
wsmoses@illinois.edu
PPoPP DiffPP
Feb 1, 2026

William S. Moses

1

Multi-Accelerator Automatic Differentiation

2

Outline

• Compiler-Based Differentiation (Enzyme-LLVM)

• Modern Computing Infrastructure

• Raising Primal Code to Run on Accelerators

• Distributed Accelerated Differentiation

3

 Differentiation: Connecting Science and AI

4

from Efficient Differentiation of Pixel Reconstruction Filters for Path-Space Differentiable Rendering,
SIGGRAPH Asia 2022, Zihan Yu et al

Target Reconstruction

from CLIMA & NSF CSSI: Differentiable programming in Julia for Earth system modeling
(DJ4Earth) from Center for the Exascale Simulation of Materials in Extreme Environments

from Differential Molecular Simulation with Molly.jl, EnzymeCon 2023, 
Joe Greener (Cambridge)

Derivatives are key to science + ML

•Scientific Computing: UQ, Differential
Equation, Error Analysis

•Machine Learning: Back-Propagation,
Bayesian Inference

https://dl.acm.org/doi/pdf/10.1145/3550454.3555500
https://clima.caltech.edu/
https://dj4earth.github.io/
https://dj4earth.github.io/
https://computing.mit.edu/cesmix/
https://enzyme.mit.edu/conference

Automatic Derivative Generation

• Derivatives can be generated automatically from definitions within programs 
 
 
 
 

• Unlike numerical approaches, automatic differentiation (AD) can compute the derivative of ALL
inputs (or outputs) at once, without approximation error!

5

AD

double relu3(double x) {
 if (x > 0)
 return pow(x,3)
 else
 return 0;
}

double grad_relu3(double x) {
 if (x > 0)
 return 3 * pow(x,2)
 else
 return 0;
}

// Numeric differentiation
// f’(x) approx [f(x+epsilon) - f(x)] / epsilon
double grad_input[100];

for (int i=0; i<100; i++) {
 double input2[100] = input;
 input2[i] += 0.01;
 grad_input[i] = (f(input2) - f(input))/0.001;
}

// Automatic differentiation
double grad_input[100];

grad_f(input, grad_input)

Differentiation is Expensive

Derivatives are the most costly and
difficult to use algorithms

Differentiation is Expensive

Derivatives are the most costly and
difficult to use algorithms

Reconstructed image of M87
~1 week on cluster
Majority runtime is derivative

Differentiation is Expensive

Derivatives are the most costly and
difficult to use algorithms

Reconstructed image of M87
~1 week on cluster
Majority runtime is derivative

With Enzyme differentiation:
1 hour on 1 thread

Differentiation is Expensive

Derivatives are the most costly and
difficult to use algorithms

Reconstructed image of M87
~1 week on cluster
Majority runtime is derivative

With Enzyme differentiation:
1 hour on 1 thread

100x resolution increase

Existing AD Approaches (1/3)

• Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)

• Provide a new language designed to be differentiated

• Requires rewriting everything in the DSL and the DSL must support all operations in original
code

• Fast if DSL matches original code well import tensorflow as tf

x = tf.Variable(3.14)

with tf.GradientTape() as tape:
 out = tf.cond(x > 0,
 lambda: tf.math.pow(x,3),
 lambda: 0
)
print(tape.gradient(out, x).numpy())

double relu3(double val) {
 if (x > 0)
 return pow(x,3)
 else
 return 0;
}

Manually
Rewrite

Existing AD Approaches (2/3)

• Operator overloading (Adept, JAX)

• Differentiable versions of existing language constructs (double => adouble, np.sum => jax.sum)

• May require writing to use non-standard utilities

• Often dynamic: storing instructions/values to later be interpreted

// Rewrite to accept either
// double or adouble
template<typename T>
T relu3(T val) {
 if (x > 0)
 return pow(x,3)
 else
 return 0;
}

adept::Stack stack;
adept::adouble inp = 3.14;

// Store all instructions into stack
adept::adouble out(relu3(inp));
out.set_gradient(1.00);

// Interpret all stack instructions
double res = inp.get_gradient(3.14);

Existing AD Approaches (3/3)

• Source rewriting

• Statically analyze program to produce a new gradient function in the source language

• Re-implement parsing and semantics of given language

• Requires all code to be available ahead of time => hard to use with external libraries

Tapenade

// myfile.h
double relu3(double x) {
 if (x > 0)
 return pow(x,3)
 else
 return 0;
}

// myfile.c
double relu3(double x) {
 if (x > 0)
 return pow(x,3)
 else
 return 0;
}

// grad_myfile.h
double relu3(double x) {
 if (x > 0)
 return pow(x,3)
 else
 return 0;
}

// grad_myfile.c
double grad_relu3(double x) {
 if (x > 0)
 return 3 * pow(x,2)
 else
 return 0;
}

Existing Automatic Differentiation Pipelines

AD

CodeGen

Optimize

Lower

AD

AD

AD

13

Lower Enzyme .

Optimize

CodeGen

Optimize

 Enzyme Approach

Performing AD at low-level lets us work on optimized code!

14

Case Study: Vector Normalization

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n^2)
void norm(double[] out, double[] in) {

 for (int i=0; i<n; i++) {
 out[i] = in[i] / mag(in);
 }
}

15

Case Study: Vector Normalization

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n)
void norm(double[] out, double[] in) {
 double res = mag(in);
 for (int i=0; i<n; i++) {
 out[i] = in[i] / res;
 }
}

16

Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
res = mag(in)
for i=0..n {
 out[i] /= res
}

d_res = 0.0
for i=n..0 {
 d_res += d_out[i]…
}
∇mag(d_in, d_res)

O (n)
for i=0..n {
 out[i] /= mag(in)
}

17

Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
for i=0..n {
 out[i] /= mag(in)
}

res = mag(in)
for i=0..n {
 out[i] /= res
}

d_res = 0.0
for i=n..0 {
 d_res += d_out[i]…
}
∇mag(d_in, d_res)

O (n)

O (n2)
for i=0..n {
 out[i] /= mag(in)
}

AD
for i=n..0 {
 d_res = d_out[i]…
 ∇mag(d_in, d_res)
}

O (n2)

18

Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
for i=0..n {
 out[i] /= mag(in)
}

res = mag(in)
for i=0..n {
 out[i] /= res
}

d_res = 0.0
for i=n..0 {
 d_res += d_out[i]…
}
∇mag(d_in, d_res)

O (n)

O (n2)O (n2)
for i=0..n {
 out[i] /= mag(in)
}

AD
for i=n..0 {
 d_res = d_out[i]…
 ∇mag(d_in, d_res)
}

O (n2)
for i=n..0 {
 d_res = d_out[i]…
 ∇mag(d_in, d_res)
}

Optimize

19

Optimization & Automatic Differentiation

Differentiating after optimization can create asymptotically faster gradients!

Optimize

O (n2) O (n)

AD
for i=0..n {
 out[i] /= mag(in)
}

res = mag(in)
for i=0..n {
 out[i] /= res
}

d_res = 0.0
for i=n..0 {
 d_res += d_out[i]…
}
∇mag(d_in, d_res)

O (n)

O (n2)O (n2)
for i=0..n {
 out[i] /= mag(in)
}

AD
for i=n..0 {
 d_res = d_out[i]…
 ∇mag(d_in, d_res)
}

O (n2)
Optimize

for i=n..0 {
 d_res = d_out[i]…
 ∇mag(d_in, d_res)
}

20

Lower Enzyme .

Optimize

CodeGen

Optimize

 Enzyme Approach

Performing AD at low-level lets us work on optimized code!

21

Automatic Differentiation & GPUs [MCPHNSD @ SC’21]

• Prior work has not explored reverse mode AD of existing GPU kernels

1. Reversing parallel control flow can lead to incorrect results

2. Complex performance characteristics make it difficult to synthesize
efficient code

3. Resource limitations can prevent kernels from running at all

22

Challenges of Parallel AD

• The adjoint of an instruction increments the derivative of its input

• Benign read race in forward pass => Write race in reverse pass (undefined behavior)

23

void set(double* ar, double val) {

 parallel_for(int i=0; i<10; i++)
 ar[i] = val;
}

double gradient_set(double* ar, double* d_ar,
 double val) {
 double d_val = 0.0;

 parallel_for(int i=0; i<10; i++)
 ar[i] = val;

 parallel_for(int i=0; i<10; i++) {
 d_val += d_ar[i];
 d_ar[i] = 0.0;
 }

 return d_val;
}

Read Race
Write Race

GPU Memory Hierarchy

24

Slower, larger amount of memory

Per Thread Per Block Per GPU

~Bytes ~KBs ~GBs

Register Shared Memory Global Memory

Use Limits Parallelism Use Limits Parallelism

Correct and Efficient Derivative Accumulation

Thread-local memory 

• Non-atomic load/store

25

__device__
void f(…) {

 // Thread-local var
 double y;

 …

 d_y += val;
}

Same memory location across
all threads (some shared mem)

• Parallel Reduction

Others [always legal fallback] 

• Atomic increment

// Same var for all threads
double y;

__device__
void f(…) {

 …

 reduce_add(&d_y, val);
}

__device__
// Unknown thread-aliasing
void f(double* y) {

 …

 atomic { d_y += val; }
}

Slower

Synchronization Primitives

26

codeA();

sync_threads;

codeB();

• Synchronization (sync_threads) ensures all threads finish executing
codeA before executing codeB

• Sync is only necessary if A and B may access to the same memory

• Assuming the original program is race-free, performing a sync at the
corresponding location in the reverse ensures correctness

• Prove correctness of algorithm by cases

Case 1: Store, Sync, Load

27

codeA(); // store %ptr

sync_threads;

codeB(); // load %ptr

…

diffe_codeB(); // atomicAdd %d_ptr

sync_threads;

diffe_codeA(); // load %d_ptr
 // store %d_ptr = 0

 Correct

• Load of d_ptr must happen after
all atomicAdds have completed

CUDA Example

28

__device__
void inner(float* a, float* x, float* y) {

 y[threadIdx.x] = a[0] * x[threadIdx.x];

}

__device__
void __enzyme_autodiff(void*, …);

__global__
void daxpy(float* a, float* da,
 float* x, float* dx,
 float* y, float* dy) {

 __enzyme_autodiff((void*)inner,
 a, da, x, dx, y, dy);

}

__device__
void diffe_inner(float* a, float* da,
 float* x, float* dx,
 float* y, float* dy) {
 // Forward Pass

 y[threadIdx.x] = a[0] * x[threadIdx.x];

 // Reverse Pass

 float dy = dy[threadIdx.x];
 dy[threadIdx.x] = 0.0f;

 float dx_tmp = a[0] * dy;
 atomic { dx[threadIdx.x] += dx_tmp; }

 float da_tmp = x[threadIdx.x] * dy;
 atomic { da[0] += da_tmp; }
}

CUDA Example

29

__device__
void inner(float* a, float* x, float* y) {

 y[threadIdx.x] = a[0] * x[threadIdx.x];

}

__device__
void __enzyme_autodiff(void*, …);

__global__
void daxpy(float* a, float* da,
 float* x, float* dx,
 float* y, float* dy) {

 __enzyme_autodiff((void*)inner,
 a, da, x, dx, y, dy);

}

__device__
void diffe_inner(float* a, float* da,
 float* x, float* dx,
 float* y, float* dy) {
 // Forward Pass

 y[threadIdx.x] = a[0] * x[threadIdx.x];

 // Reverse Pass

 float dy = dy[threadIdx.x];
 dy[threadIdx.x] = 0.0f;

 float dx_tmp = a[0] * dy;
 dx[threadIdx.x] += dx_tmp;

 float da_tmp = x[threadIdx.x] * dy;
 reduce_accumulate(&da[0], da_tmp);
}

CUDA.jl / AMDGPU.jl Example

30

function compute!(inp, out)
 s_D = @cuStaticSharedMem eltype(inp) (10, 10)
 ...
end

function grad_compute!(inp, out)
 Enzyme.autodiff_deferred(compute!, inp, out)
 return nothing
end

@cuda grad_compute!(Duplicated(inp, d_inp),
 Duplicated(out, d_out))

function compute!(inp, out)
 s_D = AMDGPU.alloc_special(…)
 ...
end

function grad_compute!(inp, out)
 Enzyme.autodiff_deferred(compute!, inp, out)
 return nothing
end

@rocm grad_compute!(Duplicated(inp, d_inp),
 Duplicated(out, d_out))

See Below For Full Code Examples
https://github.com/wsmoses/Enzyme-GPU-Tests/blob/main/DG/

Efficient GPU Code
• For correctness, Enzyme may need to cache values in

order to compute the gradient

• The complexity of GPU memory means large caches
slow down the program by several orders of magnitude,
if it even fits at all

• Like the CPU, existing optimizations reduce the overhead

• Unlike the CPU, existing optimizations aren’t sufficient

• Novel GPU and AD-specific optimizations can speedup by
several orders of magnitude

31

// Forward Pass

out[i] = x[i] * x[i];

x[i] = 0.0f;

// Reverse (gradient) Pass

...
grad_x[i] += 2 * x[i] * grad_out[i];
...

Efficient Correct GPU Code
• For correctness, Enzyme may need to cache values in

order to compute the gradient

• The complexity of GPU memory means large caches
slow down the program by several orders of magnitude,
if it even fits at all

• Like the CPU, existing optimizations reduce the overhead

• Unlike the CPU, existing optimizations aren’t sufficient

• Novel GPU and AD-specific optimizations can speedup by
several orders of magnitude

32

double* x_cache = new double[…];

// Forward Pass

out[i] = x[i] * x[i];
x_cache[i] = x[i];

x[i] = 0.0f;

// Reverse (gradient) Pass

...
grad_x[i] += 2 * x_cache[i]
 * grad_out[i];
...

delete[] x_cache;

Cache Reduction Example
• By considering the dataflow graph

we can perform a min-cut to
approximate smaller cache sizes.

33

for(int i=0; i<10; i++) {
 double sum = x[i] + y[i];

 use(sum);
}

overwrite(x, y);
grad_overwrite(x, y);

for(int i=9; i>=0; i--) {
 ...
 grad_use(sum);
}

X Y

Sum

Overwritten:

Required for
Reverse:

XX

Cache Reduction Example

34

double* x_cache = new double[10];
double* y_cache = new double[10];

for(int i=0; i<10; i++) {
 double sum = x[i] + y[i];
 x_cache[i] = x[i];
 y_cache[i] = y[i];
 use(sum);
}

overwrite(x, y);
grad_overwrite(x, y);

for(int i=9; i>=0; i--) {
 double sum = x_cache[i] + y_cache[i];
 grad_use(sum);
}

• By considering the dataflow graph
we can perform a min-cut to
approximate smaller cache sizes.

X Y

Sum

Overwritten:

Required for
Reverse:

Naive Cache

Sum

Cache Reduction Example

35

double* sum_cache = new double[10];

for(int i=0; i<10; i++) {
 double sum = x[i] + y[i];
 sum_cache[i] = sum;

 use(sum);
}

overwrite(x, y);
grad_overwrite(x, y);

for(int i=9; i>=0; i--) {

 grad_use(sum_cache[i]);
}

• By considering the dataflow graph
we can perform a min-cut to
approximate smaller cache sizes.

X Y

Sum

Overwritten:

Required for
Reverse:

Smallest Cache

Allocation Merging

• Allocations (and any calls) on the
GPU are expensive

• Given two allocations in the same
scope, replace uses with a single
allocation

• Beneficial for not just AD, but any
GPU programs!

36

double* var1 = new double[N];
double* var2 = new double[M];

use(var1, var2);

delete[] var1;
delete[] var2;

double* var1 = new double[N + M];
double* var2 = var1 + N;

use(var1, var2);

delete[] var1;

Novel AD + GPU Optimizations

• See our SC’21 paper for more (https://c.wsmoses.com/papers/EnzymeGPU.pdf) 
 Reverse-Mode Automatic Differentiation and Optimization of GPU Kernels via Enzyme. SC, 2021

• [AD] Cache LICM/CSE

• [AD] Min-Cut Cache Reduction

• [AD] Cache Forwarding

• [GPU] Merge Allocations

• [GPU] Heap-to-stack (and register)

• [GPU] Alias Analysis Properties of SyncThreads

• …
37

https://c.wsmoses.com/papers/EnzymeGPU.pdf

GPU Gradient Overhead [MCPHNMJ’21]

38

• Evaluation of both original code and gradient

• DG: Discontinuous-Galerkin integral (Julia)

• LBM: particle-based fluid dynamics
simulation

• LULESH: unstructured explicit shock
hydrodynamics solver

• XSBench & RSBench: Monte Carlo
simulations of particle transport
algorithms (memory & compute bound,
respectively)

XSBench

RSBench

LULESH

LBM (Parboil)

DG (CUDA)

DG (ROCm)

3.2

4.2

2.01

6.3

18.35

5.4

GPU Gradient Overhead [MCPHNMJ’21]

39

• Evaluation of both original code and gradient

• DG: Discontinuous-Galerkin integral (Julia)

• LBM: particle-based fluid dynamics
simulation

• LULESH: unstructured explicit shock
hydrodynamics solver

• XSBench & RSBench: Monte Carlo
simulations of particle transport
algorithms (memory & compute bound,
respectively)

XSBench

RSBench

LULESH

LBM (Parboil)

DG (CUDA)

DG (ROCm)

3.2

4.2

2.01

6.3

18.35

5.4

Bug in CUDA
Register Allocator

40

Forward (1x) 10x 100x 1000x OOM

XSBench

RSBench

LULESH

LBM

DG (CUDA)

DG (ROCm)
5.4⇥
o

1378.3⇥
o

116.6⇥
o

17.8⇥
o

19.87⇥
o

8.7⇥
o

6.4⇥
o

2979.1⇥
o

2.4⇥
o

2.0⇥
o

6372.2⇥
o

9.5⇥
o

4.7⇥
o

25.9⇥
o

16.3⇥
o

9.5⇥
o

3.2⇥
o

Overhead above Forward Pass

Unrolling

Unrolling MallocCoalescing PreOptimization

Allocator Recompute InlineCacheABI

SpecPHI PreOptimization

CacheLICM Inlining PreOpt

Templating PHI LoopBound PreOptimization

Ablation Analysis of Optimizations

41

Forward (1x) 10x 100x 1000x OOM

XSBench

RSBench

LULESH

LBM

DG (CUDA)

DG (ROCm)
5.4⇥
o

1378.3⇥
o

116.6⇥
o

17.8⇥
o

19.87⇥
o

8.7⇥
o

6.4⇥
o

2979.1⇥
o

2.4⇥
o

2.0⇥
o

6372.2⇥
o

9.5⇥
o

4.7⇥
o

25.9⇥
o

16.3⇥
o

9.5⇥
o

3.2⇥
o

Overhead above Forward Pass

Unrolling

Unrolling MallocCoalescing PreOptimization

Allocator Recompute InlineCacheABI

SpecPHI PreOptimization

CacheLICM Inlining PreOpt

Templating PHI LoopBound PreOptimization

Ablation Analysis of Optimizations

42

Forward (1x) 10x 100x 1000x OOM

XSBench

RSBench

LULESH

LBM

DG (CUDA)

DG (ROCm)
5.4⇥
o

1378.3⇥
o

116.6⇥
o

17.8⇥
o

19.87⇥
o

8.7⇥
o

6.4⇥
o

2979.1⇥
o

2.4⇥
o

2.0⇥
o

6372.2⇥
o

9.5⇥
o

4.7⇥
o

25.9⇥
o

16.3⇥
o

9.5⇥
o

3.2⇥
o

Overhead above Forward Pass

Unrolling

Unrolling MallocCoalescing PreOptimization

Allocator Recompute InlineCacheABI

SpecPHI PreOptimization

CacheLICM Inlining PreOpt

Templating PHI LoopBound PreOptimization

Ablation Analysis of Optimizations

43

Forward (1x) 10x 100x 1000x OOM

XSBench

RSBench

LULESH

LBM

DG (CUDA)

DG (ROCm)
5.4⇥
o

1378.3⇥
o

116.6⇥
o

17.8⇥
o

19.87⇥
o

8.7⇥
o

6.4⇥
o

2979.1⇥
o

2.4⇥
o

2.0⇥
o

6372.2⇥
o

9.5⇥
o

4.7⇥
o

25.9⇥
o

16.3⇥
o

9.5⇥
o

3.2⇥
o

Overhead above Forward Pass

Unrolling

Unrolling MallocCoalescing PreOptimization

Allocator Recompute InlineCacheABI

SpecPHI PreOptimization

CacheLICM Inlining PreOpt

Templating PHI LoopBound PreOptimization

Ablation Analysis of Optimizations

GPU AD is Intractable Without Optimization!

Computing Hardware is No Longer For Everybody

Computing Hardware is No Longer For Everybody

Computing Hardware is No Longer For Everybody

Computing Hardware is No Longer For Everybody

Computing Hardware is No Longer For Everybody

Computing Hardware is No Longer For Everybody

Computing Hardware is No Longer For Everybody

Lingua Franca of Scientific Computing

__global__
void AddNodeForcesFromElems_kernel(Index_t numNode,
 Index_t padded_numNode,
 const Int_t* nodeElemCount,
 const Int_t* nodeElemStart,
 const Index_t* nodeElemCornerList,
 const Real_t* fx_elem,
 const Real_t* fy_elem,
 const Real_t* fz_elem,
 Real_t* fx_node,
 Real_t* fy_node,
 Real_t* fz_node,
 const Int_t num_threads)
{
 int tid=blockDim.x*blockIdx.x+threadIdx.x;
 if (tid < num_threads)
 {
 Index_t g_i = tid;
 Int_t count=nodeElemCount[g_i];
 Int_t start=nodeElemStart[g_i];
 Real_t fx,fy,fz;
 fx=fy=fz=Real_t(0.0);

 for (int j=0;j<count;j++)
 {
 Index_t pos=nodeElemCornerList[start+j]; // Uncoalesced access here
 fx += fx_elem[pos];
 fy += fy_elem[pos];
 fz += fz_elem[pos];
 }

 fx_node[g_i]=fx;
 fy_node[g_i]=fy;
 fz_node[g_i]=fz;
 }
}

• Scientists do not write TPU* code

Lingua Franca of Scientific Computing

__global__
void AddNodeForcesFromElems_kernel(Index_t numNode,
 Index_t padded_numNode,
 const Int_t* nodeElemCount,
 const Int_t* nodeElemStart,
 const Index_t* nodeElemCornerList,
 const Real_t* fx_elem,
 const Real_t* fy_elem,
 const Real_t* fz_elem,
 Real_t* fx_node,
 Real_t* fy_node,
 Real_t* fz_node,
 const Int_t num_threads)
{
 int tid=blockDim.x*blockIdx.x+threadIdx.x;
 if (tid < num_threads)
 {
 Index_t g_i = tid;
 Int_t count=nodeElemCount[g_i];
 Int_t start=nodeElemStart[g_i];
 Real_t fx,fy,fz;
 fx=fy=fz=Real_t(0.0);

 for (int j=0;j<count;j++)
 {
 Index_t pos=nodeElemCornerList[start+j]; // Uncoalesced access here
 fx += fx_elem[pos];
 fy += fy_elem[pos];
 fz += fz_elem[pos];
 }

 fx_node[g_i]=fx;
 fy_node[g_i]=fy;
 fz_node[g_i]=fz;
 }
}

• Scientists do not write TPU* code

• BIG (MFEM library alone is 737K LOC)

Lingua Franca of Scientific Computing

__global__
void AddNodeForcesFromElems_kernel(Index_t numNode,
 Index_t padded_numNode,
 const Int_t* nodeElemCount,
 const Int_t* nodeElemStart,
 const Index_t* nodeElemCornerList,
 const Real_t* fx_elem,
 const Real_t* fy_elem,
 const Real_t* fz_elem,
 Real_t* fx_node,
 Real_t* fy_node,
 Real_t* fz_node,
 const Int_t num_threads)
{
 int tid=blockDim.x*blockIdx.x+threadIdx.x;
 if (tid < num_threads)
 {
 Index_t g_i = tid;
 Int_t count=nodeElemCount[g_i];
 Int_t start=nodeElemStart[g_i];
 Real_t fx,fy,fz;
 fx=fy=fz=Real_t(0.0);

 for (int j=0;j<count;j++)
 {
 Index_t pos=nodeElemCornerList[start+j]; // Uncoalesced access here
 fx += fx_elem[pos];
 fy += fy_elem[pos];
 fz += fz_elem[pos];
 }

 fx_node[g_i]=fx;
 fy_node[g_i]=fy;
 fz_node[g_i]=fz;
 }
}

• Scientists do not write TPU* code

• BIG (MFEM library alone is 737K LOC)

• Templated

Lingua Franca of Scientific Computing

__global__
void AddNodeForcesFromElems_kernel(Index_t numNode,
 Index_t padded_numNode,
 const Int_t* nodeElemCount,
 const Int_t* nodeElemStart,
 const Index_t* nodeElemCornerList,
 const Real_t* fx_elem,
 const Real_t* fy_elem,
 const Real_t* fz_elem,
 Real_t* fx_node,
 Real_t* fy_node,
 Real_t* fz_node,
 const Int_t num_threads)
{
 int tid=blockDim.x*blockIdx.x+threadIdx.x;
 if (tid < num_threads)
 {
 Index_t g_i = tid;
 Int_t count=nodeElemCount[g_i];
 Int_t start=nodeElemStart[g_i];
 Real_t fx,fy,fz;
 fx=fy=fz=Real_t(0.0);

 for (int j=0;j<count;j++)
 {
 Index_t pos=nodeElemCornerList[start+j]; // Uncoalesced access here
 fx += fx_elem[pos];
 fy += fy_elem[pos];
 fz += fz_elem[pos];
 }

 fx_node[g_i]=fx;
 fy_node[g_i]=fy;
 fz_node[g_i]=fz;
 }
}

• Scientists do not write TPU* code

• BIG (MFEM library alone is 737K LOC)

• Templated

• Not in Python

Lingua Franca of Scientific Computing

__global__
void AddNodeForcesFromElems_kernel(Index_t numNode,
 Index_t padded_numNode,
 const Int_t* nodeElemCount,
 const Int_t* nodeElemStart,
 const Index_t* nodeElemCornerList,
 const Real_t* fx_elem,
 const Real_t* fy_elem,
 const Real_t* fz_elem,
 Real_t* fx_node,
 Real_t* fy_node,
 Real_t* fz_node,
 const Int_t num_threads)
{
 int tid=blockDim.x*blockIdx.x+threadIdx.x;
 if (tid < num_threads)
 {
 Index_t g_i = tid;
 Int_t count=nodeElemCount[g_i];
 Int_t start=nodeElemStart[g_i];
 Real_t fx,fy,fz;
 fx=fy=fz=Real_t(0.0);

 for (int j=0;j<count;j++)
 {
 Index_t pos=nodeElemCornerList[start+j]; // Uncoalesced access here
 fx += fx_elem[pos];
 fy += fy_elem[pos];
 fz += fz_elem[pos];
 }

 fx_node[g_i]=fx;
 fy_node[g_i]=fy;
 fz_node[g_i]=fz;
 }
}

• Scientists do not write TPU* code

• BIG (MFEM library alone is 737K LOC)

• Templated

• Not in Python

• Sometimes* in CUDA
template <>
struct RajaCuWrap<3>
{
 template <const int BLCK = MFEM_CUDA_BLOCKS, typename DBODY>
 static void run(const int N, DBODY &&d_body,
 const int X, const int Y, const int Z, const int G)
 {
 RajaCuWrap3D(N, d_body, X, Y, Z, G);
 }
};

How do we write ML Accelerator code now?

How do we write ML Accelerator code now?

How do we write ML Accelerator code now?

How do we write ML Accelerator code now?

Rewrite it in JAX/PyTorch!

Confidential + Proprietary

Lingua Franca of Scientific Computing

● Scientists do not write TPU-friendly code
○ BIG (MFEM library alone is 737K LOC)
○ Templated
○ Not in Python
○ Sometimes* in CUDA

__global__
void AddNodeForcesFromElems_kernel(Index_t numNode,
 Index_t padded_numNode,
 const Int_t* nodeElemCount,
 const Int_t* nodeElemStart,
 const Index_t* nodeElemCornerList,
 const Real_t* fx_elem,
 const Real_t* fy_elem,
 const Real_t* fz_elem,
 Real_t* fx_node,
 Real_t* fy_node,
 Real_t* fz_node,
 const Int_t num_threads)
{
 int tid=blockDim.x*blockIdx.x+threadIdx.x;
 if (tid < num_threads)
 {
 Index_t g_i = tid;
 Int_t count=nodeElemCount[g_i];
 Int_t start=nodeElemStart[g_i];
 Real_t fx,fy,fz;
 fx=fy=fz=Real_t(0.0);

 for (int j=0;j<count;j++)
 {
 Index_t pos=nodeElemCornerList[start+j]; // Uncoalesced access here
 fx += fx_elem[pos];
 fy += fy_elem[pos];
 fz += fz_elem[pos];
 }

 fx_node[g_i]=fx;
 fy_node[g_i]=fy;
 fz_node[g_i]=fz;
 }
}

template <>
struct RajaCuWrap<3>
{
 template <const int BLCK = MFEM_CUDA_BLOCKS, typename DBODY>
 static void run(const int N, DBODY &&d_body,
 const int X, const int Y, const int Z, const int G)
 {
 RajaCuWrap3D(N, d_body, X, Y, Z, G);
 }
};

Confidential + Proprietary

Lingua Franca of Scientific Computing

● Scientists do not write TPU-friendly code
○ BIG (MFEM library alone is 737K LOC)
○ Templated
○ Not in Python
○ Sometimes* in CUDA

__global__
void AddNodeForcesFromElems_kernel(Index_t numNode,
 Index_t padded_numNode,
 const Int_t* nodeElemCount,
 const Int_t* nodeElemStart,
 const Index_t* nodeElemCornerList,
 const Real_t* fx_elem,
 const Real_t* fy_elem,
 const Real_t* fz_elem,
 Real_t* fx_node,
 Real_t* fy_node,
 Real_t* fz_node,
 const Int_t num_threads)
{
 int tid=blockDim.x*blockIdx.x+threadIdx.x;
 if (tid < num_threads)
 {
 Index_t g_i = tid;
 Int_t count=nodeElemCount[g_i];
 Int_t start=nodeElemStart[g_i];
 Real_t fx,fy,fz;
 fx=fy=fz=Real_t(0.0);

 for (int j=0;j<count;j++)
 {
 Index_t pos=nodeElemCornerList[start+j]; // Uncoalesced access here
 fx += fx_elem[pos];
 fy += fy_elem[pos];
 fz += fz_elem[pos];
 }

 fx_node[g_i]=fx;
 fy_node[g_i]=fy;
 fz_node[g_i]=fz;
 }
}

template <>
struct RajaCuWrap<3>
{
 template <const int BLCK = MFEM_CUDA_BLOCKS, typename DBODY>
 static void run(const int N, DBODY &&d_body,
 const int X, const int Y, const int Z, const int G)
 {
 RajaCuWrap3D(N, d_body, X, Y, Z, G);
 }
};

Looking More Deeply at Scientific Code

function stencil_kernel(y, x)
 i = threadIdx().x + (blockIdx().x - 1) * blockDim().x
 if i <= length(x) - 2
 y[i] = x[i] - 2 * x[i + 1] + x[i + 2]
 end
end

function model(...)
 @cuda threads=... blocks=... stencil_kernel(y, x)
 @cuda threads=... blocks=... stencil_kernel(x, y)
end

> 277 such kernels

Looking More Deeply at Scientific Code

function stencil_kernel(y, x)
 i = threadIdx().x + (blockIdx().x - 1) * blockDim().x
 if i <= length(x) - 2
 y[i] = x[i] - 2 * x[i + 1] + x[i + 2]
 end
end

function model(...)
 @cuda threads=... blocks=... stencil_kernel(y, x)
 @cuda threads=... blocks=... stencil_kernel(x, y)
end

1 -2 1

> 277 such kernels

CUDA to Accelerator IR (StableHLO)

• New framework for raising and optimizing the
structure within existing kernels to stablehlo!

• 	1) Compile Kernels to LLVM

• 	 2) Raise the underlying structure in MLIR

• 	 3) Multi-dimensionalize it into tensor operators

• 	 4) Optimize

• Compiled single-node CUDA version of code to
execute on thousands of distributed TPUs and
GPUs

function stencil_kernel(y, x)
 i = threadIdx().x + (blockIdx().x - 1) * blockDim().x
 if i <= length(x) - 2
 y[i] = x[i] - 2 * x[i+1] + x[i+2]
 end
end

function model(...)
 @cuda threads=... blocks=... stencil_kernel(y, x)
 @cuda threads=... blocks=... stencil_kernel(x, y)
end

Compilation

define void @julia_difference_kernel_890({}* %y, {}* %x) {
top:
 %3 = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
 %4 = add nuw nsw i32 %3, 1
 ...
 br i1 %.not, label %common.ret, label %L31
}

func.func @kernel(%y : memref<100xf64>, %x : memref<100xf64>) {
 affine.parallel %arg1 = 0 to 100 {
 %x1 = affine.load %x[%arg1]
 %x2 = affine.load %x[%arg1 + 1]
 ...
 affine.store %sum, %y[%arg1]
 }
}

%x1 = stablehlo.slice %x[1:98]
%x2 = stablehlo.slice %x[2:99]
%mul = stablehlo.multiply %x2, tensor<2.0>
%add = stablehlo.add %x1, %mu

res = stablehlo.convolve %x, tensor<[1.0, -4.0, 6.0, -4.0, 1.0]>

RaisingRaising

Multi-DimensionalizationMulti-DimensionalizationMulti-Dimensionalization

Optimization

GPU Programming via LLVM

65

• Mainstream compilers do not have a
high-level representation of parallelism,
making optimization difficult or
impossible
• This is accentuated for GPU

programs where the kernel is
kept in a separate module &
synchronization is a barrier to
optimization.

Host Code Device Code

__global__ void normalize(int *out, int* in, int n) {
 int tid = blockIdx.x;
 if (tid < n)
 out[tid] = in[tid] / sum(in, n);
}

void launch(int *out, int* in, int n) {
 normalize<<<n>>>(d_out, d_in, n);
}

target triple = "x86_64-unknown-linux-gnu”

define void @_Z6launchPiS_i(i32* %out,
 i32* %in,
 i32 %n) {
 call i32 @pushCallConfiguration(…)
 call i32 @cudaLaunch(@_device_stub, …)
 ret void
}

target triple = ”nvptx”

define void @_Z9normalize(i32* %out,
 i32* %in, i32 %n) {
 %4 = call i32 @llvm.tid.x()
 %5 = icmp slt i32 %4, %n
 br i1 %5, label %6, label %13

6:
 %8 = getelementptr i32, i32* %in, i32 %4
 %9 = load i32, i32* %8, align 4
 %10 = call i32 @_Z3sumPii(i32* %in, i32 %n)
 %11 = sdiv i32 %9, %10
 %12 = getelementptr i32, i32* %out, i32 %4
 store i32 %11, i32* %12, align 4
 br label %13

13:
 ret void
}

GPU Programming via MLIR

__global__ void normalize(int *out, int *in, int n) {
 int tid = blockIdx.x;
 if (tid < n)
 out[tid] = in[tid] / sum(in, n);
}

void launch(int *out, int* in, int n) {
 normalize<<<n>>>(d_out, d_in, n);
}

func @_Z6launch(%out: memref<?xi32>,
 %in: memref<?xi32>, %n: i32) {
 %c1 = constant 1 : index
 %c0 = constant 0 : index

 parallel (%tid) = (%c0) to (%n) step (%c1) {
 %2 = load %in[%tid]
 %sum = call @_Z3sumPii(%in, %n)
 %4 = divsi %2, %sum : i32
 store %4, %out[%tid]
 yield
 }
 return
}

•Preserve Host & Device code through frontend 
 (Clang Plugin for C++, JIT Package for Julia, etc)

•Enables optimization between caller and kernel

•Enable parallelism-specific optimization

[1] High-Performance GPU-to-CPU Transpilation and Optimization via High-Level Parallel Constructs, PPoPP’23

GPU Programming via MLIR

__global__ void normalize(int *out, int *in, int n) {
 int tid = blockIdx.x;
 if (tid < n)
 out[tid] = in[tid] / sum(in, n);
}

void launch(int *out, int* in, int n) {
 normalize<<<n>>>(d_out, d_in, n);
}

func @_Z6launch(%out: memref<?xi32>,
 %in: memref<?xi32>, %n: i32) {
 %c1 = constant 1 : index
 %c0 = constant 0 : index
 %sum = call @_Z3sumPii(%in, %n)
 parallel (%tid) = (%c0) to (%n) step (%c1) {
 %2 = load %in[%tid]

 %4 = divsi %2, %sum : i32
 store %4, %out[%tid]
 yield
 }
 return
}[1] High-Performance GPU-to-CPU Transpilation and Optimization via High-Level Parallel Constructs, PPoPP’23

•Preserve Host & Device code through frontend 
 (Clang Plugin for C++, JIT Package for Julia, etc)

•Enables optimization between caller and kernel

•Enable parallelism-specific optimization

GPU Programming via MLIR

func @launch(%h_out : memref<?xf32>, %h_in : memref<?xf32>, %n : i64) {

 parallel.for (%gx, %gy, %gz) = (0, 0, 0) to (grid.x, grid.y, grid.z) {

 %shared_val = memref.alloca : memref<f32>

 parallel.for (%tx, %ty, %tz) = (0, 0, 0) to (blk.x, blk.y, blk.z) {

 if %tx == 0 {
 store …, %shared_val[] : memref<f32>
 }

 polygeist.barrier(%tx, %ty, %tz)

 …
 }
 }
}

[1] High-Performance GPU-to-CPU Transpilation and Optimization via High-Level Parallel Constructs, PPoPP’23

Synchronization via Memory

codeA(fib(idx));

sync_threads;

codeB(fib(idx));

• Synchronization (sync_threads) ensures all threads
within a block finish executing codeA before
executing codeB
• The desired synchronization behavior can be

reproduced by defining sync_threads to have the
union of the memory semantics of the code before
and after the sync.
• This prevents code motion of instructions which

require the synchronization for correctness, but
permits other code motion (e.g. index
computation).

off = fib(idx);

codeA(off);

sync_threads;

codeB(off);

Synchronization via Memory
__global__ void bpnn_layerforward(...) {
 __shared__ float node[HEIGHT];
 __shared__ float weights[HEIGHT][WIDTH];

 if (tx == 0)
 node[ty] = input[index_in] ;

 // Unnecessary Barrier #1
 // None of the read/writes below the sync
 // (weights, hidden)
 // intersect with the read/writes above the sync
 // (node, input)
 __syncthreads();

 // Unnecessary Store #1
 weights[ty][tx] = hidden[index];

 __syncthreads();

 // Unnecessary Load #1
 weights[ty][tx] = weights[ty][tx] * node[ty];
 …
}

• High-level synchronization
representation enables new
optimizations, like sync elimination.
• A synchronize instruction is not

needed if the set of read/writes
before the sync don’t conflict
with the read/writes after the sync.

Synchronization via Memory
__global__ void bpnn_layerforward(...) {
 __shared__ float node[HEIGHT];
 __shared__ float weights[HEIGHT][WIDTH];

 if (tx == 0)
 node[ty] = input[index_in] ;

 // Unnecessary Barrier #1
 // None of the read/writes below the sync
 // (weights, hidden)
 // intersect with the read/writes above the sync
 // (node, input)
 __syncthreads();

 // Unnecessary Store #1
 weights[ty][tx] = hidden[index];

 __syncthreads();

 // Unnecessary Load #1
 weights[ty][tx] = weights[ty][tx] * node[ty];
 …
}

• High-level synchronization
representation enables new
optimizations, like sync elimination.
• A synchronize instruction is not

needed if the set of read/writes
before the sync don’t conflict
with the read/writes after the sync.

• 27% speedup on real code, 2.7x on
PyTorch cross compilation!

Synchronization via Memory

parallel_for %i = 0 to N {

 codeA(%i);

 sync_threads;

 codeB(%i);

}

parallel_for %i = 0 to N {

 codeA(%i);

}

parallel_for %i = 0 to N {

 codeB(%i);

}

• A unified representation of parallelism enables
programs in one parallel architecture (e.g. CUDA)
to be compiled to another (e.g. historically
OpenMP, now TPUs)
• Some backends do not have block synchronization
• Lower a top-level synchronization by distributing

the parallel for loop around the sync, and
interchanging control flow

Synchronization via Memory

• A unified representation of parallelism enables
programs in one parallel architecture (e.g. CUDA)
to be compiled to another (e.g. historically
OpenMP, now TPUs)
• Some backends do not have block synchronization
• Lower a top-level synchronization by distributing

the parallel for loop around the sync, and
interchanging control flow

parallel_for %i = 0 to N {

 for %j = … {

 codeB1(%i, %j);

 sync_threads;

 codeB2(%i, %j);

 }

}

for %j = … {

 parallel_for %i = 0 to N {

 codeB1(%i, %j);

 sync_threads;

 codeB2(%i, %j);

 }

}

LLVM to StableHLO

llvm.call @__nv_fabsf(%arg0)

llvm.br

LLVM/NVVM Dialect Arith + Control Flow SCF (While) SCF (For)

Affine StableHLO

%0 = math.abs %arg0

cf.br

scf.while %arg = %c0 {

 %arg < %c10

} do {

… }

scf.for %arg = %c0 .. %c10 {

 …

}

affine.for %i = 0 to 10 {

 affine.store out[%i] = …

}

%x = stablehlo.slice …
%y = stablehlo.abs %x
%z = stablehlo.dynamic_update_slice %z0[...] = %y

http://cf.br

LLVM to StableHLO

llvm.call @__nv_fabsf(%arg0)

llvm.br

LLVM/NVVM Dialect Arith + Control Flow SCF (While) SCF (For)

Affine StableHLO

%0 = math.abs %arg0

cf.br

scf.while %arg = %c0 {

 %arg < %c10

} do {

… }

scf.for %arg = %c0 .. %c10 {

 …

}

affine.for %i = 0 to 10 {

 affine.store out[%i] = …

}

%x = stablehlo.slice …
%y = stablehlo.abs %x
%z = stablehlo.dynamic_update_slice %z0[...] = %y

http://cf.br

Affine to StableHLO

parallel.for (%tx, %ty, %tz) = (0,0,0) to (5,7,9){

 %A1 = load x[%tx, %ty, %tz]

 %A2 = sin(%A1)

 store y[%tx, %ty, %tz] = %A2

 …
}

• Represent permissive, device-
agnostic parallelism
• Legal to re-order and interchange

instructions
• One execution (lock-step), runs all

of A1, then all of A2, etc
• Lets us form efficient tensor

(stablehlo) versions of kernels

Affine to StableHLO

%A1 = stablehlo.slice %x[0:5, 0:7, 0:9]

parallel.for (%tx, %ty, %tz) = (0,0,0) to (5,7,9){

 %A2 = sin(%A1)

 store y[%tx, %ty, %tz] = %A2

 …
}

• Represent permissive, device-
agnostic parallelism
• Legal to re-order and interchange

instructions
• One execution (lock-step), runs all

of A1, then all of A2, etc
• Lets us form efficient tensor

(stablehlo) versions of kernels

Affine to StableHLO

%A1 = stablehlo.slice %x[0:5, 0:7, 0:9]

%A2 = stablehlo.sine %A1 

parallel.for (%tx, %ty, %tz) = (0,0,0) to (5,7,9){

 store y[%tx, %ty, %tz] = %A2

 …
}

• Represent permissive, device-
agnostic parallelism
• Legal to re-order and interchange

instructions
• One execution (lock-step), runs all

of A1, then all of A2, etc
• Lets us form efficient tensor

(stablehlo) versions of kernels

Affine to StableHLO

%A1 = stablehlo.slice %x[0:5, 0:7, 0:9]

%A2 = stablehlo.sine %A1

%Y2 = stablehlo.dynamic_update_slice
 %Y[0:5, 0:7, 0:9], %A2

parallel.for (%tx, %ty, %tz) = (0,0,0) to (5,7,9){
 …
}

• Represent permissive, device-
agnostic parallelism
• Legal to re-order and interchange

instructions
• One execution (lock-step), runs all

of A1, then all of A2, etc
• Lets us form efficient tensor

(stablehlo) versions of kernels

StableHLO … to better StableHLO

%x1 = stablehlo.slice %x[1:98]
%x2 = stablehlo.slice %x[2:99]
%mul = stablehlo.multiply %x2, tensor<2.0>
%add = stablehlo.add %x1, %mu
…

• The direct vectorization of the code
works, but may not be efficient.
• We will lost the convolution!
• Perform tensor-level optimizations

on stablehlo to recover and
optimize higher-level structures

%y = stablehlo.convolve %x, tensor<[1.0, -2.0, 1.0]>

%z = stablehlo.convolve %y, tensor<[1.0, -2.0, 1.0]>

%z = stablehlo.convolve %x, tensor<[1.0, -4.0, 6.0, -4.0, 1.0]>

StableHLO … to better StableHLO

%x1 = stablehlo.slice %x[1:98]
%x2 = stablehlo.slice %x[2:99]
%mul = stablehlo.multiply %x2, tensor<2.0>
%add = stablehlo.add %x1, %mu
…

• The direct vectorization of the code
works, but may not be efficient.
• We will lost the convolution!
• Perform tensor-level optimizations

on stablehlo to recover and
optimize higher-level structures

%y = stablehlo.convolve %x, tensor<[1.0, -2.0, 1.0]>

%z = stablehlo.convolve %y, tensor<[1.0, -2.0, 1.0]>

%z = stablehlo.convolve %x, tensor<[1.0, -4.0, 6.0, -4.0, 1.0]>

56% speedup on
JaX ML workloads

CUDA to Accelerator IR (StableHLO)

function stencil_kernel(y, x)
 i = threadIdx().x + (blockIdx().x - 1) * blockDim().x
 if i <= length(x) - 2
 y[i] = x[i] - 2 * x[i+1] + x[i+2]
 end
end

function model(...)
 @cuda threads=... blocks=... stencil_kernel(y, x)
 @cuda threads=... blocks=... stencil_kernel(x, y)
end

Compilation

define void @julia_difference_kernel_890({}* %y, {}* %x) {
top:
 %3 = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
 %4 = add nuw nsw i32 %3, 1
 ...
 br i1 %.not, label %common.ret, label %L31
}

func.func @kernel(%y : memref<100xf64>, %x : memref<100xf64>) {
 affine.parallel %arg1 = 0 to 100 {
 %x1 = affine.load %x[%arg1]
 %x2 = affine.load %x[%arg1 + 1]
 ...
 affine.store %sum, %y[%arg1]
 }
}

%x1 = stablehlo.slice %x[1:98]
%x2 = stablehlo.slice %x[2:99]
%mul = stablehlo.multiply %x2, tensor<2.0>
%add = stablehlo.add %x1, %mu

res = stablehlo.convolve %x, tensor<[1.0, -4.0, 6.0, -4.0, 1.0]>

RaisingRaising

Multi-DimensionalizationMulti-DimensionalizationMulti-Dimensionalization

Optimization

Primal Raising Performance Results

• Successfully ran single-node Oceanangians.jl on
thousands of distributed accelerators
• Perlmutter (1536 nodes x 4 NVIDIA A100 GPUs)
• 1,679 Google TPUs v6e (918 TFLOPS each)
• Communication optimizations were key
• Good Single-Node Perf (CPU)
• Vanilla Model: 272.0seconds
• Tensor Optims: 11.5seconds

How Does Raising & Tensor Transformations Impact AD?

How Does Raising & Tensor Transformations Impact AD?

• Biggest impact in three primary areas:
• Work-Reduction + Fusion
• Checkpointing
• Communication

Linear Algebra Optimizations

86

Wrote >200 different patterns!

Simplify code where possible
 x + 0 -> x

 transpose(transpose(x)) -> x

 transpose(matmul(a,b)) ->
 matmul(b, a)

Often require program context
 transpose(convert(reshape(x)))
 <-> reshape(convert(transpose(x))

 slice(add(a, b)) ->
 add(slice(a), slice(b))

 mul(pad(x, 0), y) ->
 pad(mul(x, slice(y)), 0)

x, y : tensor<100000xf32>

a = dot(x, y)

b = mul(a, z)

c = add(b, 4)

return c[0:10]

Linear Algebra Optimizations

87

x, y : tensor<100000xf32>

a = dot(x, y)

b = mul(a, z)

c = add(b[0:10], 4)

return c

Wrote >200 different patterns!

Simplify code where possible
 x + 0 -> x

 transpose(transpose(x)) -> x

 transpose(matmul(a,b)) ->
 matmul(b, a)

Often require program context
 transpose(convert(reshape(x)))
 <-> reshape(convert(transpose(x))

 slice(add(a, b)) ->
 add(slice(a), slice(b))

 mul(pad(x, 0), y) ->
 pad(mul(x, slice(y)), 0)

Linear Algebra Optimizations

88

x, y : tensor<100000xf32>

a = dot(x, y)

b = mul(a[0:10], z[0:10])

c = add(b, 4)

return c

Wrote >200 different patterns!

Simplify code where possible
 x + 0 -> x

 transpose(transpose(x)) -> x

 transpose(matmul(a,b)) ->
 matmul(b, a)

Often require program context
 transpose(convert(reshape(x)))
 <-> reshape(convert(transpose(x))

 slice(add(a, b)) ->
 add(slice(a), slice(b))

 mul(pad(x, 0), y) ->
 pad(mul(x, slice(y)), 0)

Linear Algebra + AD

89

• Consider a simple code which
performs a matmul and add on a
Diagonal matrix

Linear Algebra + AD

90

• Consider a simple code which
performs a matmul and add on a
Diagonal matrix

• Without any optimization, we
perform a scatter to create the
diagonal, then a matmul

Linear Algebra + AD

91

• Consider a simple code which
performs a matmul and add on a
Diagonal matrix

• Without any optimization, we
perform a scatter to create the
diagonal, then a matmul

• Differentiating this, results in gathers
in the derivative, which cannot be
removed via optimization.

Linear Algebra + AD

92

• Consider a simple code which
performs a matmul and add on a
Diagonal matrix

• mul(diag(x), v) ->
 elementwise(x, v)

• Performing this prior to AD
yields 2-3x performance!

Work Reduction Benchmark: Jaxley

93

1.15x speedup on CPU
1.33x speedup on A100
3.92x speedup on TPU v6

[1] Deistler, Michael, et al. "Jaxley: differentiable simulation enables large-scale training of detailed biophysical models of neural dynamics." Nature Methods (2025): 1-9.

Checkpointing

• Checkpointing is a technique for trading off
memory and compute time in the derivative

cache = malloc N x f32
for i = 0:N {
 x = foo(x)
 cache[i] = x
}

for i = N:0 {
 x = cache[I]
 dx = grad_foo(x, dx)
}

Checkpointing

• Checkpointing is a technique for trading off
memory and compute time in the derivative

cache = malloc M x f32
for i = 0:N/M {
 for j = 0:M {
 x = foo(x)
 }
 cache[i] = x
}

for i = N:0 {
 x = cache[I/M]
 for j in 0:i%M {
 x = foo(x)
 }
 dx = grad_foo(x, dx)
}

Checkpointing

• Checkpointing is a technique for trading off
memory and compute time in the derivative

• Performing entire-program-level analysis,
we can remove induction variables on the
loop, reducing memory AND computation

x = tensor<100x100xf32>
for i = 0:steps {
 x[0, :] = 0
 x[end,:] = 0
 y = foo(x, y)
}

if (steps > 0) {
 x[0, :] = 0
 x[end,:] = 0

 for i = 0:steps {
 y = foo(x, y)
 }

Communication + AD

97

Differentiation changes how we want to parallelize code

• Scatters <-> Gathers

Communication + AD

98

Differentiation changes how we want to parallelize code

• Scatters <-> Gathers
• Can create race conditions

void set(double* ar, double val) {
 pfor(int i=0; i<n; i++) {
 ar[i] = val;
 }
 …
}

void grad_set(double* ar, double* d_ar) {
 double d_val = 0;
 pfor (int i=0; i<n; i++) {
 d_val += d_ar[i];
 }
 …

Communication + AD

99

Differentiation changes how we want to parallelize code

• Scatters <-> Gathers
• Can create race conditions
• Serial Primal => Parallel Derivative

double sum(double* x) {
 double S = 0.0;
 for (int i = 0; i < N; i++) {
 S += x[i] * x[i];
 }
 return S;
}

void grad_sum(double* x, double* d_x,
	 	 	 double d_S) {
 pfor (int i = 0; i < N; i++) {
 d_x[i] += 2.0 * x[i] * d_S;
 }
}

Derivative Raising Performance Results

• Primal Perf (CPU)
• Vanilla Model: 272.0seconds
• Tensor Optims: 11.5seconds
• Derivative Performance
• Similar performance to primal on single

timestep, scaling with linearly time steps
• Disabling tensor optimizations causes it

to instantly oom the system
• Tensor and whole-program optimizations

are quite useful!

Takeaways

• Compilers Make Differentiation Fast and Easy to use

• Key to this is interaction with Optimization

• Executing on accelerators historically require rewriting entire workflows

• Raising enables existing workflows to execute on (distributed
accelerators)

• EnzymeMLIR enables preserving and optimizing high-level structure and
optimizations, whose impact is compounded on such accelerators

• All open source (GitHub.com/EnzymeAD/Enzyme ; GitHub.com/
EnzymeAD/Enzyme-JaX ; GitHub.com/EnzymeAD/Reactant.jl) 101

http://GitHub.com/EnzymeAD/Enzyme
http://github.com/EnzymeAD/Enzyme-JaX
http://github.com/EnzymeAD/Enzyme-JaX
http://GitHub.com/EnzymeAD/Reactant.jl

