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Multi-Accelerator Automatic Differentiation
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Outline

• Compiler-Based Differentiation (Enzyme-LLVM)


• Modern Computing Infrastructure


• Raising Primal Code to Run on Accelerators


• Distributed Accelerated Differentiation
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       Differentiation: Connecting Science and AI
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from Efficient Differentiation of Pixel Reconstruction Filters for Path-Space Differentiable Rendering, 
SIGGRAPH Asia 2022, Zihan Yu et al

Target Reconstruction

from CLIMA & NSF CSSI: Differentiable programming in Julia for Earth system modeling 
(DJ4Earth) from Center for the Exascale Simulation of Materials in Extreme Environments

from Differential Molecular Simulation with Molly.jl, EnzymeCon 2023, 
Joe Greener (Cambridge)

Derivatives are key to science + ML 

•Scientific Computing: UQ, Differential 
Equation, Error Analysis

•Machine Learning: Back-Propagation, 
Bayesian Inference


https://dl.acm.org/doi/pdf/10.1145/3550454.3555500
https://clima.caltech.edu/
https://dj4earth.github.io/
https://dj4earth.github.io/
https://computing.mit.edu/cesmix/
https://enzyme.mit.edu/conference


Automatic Derivative Generation

• Derivatives can be generated automatically from definitions within programs 
 
 
 
 

• Unlike numerical approaches, automatic differentiation (AD) can compute the derivative of ALL 
inputs (or outputs) at once, without approximation error!
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AD

double relu3(double x) { 
  if (x > 0) 
    return pow(x,3) 
  else 
    return 0; 
}

double grad_relu3(double x) { 
  if (x > 0) 
    return 3 * pow(x,2) 
  else 
    return 0; 
}

// Numeric differentiation 
// f’(x) approx [f(x+epsilon) - f(x)] / epsilon 
double grad_input[100]; 

for (int i=0; i<100; i++) { 
  double input2[100] = input; 
  input2[i] += 0.01; 
  grad_input[i] = (f(input2) - f(input))/0.001; 
}

// Automatic differentiation 
double grad_input[100]; 

grad_f(input, grad_input)
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Differentiation is Expensive

Derivatives are the most costly and 
difficult to use algorithms


Reconstructed image of M87 
~1 week on cluster 
Majority runtime is derivative

With Enzyme differentiation: 
1 hour on 1 thread

100x resolution increase



Existing AD Approaches (1/3)

• Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)


• Provide a new language designed to be differentiated


• Requires rewriting everything in the DSL and the DSL must support all operations in original 
code


• Fast if DSL matches original code well import tensorflow as tf 

x = tf.Variable(3.14) 

with tf.GradientTape() as tape: 
  out = tf.cond(x > 0, 
           lambda: tf.math.pow(x,3), 
           lambda: 0 
        ) 
print(tape.gradient(out, x).numpy())

double relu3(double val) { 
  if (x > 0) 
    return pow(x,3) 
  else 
    return 0; 
}

Manually 
Rewrite



Existing AD Approaches (2/3)

• Operator overloading (Adept, JAX)


• Differentiable versions of existing language constructs (double => adouble, np.sum => jax.sum)


• May require writing to use non-standard utilities


• Often dynamic: storing instructions/values to later be interpreted

// Rewrite to accept either 
//    double or adouble 
template<typename T> 
T relu3(T val) { 
  if (x > 0) 
    return pow(x,3) 
  else 
    return 0; 
}

adept::Stack stack; 
adept::adouble inp = 3.14; 

// Store all instructions into stack 
adept::adouble out(relu3(inp)); 
out.set_gradient(1.00); 

// Interpret all stack instructions 
double res = inp.get_gradient(3.14);



Existing AD Approaches (3/3)

• Source rewriting


• Statically analyze program to produce a new gradient function in the source language


• Re-implement parsing and semantics of given language


• Requires all code to be available ahead of time => hard to use with external libraries

Tapenade

// myfile.h 
double relu3(double x) { 
  if (x > 0) 
    return pow(x,3) 
  else 
    return 0; 
}

// myfile.c 
double relu3(double x) { 
  if (x > 0) 
    return pow(x,3) 
  else 
    return 0; 
}

// grad_myfile.h 
double relu3(double x) { 
  if (x > 0) 
    return pow(x,3) 
  else 
    return 0; 
}

// grad_myfile.c 
double grad_relu3(double x) { 
  if (x > 0) 
    return 3 * pow(x,2) 
  else 
    return 0; 
}



Existing Automatic Differentiation Pipelines

AD

CodeGen

Optimize

Lower

AD

AD

AD
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Lower Enzyme   .

Optimize

CodeGen

Optimize

       Enzyme Approach

Performing AD at low-level lets us work on optimized code!
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Case Study: Vector Normalization

//Compute magnitude in O(n) 
double mag(double[] x); 

//Compute norm in O(n^2) 
void norm(double[] out, double[] in) { 

  for (int i=0; i<n; i++) { 
    out[i] = in[i] / mag(in); 
  } 
}
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Case Study: Vector Normalization

//Compute magnitude in O(n) 
double mag(double[] x); 

//Compute norm in O(n) 
void norm(double[] out, double[] in) { 
  double res = mag(in); 
  for (int i=0; i<n; i++) { 
    out[i] = in[i] / res; 
  } 
}
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Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
res = mag(in) 
for i=0..n { 
  out[i] /= res 
}

d_res = 0.0  
for i=n..0 { 
  d_res += d_out[i]… 
} 
∇mag(d_in, d_res)

O (n)
for i=0..n { 
  out[i] /= mag(in) 
}
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Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
for i=0..n { 
  out[i] /= mag(in) 
}

res = mag(in) 
for i=0..n { 
  out[i] /= res 
}

d_res = 0.0  
for i=n..0 { 
  d_res += d_out[i]… 
} 
∇mag(d_in, d_res)

O (n)

O (n2)
for i=0..n { 
  out[i] /= mag(in) 
}

AD
for i=n..0 { 
  d_res = d_out[i]… 
  ∇mag(d_in, d_res) 
}

O (n2)
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Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
for i=0..n { 
  out[i] /= mag(in) 
}

res = mag(in) 
for i=0..n { 
  out[i] /= res 
}

d_res = 0.0  
for i=n..0 { 
  d_res += d_out[i]… 
} 
∇mag(d_in, d_res)

O (n)

O (n2)O (n2)
for i=0..n { 
  out[i] /= mag(in) 
}

AD
for i=n..0 { 
  d_res = d_out[i]… 
  ∇mag(d_in, d_res) 
}

O (n2)
for i=n..0 { 
  d_res = d_out[i]… 
  ∇mag(d_in, d_res) 
}

Optimize
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Optimization & Automatic Differentiation

Differentiating after optimization can create asymptotically faster gradients!

Optimize

O (n2) O (n)

AD
for i=0..n { 
  out[i] /= mag(in) 
}

res = mag(in) 
for i=0..n { 
  out[i] /= res 
}

d_res = 0.0  
for i=n..0 { 
  d_res += d_out[i]… 
} 
∇mag(d_in, d_res)

O (n)

O (n2)O (n2)
for i=0..n { 
  out[i] /= mag(in) 
}

AD
for i=n..0 { 
  d_res = d_out[i]… 
  ∇mag(d_in, d_res) 
}

O (n2)
Optimize

for i=n..0 { 
  d_res = d_out[i]… 
  ∇mag(d_in, d_res) 
}
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Lower Enzyme   .

Optimize

CodeGen

Optimize

       Enzyme Approach

Performing AD at low-level lets us work on optimized code!
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Automatic Differentiation & GPUs [MCPHNSD @ SC’21]

• Prior work has not explored reverse mode AD of existing GPU kernels


1. Reversing parallel control flow can lead to incorrect results


2. Complex performance characteristics make it difficult to synthesize 
efficient code


3. Resource limitations can prevent kernels from running at all

22



Challenges of Parallel AD

• The adjoint of an instruction increments the derivative of its input


• Benign read race in forward pass => Write race in reverse pass (undefined behavior)

23

void set(double* ar, double val) { 

  parallel_for(int i=0; i<10; i++) 
    ar[i] = val; 
}

double gradient_set(double* ar, double* d_ar, 
                    double val) { 
  double d_val = 0.0; 

  parallel_for(int i=0; i<10; i++) 
    ar[i] = val; 

  parallel_for(int i=0; i<10; i++) { 
    d_val += d_ar[i]; 
    d_ar[i] = 0.0; 
  } 

  return d_val; 
}

Read Race
Write Race



GPU Memory Hierarchy

24

Slower, larger amount of memory

Per Thread Per Block Per GPU

~Bytes ~KBs ~GBs

Register Shared Memory Global Memory

Use Limits Parallelism Use Limits Parallelism



Correct and Efficient Derivative Accumulation

Thread-local memory 

• Non-atomic load/store
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__device__ 
void f(…) { 

  // Thread-local var 
  double y; 
 
  … 

  d_y += val; 
}

Same memory location across 
all threads (some shared mem)


• Parallel Reduction

Others [always legal fallback] 

• Atomic increment

// Same var for all threads 
double y; 
 
__device__ 
void f(…) { 
 
  … 

  reduce_add(&d_y, val); 
}

 
__device__ 
// Unknown thread-aliasing 
void f(double* y) { 
 
  … 

  atomic { d_y += val; } 
} 
 

Slower



Synchronization Primitives
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codeA(); 

sync_threads; 

codeB(); 

• Synchronization (sync_threads) ensures all threads finish executing 
codeA before executing codeB


• Sync is only necessary if A and B may access to the same memory


• Assuming the original program is race-free, performing a sync at the 
corresponding location in the reverse ensures correctness


• Prove correctness of algorithm by cases



Case 1: Store, Sync, Load
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codeA(); // store %ptr 

sync_threads; 

codeB(); // load %ptr 

… 

diffe_codeB(); // atomicAdd %d_ptr 

sync_threads; 

diffe_codeA(); // load %d_ptr 
               // store %d_ptr = 0 

          Correct


• Load of d_ptr must happen after 
all atomicAdds have completed




CUDA Example
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__device__  
void inner(float* a, float* x, float* y) { 

  y[threadIdx.x] = a[0] * x[threadIdx.x]; 
 
} 

__device__  
void __enzyme_autodiff(void*, …); 

__global__ 
void daxpy(float* a, float* da, 
           float* x, float* dx, 
           float* y, float* dy) { 

  __enzyme_autodiff((void*)inner, 
                    a, da, x, dx, y, dy); 
 
}

__device__ 
void diffe_inner(float* a, float* da, 
                 float* x, float* dx, 
                 float* y, float* dy) { 
  // Forward Pass 

  y[threadIdx.x] = a[0] * x[threadIdx.x]; 
 
  // Reverse Pass 

  float dy = dy[threadIdx.x]; 
  dy[threadIdx.x] = 0.0f; 

  float dx_tmp = a[0] * dy; 
  atomic { dx[threadIdx.x] += dx_tmp; } 

  float da_tmp = x[threadIdx.x] * dy; 
  atomic { da[0] += da_tmp; } 
} 



CUDA Example
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__device__  
void inner(float* a, float* x, float* y) { 

  y[threadIdx.x] = a[0] * x[threadIdx.x]; 
 
} 

__device__  
void __enzyme_autodiff(void*, …); 

__global__ 
void daxpy(float* a, float* da, 
           float* x, float* dx, 
           float* y, float* dy) { 

  __enzyme_autodiff((void*)inner, 
                    a, da, x, dx, y, dy); 
 
}

__device__ 
void diffe_inner(float* a, float* da, 
                 float* x, float* dx, 
                 float* y, float* dy) { 
  // Forward Pass 

  y[threadIdx.x] = a[0] * x[threadIdx.x]; 
 
  // Reverse Pass 

  float dy = dy[threadIdx.x]; 
  dy[threadIdx.x] = 0.0f; 

  float dx_tmp = a[0] * dy; 
  dx[threadIdx.x] += dx_tmp; 

  float da_tmp = x[threadIdx.x] * dy; 
  reduce_accumulate(&da[0], da_tmp); 
} 



CUDA.jl / AMDGPU.jl Example
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function compute!(inp, out) 
    s_D = @cuStaticSharedMem eltype(inp) (10, 10) 
    ... 
end 

function grad_compute!(inp, out) 
    Enzyme.autodiff_deferred(compute!, inp, out) 
    return nothing 
end 

@cuda grad_compute!(Duplicated(inp, d_inp),  
                    Duplicated(out, d_out))

function compute!(inp, out) 
    s_D = AMDGPU.alloc_special(…) 
    ... 
end 

function grad_compute!(inp, out) 
    Enzyme.autodiff_deferred(compute!, inp, out) 
    return nothing 
end 

@rocm grad_compute!(Duplicated(inp, d_inp),  
                    Duplicated(out, d_out))

See Below For Full Code Examples
https://github.com/wsmoses/Enzyme-GPU-Tests/blob/main/DG/



Efficient GPU Code
• For correctness, Enzyme may need to cache values in 

order to compute the gradient


• The complexity of GPU memory means large caches 
slow down the program by several orders of magnitude, 
if it even fits at all


• Like the CPU, existing optimizations reduce the overhead


• Unlike the CPU, existing optimizations aren’t sufficient


• Novel GPU and AD-specific optimizations can speedup by 
several orders of magnitude
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// Forward Pass 

out[i] = x[i] * x[i]; 

x[i] = 0.0f; 
 
// Reverse (gradient) Pass 

... 
grad_x[i] += 2 * x[i] * grad_out[i]; 
... 



Efficient Correct GPU Code
• For correctness, Enzyme may need to cache values in 

order to compute the gradient


• The complexity of GPU memory means large caches 
slow down the program by several orders of magnitude, 
if it even fits at all


• Like the CPU, existing optimizations reduce the overhead


• Unlike the CPU, existing optimizations aren’t sufficient


• Novel GPU and AD-specific optimizations can speedup by 
several orders of magnitude
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double* x_cache = new double[…]; 
 
// Forward Pass 

out[i] = x[i] * x[i]; 
x_cache[i] = x[i]; 

x[i] = 0.0f; 
 
// Reverse (gradient) Pass 

... 
grad_x[i] += 2 * x_cache[i] 
               * grad_out[i]; 
... 

delete[] x_cache;



Cache Reduction Example
• By considering the dataflow graph 

we can perform a min-cut to 
approximate smaller cache sizes.
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for(int i=0; i<10; i++) { 
  double sum = x[i] + y[i]; 

  use(sum); 
} 

overwrite(x, y); 
grad_overwrite(x, y); 

for(int i=9; i>=0; i--) { 
  ... 
  grad_use(sum); 
} 

X Y

Sum

Overwritten:

Required for 
Reverse:



XX

Cache Reduction Example
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double* x_cache = new double[10]; 
double* y_cache = new double[10]; 

for(int i=0; i<10; i++) { 
  double sum = x[i] + y[i]; 
  x_cache[i] = x[i]; 
  y_cache[i] = y[i]; 
  use(sum); 
} 

overwrite(x, y); 
grad_overwrite(x, y); 

for(int i=9; i>=0; i--) { 
  double sum = x_cache[i] + y_cache[i]; 
  grad_use(sum); 
} 

• By considering the dataflow graph 
we can perform a min-cut to 
approximate smaller cache sizes.

X Y

Sum

Overwritten:

Required for 
Reverse:

Naive Cache



Sum

Cache Reduction Example
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double* sum_cache = new double[10]; 

for(int i=0; i<10; i++) { 
  double sum = x[i] + y[i]; 
  sum_cache[i] = sum; 

  use(sum); 
} 

overwrite(x, y); 
grad_overwrite(x, y); 

for(int i=9; i>=0; i--) { 

  grad_use(sum_cache[i]); 
} 

• By considering the dataflow graph 
we can perform a min-cut to 
approximate smaller cache sizes.

X Y

Sum

Overwritten:

Required for 
Reverse:

Smallest Cache



Allocation Merging

• Allocations (and any calls) on the 
GPU are expensive


• Given two allocations in the same 
scope, replace uses with a single 
allocation


• Beneficial for not just AD, but any 
GPU programs!
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double* var1 = new double[N]; 
double* var2 = new double[M]; 

use(var1, var2); 

delete[] var1; 
delete[] var2;

double* var1 = new double[N + M]; 
double* var2 = var1 + N; 

use(var1, var2); 

delete[] var1; 



Novel AD + GPU Optimizations

• See our SC’21 paper for more (https://c.wsmoses.com/papers/EnzymeGPU.pdf) 
    Reverse-Mode Automatic Differentiation and Optimization of GPU Kernels via Enzyme. SC, 2021


• [AD] Cache LICM/CSE


• [AD] Min-Cut Cache Reduction


• [AD] Cache Forwarding


• [GPU] Merge Allocations


• [GPU] Heap-to-stack (and register)


• [GPU] Alias Analysis Properties of SyncThreads


• …
37

https://c.wsmoses.com/papers/EnzymeGPU.pdf


GPU Gradient Overhead [MCPHNMJ’21]
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• Evaluation of both original code and gradient


• DG: Discontinuous-Galerkin integral (Julia)


• LBM: particle-based fluid dynamics 
simulation


• LULESH: unstructured explicit shock 
hydrodynamics solver


• XSBench & RSBench: Monte Carlo 
simulations of particle transport 
algorithms (memory & compute bound, 
respectively)

XSBench

RSBench

LULESH

LBM (Parboil)

DG (CUDA)

DG (ROCm)

3.2

4.2

2.01

6.3

18.35

5.4
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• Evaluation of both original code and gradient


• DG: Discontinuous-Galerkin integral (Julia)


• LBM: particle-based fluid dynamics 
simulation


• LULESH: unstructured explicit shock 
hydrodynamics solver


• XSBench & RSBench: Monte Carlo 
simulations of particle transport 
algorithms (memory & compute bound, 
respectively)

XSBench

RSBench

LULESH

LBM (Parboil)

DG (CUDA)

DG (ROCm)

3.2

4.2

2.01

6.3

18.35

5.4

Bug in CUDA 
Register Allocator
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Forward (1x) 10x 100x 1000x OOM

XSBench

RSBench

LULESH

LBM

DG (CUDA)

DG (ROCm)
5.4⇥
o

1378.3⇥
o

116.6⇥
o

17.8⇥
o

19.87⇥
o

8.7⇥
o

6.4⇥
o

2979.1⇥
o

2.4⇥
o

2.0⇥
o

6372.2⇥
o

9.5⇥
o

4.7⇥
o

25.9⇥
o

16.3⇥
o

9.5⇥
o

3.2⇥
o

Overhead above Forward Pass

Unrolling

Unrolling MallocCoalescing PreOptimization

Allocator Recompute InlineCacheABI

SpecPHI PreOptimization

CacheLICM Inlining PreOpt

Templating PHI LoopBound PreOptimization

Ablation Analysis of Optimizations
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Ablation Analysis of Optimizations

GPU AD is Intractable Without Optimization!



Computing Hardware is No Longer For Everybody



Computing Hardware is No Longer For Everybody



Computing Hardware is No Longer For Everybody



Computing Hardware is No Longer For Everybody



Computing Hardware is No Longer For Everybody



Computing Hardware is No Longer For Everybody



Computing Hardware is No Longer For Everybody



Lingua Franca of Scientific Computing 

__global__ 
void AddNodeForcesFromElems_kernel( Index_t numNode, 
                                    Index_t padded_numNode, 
                                    const Int_t* nodeElemCount,  
                                    const Int_t* nodeElemStart,  
                                    const Index_t* nodeElemCornerList, 
                                    const Real_t* fx_elem,  
                                    const Real_t* fy_elem,  
                                    const Real_t* fz_elem, 
                                    Real_t* fx_node,  
                                    Real_t* fy_node,  
                                    Real_t* fz_node, 
                                    const Int_t num_threads) 
{ 
    int tid=blockDim.x*blockIdx.x+threadIdx.x; 
    if (tid < num_threads) 
    { 
      Index_t g_i = tid; 
      Int_t count=nodeElemCount[g_i]; 
      Int_t start=nodeElemStart[g_i]; 
      Real_t fx,fy,fz; 
      fx=fy=fz=Real_t(0.0); 

      for (int j=0;j<count;j++)  
      { 
          Index_t pos=nodeElemCornerList[start+j]; // Uncoalesced access here 
          fx += fx_elem[pos];  
          fy += fy_elem[pos];  
          fz += fz_elem[pos]; 
      } 

      fx_node[g_i]=fx;  
      fy_node[g_i]=fy;  
      fz_node[g_i]=fz; 
    } 
}

• Scientists do not write TPU* code



Lingua Franca of Scientific Computing 

__global__ 
void AddNodeForcesFromElems_kernel( Index_t numNode, 
                                    Index_t padded_numNode, 
                                    const Int_t* nodeElemCount,  
                                    const Int_t* nodeElemStart,  
                                    const Index_t* nodeElemCornerList, 
                                    const Real_t* fx_elem,  
                                    const Real_t* fy_elem,  
                                    const Real_t* fz_elem, 
                                    Real_t* fx_node,  
                                    Real_t* fy_node,  
                                    Real_t* fz_node, 
                                    const Int_t num_threads) 
{ 
    int tid=blockDim.x*blockIdx.x+threadIdx.x; 
    if (tid < num_threads) 
    { 
      Index_t g_i = tid; 
      Int_t count=nodeElemCount[g_i]; 
      Int_t start=nodeElemStart[g_i]; 
      Real_t fx,fy,fz; 
      fx=fy=fz=Real_t(0.0); 

      for (int j=0;j<count;j++)  
      { 
          Index_t pos=nodeElemCornerList[start+j]; // Uncoalesced access here 
          fx += fx_elem[pos];  
          fy += fy_elem[pos];  
          fz += fz_elem[pos]; 
      } 

      fx_node[g_i]=fx;  
      fy_node[g_i]=fy;  
      fz_node[g_i]=fz; 
    } 
}

• Scientists do not write TPU* code


• BIG (MFEM library alone is 737K LOC)  



Lingua Franca of Scientific Computing 
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Lingua Franca of Scientific Computing 

__global__ 
void AddNodeForcesFromElems_kernel( Index_t numNode, 
                                    Index_t padded_numNode, 
                                    const Int_t* nodeElemCount,  
                                    const Int_t* nodeElemStart,  
                                    const Index_t* nodeElemCornerList, 
                                    const Real_t* fx_elem,  
                                    const Real_t* fy_elem,  
                                    const Real_t* fz_elem, 
                                    Real_t* fx_node,  
                                    Real_t* fy_node,  
                                    Real_t* fz_node, 
                                    const Int_t num_threads) 
{ 
    int tid=blockDim.x*blockIdx.x+threadIdx.x; 
    if (tid < num_threads) 
    { 
      Index_t g_i = tid; 
      Int_t count=nodeElemCount[g_i]; 
      Int_t start=nodeElemStart[g_i]; 
      Real_t fx,fy,fz; 
      fx=fy=fz=Real_t(0.0); 

      for (int j=0;j<count;j++)  
      { 
          Index_t pos=nodeElemCornerList[start+j]; // Uncoalesced access here 
          fx += fx_elem[pos];  
          fy += fy_elem[pos];  
          fz += fz_elem[pos]; 
      } 

      fx_node[g_i]=fx;  
      fy_node[g_i]=fy;  
      fz_node[g_i]=fz; 
    } 
}

• Scientists do not write TPU* code


• BIG (MFEM library alone is 737K LOC)  


• Templated


• Not in Python


• Sometimes* in CUDA
template <> 
struct RajaCuWrap<3> 
{ 
   template <const int BLCK = MFEM_CUDA_BLOCKS, typename DBODY> 
   static void run(const int N, DBODY &&d_body, 
                   const int X, const int Y, const int Z, const int G) 
   { 
      RajaCuWrap3D(N, d_body, X, Y, Z, G); 
   } 
};



How do we write ML Accelerator code now?
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How do we write ML Accelerator code now?

Rewrite it in JAX/PyTorch!



Confidential + Proprietary

Lingua Franca of Scientific Computing

● Scientists do not write TPU-friendly  code
○ BIG (MFEM library alone is 737K LOC)  
○ Templated
○ Not in Python
○ Sometimes* in CUDA

__global__
void AddNodeForcesFromElems_kernel( Index_t numNode,
                                    Index_t padded_numNode,
                                    const Int_t* nodeElemCount, 
                                    const Int_t* nodeElemStart, 
                                    const Index_t* nodeElemCornerList,
                                    const Real_t* fx_elem, 
                                    const Real_t* fy_elem, 
                                    const Real_t* fz_elem,
                                    Real_t* fx_node, 
                                    Real_t* fy_node, 
                                    Real_t* fz_node,
                                    const Int_t num_threads)
{
    int tid=blockDim.x*blockIdx.x+threadIdx.x;
    if (tid < num_threads)
    {
      Index_t g_i = tid;
      Int_t count=nodeElemCount[g_i];
      Int_t start=nodeElemStart[g_i];
      Real_t fx,fy,fz;
      fx=fy=fz=Real_t(0.0);

      for (int j=0;j<count;j++) 
      {
          Index_t pos=nodeElemCornerList[start+j]; // Uncoalesced access here
          fx += fx_elem[pos]; 
          fy += fy_elem[pos]; 
          fz += fz_elem[pos];
      }

      fx_node[g_i]=fx; 
      fy_node[g_i]=fy; 
      fz_node[g_i]=fz;
    }
}

template <>
struct RajaCuWrap<3>
{
   template <const int BLCK = MFEM_CUDA_BLOCKS, typename DBODY>
   static void run(const int N, DBODY &&d_body,
                   const int X, const int Y, const int Z, const int G)
   {
      RajaCuWrap3D(N, d_body, X, Y, Z, G);
   }
};



Confidential + Proprietary

Lingua Franca of Scientific Computing

● Scientists do not write TPU-friendly  code
○ BIG (MFEM library alone is 737K LOC)  
○ Templated
○ Not in Python
○ Sometimes* in CUDA

__global__
void AddNodeForcesFromElems_kernel( Index_t numNode,
                                    Index_t padded_numNode,
                                    const Int_t* nodeElemCount, 
                                    const Int_t* nodeElemStart, 
                                    const Index_t* nodeElemCornerList,
                                    const Real_t* fx_elem, 
                                    const Real_t* fy_elem, 
                                    const Real_t* fz_elem,
                                    Real_t* fx_node, 
                                    Real_t* fy_node, 
                                    Real_t* fz_node,
                                    const Int_t num_threads)
{
    int tid=blockDim.x*blockIdx.x+threadIdx.x;
    if (tid < num_threads)
    {
      Index_t g_i = tid;
      Int_t count=nodeElemCount[g_i];
      Int_t start=nodeElemStart[g_i];
      Real_t fx,fy,fz;
      fx=fy=fz=Real_t(0.0);

      for (int j=0;j<count;j++) 
      {
          Index_t pos=nodeElemCornerList[start+j]; // Uncoalesced access here
          fx += fx_elem[pos]; 
          fy += fy_elem[pos]; 
          fz += fz_elem[pos];
      }

      fx_node[g_i]=fx; 
      fy_node[g_i]=fy; 
      fz_node[g_i]=fz;
    }
}

template <>
struct RajaCuWrap<3>
{
   template <const int BLCK = MFEM_CUDA_BLOCKS, typename DBODY>
   static void run(const int N, DBODY &&d_body,
                   const int X, const int Y, const int Z, const int G)
   {
      RajaCuWrap3D(N, d_body, X, Y, Z, G);
   }
};



Looking More Deeply at Scientific Code

function stencil_kernel(y, x) 
  i = threadIdx().x + (blockIdx().x - 1) * blockDim().x 
  if i <= length(x) - 2 
    y[i] = x[i] - 2 * x[i + 1] + x[i + 2] 
  end 
end 

function model(...) 
  @cuda threads=... blocks=... stencil_kernel(y, x) 
  @cuda threads=... blocks=... stencil_kernel(x, y) 
end

> 277 such kernels
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function stencil_kernel(y, x) 
  i = threadIdx().x + (blockIdx().x - 1) * blockDim().x 
  if i <= length(x) - 2 
    y[i] = x[i] - 2 * x[i + 1] + x[i + 2] 
  end 
end 

function model(...) 
  @cuda threads=... blocks=... stencil_kernel(y, x) 
  @cuda threads=... blocks=... stencil_kernel(x, y) 
end

1 -2 1

> 277 such kernels



CUDA to Accelerator IR (StableHLO)

• New framework for raising and optimizing the 
structure within existing kernels to stablehlo!


•  	1) Compile Kernels to LLVM


• 	 2) Raise the underlying structure in MLIR


• 	 3) Multi-dimensionalize it into tensor operators


• 	 4) Optimize


• Compiled single-node CUDA version of code to 
execute on thousands of distributed TPUs and 
GPUs

function stencil_kernel(y, x) 
  i = threadIdx().x + (blockIdx().x - 1) * blockDim().x 
  if i <= length(x) - 2 
    y[i] = x[i] - 2 * x[i+1] + x[i+2] 
  end 
end 

function model(...) 
  @cuda threads=... blocks=... stencil_kernel(y, x) 
  @cuda threads=... blocks=... stencil_kernel(x, y) 
end 

Compilation

define void @julia_difference_kernel_890({}* %y, {}* %x) { 
top: 
  %3 = call i32 @llvm.nvvm.read.ptx.sreg.tid.x() 
  %4 = add nuw nsw i32 %3, 1 
  ... 
  br i1 %.not, label %common.ret, label %L31 
}

func.func @kernel(%y : memref<100xf64>, %x : memref<100xf64>) { 
  affine.parallel %arg1 = 0 to 100 { 
    %x1 = affine.load %x[%arg1] 
    %x2 = affine.load %x[%arg1 + 1] 
    ... 
    affine.store %sum, %y[%arg1] 
  } 
}

%x1 = stablehlo.slice %x[1:98] 
%x2 = stablehlo.slice %x[2:99] 
%mul = stablehlo.multiply %x2, tensor<2.0> 
%add = stablehlo.add %x1, %mu

res = stablehlo.convolve %x, tensor<[1.0, -4.0, 6.0, -4.0, 1.0]>

RaisingRaising

Multi-DimensionalizationMulti-DimensionalizationMulti-Dimensionalization

Optimization



GPU Programming via LLVM

65

• Mainstream compilers do not have a 
high-level representation of parallelism, 
making optimization difficult or 
impossible 
• This is accentuated for GPU  

programs where the kernel is  
kept in a separate module & 
synchronization is a barrier to 
optimization.

Host Code Device Code

__global__ void normalize(int *out, int* in, int n) { 
  int tid = blockIdx.x; 
  if (tid < n) 
    out[tid] = in[tid] / sum(in, n); 
} 
 
void launch(int *out, int* in, int n) { 
  normalize<<<n>>>(d_out, d_in, n); 
}

target triple = "x86_64-unknown-linux-gnu” 

define void @_Z6launchPiS_i(i32* %out, 
                            i32* %in, 
                            i32 %n) { 
  call i32 @pushCallConfiguration(…) 
  call i32 @cudaLaunch(@_device_stub, …) 
  ret void 
}

target triple = ”nvptx” 

define void @_Z9normalize(i32* %out,  
                          i32* %in, i32 %n) { 
  %4 = call i32 @llvm.tid.x() 
  %5 = icmp slt i32 %4, %n 
  br i1 %5, label %6, label %13 
 
6: 
  %8 = getelementptr i32, i32* %in, i32 %4 
  %9 = load i32, i32* %8, align 4 
  %10 = call i32 @_Z3sumPii(i32* %in, i32 %n) 
  %11 = sdiv i32 %9, %10 
  %12 = getelementptr i32, i32* %out, i32 %4 
  store i32 %11, i32* %12, align 4 
  br label %13 
 
13: 
  ret void 
}



GPU Programming via MLIR

__global__ void normalize(int *out, int *in, int n) { 
  int tid = blockIdx.x; 
  if (tid < n) 
    out[tid] = in[tid] / sum(in, n); 
} 
 
void launch(int *out, int* in, int n) { 
  normalize<<<n>>>(d_out, d_in, n); 
}

func @_Z6launch(%out: memref<?xi32>, 
                %in: memref<?xi32>, %n: i32) { 
  %c1 = constant 1 : index 
  %c0 = constant 0 : index 

  parallel (%tid) = (%c0) to (%n) step (%c1) { 
    %2 = load %in[%tid]  
    %sum = call @_Z3sumPii(%in, %n) 
    %4 = divsi %2, %sum : i32 
    store %4, %out[%tid]  
    yield 
  } 
  return 
}

•Preserve Host & Device code through frontend 
      (Clang Plugin for C++, JIT Package for Julia, etc)

•Enables optimization between caller and kernel

•Enable parallelism-specific optimization

[1] High-Performance GPU-to-CPU Transpilation and Optimization via High-Level Parallel Constructs, PPoPP’23



GPU Programming via MLIR

__global__ void normalize(int *out, int *in, int n) { 
  int tid = blockIdx.x; 
  if (tid < n) 
    out[tid] = in[tid] / sum(in, n); 
} 
 
void launch(int *out, int* in, int n) { 
  normalize<<<n>>>(d_out, d_in, n); 
}

func @_Z6launch(%out: memref<?xi32>, 
                %in: memref<?xi32>, %n: i32) { 
  %c1 = constant 1 : index 
  %c0 = constant 0 : index 
  %sum = call @_Z3sumPii(%in, %n) 
  parallel (%tid) = (%c0) to (%n) step (%c1) { 
    %2 = load %in[%tid]  
 
    %4 = divsi %2, %sum : i32 
    store %4, %out[%tid]  
    yield 
  } 
  return 
}[1] High-Performance GPU-to-CPU Transpilation and Optimization via High-Level Parallel Constructs, PPoPP’23

•Preserve Host & Device code through frontend 
      (Clang Plugin for C++, JIT Package for Julia, etc)

•Enables optimization between caller and kernel

•Enable parallelism-specific optimization



GPU Programming via MLIR

func @launch(%h_out : memref<?xf32>, %h_in : memref<?xf32>, %n : i64) { 

  parallel.for (%gx, %gy, %gz) = (0, 0, 0) to (grid.x, grid.y, grid.z) { 

    %shared_val = memref.alloca : memref<f32> 

    parallel.for (%tx, %ty, %tz) = (0, 0, 0) to (blk.x, blk.y, blk.z) { 
 
      if %tx == 0 { 
         store …, %shared_val[] : memref<f32> 
      } 

      polygeist.barrier(%tx, %ty, %tz) 
 
      … 
    } 
  } 
}

[1] High-Performance GPU-to-CPU Transpilation and Optimization via High-Level Parallel Constructs, PPoPP’23



Synchronization via Memory

codeA(fib(idx)); 

sync_threads; 

codeB(fib(idx)); 

• Synchronization (sync_threads) ensures all threads 
within a block finish executing codeA before 
executing codeB 
• The desired synchronization behavior can be 

reproduced by defining sync_threads to have the 
union of the memory semantics of the code before 
and after the sync.  
• This prevents code motion of instructions which 

require the synchronization for correctness, but 
permits other code motion (e.g. index 
computation).

off = fib(idx); 

codeA(off); 

sync_threads; 

codeB(off); 



Synchronization via Memory
__global__ void bpnn_layerforward(...) { 
  __shared__ float node[HEIGHT]; 
  __shared__ float weights[HEIGHT][WIDTH]; 

  if ( tx == 0 ) 
    node[ty] = input[index_in] ; 

  // Unnecessary Barrier #1 
  // None of the read/writes below the sync  
  //  (weights, hidden) 
  // intersect with the read/writes above the sync 
  //  (node, input) 
  __syncthreads(); 
   

  // Unnecessary Store #1 
  weights[ty][tx] = hidden[index]; 

  __syncthreads(); 

  // Unnecessary Load #1 
  weights[ty][tx] = weights[ty][tx] * node[ty]; 
  … 
}

• High-level synchronization 
representation enables new 
optimizations, like sync elimination. 
• A synchronize instruction is not 

needed if the set of read/writes 
before the sync don’t conflict 
with the read/writes after the sync.



Synchronization via Memory
__global__ void bpnn_layerforward(...) { 
  __shared__ float node[HEIGHT]; 
  __shared__ float weights[HEIGHT][WIDTH]; 

  if ( tx == 0 ) 
    node[ty] = input[index_in] ; 

  // Unnecessary Barrier #1 
  // None of the read/writes below the sync  
  //  (weights, hidden) 
  // intersect with the read/writes above the sync 
  //  (node, input) 
  __syncthreads(); 
   

  // Unnecessary Store #1 
  weights[ty][tx] = hidden[index]; 

  __syncthreads(); 

  // Unnecessary Load #1 
  weights[ty][tx] = weights[ty][tx] * node[ty]; 
  … 
}

• High-level synchronization 
representation enables new 
optimizations, like sync elimination. 
• A synchronize instruction is not 

needed if the set of read/writes 
before the sync don’t conflict 
with the read/writes after the sync.

• 27% speedup on real code, 2.7x on 
PyTorch cross compilation!



Synchronization via Memory

parallel_for %i = 0 to N { 

  codeA(%i); 

  sync_threads; 

  codeB(%i); 

} 

parallel_for %i = 0 to N { 

  codeA(%i); 

} 

parallel_for %i = 0 to N { 

  codeB(%i); 

}

• A unified representation of parallelism enables 
programs in one parallel architecture (e.g. CUDA) 
to be compiled to another (e.g. historically 
OpenMP, now TPUs) 
• Some backends do not have block synchronization 
• Lower a top-level synchronization by distributing 

the parallel for loop around the sync, and 
interchanging control flow



Synchronization via Memory

• A unified representation of parallelism enables 
programs in one parallel architecture (e.g. CUDA) 
to be compiled to another (e.g. historically 
OpenMP, now TPUs) 
• Some backends do not have block synchronization 
• Lower a top-level synchronization by distributing 

the parallel for loop around the sync, and 
interchanging control flow

parallel_for %i = 0 to N { 

  for %j = … { 

    codeB1(%i, %j); 

    sync_threads;  

    codeB2(%i, %j); 

  } 

} 

for %j = … { 

  parallel_for %i = 0 to N { 

    codeB1(%i, %j); 

    sync_threads;  

    codeB2(%i, %j); 

  } 

} 



LLVM to StableHLO

llvm.call @__nv_fabsf(%arg0) 

llvm.br

LLVM/NVVM Dialect Arith + Control Flow SCF (While) SCF (For)

Affine StableHLO

%0 = math.abs %arg0 

cf.br

scf.while %arg = %c0 { 

  %arg < %c10 

} do {  

… } 

scf.for %arg = %c0 .. %c10 { 

   … 

}

affine.for %i = 0 to 10 { 

   affine.store out[%i] = … 

}

%x = stablehlo.slice … 
%y = stablehlo.abs %x 
%z = stablehlo.dynamic_update_slice %z0[...] = %y 

http://cf.br
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%0 = math.abs %arg0 

cf.br
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}

affine.for %i = 0 to 10 { 

   affine.store out[%i] = … 
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Affine to StableHLO

parallel.for (%tx, %ty, %tz) = (0,0,0) to (5,7,9){ 

   %A1 = load x[%tx, %ty, %tz] 
       
   %A2 = sin(%A1) 
 
   store y[%tx, %ty, %tz] = %A2 
 
   … 
}

• Represent permissive, device-
agnostic parallelism 
• Legal to re-order and interchange 

instructions 
• One execution (lock-step), runs all 

of A1, then all of A2, etc 
• Lets us form efficient tensor 

(stablehlo) versions of kernels
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(stablehlo) versions of kernels
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%A1 = stablehlo.slice %x[0:5, 0:7, 0:9] 

%A2 = stablehlo.sine %A1 

parallel.for (%tx, %ty, %tz) = (0,0,0) to (5,7,9){ 
 
   store y[%tx, %ty, %tz] = %A2 
 
   … 
}

• Represent permissive, device-
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• Legal to re-order and interchange 

instructions 
• One execution (lock-step), runs all 

of A1, then all of A2, etc 
• Lets us form efficient tensor 

(stablehlo) versions of kernels



Affine to StableHLO

%A1 = stablehlo.slice %x[0:5, 0:7, 0:9] 

%A2 = stablehlo.sine %A1

%Y2 = stablehlo.dynamic_update_slice 
                     %Y[0:5, 0:7, 0:9], %A2 

parallel.for (%tx, %ty, %tz) = (0,0,0) to (5,7,9){ 
   … 
}

• Represent permissive, device-
agnostic parallelism 
• Legal to re-order and interchange 

instructions 
• One execution (lock-step), runs all 

of A1, then all of A2, etc 
• Lets us form efficient tensor 

(stablehlo) versions of kernels



StableHLO … to better StableHLO

%x1 = stablehlo.slice %x[1:98] 
%x2 = stablehlo.slice %x[2:99] 
%mul = stablehlo.multiply %x2, tensor<2.0> 
%add = stablehlo.add %x1, %mu 
…

• The direct vectorization of the code 
works, but may not be efficient. 
• We will lost the convolution! 
• Perform tensor-level optimizations 

on stablehlo to recover and 
optimize higher-level structures

%y = stablehlo.convolve %x, tensor<[1.0, -2.0, 1.0]> 
 
%z = stablehlo.convolve %y, tensor<[1.0, -2.0, 1.0]>

%z = stablehlo.convolve %x, tensor<[1.0, -4.0, 6.0, -4.0, 1.0]>



StableHLO … to better StableHLO

%x1 = stablehlo.slice %x[1:98] 
%x2 = stablehlo.slice %x[2:99] 
%mul = stablehlo.multiply %x2, tensor<2.0> 
%add = stablehlo.add %x1, %mu 
…

• The direct vectorization of the code 
works, but may not be efficient. 
• We will lost the convolution! 
• Perform tensor-level optimizations 

on stablehlo to recover and 
optimize higher-level structures

%y = stablehlo.convolve %x, tensor<[1.0, -2.0, 1.0]> 
 
%z = stablehlo.convolve %y, tensor<[1.0, -2.0, 1.0]>

%z = stablehlo.convolve %x, tensor<[1.0, -4.0, 6.0, -4.0, 1.0]>

56% speedup on 
JaX ML workloads



CUDA to Accelerator IR (StableHLO)

function stencil_kernel(y, x) 
  i = threadIdx().x + (blockIdx().x - 1) * blockDim().x 
  if i <= length(x) - 2 
    y[i] = x[i] - 2 * x[i+1] + x[i+2] 
  end 
end 

function model(...) 
  @cuda threads=... blocks=... stencil_kernel(y, x) 
  @cuda threads=... blocks=... stencil_kernel(x, y) 
end 

Compilation

define void @julia_difference_kernel_890({}* %y, {}* %x) { 
top: 
  %3 = call i32 @llvm.nvvm.read.ptx.sreg.tid.x() 
  %4 = add nuw nsw i32 %3, 1 
  ... 
  br i1 %.not, label %common.ret, label %L31 
}

func.func @kernel(%y : memref<100xf64>, %x : memref<100xf64>) { 
  affine.parallel %arg1 = 0 to 100 { 
    %x1 = affine.load %x[%arg1] 
    %x2 = affine.load %x[%arg1 + 1] 
    ... 
    affine.store %sum, %y[%arg1] 
  } 
}

%x1 = stablehlo.slice %x[1:98] 
%x2 = stablehlo.slice %x[2:99] 
%mul = stablehlo.multiply %x2, tensor<2.0> 
%add = stablehlo.add %x1, %mu

res = stablehlo.convolve %x, tensor<[1.0, -4.0, 6.0, -4.0, 1.0]>

RaisingRaising

Multi-DimensionalizationMulti-DimensionalizationMulti-Dimensionalization

Optimization



Primal Raising Performance Results

• Successfully ran single-node Oceanangians.jl on 
thousands of distributed accelerators 
• Perlmutter (1536 nodes x 4 NVIDIA A100 GPUs) 
• 1,679 Google TPUs v6e (918 TFLOPS each)  
• Communication optimizations were key 
• Good Single-Node Perf (CPU) 
• Vanilla Model: 272.0seconds 
• Tensor Optims:  11.5seconds



How Does Raising & Tensor Transformations Impact AD?



How Does Raising & Tensor Transformations Impact AD?

• Biggest impact in three primary areas: 
• Work-Reduction + Fusion 
• Checkpointing 
• Communication



Linear Algebra Optimizations
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Wrote >200 different patterns!

Simplify code where possible
  x + 0 -> x 

  transpose(transpose(x)) -> x 

  transpose(matmul(a,b)) -> 
     matmul(b, a)

Often require program context
  transpose(convert(reshape(x))) 
   <-> reshape(convert(transpose(x)) 

  slice(add(a, b)) -> 
   add(slice(a), slice(b)) 

  mul(pad(x, 0), y) -> 
   pad(mul(x, slice(y)), 0)

x, y : tensor<100000xf32> 

a = dot(x, y) 

b = mul(a, z) 

c = add(b, 4) 

return c[0:10]



Linear Algebra Optimizations

87

x, y : tensor<100000xf32> 

a = dot(x, y) 

b = mul(a, z) 

c = add(b[0:10], 4) 

return c

Wrote >200 different patterns!

Simplify code where possible
  x + 0 -> x 

  transpose(transpose(x)) -> x 

  transpose(matmul(a,b)) -> 
     matmul(b, a)

Often require program context
  transpose(convert(reshape(x))) 
   <-> reshape(convert(transpose(x)) 

  slice(add(a, b)) -> 
   add(slice(a), slice(b)) 

  mul(pad(x, 0), y) -> 
   pad(mul(x, slice(y)), 0)



Linear Algebra Optimizations

88

x, y : tensor<100000xf32> 

a = dot(x, y) 

b = mul(a[0:10], z[0:10]) 

c = add(b, 4) 

return c

Wrote >200 different patterns!

Simplify code where possible
  x + 0 -> x 

  transpose(transpose(x)) -> x 

  transpose(matmul(a,b)) -> 
     matmul(b, a)

Often require program context
  transpose(convert(reshape(x))) 
   <-> reshape(convert(transpose(x)) 

  slice(add(a, b)) -> 
   add(slice(a), slice(b)) 

  mul(pad(x, 0), y) -> 
   pad(mul(x, slice(y)), 0)



Linear Algebra + AD

89

• Consider a simple code which 
performs a matmul and add on a 
Diagonal matrix 



Linear Algebra + AD

90

• Consider a simple code which 
performs a matmul and add on a 
Diagonal matrix 

• Without any optimization, we 
perform a scatter to create the 
diagonal, then a matmul 



Linear Algebra + AD
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• Consider a simple code which 
performs a matmul and add on a 
Diagonal matrix 

• Without any optimization, we 
perform a scatter to create the 
diagonal, then a matmul 

• Differentiating this, results in gathers 
in the derivative, which cannot be 
removed via optimization.



Linear Algebra + AD
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• Consider a simple code which 
performs a matmul and add on a 
Diagonal matrix 

• mul(diag(x), v) -> 
     elementwise(x, v) 

• Performing this prior to AD 
yields 2-3x performance! 



Work Reduction Benchmark: Jaxley
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1.15x speedup on CPU
1.33x speedup on A100
3.92x speedup on TPU v6

[1] Deistler, Michael, et al. "Jaxley: differentiable simulation enables large-scale training of detailed biophysical models of neural dynamics." Nature Methods (2025): 1-9.



Checkpointing

• Checkpointing is a technique for trading off 
memory and compute time in the derivative

 
cache = malloc N x f32 
for i = 0:N { 
   x = foo(x) 
   cache[i] = x 
} 
 
for i = N:0 { 
   x = cache[I] 
   dx = grad_foo(x, dx) 
}



Checkpointing

• Checkpointing is a technique for trading off 
memory and compute time in the derivative

 
cache = malloc M x f32 
for i = 0:N/M { 
   for j = 0:M { 
     x = foo(x) 
   } 
   cache[i] = x 
} 
 
for i = N:0 { 
   x = cache[I/M] 
   for j in 0:i%M { 
      x = foo(x) 
   } 
   dx = grad_foo(x, dx) 
}



Checkpointing

• Checkpointing is a technique for trading off 
memory and compute time in the derivative 

• Performing entire-program-level analysis,  
we can remove induction variables on the 
loop, reducing memory AND computation

 
x = tensor<100x100xf32> 
for i = 0:steps { 
   x[0,  :] = 0 
   x[end,:] = 0 
   y = foo(x, y) 
} 

 
if (steps > 0) { 
  x[0,  :] = 0 
  x[end,:] = 0 
 
  for i = 0:steps { 
    y = foo(x, y) 
  } 



Communication + AD
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Differentiation changes how we want to parallelize code

• Scatters <-> Gathers



Communication + AD
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Differentiation changes how we want to parallelize code

• Scatters <-> Gathers
• Can create race conditions

void set(double* ar, double val) { 
  pfor(int i=0; i<n; i++) { 
     ar[i] = val; 
  } 
  … 
}

void grad_set(double* ar, double* d_ar) { 
  double d_val = 0; 
  pfor (int i=0; i<n; i++) { 
     d_val += d_ar[i]; 
  } 
  … 



Communication + AD
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Differentiation changes how we want to parallelize code

• Scatters <-> Gathers
• Can create race conditions
• Serial Primal => Parallel Derivative

double sum(double* x) { 
  double S = 0.0; 
  for (int i = 0; i < N; i++) { 
    S += x[i] * x[i]; 
  } 
  return S; 
}

void grad_sum(double* x, double* d_x, 
	 	 	     double d_S) {  
  pfor (int i = 0; i < N; i++) { 
    d_x[i] += 2.0 * x[i] * d_S; 
  } 
} 



Derivative Raising Performance Results

• Primal Perf (CPU) 
• Vanilla Model: 272.0seconds 
• Tensor Optims:  11.5seconds 
• Derivative Performance 
• Similar performance to primal on single 

timestep, scaling with linearly time steps 
• Disabling tensor optimizations causes it 

to instantly oom the system 
• Tensor and whole-program optimizations 

are quite useful!



Takeaways

• Compilers Make Differentiation Fast and Easy to use


• Key to this is interaction with Optimization


• Executing on accelerators historically require rewriting entire workflows


• Raising enables existing workflows to execute on (distributed 
accelerators)


• EnzymeMLIR enables preserving and optimizing high-level structure and 
optimizations, whose impact is compounded on such accelerators


• All open source (GitHub.com/EnzymeAD/Enzyme ; GitHub.com/
EnzymeAD/Enzyme-JaX ; GitHub.com/EnzymeAD/Reactant.jl )  101

http://GitHub.com/EnzymeAD/Enzyme
http://github.com/EnzymeAD/Enzyme-JaX
http://github.com/EnzymeAD/Enzyme-JaX
http://GitHub.com/EnzymeAD/Reactant.jl

