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Differentiation: Connecting Science and Al

Target Reconstruction

‘ad Image Loss

Derivatives are key to science + ML
» Scientific Computing: UQ, Differential
Equation, Error Analysis

* Machine Learning: Back-Propagation,
B ayeS i a n I n fe re n Ce g?énGEngan;\;);ﬁggeznzt,lazt:ﬁgno:( El;(fgr%econstructlon Filters for Path-Space Differentiable Rendering,

IBO JrZECzHIr\]/)IA & NSFE LSSL: Differentiable programming in Julia for Earth system modeling from Center for the Exascale Simulation of Materials in Extreme Environments

4 from Differential Molecular Simulation with Molly.jl, EnzymeCon 2023,
Joe Greener (Cambridge)



https://dl.acm.org/doi/pdf/10.1145/3550454.3555500
https://clima.caltech.edu/
https://dj4earth.github.io/
https://dj4earth.github.io/
https://computing.mit.edu/cesmix/
https://enzyme.mit.edu/conference

Automatic Derivative Generation

Derivatives can be generated automatically from definitions within programs

double relu3(double x) { double grad_relu3(double x) {
if (x > 0) if (x > 0)
return pow(x, 3) AD return 3 * pow(x,2)
else else
return 0; return 0;
J J

| — S—— | T—— —

Unlike numerical approaches, automatic differentiation (AD) can compute the derivative of ALL
inputs (or outputs) at once, without approximation error!

// Numeric differentiation // Automatic differentiation
// f’(x) approx [f(x+epsilon) - f(x)] / epsilon double [100];
double [100];
grad_f( , )
for (int 1=0; 1<100; 1i++) { — —
double [100] = ;
[1] += 0.01;
[1] = (f( ) - f( ))/90.001;

L — N —



Differentiation is Expensive

Derivatives are the most costly and
difficult to use algorithms
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With Enzyme differentiation:
1 hour on 1 thread
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Existing AD Approaches (1/3)

Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)
Provide a new language designed to be differentiated

Requires rewriting everything in the DSL and the DSL must support all operations in original

code
Fast if DSL matches original code well import as
double relu3(double ) { = tf.Variable(3.14)
1f (x > 0) . .
return pow(x, 3) Manually W ti.g;ag;ingageé) -
elie . Rewrite lambda: tf.math.pow(x,3),
eturn 0; lambda: ©
J ) '

print( .gradient( ;X)) . numpy())




Existing AD Approaches (2/3)

Operator overloading (Adept, JAX)

Differentiable versions of existing language constructs (double => adouble, np.sum => jax.sum)

May require writing to use non-standard utilities

Often dynamic: storing instructions/values to later be interpreted

// Rewrite to accept either . :Stack :
// double or adouble : adouble = 3.14;
template<typename T>
T relu3(T ) A // Store all instructions i1nto stack
if (x > 0) . :adouble (relu3(inp));
return pow(x, 3) .set_gradient(1.00);
else
return 0; // Interpret all stack instructions

} double = .get_gradient(3.14);




Existing AD Approaches (3/3)

Source rewriting
Statically analyze program to produce a new gradient function in the source language
Re-implement parsing and semantics of given language

Requires all code to be available ahead of time => hard to use with external libraries

// myfile.h // grad_myfile.h
// myfile.c { \\\\\ ////ﬂ // grad_myfile.c
double relu3(double x) { double grad_relu3(double x) {
if (x > 0) —> | lapenade »—> if (x > 0)
return pow(x, 3) ////ﬂ \\\\\ return 3 * pow(x,2)
else else
return 0; return 0;




Existing Automatic Differentiation Pipelines

Optimize

CodeGen
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% Enzyme Approach

Performing AD at low-level lets us work on optimized code!

Optimize Optimize

CodeGen
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Case Study: Vector Normalization

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in 0(n”*2)

void norm(doublel ]

for (int 1=0; 1i<n;

, doublel]

++) {

[1] = in[1] / mag(in);

)
}

15
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Case Study: Vector Normalization

//Compute magnitude in O(n)

double mag(double[] x):

//Compute norm in O(n)
void norm(doublel ]
double = mag(in);
for (int 1=0; 1i<n;
[1] = 1in[1] /
]
J

)

, doublel]

N>

)

16

)



Optimization & Automatic Differentiation

O (n?) O (n) O (n)
for i=0.. = mag(in) = 0.0
L1 /- magGiry | Optimize > for i0..n < AD O res e 8 outli]
) - |
_ . } )

17
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Optimization & Automatic Differentiation

0 (n) 0 (n) 0 (n)
for i=0..n { - = mag(in) = 0.0
[i] /= mag(in) Optimize for i=0..n { AD for i=n..0 {
) [i] /= = [i]
- S } )
B— — Vmag ( )
0 (n°) 0 (n)
for 1=0..n { for :”-;Q { -
1 S m maeln) AD } vmag ( )

- — ——
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Optimization & Automatic Differentiation

0, (nz) O (n)
for i=0.. = mag(in)

or - Dz{mag( ) Optimize for EQj.DZ{
b - }

O (n*) O (n*)
for i=0..n { for :n.;® t ri
) L1] /= mag(in) AD Vmag (

— — }

O (n)
= 0.0
AD for :n.ﬁ { -
J
Vmag ( )
O (nz)
for i=n..0 {
. d_res = [1]..
Optimize vmag ( d_res)
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Optimization & Automatic Differentiation

Differentiating after optimization can create asymptotically faster gradients!

O (n?) O (n) O (n)
for i=0.. = mag(in) = 0.0
L1 /- magGiry | Optimize > for i0..n < AD O re e §outlil.
: — S J J

- vmag ( )
2

0 (1) 0 (1) 0 (1)

for i=0. .n { for :n°;® { [ ] for i=n..0 {
_ = - d_res = [i]..

: [1] /= mag(in) AD Vmag ( ) Optimize Vmggs(; d_res)

. . ) )
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Automatic Differentiation & GPUs [MCPHNSD @ SC’21]

* Prior work has not explored reverse mode AD of existing GPU kernels
1. Reversing parallel control flow can lead to incorrect results

2. Complex performance characteristics make it difficult to synthesize
efficient code

3. Resource limitations can prevent kernels from running at all

22



Challenges of Parallel AD

The adjoint of an instruction increments the derivative of its input

Benign read race in forward pass => Write race in reverse pass (undefined behavior)

double gradient_set(doublex* , doublex* :
double ) {
double = 0.0;

void set(double* ar, double ) {

parallel_for(int 1=0; 1<10; 1++)

L1 = ; parallel_for(int 1=0; 1<10Q; 1++)
) . \ — [1] = ;
parallel_for(int 1=0; 1<10; 1++) {
Read Race / SR
. J
Write Race
return X

| —
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GPU Memory Hierarchy

Per Thread Per Block Per GPU
Register Shared Memory Global Memory
~Bytes ~KBs ~GBs

Use Limits Parallelism Use Limits Parallelism

_— - —_—
Slower, larger amount of memory

0,



Correct and Efficient Derivative Accumulation

Same memory location across  Others [always legal fallback]

all threads (some shared mem)

Thread-local memory

Non-atomic load/store

Parallel Reduction

Atomic increment

__device__
void f(..) {

// Thread-local var
double vy;

// Same var for all threads
double vy;

__device__
void f(..) {

reduce_add (& : );
J

__device__
// Unknown thread-aliasing
void f(double*x y) {

atomic { += ;)

25

Slower




Synchronization Primitives

Synchronization (sync_threads) ensures all threads finish executing
codeA before executing codeB

Sync is only necessary if A and B may access to the same memory

Assuming the original program is race-free, performing a sync at the
corresponding location in the reverse ensures correctness

Prove correctness of algorithm by cases

26

codeA();
sync_threads;

codeB();




Case 1: Store, Sync, Load

codeA(); // store %ptr
sync_threads;

codeB(); // load %ptr

diffe_codeB(); // atomicAdd %d_ptr
sync_threads;

diffe_codeA(); // load %d_ptr
// store %d_ptr = 0

27

V Correct

- Load of d_ptr must happen after

all atomicAdds have completed




CUDA Example

__device__ __device__
void inner(float* a, floatx x, float* y) { void diffe_inner(floatx a, floatx da,
float* x, float* dx,
y[threadIdx.x] = a[@] * x[threadIdx.x]; floatx y, float* dy) {
// Forward Pass
J
y[threadIdx.x] = al@] * x[threadIldx.x];
__device__
void __enzyme_autodiff(void*, ..); // Reverse Pass
__global__ float dy = dy[threadIdx.x];
void daxpy(float* a, float* da, dy[threadIdx.x] = 0.0f;
floatx x, float* dx,
floatx y, float*x dy) { float dx_tmp = a[@] * dy;

atomic { dx[threadIdx.x] += dx_tmp; }
__enzyme_autodiff ((voidx)inner,
a, da, x, dx, y, dy); float da_tmp = x[threadIdx.x] * dy;
atomic { dal@] += da_tmp; }

28




CUDA Example

__device__ __device__
void inner(float* a, floatx x, float* y) { void diffe_inner(floatx a, floatx da,
float* x, float* dx,
y[threadIdx.x] = a[@] * x[threadIdx.x]; floatx y, float* dy) {
// Forward Pass
J
y[threadIdx.x] = al@] * x[threadIldx.x];
__device__
void __enzyme_autodiff(void*, ..); // Reverse Pass
__global__ float dy = dy[threadIdx.x];
void daxpy(float* a, float* da, dy[threadIdx.x] = 0.0f;
floatx x, float* dx,
floatx y, float*x dy) { float dx_tmp = a[@] * dy;

dx[threadIdx.x] += dx_tmp;
__enzyme_autodiff ((voidx)inner,
a, da, x, dx, y, dy): float da_tmp = x[threadIdx.x] * dy;
reduce_accumulate(&dal[@], da_tmp);

29




CUDA.jl / AMDGPU.jl Example

function compute! (inp, out)
s_D = @cuStaticSharedMem eltype(inp) (19, 10)

end

function grad_compute! (inp, out)
Enzyme.autodiff_deferred(compute!, inp, out)
return nothing

end

@cuda grad_compute! (Duplicated(inp, d_inp),
Duplicated(out, d_out))

function compute! (inp, out)
s_D = AMDGPU.alloc_special(..)

end

function grad_compute! (inp, out)
Enzyme.autodiff_deferred(compute!, inp, out)
return nothing

end

@rocm grad_compute! (Duplicated(inp, d_inp),
Duplicated(out, d_out))

See Below For Full Code Examples

https://github.com/wsmoses/Enzyme-GPU- Tests/blolb/main/DG/

30
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Efficient GPU Code

For correctness, Enzyme may need to cache values Iin
order to compute the gradient

The complexity of GPU memory means large caches
slow down the program by several orders of magnitude,
if it even fits at all

Like the CPU, existing optimizations reduce the overhead
Unlike the CPU, existing optimizations aren’t sufficient

Novel GPU and AD-specific optimizations can speedup by
several orders of magnitude

// Forward Pass
[1] = x[1] *
[1] = ;

// Reverse (gradient) Pass

[i] +=

x*

[i];

[1] *

[1];



Efficient Correct GPU Code

32

For correctness, Enzyme may need to cache values Iin
order to compute the gradient

The complexity of GPU memory means large caches
slow down the program by several orders of magnitude,
if it even fits at all

Like the CPU, existing optimizations reduce the overhead
Unlike the CPU, existing optimizations aren’t sufficient

Novel GPU and AD-specific optimizations can speedup by
several orders of magnitude

doublex = new doublel..];

// Forward Pass

[1] [1] * x[i];

[i1 = x[i]:
[1] = :

// Reverse (gradient) Pass

[1] += 2 * [1]
* [1];

deletel[] :




Cache Reduction Example

By considering the dataflow graph
we can perform a min-cut to
approximate smaller cache sizes.

Overwritten: ° °
Required for
Reverse: @

33

for(int 1=0; 1<10; i++) {
double sum = x[i] + y[i];

use(sum);

)

overwrite(x, vy);
grad_overwrite(x, v);

for(int i=9; i>=0; i--) {

grad_use(sum);

¥




Cache Reduction Example

By considering the dataflow graph
we can perform a min-cut to
approximate smaller cache sizes.

Naive Cache

¥ N

Overwritten:

Required for
Reverse: @

34

double* x_cache = new double[10];
double* y_cache = new double[10];

for(int 1=0; 1<10; 1++) {

1
double sum = x[i] + y[i];
x_cachel[i] = x[i];
y_cachel[1i] = y[1];
use(sum);
}

overwrite(x, v);
grad_overwrite(x, vy);

for(int i=9; i>=0; i--) {
double sum = x_cacheli] + y_cachel[1i];
grad_use(sum);

¥




Cache Reduction Example

By considering the dataflow graph
we can perform a min-cut to
approximate smaller cache sizes.

Overwritten: ° °

Required for
Reverse:

o

double* sum_cache = new double[10];

for(int 1=0; i<10; i++) {
double sum = x[i] + y[i];
sum_cachel1] = sum;

use(sum);

)

overwrite(x, v);
grad_overwrite(x, vy);

for(int i=9; i>=0; i--) {

grad_use(sum_cachel[i]);

¥

Smallest Cache

35




Allocation Merging

36

Allocations (and any calls) on the
GPU are expensive

Given two allocations in the same
scope, replace uses with a single
allocation

Beneficial for not just AD, but any
GPU programs!

doublex*
doublex*

use(

deletel ]
deletel[ ]

)

new double[N];
new double[M];

)

doublex*
doublex*

use(

deletel[ ]

)

)

new doublel[

);

+

)

+

1;




Novel AD + GPU Optimizations

See our SC’21 paper for more (https://c.wsmoses.com/papers/EnzymeGPU.pdf)
Reverse-Mode Automatic Differentiation and Optimization of GPU Kernels via Enzyme. SC, 2021

[AD] Cache LICM/CSE

[AD] Min-Cut Cache Reduction
[AD] Cache Forwarding

[GPU] Merge Allocations

[GPU] Heap-to-stack (and register)

[GPU] Alias Analysis Properties of SyncThreads

37


https://c.wsmoses.com/papers/EnzymeGPU.pdf

GPU Gradient Overhead [MCPHNMJ’21]

38

Evaluation of both original code and gradient
DG (ROCm)

DG: Discontinuous-Galerkin integral (Julia)
DG (CUDA)

18.35

LBM: particle-based fluid dynamics
simulation LBM (Parboil) - 6.3

LULESH: unstructured explicit shock LULESH 2.01
hydrodynamics solver

RSBench | 4.2

XSBench & RSBench: Monte Carlo
simulations of particle transport
algorithms (memory & compute bound, XoBench - 52

respectively)




GPU Gradient Overhead [MCPHNMJ’21]

39

Evaluation of both original code and gradient
DG (ROCm)

DG: Discontinuous-Galerkin integral (Julia)
DG (CUDA)

LBM: particle-based fluid dynamics

simulation LBM (Parboil) - 6.3
LULESH: unstructured explicit shock LULESH 2.01
hydrodynamics solver .
Bug in CUDA
RSBench - 4.2 .
XSBench & RSBench: Monte Carlo Reqgister Allocator
simulations of particle transport
algorithms (memory & compute bound, A5Bench - -

respectively)

0,



Ablation Analysis of Optimizations

\ \ Unrolling \ \
DG (ROCm) 0
5.4 X
Unrolling MallocCoalescing PreOptimization
17.8% 116.6 X% 1378.3%
Allocator Recompute InlineCacheABI
LBM O e e P
6.4% 8.7X 19.87 -
SpecPHI PreOptimization
LULESH AP 7o Y ESSSSSSEEEEE—————— ‘
2.0x 2.4% 2979.1 X )
CacheLICM Inlining PreOpt
4.7% 9.5X% 6372.2%
Templating  PHI LoopBound PreOptimization
XSBench 8 A § B A B A B R EEEEEEEEEE——————mmm,
3.2 X 9.5 X% 16.3x 25.9%
| | | |
Forward (1x) 10x 100x 1000x OOM

Overhead above Forward Pass
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Ablation Analysis of Optimizations

\ \ Unrolling \ \
DG (ROCm) 0
i 5.4 %
Unrolling MallocCoalescing PreOptimization
DG (CUDA) O(—O(—O_
i 17.8% 116.6 X 1378.3 X
Allocator Recompute InlineCacheABI
LBM O €= €O
i 6.4x 8.7X 19.87 % )
SpecPHI PreOptimization

LULESH Oéo_

i 2.0x 2.4% 2979.1x )

CacheLICM Inlining P1eOpt

RSBench O () OL

i 4.7 X 9.5 % 06372.2X

Templating  PHI LoopBoun PreOptimization
XSBench O e () G ) s )
3.2X 9.9 X 16.3x  25.9%
[ | | | |
Forward (1x) 10x 100x 1000x OOM

41

Overhead above Forward Pass



Ablation Analysis of Optimizations

Unrolling
DG (ROCm) 0
B 5.4 X
Unrolling MallocCoalescing PreOptimization
DG (CUDA) O_O_O_ <
B 17.8 % 116.6 % 1378.3 %
Allocator Recompute InlineCacheABI
LBM 0
i 6.4x 8.7 19.87x )
SpecPHI PreOptimization
LULESH
i 2.0x 2.4x% 2979.1% )
CagheLICM Inlining PreOpt
RSBenCh &O—OL
i 4.7% 9.5 X 6372.2 %
mplating PHI LoopBoun PreOptimization
XSBench O
3.2X 9.5 16.3x 25.9%
- \ \ \ \
Forward (1x) 10x 100x 1000x OOM

42

Overhead above Forward Pass



Ablation Analysis of Optimizations

Unrolling
DG (ROCm) 0
i 5.4%
Unrolling MallocCoalescing PreOptimization
DG (CUDA) O_O_O_ <
i 17.8% 116.6 % 1378.3 %
Allocator Recompute InlineCacheABI
LBM 0
i 6.4x 8.7 19.87 % )
SpecPHI PreOptimization
LULESH
i 2.0x 2.4x% 2979.1% )
CagheLICM Inlining PreOpt
RSBenCh &O—OL
i 4.7 9.5 X 6372.2X%
mplating  PHI LoopBoun PreOptimization
XSBench O
3.2 X 9.5 % 16.3x 25.9x%
[ \ \ \ \
Forward (1x) 10x 100x 1000x OOM

Overhead above Forward Pass

GPU AD is Intractable Without Optimization!

43



Computing Hardware is No Longer For Everybody



Computing Hardware is No Longer For Everybody

NVIDIA Puts Grace Blackwell on Every Desk and at
Every Al Developer’s Fingertips

NVIDIA Project DIGITS With New GB10 Superchip Debuts as World's Smallest Al
Supercomputer Capable of Running 200B-Parameter Models



Computing Hardware is No Longer For Everybody

Exclusive: Meta begins testing its first in-
house Al training chip

By Katie Paul and Krystal Hu

March 11, 2025 2:37 PM GMT+1 - Updated March 11, 2025

NVIDIA Puts Grace Blackwell on Every Desk and at
Every Al Developer’s Fingertips

NVIDIA Project DIGITS With New GB10 Superchip Debuts as World's Smallest Al
Supercomputer Capable of Running 200B-Parameter Models



Computing Hardware is No Longer For Everybody

ANTHROP\C Claude v APl v Solutions v  Researc h v Commitments v Learn v News
Exclusive: Meta begins testing its first in-

house Al training chip

0 [aal(< Claude 3.5 Haiku on AWS Trainium?2 and
S model distillation in Amazon Bedrock

Dec 3,2024 + 3 minread

By Katie Paul and Krystal Hu
March 11, 2025 2:37 PM GMT+1 - Updated March 11, 2025

is seen in Brussels, Belgium December 6, 2022. REUTERS/Yves >

NVIDIA Puts Grace Blackwell on Every Desk and at
Every Al Developer’s Fingertips

NVIDIA Project DIGITS With New GB10 Superchip Debuts as World's Smallest Al
Supercomputer Capable of Running 200B-Parameter Models



Computing Hardware is No Longer For Everybody
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m By Efosa Udinmwen published July 26, 2025

OpenAl scale-up will give its investors something to think about
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lIronwood: The first Google TPU for the age of inference

e When scaled to 9,216 chips per pod for a total of 42.5 Exaflops, Ironwood supports more than 24x nething to think about
the compute power of the world'’s largest supercomputer — El Capitan — which offers just 1.7
Exaflops per pod. [ronwood delivers the massive parallel processing power necessary for the

L)

most demanding Al workloads, such as super large size dense LLM or MoE models with thinking

capabilities for training and inference. Each individual chip boasts peak compute of 4,614 TFLOPs.

B This represents a monumental leap in Al capability. Ironwood’s memory and network architecture
v | ensures that the right data is always available to support peak performance at this massive scale.
more Nvidia GPUS, an impuise all
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Lingua Franca of Scientific Computing

- Scientists do not write TPU* code

__global__
void AddNodeForcesFromElems_kernel( Index_t numNode,

Index_

const
const
const
const
const
const

t padded_numNode,

Int_t* nodeElemCount,

Int_t* nodeElemStart,
Index_t* nodeElemCornerList,
Real_t* fx_elem,

Real_tx fy_elem,

Real_t* fz_elem,

Real_t* fx_node,
Real_t* fy_node,
Real_t* fz_node,

const

Int_t num_threads)

int tid=blockDim.x*blockIdx.x+threadIdx.x;
if (tid < num_threads)

{

Index_t g_1i = tid;

Int_t count=nodeElemCount[g_i];
Int_t start=nodeElemStart[g_i];
Real_t fx,fy,fz;
fx=fy=fz=Real_t(0.0);

for (int j=0;j<count;j++)

Index_t pos=nodeElemCornerList[start+j]; // Uncoalesced access here

{
fx += fx_elem[pos];
fy += fy_elem[pos];
fz += fz_elem[pos];
3

fx_node[g_1i]=fx;
fy_node[g_i]=fy;
fz_node[g_i]=fz;




Lingua Franca of Scientific Computing

- Scientists do not write TPU* code

void AddNodeForcesFromElems_kernel( Index_t numNode,
Index_t padded_numNode,
const Int_t* nodeElemCount,
const Int_t* nodeElemStart,

- BIG (MFEM library alone is 737K LOC)

const Real_tx fz_elem,
Real_t* fx_node,

Real_t* fy_node,

Real_t* fz_node,

const Int_t num_threads)

int tid=blockDim.x*xblockIdx.x+threadIdx.x;
if (tid < num_threads)
{

Index_t g_1i = tid;

Int_t count=nodeElemCount[g_i];

Int_t start=nodeElemStart[g_i];

Real_t fx,fy,fz;

fx=fy=fz=Real_t(0.0);

for (int j=0; j<count;j++)
{
Index_t pos=nodeElemCornerlList[start+j]; // Uncoalesced access here
fx += fx_elem[pos];
fy += fy_elem[pos];
fz += fz_elem[pos];

fx_node[g_1i]=fx;
fy_node[g_i]=fy;
fz_node[g_i]=fz;
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- Scientists do not write TPU* code

void AddNodeForcesFromElems_kernel( Index_t numNode,
Index_t padded_numNode,
const Int_t* nodeElemCount,
const Int_t* nodeElemStart,
" " const Index_t* nodeElemCornerList,
-+ BIG (MFEM library alone is 737K LOC)
const Real_tx fy_elem,
const Real_tx fz_elem,
Real_t* fx_node,
Real_t* fy_node,
Real_t* fz_node,
const Int_t num_threads)
- Templated :
int tid=blockDim.x*xblockIdx.x+threadIdx.x;
if (tid < num_threads)
{
Index_t g_1i = tid;
Int_t count=nodeElemCount[g_i];
Int_t start=nodeElemStart[g_i];
Real_t fx,fy,fz;
fx=fy=fz=Real_t(0.0);

for (int j=0;j<count;j++)

{
Index_t pos=nodeElemCornerlList[start+j]; // Uncoalesced access here
fx += fx_elem[pos];
fy += fy_elem[pos];
fz += fz_elem[pos];
3

fx_node[g_1i]=fx;
fy_node[g_i]=fy;
fz_node[g_i]=fz;
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- Scientists do not write TPU* code

void AddNodeForcesFromElems_kernel( Index_t numNode,
Index_t padded_numNode,
const Int_t* nodeElemCount,
const Int_t* nodeElemStart,

- BIG (MFEM library alone is 737K LOC)

const Real_tx fz_elem,
Real_t* fx_node,
Real_t* fy_node,
Real_t* fz_node,
const Int_t num_threads
- Templated : |
int tid=blockDim.x*blockIdx.x+threadIdx.x;
if (tid < num_threads)
{
Index_t g_1i = tid;
Int_t count=nodeElemCount[g_i];

° N Ot I n Py‘t h O n I:Iag’gits]’gia(I:]’E):lr,m]cc>gc;eE1emStar’cI:g_i] ;

fx=fy=fz=Real_t(0.0);

for (int j=0;j<count;j++)

{
Index_t pos=nodeElemCornerlList[start+j]; // Uncoalesced access here
fx += fx_elem[pos];
fy += fy_elem[pos];
fz += fz_elem[pos];
3

fx_node[g_1i]=fx;
fy_node[g_i]=fy;
fz_node[g_i]=fz;
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- Scientists do not write TPU* code

void AddNodeForcesFromElems_kernel( Index_t numNode,
Index_t padded_numNode,
const Int_t* nodeElemCount,
const Int_t* nodeElemStart,
" " const Index_t* nodeElemCornerList,
- BIG (MFEM library alone is 737K LOC)
const Real_tx fy_elem,
const Real_tx fz_elem,
Real_t* fx_node,
Real_t* fy_node,
Real_t* fz_node,
const Int_t num_threads)
- Templated :
int tid=blockDim.x*blockIdx.x+threadIdx.x;
if (tid < num_threads)
{
Index_t g_1i = tid;
Int_t count=nodeElemCount[g_i];

° N Ot I n Py‘t h O n I:Iarel’zgits]’gia(I:]’E):lr,m]cc>gc;eE1emStar’cI:g_i] ;

fx=fy=fz=Real_t(0.0);

for (int j=0;j<count;j++)

{

" * " Index_t pos=nodeElemCornerList[start+j]; // Uncoalesced access here
- Sometimes™ in CUDA P o b erentpos;

fy += fy_elem[pos];
fz += fz_elem[pos];

}
template <>
struct RajaCuWrap<3> ] ole i1t
{ X_nodel[g_1 f X;
template <const int BLCK = MFEM_CUDA_BLOCKS, typename DBODY> Ey—nogeEg—%%:£YE
static void run(const int N, DBODY &&d_body, ) z_hodelLg_11=1Z;
const int X, const int Y, const int Z, const int G) )
{

RajaCuWrap3D(N, d_body, X, Y, Z, G);
3
¥
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Stable Diffusion

Stable Diffusion was made possible thanks to a collaboration with and builds
upon our previous work:
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using state-of-the-art Bayesian approaches. It is built on top of JAX to provide just-in-time compilation and
automatic differentiation of the spectral models, enabling the use of sampling algorithm such as NUTS.
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Molecular dynamics is a workhorse of modern computational condensed matter physics. It is frequently used to
simulate materials to observe how small scale interactions can give rise to complex large-scale phenomenology.
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The Exascale Computing Project (ECP)

The ECP ran from 2016-2024 and was the largest software research,
development, and deployment project managed to date by the US
Department of Energy (DOE). The $1.8 billion project was a joint effort by the
DOE Office of Science and the National Nuclear Security Administration that
funded nearly 2,800 multidisciplinary individuals over the lifetime of the project
to uplift the high-performance computing community toward capable
exascale platforms, software, and application codes. The outcome was the
delivery of an exascale computing ecosystem to provide breakthrough
solutions that address future challenges in energy assurance, economic
competitiveness, healthcare, and scientific discovery, as well as growing
security threats. The ECP exascale ecosystem includes DOE mission-critical
application codes, the underlying supporting software technologies, and
mechanisms for their deployment and integration.

ECP was a grand convergence of advances in modeling and simulation,
software tools and libraries, data analytics, machine learning, and artificial
intelligence in support of delivering the world'’s first capable exascale
ecosystem.

The payoff is here: exascale computing is revolutionizing nearly every domain
of science.

Home About v Research v News v Training v  Library

ECP by the Numbers

Created to develop the nation’s first capable exascale computing ecosystem,
this unprecedented DOE research, development, and deployment project has
already made a huge impact on computational science:

®
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2,800 collaborators funded to develop exascale applications,
software, and hardware.

Game-changing results in a broad spectrum of science and
engineering application areas.

2 different GPU architectures now proven to work with
exascale environments.

First and only open-source scientific software stack developed
for scalability and available across all HPC platforms, including
cloud computing.
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solutions that address future challenges in energy assurance, economic
competitiveness, healthcare, and scientific discovery, as well as growing
security threats. The ECP exascale ecosystem includes DOE mission-critical
application codes, the underlying supporting software technologies, and
mechanisms for their deployment and integration.

ECP was a grand convergence of advances in modeling and simulation,
software tools and libraries, data analytics, machine learning, and artificial
intelligence in support of delivering the world'’s first capable exascale
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2 different GPU architectures now proven to work with
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First and only open-source scientific software stack developed
for scalability and available across all HPC platforms, including
cloud computing.

{

.-‘ '_’

s S
Flbe




Looking More Deeply at Scientific Code

function stencil_kernel(y, x)
= threadIdx().x + (blockIdx().x - 1) * blockDim().Xx Oceananigans
i -F < - ]. e n g t h ( ) - 2 & Fast and friendly ocean-flavored Julia software for simulating incompressible fluid dynamics in Cartesian

and spherical shell domains on CPUs and GPUs. https://clima.github.io/OceananigansDocumentation/stable

[1] = x[1] - 2 *» x[1 + 1] + x[1 + 2]
end
end

Oceananigans is a fast, friendly, flexible software package for finite volume simulations of the nonhydrostatic and
hydrostat ic Boussinesq equations on CPUs and GPUs. It runs on GPUs (wow, fast!), though we believe
Oceananigans makes the biggest waves with its ultra-flexible user interface that makes simple simulations easy,

.F U N C -t i O n m O d e 1 ( o ) and complex, creative simulations possible.
@cuda threads=... blocks=... stencil_kernel(y, x)
@cuda threads=... blocks=... stencil_kernel(x, y)

end

> 277 such kernels



Looking More Deeply at Scientific Code

function stencil_kernel(y, x)
= threadldx().x + (blockIdx().x - 1) * blockDim().x

1f 1 <= length(x) - 2
[1] = x[1] - 2 * x[1 + 1] + x[1 + 2]
end
end

function model(...)

@cuda threads=... blocks=... stencil_kernel(y, x)
@cuda threads=... blocks=... stencil_kernel(x, y)
end

> 277 such kernels
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function stencil_kernel(y, x)
1 = threadIdx().x + (blockIdx().x - 1) * blockDim().x
if 1 <= length(x) - 2
y[i] = x[i] - 2 * x[i+1] + x[i+2]

end

CUDA to Accelerator IR (StableHLO)

function model(...)
@cuda threads=... blocks=... stencil_kernel(y, x)
@cuda threads=... blocks=... stencil_kernel(x, y)
end

- New framework for raising and optimizing the
structure within existing kernels to stablehlio!

Compilation

define void @julia_difference_kernel_890({}* %y, {}* %x) {
top:
%3 = call 132 @llvm.nvvm.read.ptx.sreg.tid.x()

-+ 1) Compile Kernels to LLVM

br i1 %.not, label %common.ret, label %L31
3

2) Raise the underlying structure in MLIR Raising

func.func @kernel(%y : memref<100xf64>, %x : memref<100xf64>) {
affine.parallel %argl = @ to 100 {

3) Multi-dimensionalize it into tensor operators i1 = affine. load tx[xarg

%x2 = affine.load %x[%argl + 1]
affine.store %sum, %yl[%argl]

3
}

- 4) Optimize
Multi-Dimensionalization
Compiled single-node CUDA version of code to 71 = o )

%mul = stablehlo.multiply %x2, tensor<2.0>

execute on thousands of distributed TPUs and tadd = stablehlo.add %1,
GPUs

Optimization

res = stablehlo.convolve %x, tensor<[1.0, -4.0, 6.0, -4.0, 1.0]>




GPU Programming via LLVM if (tid < n)

out[tid] =
}

__global  void normalize(int *out, int* in, int n) {
int tid = blockIdx.x;

in[tid] / sum(in, n);

e Mainstream compilers do not have a void launch(int *out, int* in, int n) {

high-level representation of parallelism, |,

normalize<<<n>>>(d _out, d _in, n);

making optimization difficult or

impossible Host Code

e This is accentuated for GPU o e e
p rOg ra m S Wh e re t h e ke rn e | iS define void @ _Z6launchPiS_i(i32* %out,

i32* %in,
i32 %n) {

ke pt in a Se pa rate mOdU|e & call ::L32 @pushCallConfigur‘?tion(...)
. . . ] call i32 @cudaLaunch(@ device_stub, ..)
synchronization is a barrier to |,

Device Code

ret void
optimization.

65

target triple = ”nvptx”

define void @_Z9normalize(i32* %out,
i32* %in, i32 %n) {
%4 = call i32 @llvm.tid.x()
%5 = icmp slt i32 %4, %n
br i1 %5, label %6, label %13

%8 = getelementptr i32, i32* %in, 132 %4
%9 = load 132, i32* %8, align 4

%10 = call i32 @ _Z3sumPii(i32* %in, i32 %n)
%11 = sdiv i32 %9, %10

%12 = getelementptr i32, 132* %out, 132 %4
store i32 %11, i32* %12, align 4

br label %13

13:
ret void
}




GPU Programming via MLIR

*Preserve Host & Device code through frontend

(Clang Plugin for C++, JIT Package for Julia, etc)

*Enables optimization between caller and kernel

*Enable parallelism-specific optimization

__global  void normalize(int *out, int *in, int n) {
int tid = blockIdx.x;
if (tid < n)
out[tid] = in[tid] / sum(in, n);
}

void launch(int *out, int* in, int n) {
normalize<<<n>>>(d out, d _in, n);
}

[1] High-Performance GPU-to-CPU Transpilation and Optimization via High-Level Parallel Constructs, PPoPP’23

func @ _Z6launch(%out: memref<?xi32>,

}

%in: memref<?xi32>, %n: i32) {
%cl = constant 1 : index
%CcO = constant 9 : index

parallel (%tid) = (%c@) to (%n) step (%cl) {
%2 = load %in[%tid]
%sum = call @ Z3sumPii(%in, %n)
%4 = divsi %2, %sum : 132
store %4, %out[%tid]
yield
}

return




GPU Programming via MLIR

*Preserve Host & Device code through frontend
(Clang Plugin for C++, JIT Package for Julia, etc)

*Enables optimization between caller and kernel

*Enable parallelism-specific optimization

__global  void normalize(int *out, int *in, int n) {
int tid = blockIdx.x;
if (tid < n)
out[tid] = in[tid] / sum(in, n);
}

void launch(int *out, int* in, int n) {
normalize<<<n>>>(d out, d _in, n);
}

[1] High-Performance GPU-to-CPU Transpilation and Optimization via High-Level Parallel Constructs, PPoPP’23

func @ _Z6launch(%out: memref<?xi32>,
%in: memref<?xi32>, %n: i32) {
%cl = constant 1 : index
%CcO = constant O : index

%sum = call @ Z3sumPii(%in, %n)
parallel (%tid) = (%c@) to (%n) step (%cl) {
%2 = load %in[%tid]

%4 = divsi %2, %sum : 132
store %4, %out[%tid]
yield

}

return




GPU Programming via MLIR

func @launch(%h_out : memref<?xf32>, %h_in : memref<?xf32>, %n : i64) {
parallel.for (%gx, %gy, %gz) = (6, 0, 0) to (grid.x, grid.y, grid.z) {

memref.alloca : memref<f32>

%shared_val
parallel.for (%tx, %ty, %tz) = (0, 6, 0) to (blk.x, blk.y, blk.z) {

if %tx == 0 {
store .., %shared val[] : memref<f32>

}

polygeist.barrier(%tx, %ty, %tz)

[1] High-Performance GPU-to-CPU Transpilation and Optimization via High-Level Parallel Constructs, PPoPP’23



Synchronization via Memory

e Synchronization (sync threads) ensures all threads

within a block finish executing codeA before
executing codeB

e The desired synchronization behavior can be

reproduced by defining sync threads to have the

union of the memory semantics of the code before
and after the sync.

e This prevents code motion of instructions which

require the synchronization for correctness, but
permits other code motion (e.g. index
computation).

codeA(fib(idx));
sync_threads;

codeB(fib(idx));

|

off = fib(idx);
codeA(off);

sync_threads;

codeB(off);




Synchronization via Memory

. . . __global  void bpnn_layerforward(...) {
e High-level synchronization * hared  float node[HEIGHT];

representation enables new __shared _ float weights[HEIGHT][WIDTH];

optimizations, like sync elimination. if ((tx ==0)

node[ty] = input[index_in] ;

e A synchronize instruction is not // Unnecessary Barrier #1
. . // None of the read/writes below the sync
needed if the set of read/writes // (weights, hidden)
. // int t with th d/writ b th
before the sync don’t conflict 17 (node. dnput) o nrures SDOVE HE SYIC
__syncthreads();

with the read/writes after the sync.

// Unnecessary Store #1
weights[ty][tx] = hidden[index];

__syncthreads();

// Unnecessary Load #1
weights[ty][tx] = weights[ty][tx] * node[ty];




Synchronization via Memory

High-Performance GPU-to-CPU Transpilation and
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Abstract

While parallelism remains the main source of performance,
architectural implementations and programming models
change with each new hardware generation, often leading
to costly application re-engineering. Most tools for perfor-
mance portability require manual and costly application port-
ing to yet another programming model.

We propose an alternative approach that automatically
translates programs written in one programming model
(CUDA), into another (CPU threads) based on Polygeist/MLIR.
Our approach includes a representation of parallel constructs
that allows conventional compiler transformations to ap-
ply transparently and without modification and enables
parallelism-specific optimizations. We evaluate our frame-
work by transpiling and optimizing the CUDA Rodinia bench-
mark suite for a multi-core CPU and achieve a 58% geomean
speedup over handwritten OpenMP code. Further, we show
how CUDA kernels from PyTorch can efficiently run and
scale on the CPU-only Supercomputer Fugaku without user
intervention. Our PyTorch compatibility layer making use of
transpiled CUDA PyTorch kernels outperforms the PyTorch
CPU native backend by 2.7x.

CCS Concepts: « Software and its engineering — Com-
pilers; - Theory of computation — Parallel computing
models.
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1 Introduction

Despite x86 CPUs and NVidia GPUs remaining primary plat-
forms for computation, customized and emerging architec-
tures play an important role in the computing landscape.
A custom version of an ARM CPU, A64FX, is even used
in one of the top supercomputers Fugaku [49] where its
high-bandwidth memory is expected to compete with that of
GPUs. However, these architectures are often overlooked by
efficiency-oriented frameworks and libraries. For example,
PyTorch [44] targeting Intel’s oneDNN [28] backend expect-
edly underperforms on ARM due to architecture differences
and even Fujitsu’s customized oneDNN [20] does not yield
competitive performance on some kernels. Such situations
call for performance portability.

Many non-library approaches for performance portability
have been proposed and include language extensions (e.g.,
OpenCL [14], OpenACC [26]), parallel programming frame-
works (e.g., Kokkos [3]), domain-specific languages (e.g., Sp1-
RAL [17], Halide [47] or Tensor Comprehensions [64]). All of
these approaches still require legacy applications to ported,
and sometimes entirely rewritten, due to differences in the
language, or the underlying programming model.

We explore an alternative approach based on a fully auto-
mated compiler that takes code in one programming model
(CUDA) and produces a binary targeting another one (CPU
threads). While GPU-to-CPU translation has been explored
in the past [9, 23, 58], it was rarely able to produce effi-
cient code. In fact, optimizations for CPUs and even generic
compiler transforms, such as common sub-expression elimi-
nation or loop-invariant code motion, are hindered by the
lack of analyzable representations of parallel constructs in-
side the compiler [39]. As representations of parallelism
within a mainstream compiler have only recently begun to
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Abstract—In order to come close to peak performance, accel-
erators like GPUs require significant architecture-specific tuning
that understand the availability of shared memory, parallelism,
tensor cores, etc. Unfortunately, the pursuit of higher perfor-
mance and lower costs have led to a significant diversification of
architecture designs, even from the same vendor. This creates
the need for performance portability across different GPUs,
especially important for programs in a particular programming
model with a certain architecture in mind. Even when the
program can be seamlessly executed on a different architecture,
it may suffer a performance penalty due to it not being sized
appropriately to the available hardware resources such as fast
memory and registers, let alone not using newer advanced
features of the architecture.

We propose a new approach to improving performance of
(legacy) CUDA programs for modern machines by automatically
adjusting the amount of work each parallel thread does, and
the t of y and reg resources it requires. By
operating within the MLIR compiler infrastructure, we are able
to also target AMD GPUs by performing automatic translation
from CUDA and simultaneously adjust the program granularity
to fit the size of target GPUs.

Combined with autotuning assisted by the platform-specific
compiler, our approach d rates 27% g peedup on
the Rodinia benchmark suite over baseline CUDA impl ta-
tion as well as performance parity between similar NVIDIA and
AMD GPUs executing the same CUDA program.

I. INTRODUCTION

Accelerators like GPUs remain the hardware target of choice
for performance-critical software. Achieving high performance
on these accelerators requires programmers to effectively
leverage a peculiar programming model, most often exposed as
C++ language extensions such as CUDA for NVIDIA GPUs
and ROCm for AMD. While the community has developed
alternative methods to portably program GPUs, including: a
high-level block programming model in Triton [1], automatic
mapping of C++ code onto GPUs [2], NumPy-style abstractions
with varying degree of automated scheduling in JAX [3], TC [4],
and TVM [5]; many of the performance-critical scientific

e 27% speedup on real code, 2.7x on

PyTorch cross compilation!

Oleksandr Zinenko
Google DeepMind
Paris, France
zinenko@google.com

William S. Moses
University of Illinois Urbana-Champaign
Google DeepMind
Illinois, United States
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programs, including these very portability frameworks, remain
written in CUDA.!

While the CUDA programming model and syntax have
remained relatively stable over time, the underlying GPU
hardware has evolved significantly, adding many new features
and instructions. For example, earlier versions of programmable
NVIDIA GPUs used “half warps” of 16 threads for scheduling
and had a limitation of 1024 threads running concurrently
on a hardware unit while modern GPUs use “full warps” of
32 and allow up to 2048 threads per hardware unit. Similar
changes can be observed in the amount of available low-latency
memory and registers. This trend is even more important when
considering GPUs of a different vendor, like AMD, which
operate in “wavefronts” of 64 threads and allow up to 4096
threads per hardware unit.

Even when GPU kemnels written in CUDA appear to run
on newer NVIDIA GPUs, they may often fail to reach similar
utilization as the kernels are incorrectly sized for the target
architecture. However, this may be avoided through skillful
use of the programming model by writing CUDA programs
that adapt to different numbers of concurrent threads. But even
programs with this flexibility do not permit control of the
amount of allocated “shared” memory between several threads
in a group or the amount of registers used (which is proportional
to the number of threads). Both of these characteristics have
a dramatic impact on the overall performance. These sizing
problems are often amplified when porting a program to a GPU
of a different vendor, let alone the often non-trivial engineering
effort of porting itself.

In this paper, we propose a compiler-based mechanism to
“resize” GPU programs to a particular architecture. Taking
existing CUDA code, our compiler can control the granularity
of the program including the amount of work performed by

'In spite of various alternatives, like ROCm and SYCL [6], the CUDA
framework, a pioneer of the GPU programming model, is used in significantly
more applications due to legacy, maintenance, and network effects.

_ void bpnn_layerforward(...) {
d float node[HEIGHT];
d  float weights[HEIGHT][WIDTH];

0 )
input[index_in] ;

T
<
e

1|

cessary Barrier #1

of the read/writes below the sync

ights, hidden)

rsect with the read/writes above the sync
de, input)

hreads();

cessary Store #1
[ty][tx] = hidden[index];

__syncthreads();

// Unnecessary Load #1
weights[ty][tx] =

weights[ty][tx] * node[ty];




Synchronization via Memory

e A unified representation of parallelism enables
programs in one parallel architecture (e.g. CUDA)
to be compiled to another (e.g. historically
OpenMP, now TPUs)

« Some backends do not have block synchronization

e Lower a top-level synchronization by distributing
the parallel for loop around the sync, and
interchanging control flow

parallel for %i = @ to N {
codeA(%1i);
sync_threads;
codeB(%1i);

}

|

parallel for %i = @ to N {
codeA(%1i);

}

parallel for %1 = 0 to N {
codeB(%1i);

}




Synchronization via Memory

e A unified representation of parallelism enables
programs in one parallel architecture (e.g. CUDA)
to be compiled to another (e.g. historically
OpenMP, now TPUs)

« Some backends do not have block synchronization

e Lower a top-level synchronization by distributing
the parallel for loop around the sync, and
interchanging control flow

parallel for %1 = 0 to N {
for %3 = .. {
codeB1(%i, %j);
sync_threads;

codeB2(%1i, %j);

}

o

for %j = .. {
parallel_for %i = @ to N {
codeB1(%i, %3j);
sync_threads;
codeB2(%i, %j);
}
}




LLVM to StableHLO

LLVM/NVVM Dialect

llvm.call @ nv_fabsf(%argo)
llvm.br

Affine <

affine.for %i = 0 to 10 {

affine.store out[%i] = ..

}

IIIIIII#I'>>

%0 = math.abs %argo
cf.br

Arith + Control Flow

SCF (While)

scf.while %arg = %cO {

SCF (For)

%arg < %cle scf.for %arg = %c0 .. %cl0O {
| I
I _
-} }
%x = stablehlo.slice ..
%y = stablehlo.abs %x
%z = stablehlo.dynamic_update_slice %z0[...] = %y
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LLVM to StableHLO

LLVM/NVVM Dialect

llvm.call @ nv_fabsf(%argo)
llvm.br

Affine <

affine.for %i = 0 to 10 {

affine.store out[%i] = ..

}

IIIIIIIII'>>

%0 = math.abs %argo
cf.br

Arith + Control Flow

IIIIIIIIIIII.'P>

SCF (While)

scf.while %arg = %cO {
%arg < %cle

} do {

-}

StableHLO

SCF (For)

scf.for %arg = %cO .. %clO {

}

%x = stablehlo.slice ..
%y = stablehlo.abs %x

%z = stablehlo.dynamic_update_slice %z0[...] = %y
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Affine to StableHLO

e Represent permissive, device-
agnostic parallelism

e Legal to re-order and interchange
Instructions

e One execution (lock-step), runs all
of Al, then all of A2, etc

e Lets us form efficient tensor
(stablehlo) versions of kernels

parallel.for (%tx, %ty, %»tz) = (0,0,0) to (5,7,9){
%A1l = load x[%tx, »ty, %tz]
%A2 = sin(%Al)

store y[%tx, »ty, %tz] = 7%A2




Affine to StableHLO

e Represent permissive, device-
agnostic parallelism

e Legal to re-order and interchange
Instructions

e One execution (lock-step), runs all
of Al, then all of A2, etc

e Lets us form efficient tensor
(stablehlo) versions of kernels

%Al = stablehlo.slice %x[©:5, ©0:7, 0:9]
parallel.for (%tx, %ty, %tz) = (0,0,0) to (5,7,9){
%A2 = sin(%Al)

store y[%tx, »ty, %tz] = 7%A2




Affine to StableHLO

e Represent permissive, device-
agnostic parallelism

e Legal to re-order and interchange
Instructions

e One execution (lock-step), runs all
of Al, then all of A2, etc

e Lets us form efficient tensor
(stablehlo) versions of kernels

76A1

stablehlo.slice %x[©0:5, ©0:7, 0:9]
%A2 = stablehlo.sine %Al
parallel.for (%tx, %ty, %tz) = (0,0,0) to (5,7,9){

store y[%tx, %ty, %tz] = %A2




Affine to StableHLO

e Represent permissive, device-

agnostic parallelism

%Al = stablehlo.slice %x[©:5, ©0:7, 0:9]

e Legal to re-order and interchange

instructions #A2

stablehlo.sine %Al

. %Y2 = stablehlo.dynamic update slice
« One execution (lock-step), runs all S ¥To'5. 017, 0:9], %A2

of Al, then all of A2, etc parallel.for (%tx, %ty, %tz) = (0,0,0) to (5,7,9){

o Lets us form efficient tensor )
(stablehlo) versions of kernels




StableHLO ... to better StableHLO

e The direct vectorization of the code % = stablehlo.slice %x[1:98]

%x2 = stablehlo.slice %x[2:99]

works, but may not be efficient. odd = stablehlo.odd Kt tmo o
« We will lost the convolution! |
v
® Perform tensor_IeVE| OptlmlzathnS %y = stablehlo.convolve %x, tensor<[1.0, -2.0, 1.0]>
on StablehIO to recover and %z = stablehlo.convolve %y, tensor<[1.0, -2.0, 1.0]>
optimize higher-level structures ]

\4

%z = stablehlo.convolve %x, tensor<[1.0, -4.0, 6.0, -4.0, 1.0]>




StableHLO ... to better StableHLO

e The direct vectorization of the code
works, but may not be efficient.

o \We wiill Inct the ranypo|ytion!
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Mind the Abstraction Gap: Bringing Equality Saturation to
Real-World ML Compilers
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LEO SEOJUN LEE", University of Oxford, UK

JAKUB BACHURSKI, University of Cambridge, UK
OLEKSANDR ZINENKO, Brium, France

PHITCHAYA MANGPO PHOTHILIMTHANA, OpenAlL USA
ALBERT COHEN, Google, France

WILLIAM S. MOSES, uluc, UsA

Machine learning (ML) compilers rely on graph-level transformations to enhance the runtime performance of
ML models. However, performing local transformations on individual operations can create effects far beyond
the location of the rewrite. In particular, a local rewrite can change the profitability or legality of hard-to-predict
downstream transformations, particularly regarding data layout, parallelization, fine-grained scheduling, and
memory management. As a result, program transformations are often driven by manually-tuned compiler
heuristics, which are quickly rendered obsolete by new hardware and model architectures.

Instead of hand-written local heuristics, we propose the use of equality saturation. We replace such heuristics
with a more robust global performance model, which accounts for downstream transformations. Equality
saturation addresses the challenge of local optimizations inadvertently constraining or negating the benefits
of subsequent transformations, thereby providing a solution that is inherently adaptable to newer workloads.
While this approach still requires a global performance model to evaluate the profitability of transformations,
it holds significant promise for increased automation and adaptability.

This paper addresses challenges in applying equality saturation on real-world ML compute graphs and state-
of-the-art hardware. By doing so, we present an improved method for discovering effective compositions of
graph optimizations. We study different cost modeling approaches to deal with fusion and layout optimization,
and tackle scalability issues that arise from considering a very wide range of algebraic optimizations. We design
an equality saturation pass for the XLA compiler, with an implementation in C++ and Rust. We demonstrate
an average speedup of 3.45% over XLA's optimization flow across our benchmark suite on various CPU and
GPU platforms, with a maximum speedup of 56.26% for NasRNN on CPU.
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| optimizations
wver and
s| structures

6% speedup on
JaX ML workloads

%x1
%Xx2

stablehlo.slice %x[1:98]
stablehlo.slice %x[2:99]

%smul = stablehlo.multiply %x2, tensor<2.0>
%add = stablehlo.add 7%x1, 7%mu

%y = stablehlo.convolve %x, tensor<[1.0, -2.0, 1.0]>
%z = stablehlo.convolve %y, tensor<[1.0, -2.0, 1.0]>
%z = stablehlo.convolve %x, tensor<[1.0, -4.0, 6.0, -4.0, 1.0]>




function stencil_kernel(y, x)
1 = threadIdx().x + (blockIdx().x - 1) * blockDim().x
if 1 <= length(x) - 2
y[i] = x[i] - 2 * x[i+1] + x[i+2]

end

CUDA to Accelerator IR (StableHLO)

function model(...)
@cuda threads=... blocks=... stencil_kernel(y, x)
@cuda threads=... blocks=... stencil_kernel(x, y)
end

Compilation

165.0 days

define void @Qjulia_difference_kernel_890({}* %y, {}* %x) {
top:

%3 = call 132 @llvm.nvvm.read.ptx.sreg.tid.x()

%4 = add nuw nsw 132 %3, 1

br i1 %.not, label %common.ret, label %L31
3

Raising

func.func @kernel(%y : memref<100xf64>, %x : memref<100xf64>) {
affine.parallel %argl = 0 to 100 {

%x1 = affine.load %x[%argl]

%x2 = affine.load %x[%argl + 1]

affine.store %sum, %yl[%argl]
}
}

Multi-Dimensionalization

Surface speed (m s™) relative vorticity (10=> s~7) surface temperature (°C) stablehlo.slice %x[1:98]
0 1 2 3 4 5 6 -3 -2 -1 0 1 2 3 0 10 20 30 stablehlo.slice %x[2:99]

R | R ] stablehlo.multiply %x2, tensor<2.0>

stablehlo.add %x1, %mu

Optimization

res = stablehlo.convolve %x, tensor<[1.0, -4.0, 6.0, -4.0, 1.0]>




Primal Raising Performance Results

» Successfully ran single-node Oceanangians.jl on R S .
thousands of distributed accelerators g o [ BT
o Perlmutter (1536 nodes x 4 NVIDIA A100 GPUs) £ |, . .
e 1,679 Google TPUs v6e (918 TFLOPS each) : | T
« Communication optimizations were key T T N
10° 10°
e Good Single-Node Perf (CPU) umber of GPUS
e Vanilla Model: 272.0seconds operaton T S
. educe-Window 01%
e Tensor Optims: 11.5seconds Loop-Fusion 1 19717
Data Formatting 2.89%
Slice .59%
X64Combine (I)Z:;
Collective-Permute 0.48%

Table 1: Breakdown of TPU execution time by operation type,
on a single node 4-TPU machine.



How Does Raising & Tensor Transformations Impact AD?

Reverse-Mode Automatic Differentiation and Optimization of
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ABSTRACT void init(double* ar, int N, double val) {
parallel_for(int i=0; i<N ; i++)

Computing derivatives is key to many algorithms in scientific com-
// Concurrent reads of val

puting and machine learning such as optimization, uncertainty

quantification, and stability analysis. Enzyme is a LLVM compiler , e

plugin that performs reverse-mode automatic differentiation (AD)

and thus generates high performance gradients of programs in lan- double gradient_init(double* ar, double® d_ar,
guages including C/C++, Fortran, Julia, and Rust. Prior to this work, int N, double val) {
Enzyme and other AD tools were not capable of generating gradi- double d_val = 6.0;

ents of GPU kernels. Our paper presents a combination of novel parallel_for(int i=0; i<N ; i++)

techniques that make Enzyme the first fully automatic reverse- arli] = val;

mode AD tool to generate gradients of GPU kernels. Since unlike parallel for(int i=0; ieN ; i++) {

// Concurrent writes to d_val
d_val += d_arlil; # race £
d_arfi] = 0.0;

other tools Enzyme performs automatic differentiation within a
general-purpose compiler, we are able to introduce several novel
GPU and AD-specific optimizations. To show the generality and
efficiency of our approach, we compute gradients of five GPU-based
HPC applications, executed on NVIDIA and AMD GPUs. All bench-
‘marks run within an order of magnitude of the original program’s
execution time. Without GPU and AD-specific optimizations, gra- Figure 1: A parallel initialize function (top) with a naive
dients of GPU kernels either fail to run from a lack of resources or reverse mode AD gradient function (bottom) that does not
have infeasible overhead. Finally, we demonstrate that increasir~ R - . e .

the problem size by either increasing the number of threads ¢

increasing the work per thread, does not substantially impact tk

overhead from differentiation.

return d_val;
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to leverage available performance and function in an evolving
hardware landscape.
We propose a scheme for differentiating arbitrary DAG-
] based ism that preserves ility and efficiency, imple-
mented into the LLVM-based Enzyme automatic differentiation
framework. By integrating with a full-fledged compiler backend,
Enzyme can differentiate numerous parallel frameworks and
directly control code generation. Combined with its ability to
differentiate any LLVM-based language, this flexibility permits
Enzyme to leverage the compiler tool chain for parallel and
differentiation-specific optimizations.
We differentiate nine distinct versions of the LULESH and
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In addition to being difficult to create any derivatives of
parallel programs, it is desirable to preserve the original
program’s parallelism for the accumulation of derivatives. This
is not always straightforward, particularly in the so-called
reverse-mode AD or the closely related back-propagation [10]—
[15], which will be briefly explained in Section III.

This paper demonstrates how using a common low-level
compiler infrastructure to synthesize adjoints of parallel codes
enables differentiation across a wide variety of parallel models
and source languages. To this end, we extend the Enzyme au-
tomatic differentiation framework [16], which already supports
synthesizing adjoints of GPU kernels [17] to arbitrary parallel
frameworks representable as a directed acyclic graph (DAG) of

miniBUDE applications, written in different

ing lan- P To she the ity of our approach, we
-ks (OpenMP, MPI, differentiate MPI (distributed parallelism), OpenMP (multicore
imilar ility to ), Julia Tasks ( i ism within a JIT),

54 threads or nodes,
6.8x on C++ and

[PL, OpenMP, Tasks,
arallel, distributed,

Instead of Rewriting Foreign Code for Machine lern applications in
Learning, Automatically Synthesize Fast Gradients i il
AD) is a method
:s of mathematical
ams. AD is able to
e precision, unlike

and describe how additional frameworks can be supported by
simply marking the parallelism.

By enabling support for the underlying programming models
within the compiler, we are able to differentiate any parallel
framework built on top of them such as RAJA (running
atop OpenMP and MPI) and MPLjl (Julia bindings for
MPI). Moreover, we demonstrate that differentiating low-level
parallelism concepts such as shared and thread-local memory
automatically yields support for higher-level primitives such
as reductions or firstprivate variables. Finally, we showcase
how jointly supporting these parallelism models in one tool
naturally enables differentiation of hybrid parallel programs,
and that deep integration of AD into the compiler enables
performance optimizations usually only available in domain-

William S. Moses Valentin Churavy Overall, our paper
MIT CS_AIL MIT CSA"“ f frameworks, has makes the following contributions:
wmoses@mit.edu vchuravy@mit.edu He ing and « An to the theory of o iation of
>nly involves using ingle-static-assi (SSA) i i
le Message Passing to handle parallel execution of instructions, and thus differ-
Abstract ed parallelism, or entiation of parallel languages and constructs that lower to
nemory li such a i
Applying differentiable programming techniques and machine learning algorithms 3 RAJA [9]. + A demonstration of how implementing this model within the
to foreign programs requires developers to either rewrite their code in a machine
learning framework, or otherwise provide derivatives of the foreign code. This pa- *

per presents Enzyme', a high-performance automatic differentiation (AD) compiler
plugin for the LLVM compiler framework capable of synthesizing gradients of
statically analyzable programs expressed in the LLVM intermediate representation
(IR). Enzyme i di for p written in any 1 whose
compiler targets LLVM IR including C, C++, Fortran, Julia, Rust, Swift, MLIR,
etc., thereby providing native AD capabilities in these I Unlike traditional
t and operat loading tools, Enzyme performs AD on opti-
mized IR. On a machine-learning focused benchmark suite including Microsoft’s
ADBench, AD on optimized IR achieves a geometric mean speedup of 4.2 times
over AD on IR before optimization allowing Enzyme to achieve state-of-the-art
performance. Packaging Enzyme for PyTorch and TensorFlow provides convenient
access to gradients of foreign code with state-of-the-art performance, enabling
foreign code to be directly incorporated into existing machine learning workflows.

1 Introduction

Machine learning (ML) frameworks such as PyTorch [48] and TensorFlow [1] have become
widespread as the primary workhorses of the modern ML community. Computing gradients necessary
for algorithms such as backpropagation [32], Bayesian inf i i ion [60], and
probabilistic programming [16] requires all of the code being differentiated to be written in these
frameworks. This is problematic for applying ML to new domains as existing tools like physics
simulators [23, 10, 17, 18, 35], game engines, and climate models [58] are not written in the domain
specific languages (DSL’s) of ML frameworks. The rewriting required has been identified as the
quintessential challenge of applying ML to scientific computing [4]. As stated by Rackauckas [50]
“this is [the key challenge of scientific ML] because, if there is just one part of your loss function that
isn’t AD-compatible, then the whole network won’t train.”

To remedy this issue, the trend has been to either create new DSL’s [35, 17, 43] that make the rewriting
process easier or to add differentiation as a first-class construct in programming languages [44, 9,
61, 37]. This results in efficient gradients, but still requires rewriting in either the DSL or the
di iable p ing 1 Devel may want to use code foreign to a ML framework
to either re-use existing tools or write loss functions in a language with an easier abstraction for their
use case. While there exist reverse-mode automatic differentiation (AD) frameworks for various
languages, using them automatically on foreign code for an ML framework is difficult as they still
require rewriting and have limited support for cross-language AD and libraries[61, 33, 30, 36]. The
two primary app hes to i di are as follows.

!Code and documentation at https://github.com/wsmoses/Enzyme and https://enzyme.mit.edu.

34th C on Neural ion Processing Systems (NeurIPS 2020), Vancouver, Canada.




How Does Raising & Tensor Transformations Impact AD?

e Biggest impact in three primary areas:

« Work-Reduction + Fusion
e Checkpointing

e« Communication
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ABSTRACT void init(double* ar, int N, double val) {
Computing derivatives is key to many algorithms in scientific com- parallel_for(int i=0; i<N ; i++)

. N - . // Concurrent reads of val
puting and machine learning such as optimization, uncertainty arlil o vals
quantification, and stability analysis. Enzyme is a LLVM compiler N :
plugin that performs reverse-mode automatic differentiation (AD)
and thus generates high performance gradients of programs in lan- double gradient_init(double* ar, double* d ar,
guages including C/C++, Fortran, Julia, and Rust. Prior to this work, int N, double val) {
Enzyme and other AD tools were not capable of generating gradi- double d_val = 6.0;
ents of GPU kernels. Our paper presents a combination of novel parallel_for(int i=0; i<N ; i++)
techniques that make Enzyme the first fully automatic reverse- arli] = val;
mode AD tool to generate gradients of GPU kernels. Since unlike parallel_for(int i=0; i<N ; i++) {

// Concurrent writes to d_val
d_val += d arlil; f race #
d_arli] = 0.0;

other tools Enzyme performs automatic differentiation within a
general-purpose compiler, we are able to introduce several novel
GPU and AD-specific optimizations. To show the generality and
efficiency of our approach, we compute gradients of five GPU-based
HPC applications, executed on NVIDIA and AMD GPUs. All bench-
‘marks run within an order of magnitude of the original program’s
execution time. Without GPU and AD-specific optimizations, gra- Figure 1: A parallel initialize function (top) with a naive
dients of GPU kernels either fail to run from a lack of resources or reverse mode AD gradient function (bottom) that does not
have infeasible overhead. Finally, we demonstrate that increasir~ S - . e .

the problem size by either increasing the number of threads ¢

increasing the work per thread, does not substantially impact tk

overhead from differentiation.

return d_val;
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hardware landscape.
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mented into the LLVM-based Enzyme automatic differentiation
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In addition to being difficult to create any derivatives of
parallel programs, it is desirable to preserve the original
program’s parallelism for the accumulation of derivatives. This
is not always straightforward, particularly in the so-called
reverse-mode AD or the closely related back-propagation [10]—
[15], which will be briefly explained in Section III.

This paper demonstrates how using a common low-level
compiler infrastructure to synthesize adjoints of parallel codes
enables differentiation across a wide variety of parallel models
and source languages. To this end, we extend the Enzyme au-
tomatic differentiation framework [16], which already supports
synthesizing adjoints of GPU kernels [17] to arbitrary parallel
frameworks representable as a directed acyclic graph (DAG) of

miniBUDE applications, written in different ing lan- dependencies. To showcase the generality of our approach, we
p— o\ =3 Mt ks (OpenMP, MPI, differentiate MPI (distributed parallelism), OpenMP (multicore
imilar ility to ), Julia Tasks ( i ism within a JIT),

54 threads or nodes,
6.8x on C++ and

[PL, OpenMP, Tasks,
arallel, distributed,

Instead of Rewriting Foreign Code for Machine lern applications in
Learning, Automatically Synthesize Fast Gradients i il
AD) is a method
+s of mathematical
ams. AD is able to
e precision, unlike

and describe how additional frameworks can be supported by
simply marking the parallelism.

By enabling support for the underlying programming models
within the compiler, we are able to differentiate any parallel
framework built on top of them such as RAJA (running
atop OpenMP and MPI) and MPLjl (Julia bindings for
MPI). Moreover, we demonstrate that differentiating low-level
parallelism concepts such as shared and thread-local memory
automatically yields support for higher-level primitives such
as reductions or firstprivate variables. Finally, we showcase
how jointly supporting these parallelism models in one tool
naturally enables differentiation of hybrid parallel programs,
and that deep integration of AD into the compiler enables
performance optimizations usually only available in domain-

William S. Moses Valentin Churavy p Overall, our paper
MIT CS_AIL MIT CSA"“ f frameworks, has makes the following contributions:
wmoses@mit.edu vchuravy@mit.edu He ing and « An to the theory of o iation of
>nly involves using ingle-static-assi (SSA) i i
le Message Passing to handle parallel execution of instructions, and thus differ-
Abstract ed parallelism, or entiation of parallel languages and constructs that lower to
nemory li such a i
3 RAJA [9]. « A demonstration of how implementing this model within the

Applying differentiable programming techniques and machine learning algorithms
to foreign programs requires developers to either rewrite their code in a machine
learning framework, or otherwise provide derivatives of the foreign code. This pa- "
per presents Enzyme', a high-performance automatic differentiation (AD) compiler

plugin for the LLVM compiler framework capable of synthesizing gradients of

statically analyzable programs expressed in the LLVM intermediate representation

(IR). Enzyme i di for p written in any 1 whose

compiler targets LLVM IR including C, C++, Fortran, Julia, Rust, Swift, MLIR,
etc., thereby providing native AD capabilities in these I Unlike traditional
source-to-source and operator-overloading tools, Enzyme performs AD on opti-
mized IR. On a machine-learning focused benchmark suite including Microsoft’s
ADBench, AD on optimized IR achieves a geometric mean speedup of 4.2 times
over AD on IR before optimization allowing Enzyme to achieve state-of-the-art
performance. Packaging Enzyme for PyTorch and TensorFlow provides convenient
access to gradients of foreign code with state-of-the-art performance, enabling
foreign code to be directly incorporated into existing machine learning workflows.

1 Introduction

Machine learning (ML) frameworks such as PyTorch [48] and TensorFlow [1] have become
widespread as the primary workhorses of the modern ML community. Computing gradients necessary
for algorithms such as backpropagation [32], Bayesian inf uncertainty ification [60], and
probabilistic programming [16] requires all of the code being differentiated to be written in these
frameworks. This is problematic for applying ML to new domains as existing tools like physics
simulators [23, 10, 17, 18, 35], game engines, and climate models [58] are not written in the domain
specific languages (DSL’s) of ML frameworks. The rewriting required has been identified as the
quintessential challenge of applying ML to scientific computing [4]. As stated by Rackauckas [50]
“this is [the key challenge of scientific ML] because, if there is just one part of your loss function that
isn’t AD-compatible, then the whole network won’t train.”

To remedy this issue, the trend has been to either create new DSL’s [35, 17, 43] that make the rewriting
process easier or to add differentiation as a first-class construct in programming languages [44, 9,
61, 37]. This results in efficient gradients, but still requires rewriting in either the DSL or the
di iable p ing 1 Devel may want to use code foreign to a ML framework
to either re-use existing tools or write loss functions in a language with an easier abstraction for their
use case. While there exist reverse-mode automatic differentiation (AD) frameworks for various
languages, using them automatically on foreign code for an ML framework is difficult as they still
require rewriting and have limited support for cross-language AD and libraries[61, 33, 30, 36]. The
two primary app hes to i di are as follows.

!Code and documentation at https://github.com/wsmoses/Enzyme and https://enzyme.mit.edu.

34th C on Neural ion Processing Systems (NeurIPS 2020), Vancouver, Canada.




86

Linear Algebra Optimizations

Wrote >200 different patterns!

Simplify code where possible
X + 0 -> X
transpose(transpose(x)) -> X

transpose(matmul(a,b)) ->
ma%mulgb, a) (a,0))

Often require program context

transpose(convert(reshape(x
<-> ?eshgpe(convért(trgngp%%g(x))

slice(add(a, b)) ->
add(slice(a), slice(b))

Moadlmatex, i3y, o

X, Yy : tensor<100000xf32>

a = dot(x, y)

b = mul(a, z)

@]
Il

add(b, 4)

return c[0:10]
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Linear Algebra Optimizations

Wrote >200 different patterns!

Simplify code where possible
X + 0 -> X
transpose(transpose(x)) -> X

transpose(matmul(a,b)) ->
ma%mulgb, a) (a,0))

Often require program context

transpose(convert(reshape(x
<-> ?eshgpe(convért(trgngp%%g(x))

slice(add(a, b)) ->
add(slice(a), slice(b))

Moadlmatex, i3y, o

X, y : tensor<100000xf32>

a = dot(x, y)

b = mul(a, z)

c = add(b[©:10], 4)

return c
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Linear Algebra Optimizations

Wrote >200 different patterns!

Simplify code where possible
X + 0 -> X
transpose(transpose(x)) -> X

transpose(matmul(a,b)) ->
ma%mulgb, a) (a,0))

Often require program context

transpose(convert(reshape(x
<-> ?eshgpe(convért(trgngp%%g(x))

slice(add(a, b)) ->
add(slice(a), slice(b))

Moadlmatex, i3y, o

X, Yy : tensor<100000xf32>

a = dot(x, y)

b = mul(a[0:10], z[0:10])

@]
Il

add(b, 4)

return c




Linear Algebra + AD

e Consider a simple code which
performs a matmul and add on a
Diagonal matrix

diagmm(v, A, x) = sum(abs2, v * A .+ Xx)

v = Reactant.to_rarray(Diagonal(rand(Float32, 3]
Reactant.to_rarray(rand(Float32, : ))

Reactant.to_rarray(rand(Float32, : 3

X
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Linear Algebra + AD

e Consider a simple code which
performs a matmul and add on a
Diagonal matrix

e Without any optimization, we
perform a scatter to create the
diagonal, then a matmul

90

diagmm(v, A, x) = sum(abs2, v * A .+ x)

v = Reactant.to_rarray(Diagonal(rand(Float32, 1024)))
= Reactant.to_rarray(rand(Float32, 1024, 1024))
x = Reactant.to_rarray(rand(Float32, 1024, 1024))

func.func @main(%arg@: tensor<1024xf32>, %argl: tensor<1024x1024xf32>, %arg2:
tensor<1024x1024xf32>) — tensor<f32> {

%cst = stablehlo.constant dense<0.000000e+00> : tensor<f32>

%cst_0 = stablehlo.constant dense<0.000000e+00> : tensor<lO24x1024x+32>

%0 = stablehlo.transpose %arg2, dims = [1, 0] : (tensor<l102ux102u4xf32>) —
tensor<1024x102U4xf32>

%1 = stablehlo.iota dim = 0 : tensor<l02dx2xi6y>

%2 = "stablehlo.scatter"(%cst_0, %1, %arg@) <{scatter_dimension_numbers =

#stablehlo.scatter<inserted_window_dims = [0, 1], scatter_dims_to_operand_dims = [0, 1],
index_vector_dim = 1>}> ({
*bbO(%arg3: tensor<f32>, %argu: tensor<f32>):
stablehlo.return %argd : tensor<f32>
}) : (tensor<l02ux1024xf32>, tensor<l02uUx2xi6u>, tensor<lB2Uxf32>) —> tensor<lO24x102Uxf32>
%3 = stablehlo.dot_general %2, %argl, contracting_dims = [1] x [1], precision = [DEFAULT,
DEFAULT] : (tensor<1024x1024xf32>, tensor<102u4x102Uxf32>) — tensor<1024x102Uxf32>

%4 = stablehlo.add %3, %0 : tensor<1024x1024x+32>

%5 = stablehlo.multiply %4, %4 : tensor<1024x1024x+32>

%6 = stablehlo.reduce(%5 init: %cst) applies stablehlo.add across dimensions = [0, 1] :
(tensor<1024x102uUxf32>, tensor<f32>) — tensor<f32>

return %6 : tensor<f32>

3



diagmm(v, A, x) = sum(abs2, v * A .+ x)

Linear Algebra - AD v = Reactant.to_rarray(Diagonal(rand(Float32, 1024)))
A = Reactant.to_rarray(rand(Float32, 4. 1024))
x = Reactant.to_rarray(rand(Float32, 1024, 1024))

e Consider a simple code which
performs a matmul and add on a e
DiagOnal matriX Eensor(i,ix102uxf32>) — (tensor<102uxf32>, tensor<102u4x102u4xf32>, tensor<102u4x102Uxf32>)

%cst = stablehlo.constant denseé&2.000000e+00> : tensor<1024x102uUux+32>
%cst_0 = stablehlo.constant dense<2.000000e+00> : tensor<l02u4x102uUuxf32>
%cst_1 = stablehlo.constant dense<0.000000e+00> : tensor<lO24x102uUuxf32>

%0 = stablehlo.transpose %arg2, dims = [1, 0] : (tensor<1024x102Uxf32>) —
tensor<1024x1024xf32>

: : . : %1 = stablehlo.iota dim = 0 : t r<102Ux2xi64
® WIthOUt a ny Optl m IzatIOn’ We %2 = thbIE}:lz.;s‘ochc;Zt_in_dime;:(;;;, dinxlsxi [.%] : (tensor<102uxf32>) =
tensor<1024x1024x+32>
%2 = blehlo.multiply %2, %argl : <1024x1024x¥32
pe rform a scatter to create the e e i g Tl
%5 = stablehlo.multiply %4, %cst_0 : tensor<1024x1024xf32>

' %! stablehlo.compare GE, %4, %cst_1 : (tensor<102u4x1024xf32>, tensor<l102ux1024xf32>)
diagonal, then a matmul > tensore102ix102inil
) % stablehlo.multiply %4, %cst : tensor<1024x1024xf32>
%" stablehlo.select %6, %5, %7 : tensor<1024dx1024xil>, tensor<1024x102U4xf32>
%' stablehlo.transpose %8, dims = [1, 0] : (tensor<1024x1024xf32>) —
tensor<1024x1024xf32>
%10 = stablehlo.dot_general %8, %argl, contracting_dims = [1] x [0
o o o o o [DEFAULT, DEFAULT] : (tensor<1024x1024xf32>, tensor<1024x102uxf32>) —
o D ff t t g th It g th tensor<1024x1024xf32>
I eren Ia In IS’ resu S In a ers %11 stablehlo.broadcast_in_dim %arg®, dims = [1] : (tensor<1024xf32>) —
° h d ° ° h ° h b tensor<1024x1024xf32>
%12 stablehlo.multiply %8, %11 : tensor<1024x102U4xf32>
In t e erlvatlvel W IC Ca n nOt e %13 = "stablehlo.gather"(%10, %1) <{dimension_numbers =
#stablehlo.gather<collapsed_slice_dims = [0, 1], start_index_map = [0, 1], index_vector_dim

remOVEd Via Opti m ization = 1>, slice_sizes = array<iéd: 1, 1>}> : (tensor<1024x102u4xf32>, tensor<1l024x2xi6d>) —
‘ tensor<1024xf32>

return %13, %12, %9 : tensor<l02u4xf32>, tensor<1024x1024xf32>, tensor<l024x1024xf32>

], precision =

}
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Linear Algebra + AD Al Optimizations Enabled

func.func @main(%arg0d: tensor<l102U4xf32>, %argl: tensor<102Ux102Uxf32>, %arg2: tensor<1024x1024xf32>)
— tensor<f32> {

: . . %cst = stablehlo. tant d <0.000000e+00> : t <f32>
® CO n S I d e r a SI m p I e COd e Wh IC h 96?5= sthiehio.grgzgzazz_infgi:} %arg0d, dims = [?]er:]S(()zensord 024xf32>) — tensor<1024x1024xf32>

%1l = stablehlo.multiply %0, %argl : tensor<l1024x1024xf32>

%2 = stablehlo.add %1, %arg2 : r<1024x1024x£32
performs a matmul and add on a -l seyrpi bl g S e e O

. . %4 = stablehlo.reduce(%3 init: %cst) applies stablehlo.add across dimensions = [0, 1]
D I a O n a | m at rIX (tensor<1024x1024xf32>, tensor<f32>) — tensor<f32>
g return %4 : tensor<f32>

h

func.func @main(%arg0: tensor<1024xf32>, %argl: tensor<1024x1024xf32>, %arg2:
tensor<1024x102uUxf32>) — tensor<f32> {

® m u I (d Iag(X), V) -> %cst = stablehlo.constant dense<0.000000e+00> : tensor<f32>

%cst_0 = stablehlo.constant dense<0.000000e+00> : tensor<l024x102uUxf32>
elementwise(x V) %0 = stablehlo.transpose %arg2, dims = [1, 0] : (tensor<1024x102uUxf32>) —
) tensor<1024x1024xf32>
%1 = stablehlo.iota dim = 0 : tensor<l02ux2xi6u>
%2 = "stablehlo.scatter"(%cst_0, %1, %arg®) <{scatter_dimension_numbers =

#stablehlo.scatter<inserted_window_dims = [0, 1], scatter_dims_to_operand_dims = [0, 1],
index_vector_dim = 1>}> ({
“bb0(%arg3: tensor<f32>, %argid: tensor<f32>):
stablehlo.return %argd : tensor<f32>

® Pe rfO rmlng thIS prlor to AD }) : (tensor<1024x1024xf32>, tensor<102uUx2xi6u>, tensor<l02Uxf32>) — tensor<1024x102Uxf32>

%3 = stablehlo.dot_general %2, %argl, contracting_dims = [1] x [1], precision = [DEFAULT,

: DEFAULT] : (t ~<1024x1024xf32>, t r<1024x1024xf32>) — t r<1024x1024xF32>
yields 2-3x performance! e e

%5 = stablehlo.multiply %4, %4 : tensor<102u4x1024xf32>

%6 = stablehlo.reduce(%5 init: %cst) applies stablehlo.add across dimensions = [0, 1]
(tensor<102u4x102u4xf32>, tensor<f32>) — tensor<f32>

return %6 : tensor<f32>

¥

Scatter Optimizations Disabled
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Work Reduction Benchmark: Jaxley
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93 [1] Deistler, Michael, et al. "Jaxley: differentiable simulation enables large-scale training of detailed biophysical models of neural dynamics." Nature Methods (2025): 1-9.



Checkpointing

e Checkpointing is a technique for trading off
memory and compute time in the derivative cache = malloc N x f32
for 1 = O:N {
= foo(x)
—————————————————————————————————— Cache[j_] = X
o e N % )
«Z PEDES
9 for 1 = N:9 {
:(. ¢ .'. ' )‘3 ® = write checkpoint X = CaChE[I]
SRR - dx = grad_foo(x, dx)
o *o— forward step }
o—)cs— adjoint step

o€:-+--0



Checkpointing

cache = malloc M x 32

« Checkpointing is a technique for trading off for i = @:N/M {
memory and compute time in the derivative For 3 = @:M {

= foo(x)
}
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 cache[1] =
e —————————————————————
©
® © ® )% .
RS ANLA for 1 = N:0 {
PRERERNS X = cache[I/M]
" )% ® = write checkpoint .. .
)o(”o“'o'”o””(’ e = read checkpoint -For‘ J 1N 6:1%M {
) ° ° ° 3 o = gtate
@€ -0 -+ 0 ::0:::0 —
o *o— forward step X -FOO(X)
o—)cs— adjoint step }
0(""

dx = grad foo(x, dx)




Checkpointing

e Checkpointing is a technique for trading off
memory and compute time in the derivative

e Performing entire-program-level analysis,
we can remove induction variables on the
loop, reducing memory AND computation

X = tensor<100x100xf32>
for 1 = O:steps {
x[@, :] =0
x[end,:] = ©
y = foo(x, y)

if (steps > 0) {
x[@, :] =0
x[end,:] = ©

for 1 = O:steps {
y = foo(x, y)
}




Communication + AD
Differentiation changes how we want to parallelize code

o Scatters <-> Gathers
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Communication + AD

Differentiation changes how we want to parallelize code PN
@ 0 ©
» Scatters <-> Gathers
 Can create race conditions NS
© O O
N\ /7
O
void set(double* ar, double val) { void grad set(double* ar, double* d ar) {
pfor(int 1=0; i<n; i++) { double d val = 0;
ar[i] = val; pfor (int 1=0; i<n; i++) {
} d val += d ar[i];
e }
} e
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Communication + AD

Differentiation changes how we want to parallelize code

o Scatters <-> Gathers
« (Can create race conditions
 Serial Primal => Parallel Derivative

double sum(double¥*
double = 0.0;
for (int i = ©; < N;

= x[1] * [i];

) {
++) {

}

return S;

}
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void grad sum(double*

double
pfor (int i = 0;
[i] += 2.0 *
}

}

, double*

) {
< N3

[1] *

++) {

3




Derivative Raising Performance Results

—A

-
g
3)

e Primal Perf (CPU)
e Vanilla Model: 272.0seconds

—h

o
"o
o

Execution time (s)

e Tensor Optims: 11.5seconds 1018
o Derivative Performance
. . . . 10 / -~ With checkpointing
» Similar performance to primal on single Without checkpointing
timestep, scaling with linearly time steps 1025 1090 1095  10%0

Timesteps

e Disabling tensor optimizations causes it
to instantly oom the system

e Tensor and whole-program optimizations
are quite useful!

11111111111111111



% Takeaways

- Compilers Make Differentiation Fast and Easy to use

-+ Key to this is interaction with Optimization
- Executing on accelerators historically require rewriting entire workflows

- Raising enables existing workflows to execute on (distributed
accelerators)

- EnzymeMLIR enables preserving and optimizing high-level structure and
optimizations, whose impact is compounded on such accelerators

- All open source (GitHub.com/EnzymeAD/Enzyme ; GitHub.com/
o EnzymeAD/Enzyme-JdaX ; GitHub.com/EnzymeAD/Reactant.|l )

0,



http://GitHub.com/EnzymeAD/Enzyme
http://github.com/EnzymeAD/Enzyme-JaX
http://github.com/EnzymeAD/Enzyme-JaX
http://GitHub.com/EnzymeAD/Reactant.jl

