i32* %in, i32 %n) {
    %4 = call i32 @_llvm.tid.x()
    %5 = icmp slt i32 %4, %n
    br i1 %5, label %6, label %13

6:
    %8 = getelementptr i32, i32* %in, i32 %4
    %9 = load i32, i32* %8, align 4
    %10 = call i32 @_Z3sumPi(i32* %in, i32 %n)
    %11 = sdiv i32 %9, %10
    %12 = getelementptr i32, i32* %out, i32 %4
    store i32 %11, i32* %12, align 4
    br label %13

13:
    ret void
}
```

GPU Programming via MLIR

- Preserve Host & Device code through frontend
(Clang Plugin for C++, JIT Package for Julia, etc)
- Enables optimization between caller and kernel
- Enable parallelism-specific optimization

```
__global__ void normalize(int *out, int *in, int n) {
    int tid = blockIdx.x;
    if (tid < n)
        out[tid] = in[tid] / sum(in, n);
}

void launch(int *out, int* in, int n) {
    normalize<<<n>>>(d_out, d_in, n);
}
```

```
func @_Z6launch(%out: memref<?xi32>,
                 %in: memref<?xi32>, %n: i32) {
    %c1 = constant 1 : index
    %c0 = constant 0 : index

    parallel (%tid) = (%c0) to (%n) step (%c1) {
        %2 = load %in[%tid]
        %sum = call @_Z3sumPii(%in, %n)
        %4 = divsi %2, %sum : i32
        store %4, %out[%tid]
        yield
    }
    return
}
```

GPU Programming via MLIR

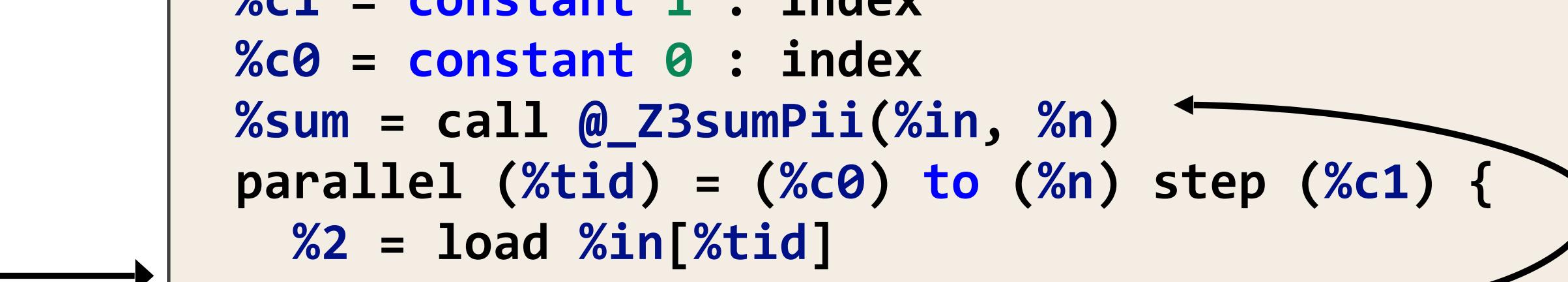
- Preserve Host & Device code through frontend
(Clang Plugin for C++, JIT Package for Julia, etc)
- Enables optimization between caller and kernel
- Enable parallelism-specific optimization

```
__global__ void normalize(int *out, int *in, int n) {
    int tid = blockIdx.x;
    if (tid < n)
        out[tid] = in[tid] / sum(in, n);
}

void launch(int *out, int* in, int n) {
    normalize<<<n>>>(d_out, d_in, n);
}
```

```
func @_Z6launch(%out: memref<?xi32>,
                 %in: memref<?xi32>, %n: i32) {
    %c1 = constant 1 : index
    %c0 = constant 0 : index
    %sum = call @_Z3sumPii(%in, %n)
    parallel (%tid) = (%c0) to (%n) step (%c1) {
        %2 = load %in[%tid]

        %4 = divsi %2, %sum : i32
        store %4, %out[%tid]
        yield
    }
    return
}
```



GPU Programming via MLIR

```
func @launch(%h_out : memref<?xf32>, %h_in : memref<?xf32>, %n : i64) {  
  parallel.for (%gx, %gy, %gz) = (0, 0, 0) to (grid.x, grid.y, grid.z) {  
    %shared_val = memref.alloca : memref<f32>  
    parallel.for (%tx, %ty, %tz) = (0, 0, 0) to (blk.x, blk.y, blk.z) {  
      if %tx == 0 {  
        store ..., %shared_val[] : memref<f32>  
      }  
      polygeist.barrier(%tx, %ty, %tz)  
      ...  
    }  
  }  
}
```

Synchronization via Memory

- Synchronization (`sync_threads`) ensures all threads within a block finish executing `codeA` before executing `codeB`
- The desired synchronization behavior can be reproduced by defining `sync_threads` to have the union of the memory semantics of the code before and after the sync.
- This prevents code motion of instructions which require the synchronization for correctness, but permits other code motion (e.g. index computation).

```
codeA(fib(idx));  
sync_threads;  
codeB(fib(idx));
```

```
off = fib(idx);  
codeA(off);  
sync_threads;  
codeB(off);
```

Synchronization via Memory

- High-level synchronization representation enables new optimizations, like sync elimination.
- A synchronize instruction is not needed if the set of read/writes before the sync don't conflict with the read/writes after the sync.

```
__global__ void bpnn_layerforward(...) {
    __shared__ float node[HEIGHT];
    __shared__ float weights[HEIGHT][WIDTH];

    if ( tx == 0 )
        node[ty] = input[index_in] ;

        // Unnecessary Barrier #1
        // None of the read/writes below the sync
        // (weights, hidden)
        // intersect with the read/writes above the sync
        // (node, input)
        __syncthreads();

        // Unnecessary Store #1
        weights[ty][tx] = hidden[index];

        __syncthreads();

        // Unnecessary Load #1
        weights[ty][tx] = weights[ty][tx] * node[ty];
        ...
}
```

Synchronization via Memory

- Hardware reorganization needs memory efficient synchronization instead of barriers
- Abstracted parallel constructs after synchronization
- 27% speedup on real code, 2.7x on PyTorch cross compilation!

High-Performance GPU-to-CPU Transpilation and Optimization via High-Level Parallel Constructs

William S. Moses wmoses@mit.edu
MIT CSAIL
United States

Ivan R. Ivanov ivanov@m.titech.ac.jp
Tokyo Tech
Japan

Jens Domke jens.domke@riken.jp
RIKEN
Japan

Toshio Endo endo@is.titech.ac.jp
Tokyo Tech
Japan

Johannes Doerfert jdoerfert@lbl.gov
LLNL
United States

Oleksandr Zinenko zinenko@google.com
Google
France

Abstract
While parallelism remains the main source of performance, architectural implementations and programming models change with each new hardware generation, often leading to costly application re-engineering. Most tools for performance portability require manual and costly application porting to yet another programming model.
We propose an alternative approach that automatically translates programs written in one programming model (CUDA), into another (CPU threads) based on Polygeist/MLIR. Our approach includes a representation of parallel constructs that allows conventional compiler transformations to apply transparently and without modification and enables parallelism-specific optimizations. We evaluate our framework by transpiling and optimizing the CUDA Rodinia benchmark suite for a multi-core CPU and achieve a 58% geomean speedup over handwritten OpenMP code. Further, we show how CUDA kernels by PyTorch can efficiently run and scale on the CPU-only Supercomputer Fugaku without user intervention. Our PyTorch compatibility layer making use of transpiled CUDA PyTorch kernels outperforms the PyTorch CPU native backend by 2.7x.

CCS Concepts: • Software and its engineering → Compilers; • Theory of computation → Parallel computing models.

Keywords: Polygeist, MLIR, CUDA, Barrier Synchronization

ACM Reference Format:
William S. Moses, Ivan R. Ivanov, Jens Domke, Toshio Endo, Johannes Doerfert, and Oleksandr Zinenko. 2023. High-Performance GPU-to-CPU Transpilation and Optimization via High-Level Parallel Constructs. In *The 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming (PPoPP '23)*, February 25–March 1, 2023, Montreal, QC, Canada. ACM, New York, NY, USA, 16 pages. <https://doi.org/10.1145/3572848.3577475>

This work is licensed under a Creative Commons Attribution International 4.0 license.

PPoPP '23, February 25–March 1, 2023, Montreal, QC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9015-6/23/02.
<https://doi.org/10.1145/3572848.3577475>

Retargeting and Respecializing GPU Workloads for Performance Portability

Ivan R. Ivanov ivanov.ria@riken.jp
Tokyo Institute of Technology
RIKEN R-CCS
Kobe, Japan

Oleksandr Zinenko zinenko@google.com
Google DeepMind
Paris, France

Jens Domke jens.domke@riken.jp
RIKEN R-CCS
Kobe, Japan

Toshio Endo endo@is.titech.ac.jp
Tokyo Institute of Technology
Tokyo, Japan

William S. Moses wsmoses@illinois.edu
University of Illinois Urbana-Champaign
Google DeepMind
Illinois, United States

Abstract—In order to come close to peak performance, accelerators like GPUs require significant architecture-specific tuning that understand the availability of shared memory, parallelism, tensor cores, etc. Unfortunately, the pursuit of higher performance and lower costs have led to a significant diversification of architecture designs, even from the same vendor. This creates the need for performance portability across different GPUs, especially important for programs in a particular programming model with a certain architecture in mind. Even when the program can be seamlessly executed on a different architecture, it may suffer a performance penalty due to it not being sized appropriately to the available hardware resources such as fast memory and registers, let alone not using newer advanced features of the architecture.
We propose a new approach to improving performance of legacy CUDA programs for modern machine by automatically adjusting the amount of work each parallel thread does, and the amount of memory and register resources it requires. By operating within the MLIR compiler infrastructure, we are able to also target AMD GPUs by performing automatic translation from CUDA and simultaneously adjust the program granularity to fit the size of target GPUs.
Combined with autotuning assisted by the platform-specific compiler, our approach demonstrates 27% geomean speedup on the Rodinia benchmark suite over baseline CUDA implementation as well as performance parity between similar NVIDIA and AMD GPUs executing the same CUDA program.

1 INTRODUCTION

Accelerators like GPUs remain the hardware target of choice for performance-critical software. Achieving high performance on these accelerators requires programmers to effectively leverage a peculiar programming model, most often exposed as C++ language extensions such as CUDA for NVIDIA GPUs and ROCm for AMD. While the community has developed alternative methods to portably program GPUs, including: a high-level block programming model in Triton [1], automatic mapping of C++ code onto GPUs [2], NumPy-style abstractions with varying degree of automated scheduling in JAX [3], TC [4], and TVM [5]; many of the performance-critical scientific

¹In spite of various alternatives, like ROCm and SYCL [6], the CUDA framework, a pioneer of the GPU programming model, is used in significantly more applications due to legacy, maintenance, and network effects.

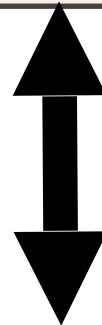
```
void bpnn_layerforward(...) {  
    float node[HEIGHT];  
    float weights[HEIGHT][WIDTH];  
    ...  
    == 0 )  
    ty] = input[index_in] ;  
  
    necessary Barrier #1  
    of the read/writes below the sync  
    insights, hidden)  
    intersect with the read/writes above the sync  
    de, input)  
    _syncthreads();  
  
    necessary Store #1  
    [ty][tx] = hidden[index];  
  
    // Unnecessary Load #1  
    weights[ty][tx] = weights[ty][tx] * node[ty];  
    ...  
}
```

Synchronization via Memory

- A unified representation of parallelism enables programs in one parallel architecture (e.g. CUDA) to be compiled to another (e.g. historically OpenMP, now TPUs)
- Some backends do not have block synchronization
- Lower a top-level synchronization by distributing the parallel for loop around the sync, and interchanging control flow

```
parallel_for %i = 0 to N {  
    codeA(%i);  
    sync_threads;  
    codeB(%i);  
}
```

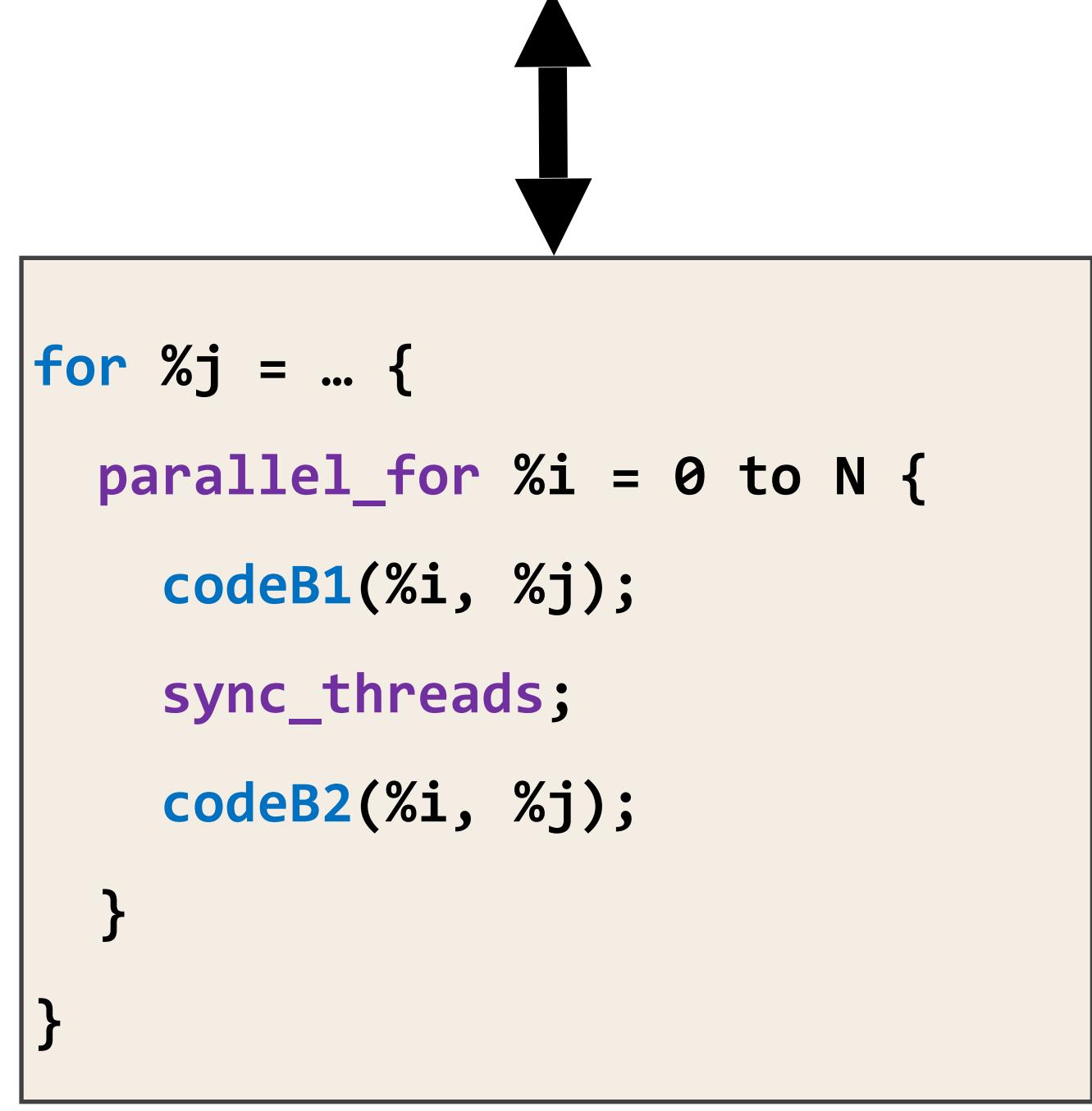
```
parallel_for %i = 0 to N {  
    codeA(%i);  
}  
  
parallel_for %i = 0 to N {  
    codeB(%i);  
}
```



Synchronization via Memory

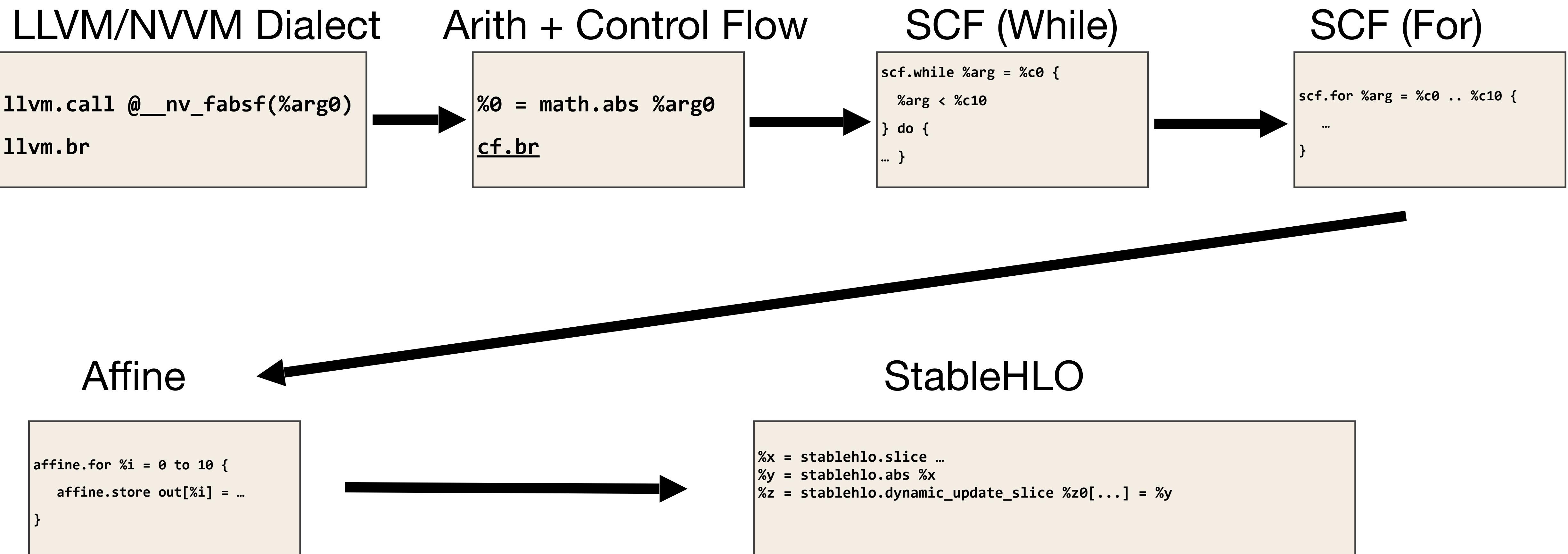
- A unified representation of parallelism enables programs in one parallel architecture (e.g. CUDA) to be compiled to another (e.g. historically OpenMP, now TPUs)
- Some backends do not have block synchronization
- Lower a top-level synchronization by distributing the parallel for loop around the sync, and interchanging control flow

```
parallel_for %i = 0 to N {  
    for %j = ... {  
        codeB1(%i, %j);  
        sync_threads;  
        codeB2(%i, %j);  
    }  
}
```

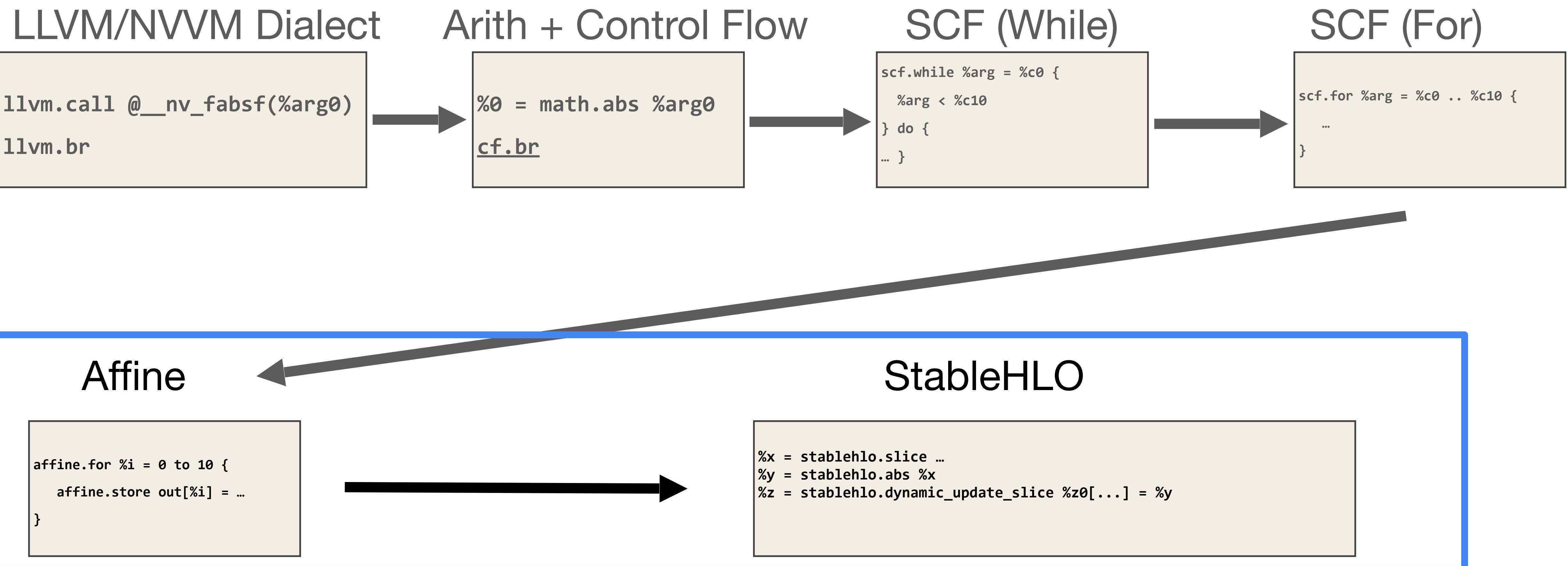


```
for %j = ... {  
    parallel_for %i = 0 to N {  
        codeB1(%i, %j);  
        sync_threads;  
        codeB2(%i, %j);  
    }  
}
```

LLVM to StableHLO



LLVM to StableHLO



Affine to StableHLO

- Represent *permissive, device-agnostic parallelism*
 - Legal to re-order and interchange instructions
 - One execution (lock-step), runs all of A1, then all of A2, etc
 - Lets us form efficient tensor (stablehlo) versions of kernels

```
parallel.for (%tx, %ty, %tz) = (0,0,0) to (5,7,9){  
    %A1 = load x[%tx, %ty, %tz]  
    %A2 = sin(%A1)  
    store y[%tx, %ty, %tz] = %A2  
    ...  
}
```

Affine to StableHLO

- Represent *permissive, device-agnostic parallelism*
 - Legal to re-order and interchange instructions
 - One execution (lock-step), runs all of A1, then all of A2, etc
 - Lets us form efficient tensor (stablehlo) versions of kernels

```
%A1 = stablehlo.slice %x[0:5, 0:7, 0:9]
parallel.for (%tx, %ty, %tz) = (0,0,0) to (5,7,9){
  %A2 = sin(%A1)
  store y[%tx, %ty, %tz] = %A2
  ...
}
```

Affine to StableHLO

- Represent *permissive, device-agnostic parallelism*
 - Legal to re-order and interchange instructions
 - One execution (lock-step), runs all of A1, then all of A2, etc
 - Lets us form efficient tensor (stablehlo) versions of kernels

```
%A1 = stablehlo.slice %x[0:5, 0:7, 0:9]  
  
%A2 = stablehlo.sine %A1  
  
parallel.for (%tx, %ty, %tz) = (0,0,0) to (5,7,9){  
    store y[%tx, %ty, %tz] = %A2  
    ...  
}
```

Affine to StableHLO

- Represent *permissive, device-agnostic parallelism*
 - Legal to re-order and interchange instructions
 - One execution (lock-step), runs all of A1, then all of A2, etc
 - Lets us form efficient tensor (stablehlo) versions of kernels

```
%A1 = stablehlo.slice %x[0:5, 0:7, 0:9]
%A2 = stablehlo.sine %A1

%Y2 = stablehlo.dynamic_update_slice
      %Y[0:5, 0:7, 0:9], %A2

parallel.for (%tx, %ty, %tz) = (0,0,0) to (5,7,9){
  ...
}
```

StableHLO ... to better StableHLO

- The direct vectorization of the code works, but may not be efficient.
- We will lost the convolution!
- Perform tensor-level optimizations on stablehlo to recover and optimize higher-level structures

```
%x1 = stablehlo.slice %x[1:98]
%x2 = stablehlo.slice %x[2:99]
%mul = stablehlo.multiply %x2, tensor<2.0>
%add = stablehlo.add %x1, %mu
...
```



```
%y = stablehlo.convolve %x, tensor<[1.0, -2.0, 1.0]>
%z = stablehlo.convolve %y, tensor<[1.0, -2.0, 1.0]>
```



```
%z = stablehlo.convolve %x, tensor<[1.0, -4.0, 6.0, -4.0, 1.0]>
```

StableHLO ... to better StableHLO

- The direct vectorization of the code works, but may not be efficient.

- We will lost the convolution!

Mind the Abstraction Gap: Bringing Equality Saturation to Real-World ML Compilers

ARYA VOHRA*, University of Chicago, USA
LEO SEOJUN LEE*, University of Oxford, UK
JAKUB BACHURSKI, University of Cambridge, UK
OLEKSANDR ZINENKO, BRIUM, France
PHITCHAYA MANGO PHOTHILIMTHANA, OpenAI, USA
ALBERT COHEN, Google, France
WILLIAM S. MOSES, UIUC, USA

Machine learning (ML) compilers rely on graph-level transformations to enhance the runtime performance of ML models. However, performing local transformations on individual operations can create effects far beyond the location of the rewrite. In particular, a local rewrite can change the profitability or legality of hard-to-predict downstream transformations, particularly regarding data layout, parallelization, fine-grained scheduling, and memory management. As a result, program transformations are often driven by manually-tuned compiler heuristics, which are quickly rendered obsolete by new hardware and model architectures.

Instead of hand-written local heuristics, we propose the use of equality saturation. We replace such heuristics with a more robust *global* performance model, which accounts for downstream transformations. Equality saturation addresses the challenge of local optimizations inadvertently constraining or negating the benefits of subsequent transformations, thereby providing a solution that is inherently adaptable to newer workloads. While this approach still requires a global performance model to evaluate the profitability of transformations, it holds significant promise for increased automation and adaptability.

This paper addresses challenges in applying equality saturation on real-world ML compute graphs and state-of-the-art hardware. By doing so, we present an improved method for discovering effective compositions of graph optimizations. We study different cost modeling approaches to deal with fusion and layout optimization, and tackle scalability issues that arise from considering a very wide range of algebraic optimizations. We design an equality saturation pass for the XLA compiler, with an implementation in C++ and Rust. We demonstrate an average speedup of 3.45% over XLA's optimization flow across our benchmark suite on various CPU and GPU platforms, with a maximum speedup of 56.26% for NasRNN on CPU.

ACM Reference Format:
Arya Vohra, Leo Seojun Lee, Jakub Bachurski, Oleksandr Zinenko, Phitchaya Mango Phothilimthana, Albert Cohen, and William S. Moses. 2025. Mind the Abstraction Gap: Bringing Equality Saturation to Real-World ML Compilers. 1, 1 (August 2025), 28 pages. <https://doi.org/10.1145/mnnnnnn.nnnnnnn>

*These authors contributed equally.

Authors' addresses: Arya Vohra, aryavohra@uchicago.edu, University of Chicago, USA; Leo Seojun Lee, seojun.lee@oriel.ox.ac.uk, University of Oxford, UK; Jakub Bachurski, kbachurski@gmail.com, University of Cambridge, UK; Oleksandr Zinenko, alex@brium.ai, Brium, France; Phitchaya Mango Phothilimthana, pmango@openai.com, OpenAI, USA; Albert Cohen, albertcohen@google.com, Google, France; William S. Moses, wsmoses@illinois.edu, UIUC, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Association for Computing Machinery.
XXXX-XXXX/2025/8-ART \$15.00
<https://doi.org/10.1145/mnnnnnn.nnnnnnn>

el optimizations
over and
el structures

56% speedup on JaX ML workloads

```
%x1 = stablehlo.slice %x[1:98]
%x2 = stablehlo.slice %x[2:99]
%mul = stablehlo.multiply %x2, tensor<2.0>
%add = stablehlo.add %x1, %mu
...
```



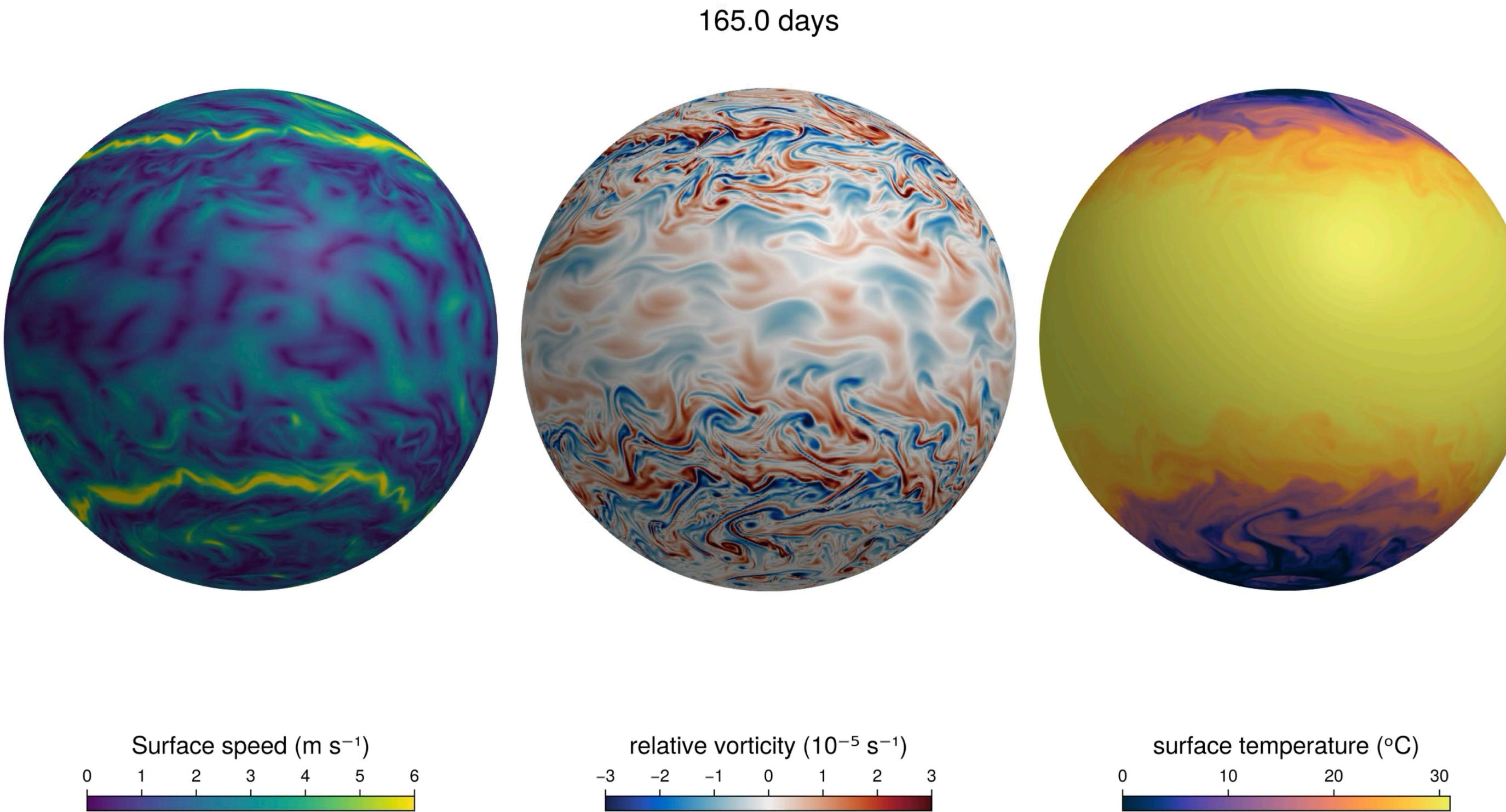
```
%y = stablehlo.convolve %x, tensor<[1.0, -2.0, 1.0]>
%z = stablehlo.convolve %y, tensor<[1.0, -2.0, 1.0]>
```



```
%z = stablehlo.convolve %x, tensor<[1.0, -4.0, 6.0, -4.0, 1.0]>
```

ACM Reference Format:
Arya Vohra, Leo Seojun Lee, Jakub Bachurski, Oleksandr Zinenko, Phitchaya Mango Phothilimthana, Albert Cohen, and William S. Moses. 2025. Mind the Abstraction Gap: Bringing Equality Saturation to Real-World ML Compilers. 1, 1 (August 2025), 28 pages. <https://doi.org/10.1145/mnnnnnn.nnnnnnn>

CUDA to Accelerator IR (StableHLO)



```
function stencil_kernel(y, x)
  i = threadIdx().x + (blockIdx().x - 1) * blockDim().x
  if i <= length(x) - 2
    y[i] = x[i] - 2 * x[i+1] + x[i+2]
  end
end

function model(...)
  @cuda threads=... blocks=... stencil_kernel(y, x)
  @cuda threads=... blocks=... stencil_kernel(x, y)
end
```

Compilation

```
define void @julia_difference_kernel_890({}* %y, {*} %x) {
top:
%3 = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
%4 = add nuw nsw i32 %3, 1
...
br i1 %.not, label %common.ret, label %L31
}
```

Raising

```
func.func @kernel(%y : memref<100xf64>, %x : memref<100xf64>) {
  affine.parallel %arg1 = 0 to 100 {
    %x1 = affine.load %x[%arg1]
    %x2 = affine.load %x[%arg1 + 1]
    ...
    affine.store %sum, %y[%arg1]
  }
}
```

Multi-Dimensionalization

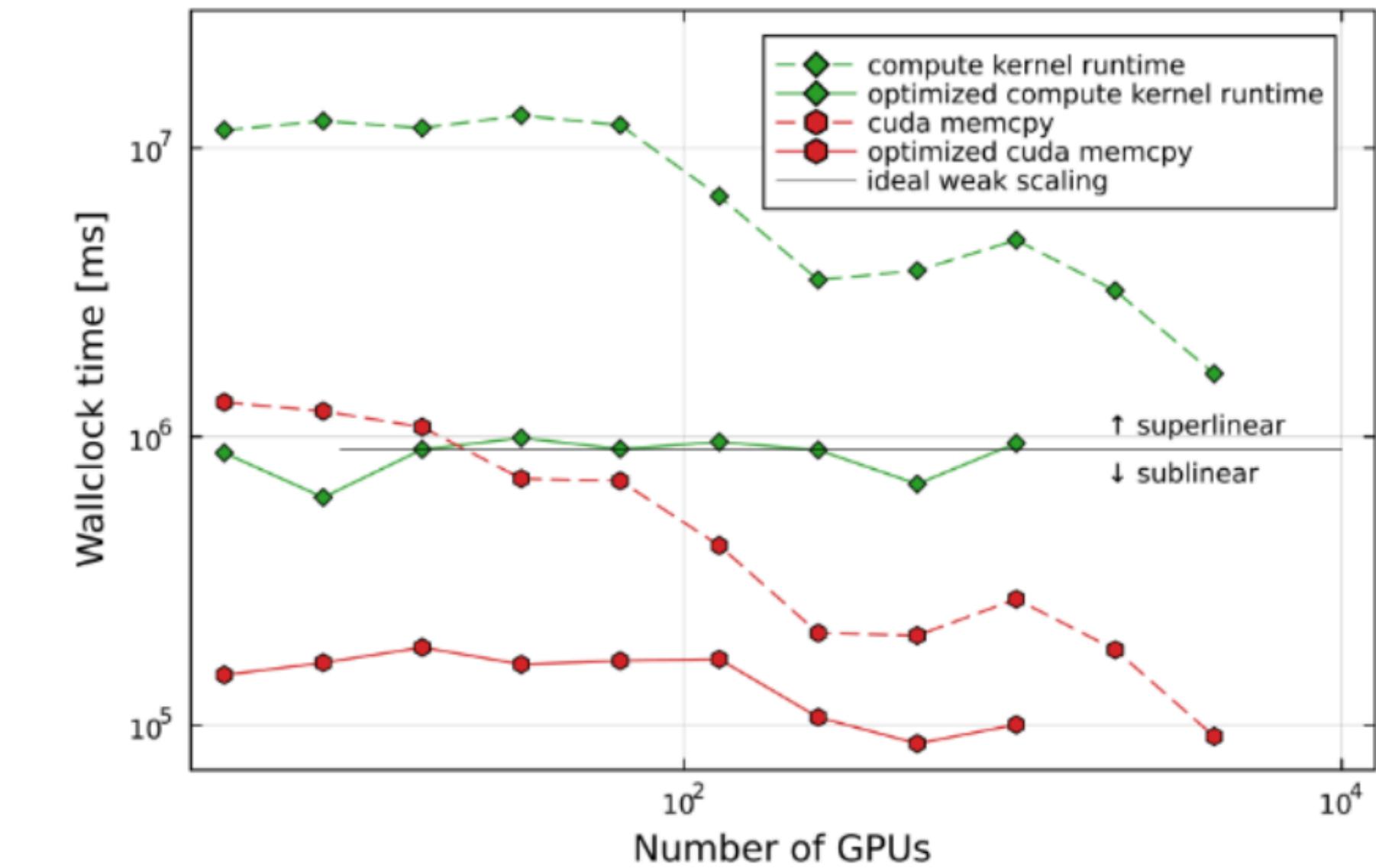
```
%x1 = stablehlo.slice %x[1:98]
%x2 = stablehlo.slice %x[2:99]
%mul = stablehlo.multiply %x2, tensor<2.0>
%add = stablehlo.add %x1, %mu
```

Optimization

```
res = stablehlo.convolve %x, tensor<[1.0, -4.0, 6.0, -4.0, 1.0]>
```

Primal Raising Performance Results

- Successfully ran single-node Oceanangians.jl on thousands of distributed accelerators
 - Perlmutter (1536 nodes x 4 NVIDIA A100 GPUs)
 - 1,679 Google TPUs v6e (918 TFLOPS each)
- Communication optimizations were key
- Good Single-Node Perf (CPU)
 - Vanilla Model: 272.0 seconds
 - Tensor Optim: 11.5 seconds



Operation	Percent of Execution
Concatenate	39.04%
Reduce-Window	35.01%
Loop-Fusion 1	19.71%
Data Formatting	2.89%
Slice	1.59%
X64Combine	0.88%
Collective-Permute	0.48%

Table 1: Breakdown of TPU execution time by operation type, on a single node 4-TPU machine.

How Does Raising & Tensor Transformations Impact AD?

Automatic Differentiation and Optimization of GPU Kernels via Enzyme

ses*, Valentin Churavy*, Ludger Paehter§, Jan Hückelheim†, Krishnan Narayanan†, Michel Schanen†, Johannes Doerfert† mit.edu,ludger.paehter@tum.de,[jhuckelheim,snarayanan,mschanen,jdoerfert]@anl.gov

```

many algorithms in scientific computation as optimization, uncertainty analysis. Enzyme is a LLVM compiler for automatic differentiation (AD) that generates gradients of programs in languages like Julia and Rust. Prior to this work, Enzyme was not capable of generating gradients for a combination of novel reasons: the first fully automatic reverse-mode gradient of GPU kernels. Since unlike automatic differentiation within a compiler, Enzyme is able to introspect several novel features. To show the generality and correctness of the gradients, we compute gradients of five GPU-based DIA and AMD GPUs. All benchmarks of the original program's AD-specific optimizations, gradients run from a lack of resources or memory, we demonstrate that increasing the number of threads does not substantially impact the performance of the generated gradients.

```

Scalable Automatic Differentiation of Multiple Parallel Paradigms through Compiler Augmentation

Argonne National Laboratory Argonne National Laboratory Argonne National Laboratory Argonne National Laboratory
International Conference for High-Performance Computing, Networking, and Computing
Lemont, IL Lemont, IL Lemont, IL Lemont, IL
mschanen@anl.gov jhuckelheim@anl.gov jdoerfert@anl.gov hovland@mcs.anl.gov
acknowledges that this contribution was made by an employee of the United States Government as part of the employee's official duties, and therefore is not subject to copyright protection in the United States.
Lemont, IL Lemont, IL Lemont, IL Lemont, IL
mschanen@anl.gov jhuckelheim@anl.gov jdoerfert@anl.gov hovland@mcs.anl.gov
others to do so, for Government purposes
USA
©. Publication rights licensed to ACM
0

based parallelism) that preserves scalability and efficiency, implemented into the LLVM-based Enzyme automatic differentiation framework. By integrating a hand-tuned parallelizer, the Enzyme automatic differentiation framework can directly control code generation. Combined with its ability to differentiate any LLVM-based language, this flexibility permits Enzyme to leverage the compiler tool chain for parallel and differentiation-specific optimizations.

g Foreign Code for Machine ally Synthesize Fast Gradients

Valentin Churavy
MIT CSAIL
vchuravy@mit.edu

Abstract

ning techniques and machine learning algorithms developers to either rewrite their code in a machine to provide derivatives of the foreign code. This performance automatic differentiation (AD) compiler framework capable of synthesizing gradients of expressed in the LLVM intermediate representation programs for programs written in any language whose binding C, C++, Fortran, Julia, Rust, Swift, MLIR, capabilities in these languages. Unlike traditional overloading tools, Enzyme performs AD on optimizer-focused benchmark suite including Microsoft's achieves a geometric mean speedup of 4.2 times allowing Enzyme to achieve state-of-the-art performance for PyTorch and TensorFlow provides convenient mode with state-of-the-art performance, enabling ported into existing machine learning workflows.

such as PyTorch [48] and TensorFlow [1] have become the modern ML community. Computing gradients necessary [2], Bayesian inference, uncertainty quantification [60], and all of the code being differentiated to be written in these applying ML to new domains as existing tools like physics engines, and climate models [58] are not written in the domain works. The rewriting required has been identified as the to scientific computing [4]. As stated by Rackauckas [50]] because, if there is just one part of your loss function that work won't train."

hub.com/wsmoses/Enzyme and <https://enzyme.mit.edu>.

Journal of Nonlinear Science, Volume 29, Number 6, December 2019, pp. 2023–2050

ssing Systems (NeurIPS 2020), Vancouver, Canada.

Linear Algebra Optimizations

Wrote >200 different patterns!

Simplify code where possible

$x + 0 \rightarrow x$

$\text{transpose}(\text{transpose}(x)) \rightarrow x$

$\text{transpose}(\text{matmul}(a, b)) \rightarrow$
 $\text{matmul}(b, a)$

Often require program context

$\text{transpose}(\text{convert}(\text{reshape}(x)))$
 $\leftrightarrow \text{reshape}(\text{convert}(\text{transpose}(x)))$

$\text{slice}(\text{add}(a, b)) \rightarrow$
 $\text{add}(\text{slice}(a), \text{slice}(b))$

$\text{mul}(\text{pad}(x, 0), y) \rightarrow$
 $\text{pad}(\text{mul}(x, \text{slice}(y)), 0)$

```
x, y : tensor<100000xf32>
a = dot(x, y)
b = mul(a, z)
c = add(b, 4)
return c[0:10]
```

Linear Algebra Optimizations

Wrote >200 different patterns!

Simplify code where possible

$x + 0 \rightarrow x$

$\text{transpose}(\text{transpose}(x)) \rightarrow x$

$\text{transpose}(\text{matmul}(a, b)) \rightarrow$
 $\text{matmul}(b, a)$

Often require program context

$\text{transpose}(\text{convert}(\text{reshape}(x)))$
 $\leftrightarrow \text{reshape}(\text{convert}(\text{transpose}(x)))$

$\text{slice}(\text{add}(a, b)) \rightarrow$
 $\text{add}(\text{slice}(a), \text{slice}(b))$

$\text{mul}(\text{pad}(x, 0), y) \rightarrow$
 $\text{pad}(\text{mul}(x, \text{slice}(y)), 0)$

```
x, y : tensor<100000xf32>
a = dot(x, y)
b = mul(a, z)
c = add(b[0:10], 4)
return c
```

Linear Algebra Optimizations

Wrote >200 different patterns!

Simplify code where possible

$x + 0 \rightarrow x$

$\text{transpose}(\text{transpose}(x)) \rightarrow x$

$\text{transpose}(\text{matmul}(a, b)) \rightarrow$
 $\text{matmul}(b, a)$

Often require program context

$\text{transpose}(\text{convert}(\text{reshape}(x)))$
 $\leftrightarrow \text{reshape}(\text{convert}(\text{transpose}(x)))$

$\text{slice}(\text{add}(a, b)) \rightarrow$
 $\text{add}(\text{slice}(a), \text{slice}(b))$

$\text{mul}(\text{pad}(x, 0), y) \rightarrow$
 $\text{pad}(\text{mul}(x, \text{slice}(y)), 0)$

```
x, y : tensor<100000xf32>
a = dot(x, y)
b = mul(a[0:10], z[0:10])
c = add(b, 4)
return c
```

Linear Algebra + AD

- Consider a simple code which performs a matmul and add on a Diagonal matrix

```
diagmm(v, A, x) = sum(abs2, v * A .+ x)
v = Reactant.to_rarray(Diagonal(rand(Float32, 1024)))
A = Reactant.to_rarray(rand(Float32, 1024, 1024))
x = Reactant.to_rarray(rand(Float32, 1024, 1024))
```

Linear Algebra + AD

- Consider a simple code which performs a matmul and add on a Diagonal matrix
- Without any optimization, we perform a scatter to create the diagonal, then a matmul

```
diagmm(v, A, x) = sum(abs2, v * A .+ x)
v = Reactant.to_rarray(Diagonal(rand(Float32, 1024)))
A = Reactant.to_rarray(rand(Float32, 1024, 1024))
x = Reactant.to_rarray(rand(Float32, 1024, 1024))
```

```
func.func @main(%arg0: tensor<1024xf32>, %arg1: tensor<1024x1024xf32>, %arg2: tensor<1024x1024xf32>) → tensor<f32> {
  %cst = stablehlo.constant dense<0.000000e+00> : tensor<f32>
  %cst_0 = stablehlo.constant dense<0.000000e+00> : tensor<1024x1024xf32>
  %0 = stablehlo.transpose %arg2, dims = [1, 0] : (tensor<1024x1024xf32>) → tensor<1024x1024xf32>
  %1 = stablehlo.iota dim = 0 : tensor<1024x2xi64>
  %2 = "stablehlo.scatter"(%cst_0, %1, %arg0) <{scatter_dimension_numbers =
#stablehlo.scatter<inserted_window_dims = [0, 1], scatter_dims_to_operand_dims = [0, 1],
index_vector_dim = 1}> ({^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>):
  stablehlo.return %arg4 : tensor<f32>
}) : (tensor<1024x1024xf32>, tensor<1024x2xi64>, tensor<1024xf32>) → tensor<1024x1024xf32>
%3 = stablehlo.dot_general %2, %arg1, contracting_dims = [1] x [1], precision = [DEFAULT,
DEFAULT] : (tensor<1024x1024xf32>, tensor<1024x1024xf32>) → tensor<1024x1024xf32>
%4 = stablehlo.add %3, %0 : tensor<1024x1024xf32>
%5 = stablehlo.multiply %4, %4 : tensor<1024x1024xf32>
%6 = stablehlo.reduce(%5 init: %cst) applies stablehlo.add across dimensions = [0, 1] :
(tensor<1024x1024xf32>, tensor<f32>) → tensor<f32>
  return %6 : tensor<f32>
}
```

Linear Algebra + AD

- Consider a simple code which performs a matmul and add on a Diagonal matrix
- Without any optimization, we perform a scatter to create the diagonal, then a matmul
- Differentiating this, results in gathers in the derivative, which cannot be removed via optimization.

```
diagmm(v, A, x) = sum(abs2, v * A .+ x)

v = Reactant.to_rarray(Diagonal(rand(Float32, 1024)))
A = Reactant.to_rarray(rand(Float32, 1024, 1024))
x = Reactant.to_rarray(rand(Float32, 1024, 1024))
```

```
func.func @main(%arg0: tensor<1024xf32>, %arg1: tensor<1024x1024xf32>, %arg2: tensor<1024x1024xf32>) → (tensor<1024xf32>, tensor<1024x1024xf32>, tensor<1024x1024xf32>)
{
    %cst = stablehlo.constant dense<2.000000e+00> : tensor<1024x1024xf32>
    %cst_0 = stablehlo.constant dense<2.000000e+00> : tensor<1024x1024xf32>
    %cst_1 = stablehlo.constant dense<0.000000e+00> : tensor<1024x1024xf32>
    %0 = stablehlo.transpose %arg2, dims = [1, 0] : (tensor<1024x1024xf32>) → tensor<1024x1024xf32>
    %1 = stablehlo.iota dim = 0 : tensor<1024x2xi64>
    %2 = stablehlo.broadcast_in_dim %arg0, dims = [0] : (tensor<1024xf32>) → tensor<1024x1024xf32>
    %3 = stablehlo.multiply %2, %arg1 : tensor<1024x1024xf32>
    %4 = stablehlo.add %3, %0 : tensor<1024x1024xf32>
    %5 = stablehlo.multiply %4, %cst_0 : tensor<1024x1024xf32>
    %6 = stablehlo.compare GE, %4, %cst_1 : (tensor<1024x1024xf32>, tensor<1024x1024xf32>) → tensor<1024x1024xi1>
    %7 = stablehlo.multiply %4, %cst : tensor<1024x1024xf32>
    %8 = stablehlo.select %6, %5, %7 : tensor<1024x1024xi1>, tensor<1024x1024xf32>
    %9 = stablehlo.transpose %8, dims = [1, 0] : (tensor<1024x1024xf32>) → tensor<1024x1024xf32>
    %10 = stablehlo.dot_general %8, %arg1, contracting_dims = [1] x [0], precision = [DEFAULT, DEFAULT] : (tensor<1024x1024xf32>, tensor<1024x1024xf32>) → tensor<1024x1024xf32>
    %11 = stablehlo.broadcast_in_dim %arg0, dims = [1] : (tensor<1024xf32>) → tensor<1024x1024xf32>
    %12 = stablehlo.multiply %8, %11 : tensor<1024x1024xf32>
    %13 = "stablehlo.gather"(%10, %1) <{dimension_numbers = #stablehlo.gather<collapsed_slice_dims = [0, 1], start_index_map = [0, 1], index_vector_dim = 1>, slice_sizes = array<i64: 1, 1>} : (tensor<1024x1024xf32>, tensor<1024x2xi64>) → tensor<1024xf32>
        return %13, %12, %9 : tensor<1024xf32>, tensor<1024x1024xf32>, tensor<1024x1024xf32>
}
```

Linear Algebra + AD

- Consider a simple code which performs a matmul and add on a Diagonal matrix
- $\text{mul}(\text{diag}(x), v) \rightarrow \text{elementwise}(x, v)$
- Performing this prior to AD yields 2-3x performance!

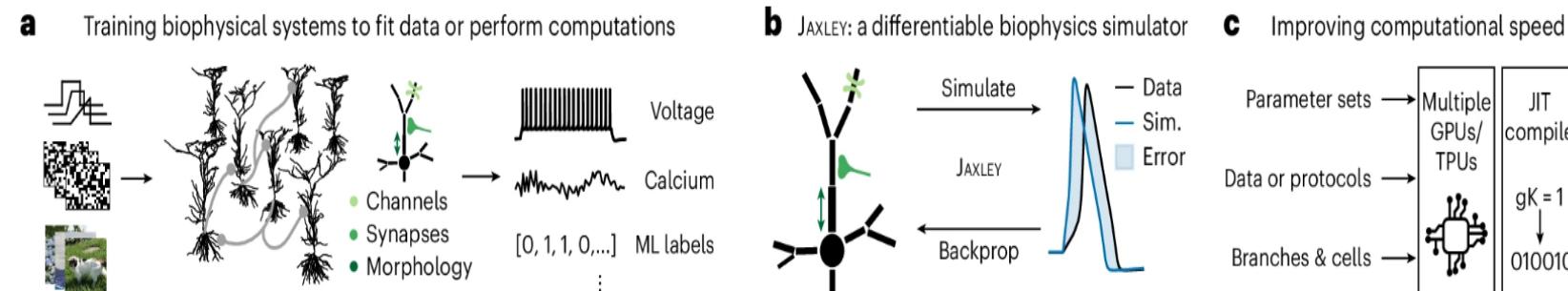
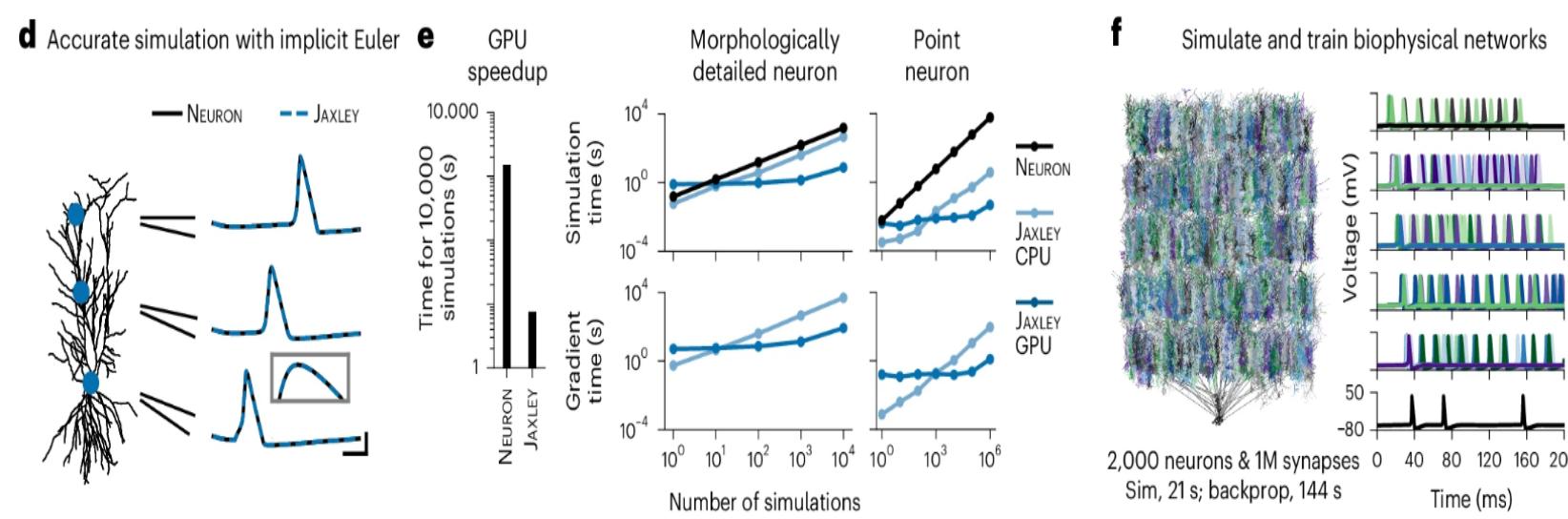
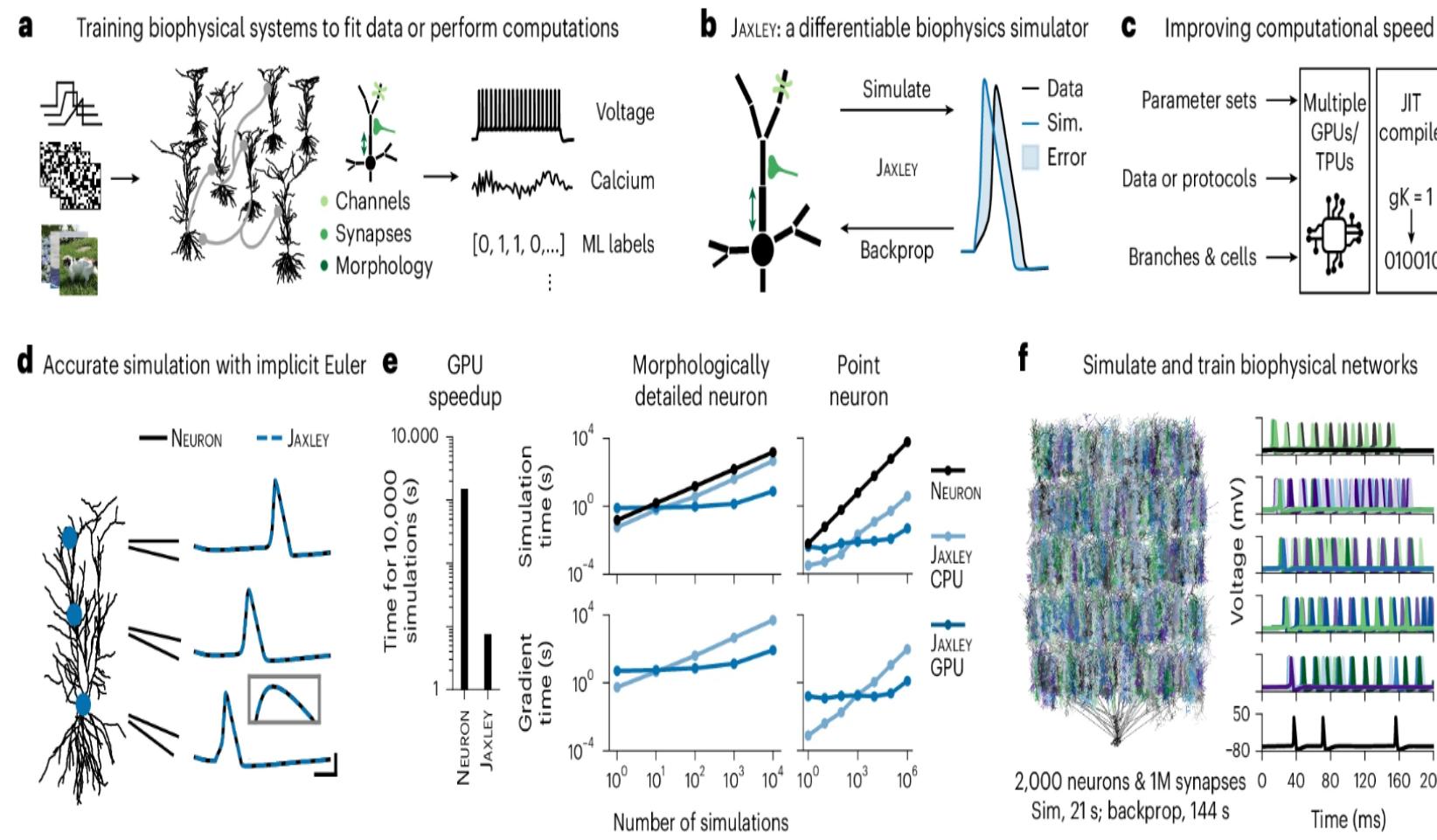
All Optimizations Enabled

```
func.func @main(%arg0: tensor<1024xf32>, %arg1: tensor<1024x1024xf32>, %arg2: tensor<1024x1024xf32>)
→ tensor<f32> {
  %cst = stablehlo.constant dense<0.000000e+00> : tensor<f32>
  %0 = stablehlo.broadcast_in_dim %arg0, dims = [1] : (tensor<1024xf32>) → tensor<1024x1024xf32>
  %1 = stablehlo.multiply %0, %arg1 : tensor<1024x1024xf32>
  %2 = stablehlo.add %1, %arg2 : tensor<1024x1024xf32>
  %3 = stablehlo.multiply %2, %2 : tensor<1024x1024xf32>
  %4 = stablehlo.reduce(%3 init: %cst) applies stablehlo.add across dimensions = [0, 1] :
(tensor<1024x1024xf32>, tensor<f32>) → tensor<f32>
  return %4 : tensor<f32>
}
```

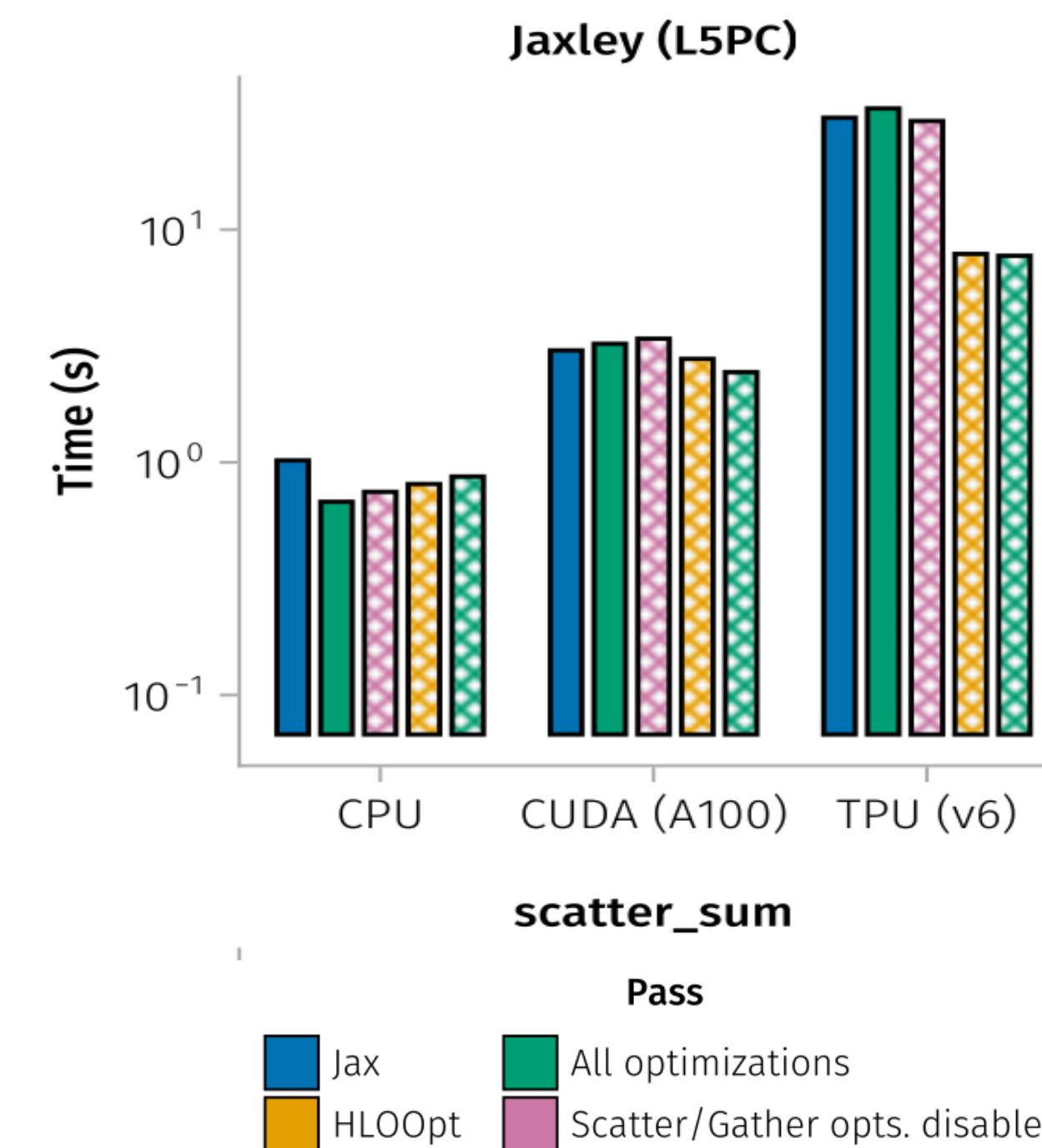
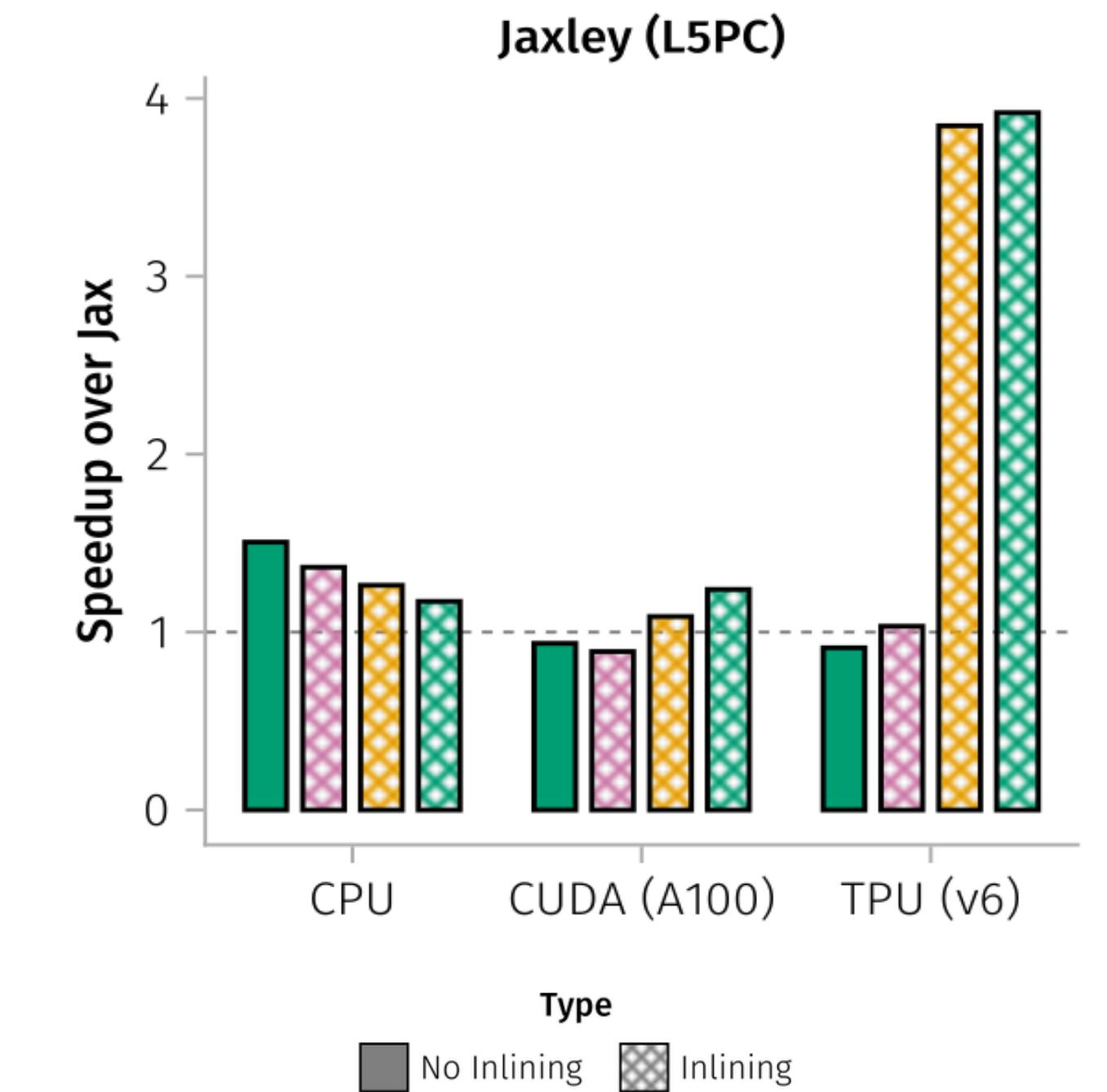
```
func.func @main(%arg0: tensor<1024xf32>, %arg1: tensor<1024x1024xf32>, %arg2:
tensor<1024x1024xf32>) → tensor<f32> {
  %cst = stablehlo.constant dense<0.000000e+00> : tensor<f32>
  %cst_0 = stablehlo.constant dense<0.000000e+00> : tensor<1024x1024xf32>
  %0 = stablehlo.transpose %arg2, dims = [1, 0] : (tensor<1024x1024xf32>) →
tensor<1024x1024xf32>
  %1 = stablehlo.iota dim = 0 : tensor<1024x2xi64>
  %2 = "stablehlo.scatter"(%cst_0, %1, %arg0) <{scatter_dimension_numbers =
#stablehlo.scatter<inserted_window_dims = [0, 1], scatter_dims_to_operand_dims = [0, 1],
index_vector_dim = 1}> ({
    ^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>):
      stablehlo.return %arg4 : tensor<f32>
  }) : (tensor<1024x1024xf32>, tensor<1024x2xi64>, tensor<1024xf32>) → tensor<1024x1024xf32>
  %3 = stablehlo.dot_general %2, %arg1, contracting_dims = [1] x [1], precision = [DEFAULT,
DEFAULT] : (tensor<1024x1024xf32>, tensor<1024x1024xf32>) → tensor<1024x1024xf32>
  %4 = stablehlo.add %3, %0 : tensor<1024x1024xf32>
  %5 = stablehlo.multiply %4, %4 : tensor<1024x1024xf32>
  %6 = stablehlo.reduce(%5 init: %cst) applies stablehlo.add across dimensions = [0, 1] :
(tensor<1024x1024xf32>, tensor<f32>) → tensor<f32>
  return %6 : tensor<f32>
}
```

Scatter Optimizations Disabled

Work Reduction Benchmark: Jaxley

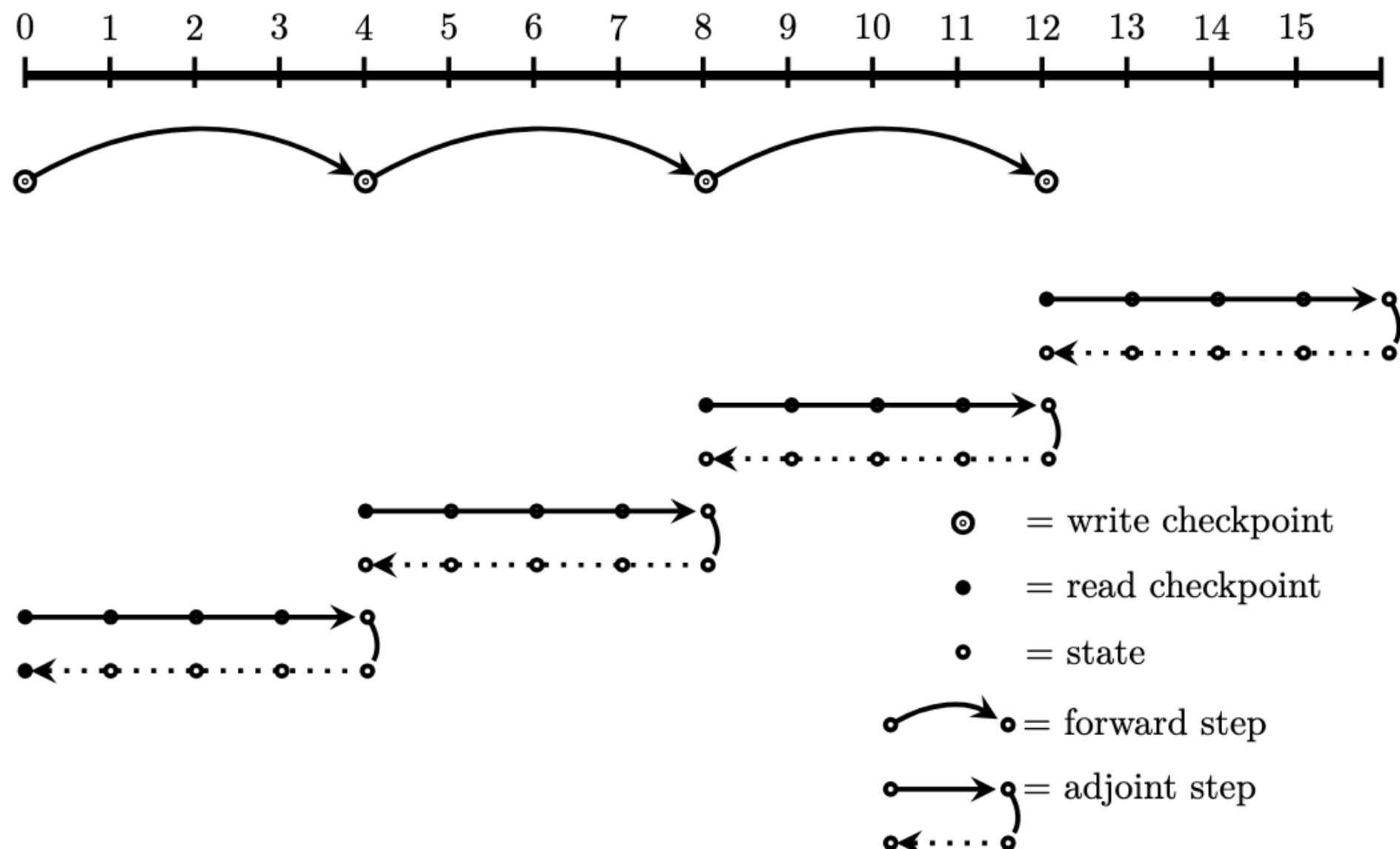


**1.15x speedup on CPU
1.33x speedup on A100
3.92x speedup on TPU v6**



Checkpointing

- Checkpointing is a technique for trading off memory and compute time in the derivative

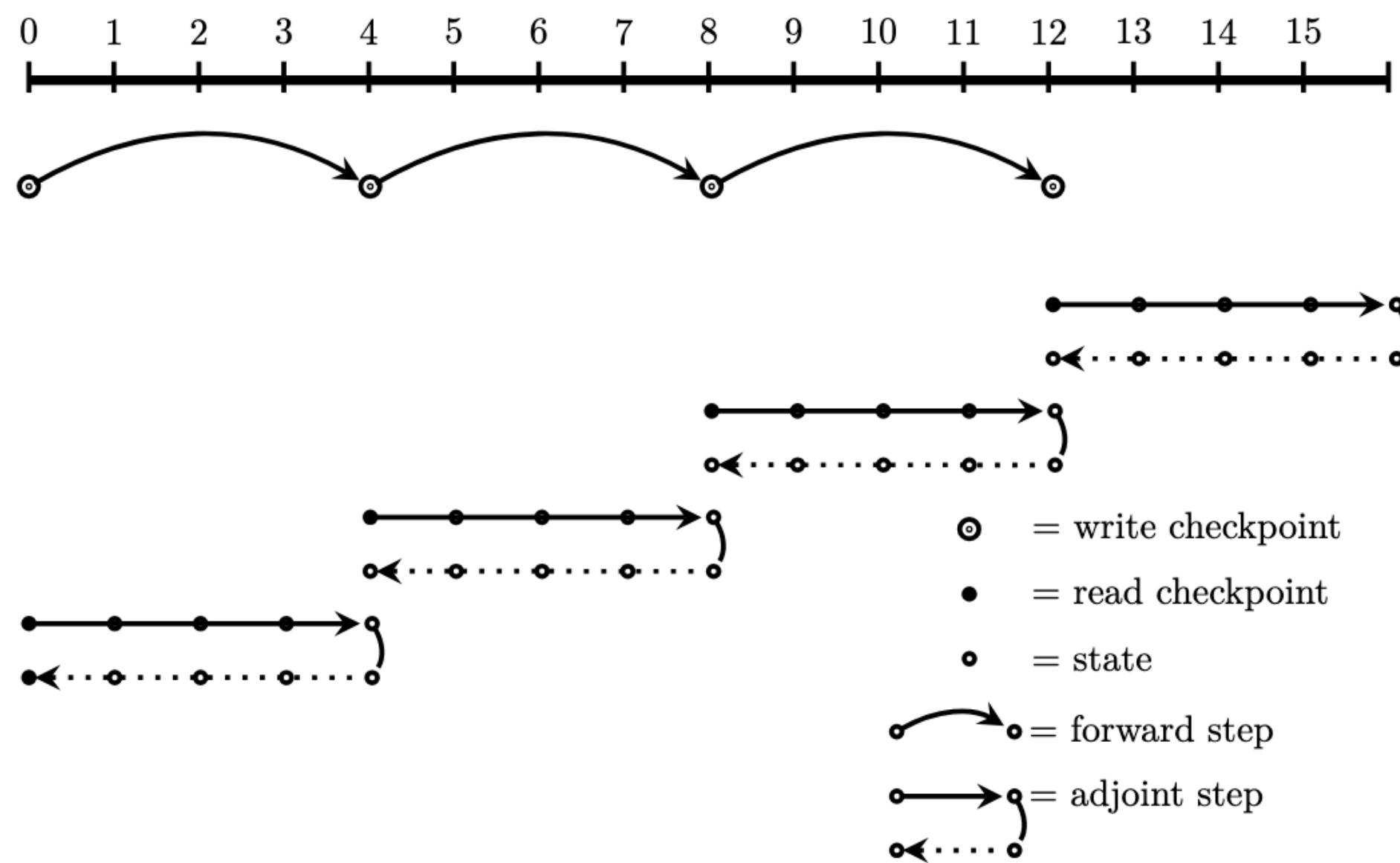


```
cache = malloc N x f32
for i = 0:N {
    x = foo(x)
    cache[i] = x
}

for i = N:0 {
    x = cache[i]
    dx = grad_foo(x, dx)
}
```

Checkpointing

- Checkpointing is a technique for trading off memory and compute time in the derivative



```
cache = malloc M x f32
for i = 0:N/M {
    for j = 0:M {
        x = foo(x)
    }
    cache[i] = x
}

for i = N:0 {
    x = cache[I/M]
    for j in 0:i%M {
        x = foo(x)
    }
    dx = grad_foo(x, dx)
}
```

Checkpointing

- Checkpointing is a technique for trading off memory and compute time in the derivative
- Performing entire-program-level analysis, we can remove induction variables on the loop, reducing memory AND computation

```
x = tensor<100x100xf32>
for i = 0:steps {
    x[0, :] = 0
    x[end,:] = 0
    y = foo(x, y)
}
```

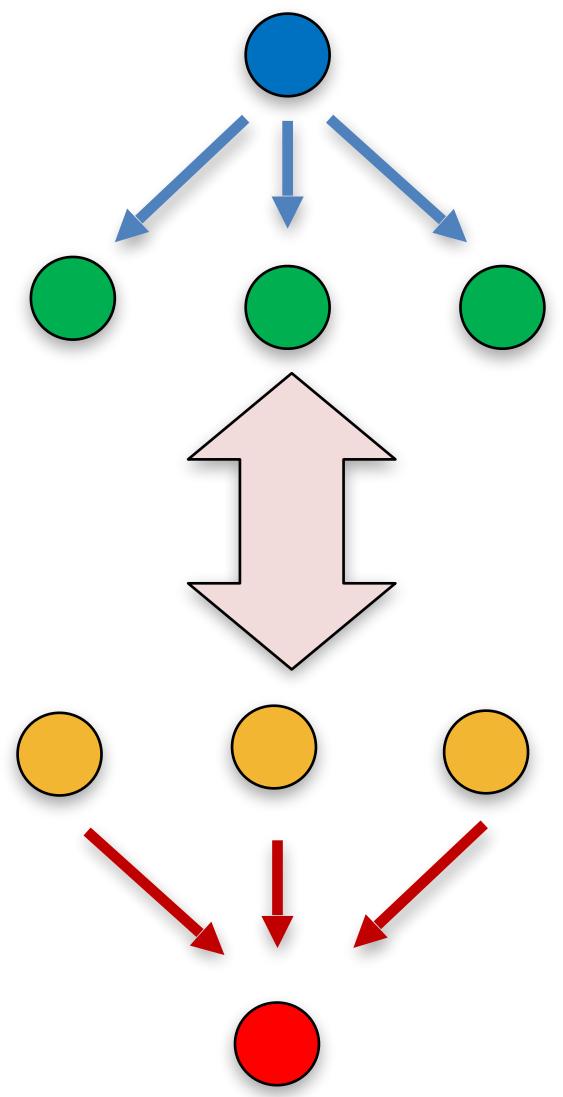
```
if (steps > 0) {
    x[0, :] = 0
    x[end,:] = 0

    for i = 0:steps {
        y = foo(x, y)
    }
}
```

Communication + AD

Differentiation changes how we want to parallelize code

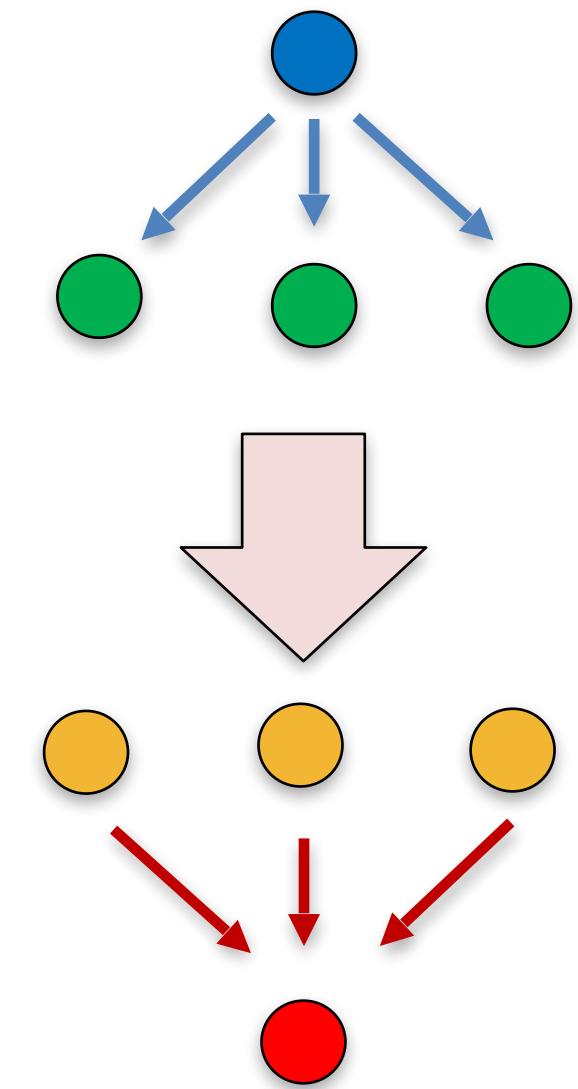
- Scatters <-> Gathers



Communication + AD

Differentiation changes how we want to parallelize code

- Scatters <-> Gathers
- Can create **race conditions**



```
void set(double* ar, double val) {  
    pfor(int i=0; i<n; i++) {  
        ar[i] = val;  
    }  
    ...  
}
```

```
void grad_set(double* ar, double* d_ar) {  
    double d_val = 0;  
    pfor (int i=0; i<n; i++) {  
        d_val += d_ar[i];  
    }  
    ...  
}
```

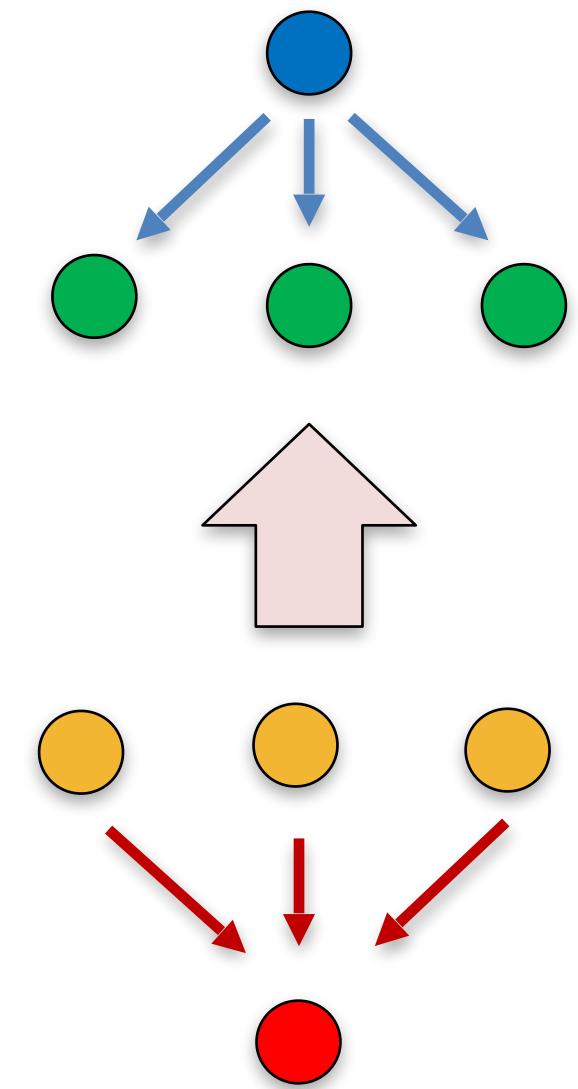
Communication + AD

Differentiation changes how we want to parallelize code

- Scatters <-> Gathers
- Can create **race conditions**
- Serial Primal => Parallel Derivative

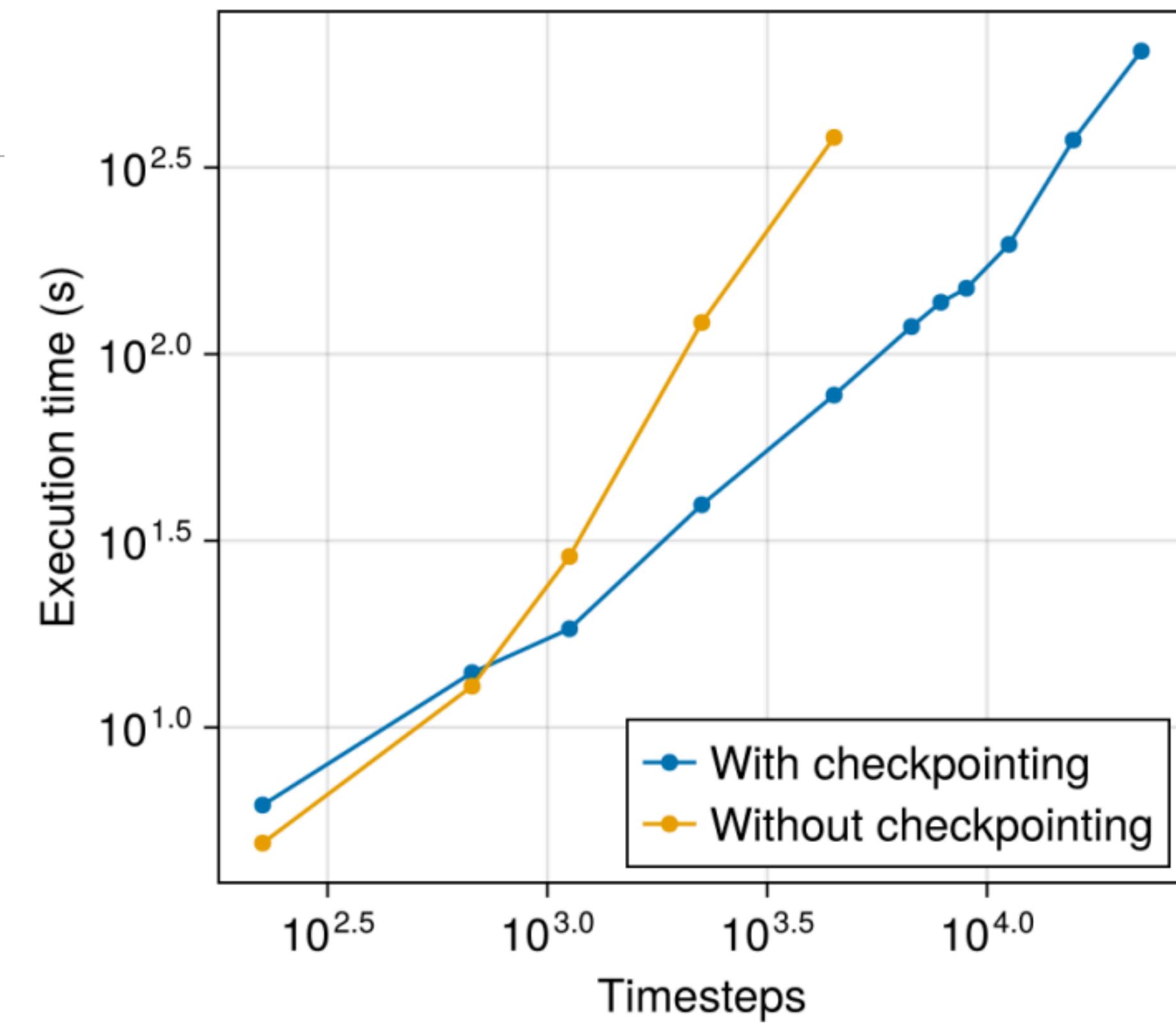
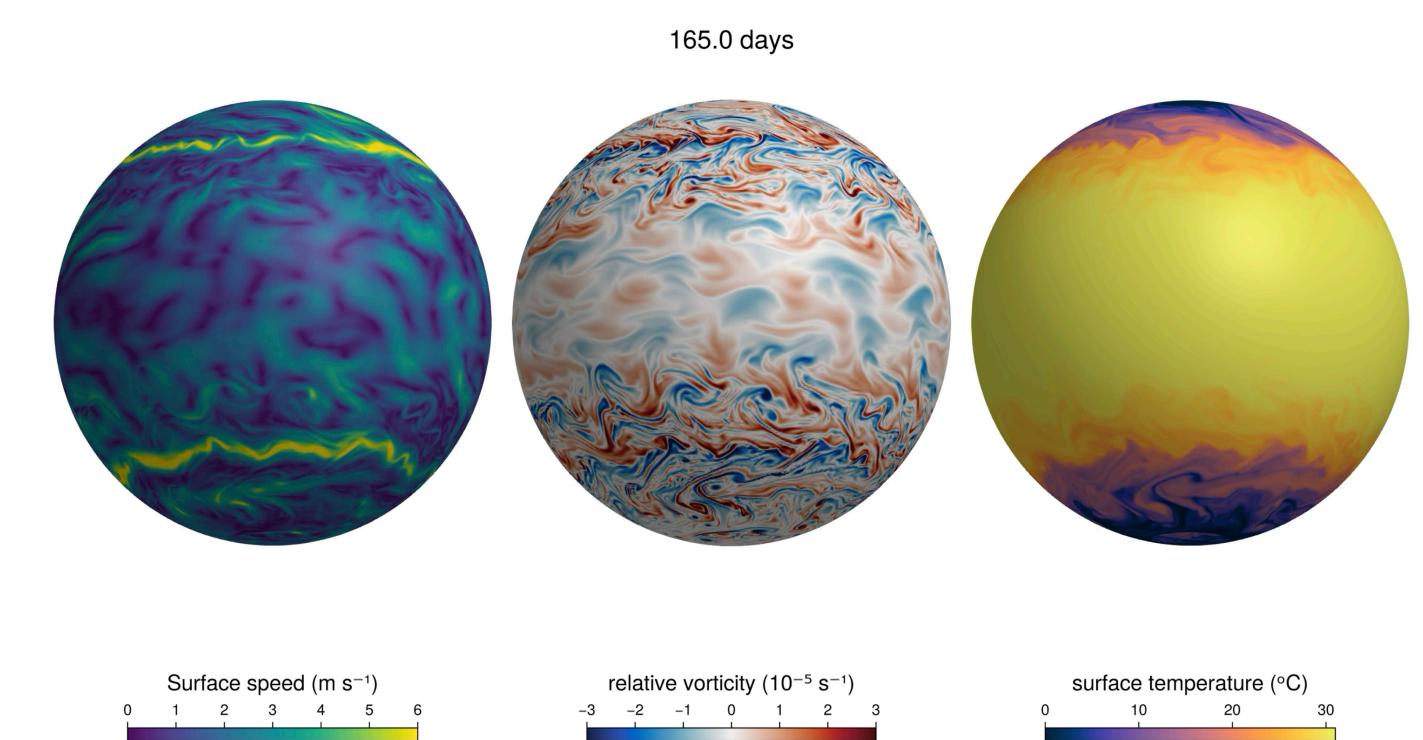
```
double sum(double* x) {  
    double S = 0.0;  
    for (int i = 0; i < N; i++) {  
        S += x[i] * x[i];  
    }  
    return S;  
}
```

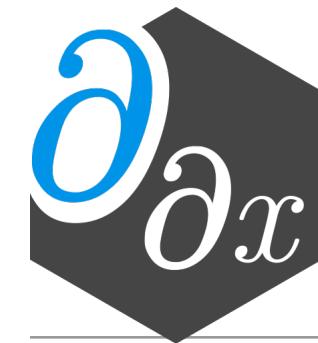
```
void grad_sum(double* x, double* d_x,  
             double d_S) {  
    pfor (int i = 0; i < N; i++) {  
        d_x[i] += 2.0 * x[i] * d_S;  
    }  
}
```



Derivative Raising Performance Results

- Primal Perf (CPU)
 - Vanilla Model: 272.0seconds
 - Tensor Optims: 11.5seconds
- Derivative Performance
 - Similar performance to primal on single timestep, scaling with linearly time steps
 - Disabling tensor optimizations causes it to instantly oom the system
 - Tensor and whole-program optimizations are quite useful!





Takeaways

- Compilers Make Differentiation Fast and Easy to use
 - Key to this is interaction with Optimization
- Executing on accelerators historically require rewriting entire workflows
- Raising enables existing workflows to execute on (distributed accelerators)
- EnzymeMLIR enables preserving and optimizing high-level structure and optimizations, whose impact is compounded on such accelerators
- All open source (GitHub.com/EnzymeAD/Enzyme ; GitHub.com/EnzymeAD/Enzyme-JaX ; GitHub.com/EnzymeAD/Reactant.jl)

