Making Waves in the Cloud: A Paradigm Shift for Scientific
Computing through Compiler Technology

F.
Willlam S. Moses

wsmoses@illinois.edu
UNIVERSITY OF DagStUh‘ SPE

ILLINOIS 2 00

URBANA-CHAMPAIGN




William S. Moses'3, Mosé Giordano*, Avik Pal*, Gregory Wagneri, Ivan R Ivanov, Paul Berg”,
Johannes Blaschke, Jules Merckx”, Arpit Jaiswal®, Patrick Heimbach®, Son Vu, Sergio
Sanchez-Ramirez®, Simone Silvestri, Nora Loose*, Ivan Ho, Vimarsh Sathia’, Jan Hueckelheim®*,
Johannes De Fine Licht, Kevin Gleason®, Ludovic Rass, Gabriel Baraldi, Dhruv Apte”, Lorenzo
Chelini®, Jacques Pienaar®, Gaetan Lounes, Valentin Churavy, Sri Hari Krishna Narayanan®, Navid
Constantinou, William R. Magro§, Michel Schanen®*, Alexis Montoison®*, Alan Edelman®, Samarth

Narang, Tobias Grosser, Keno Fischer?, Robert Hundt®, Albert Cohen?, Oleksandr Zinenko? *
UIUC ', Google %, UCL*, MIT ¥, NVIDIA ¢, UT Austin *, [C]Worthy *, BSC °, Argonne National Laboratory *,
LBNL ¥, Cambridge > JuliaHub 9, University of Mainz # BFH Y, Ghent University ©



Computing Hardware is No Longer For Everybody



Computing Hardware is No Longer For Everybody

NVIDIA Puts Grace Blackwell on Every Desk and at
Every Al Developer’s Fingertips

NVIDIA Project DIGITS With New GB10 Superchip Debuts as World's Smallest Al
Supercomputer Capable of Running 200B-Parameter Models



Computing Hardware is No Longer For Everybody

Exclusive: Meta begins testing its first in-
house Al training chip

By Katie Paul and Krystal Hu

March 11, 2025 2:37 PM GMT+1 - Updated March 11, 2025

NVIDIA Puts Grace Blackwell on Every Desk and at
Every Al Developer’s Fingertips

NVIDIA Project DIGITS With New GB10 Superchip Debuts as World's Smallest Al
Supercomputer Capable of Running 200B-Parameter Models



Computing Hardware is No Longer For Everybody

ANTHROP\C Claude v APl v Solutions v  Researc h v Commitments v Learn v News
Exclusive: Meta begins testing its first in-

house Al training chip

0 [aal(< Claude 3.5 Haiku on AWS Trainium?2 and
S model distillation in Amazon Bedrock

Dec 3,2024 + 3 minread

By Katie Paul and Krystal Hu
March 11, 2025 2:37 PM GMT+1 - Updated March 11, 2025

is seen in Brussels, Belgium December 6, 2022. REUTERS/Yves >

NVIDIA Puts Grace Blackwell on Every Desk and at
Every Al Developer’s Fingertips

NVIDIA Project DIGITS With New GB10 Superchip Debuts as World's Smallest Al
Supercomputer Capable of Running 200B-Parameter Models



Computing Hardware is No Longer For Everybody

ANTHROP\C Claude v~ APl v Solutions v Research v Commitments v Learn v  News
Exclusive: Meta begins testing its first in-

house Al training chip

Claude 3.5 Haiku on AWS Trainium2 and
model distillation in Amazon Bedrock

Dec 3,2024 + 3 minread

By Katie Paul and Krystal Hu

March 11, 2025 2:37 PM GMT+1 - Updated March 11, 2025

Elon Musk's xAl is reportedly trying
to borrow $12,000,000,000 for even

more Nvidia GPUs, an impulse all

NVIDIA Puts Grace Blackwell on Every Desk and at PC gamers can truly understand
Every Al Developer’s Fingertips B o iy easer publisned 23.uly 2025

I've checked down the back of the sofa, and I'm not sure | can cover it.

NVIDIA Project DIGITS With New GB10 Superchip Debuts as World's Smallest Al
_ o @ @ O @ ﬂ Comments (2)
Supercomputer Capable of Running 200B-Parameter Models



Computing Hardware is No Longer For Everybody

ANTHROP\C Claude ~ APl v Solutions v Research v Commitments v Learn v News TryCIaude
Exclusive: Meta begins testing its first in-
house Al training chip OpenAl's Sam Altman is dreaming of
e 0 (aa(< Claude 3.5 Haiku on AWS Trrunning 100 million GPUs in the future -

March 11, 2025 2:37 PM GMT+1 - Updated March 11, 2025

model distillation in Amaz«100x more than it plans to run by December
Dec 3,2024 + 3 minread 2025

m By Efosa Udinmwen published July 26, 2025

OpenAl scale-up will give its investors something to think about

etc 00O 0O GO P om0

A
"4

Elon Musk's xAl is reportedly trying
to borrow $12,000,000,000 for even

/ >
more Nvidia GPUs, an impulse all
NVIDIA Puts Grace Blackwell on Every Desk and at PC gamers can truly understand
Every Al Developer’s Fingertips B & Ay Eoser publshed 23 iy 2025
I've checked down the back of the sofa, and I'm not sure | can cover it.
NVIDIA Project DIGITS With New GB10 Superchip Debuts as World's Smallest Al 00 Q0O P commenso

Supercomputer Capable of Running 200B-Parameter Models



Computing Hardware is No Longer For Everybody

ANTHROP\C Claude ~ APl v  Solutions v  Researc h v~ Commitments v Learn v News TryCIaude
Exclusive: Meta begins testing its first in-
house Al training chip OpenAl's Sam Altman is dreaming of

By Katie Paul and Krystal Hu L ] ﬁ J ﬁ ] Y| ] o Y ~ B P AMALS T :llnnlnﬂ :I‘.“ mllhnn ‘;EI Is |n the futur'e -

March 11, 2025 2:37 PM GMT+1 - Updated March 11, 2025
run by December

lIronwood: The first Google TPU for the age of inference

e When scaled to 9,216 chips per pod for a total of 42.5 Exaflops, Ironwood supports more than 24x nething to think about
the compute power of the world'’s largest supercomputer — El Capitan — which offers just 1.7
Exaflops per pod. [ronwood delivers the massive parallel processing power necessary for the

L)

most demanding Al workloads, such as super large size dense LLM or MoE models with thinking

capabilities for training and inference. Each individual chip boasts peak compute of 4,614 TFLOPs.

B This represents a monumental leap in Al capability. Ironwood’s memory and network architecture
v | ensures that the right data is always available to support peak performance at this massive scale.
more Nvidia GPUS, an impuise all
NVIDIA Puts Grace Blackwell on Every Desk and at PC gamers can truly understand
Every Al Developer’s Fingertips B & Ancy Eoser publshed 23 iy 2025
I've checked down the back of the sofa, and I'm not sure | can cover it.
NVIDIA Project DIGITS With New GB10 Superchip Debuts as World's Smallest Al 00 Q0O P commenso

Supercomputer Capable of Running 200B-Parameter Models



Lingua Franca of Scientific Computing

- Scientists do not write TPU* code

__global__
void AddNodeForcesFromElems_kernel( Index_t numNode,

Index_

const
const
const
const
const
const

t padded_numNode,

Int_t* nodeElemCount,

Int_t* nodeElemStart,
Index_t* nodeElemCornerList,
Real_t* fx_elem,

Real_tx fy_elem,

Real_t* fz_elem,

Real_t* fx_node,
Real_t* fy_node,
Real_t* fz_node,

const

Int_t num_threads)

int tid=blockDim.x*blockIdx.x+threadIdx.x;
if (tid < num_threads)

{

Index_t g_1i = tid;

Int_t count=nodeElemCount[g_i];
Int_t start=nodeElemStart[g_i];
Real_t fx,fy,fz;
fx=fy=fz=Real_t(0.0);

for (int j=0;j<count;j++)

Index_t pos=nodeElemCornerList[start+j]; // Uncoalesced access here

{
fx += fx_elem[pos];
fy += fy_elem[pos];
fz += fz_elem[pos];
3

fx_node[g_1i]=fx;
fy_node[g_i]=fy;
fz_node[g_i]=fz;




Lingua Franca of Scientific Computing

- Scientists do not write TPU* code

void AddNodeForcesFromElems_kernel( Index_t numNode,
Index_t padded_numNode,
const Int_t* nodeElemCount,
const Int_t* nodeElemStart,

- BIG (MFEM library alone is 737K LOC)

const Real_tx fz_elem,
Real_t* fx_node,

Real_t* fy_node,

Real_t* fz_node,

const Int_t num_threads)

int tid=blockDim.x*xblockIdx.x+threadIdx.x;
if (tid < num_threads)
{

Index_t g_1i = tid;

Int_t count=nodeElemCount[g_i];

Int_t start=nodeElemStart[g_i];

Real_t fx,fy,fz;

fx=fy=fz=Real_t(0.0);

for (int j=0; j<count;j++)
{
Index_t pos=nodeElemCornerlList[start+j]; // Uncoalesced access here
fx += fx_elem[pos];
fy += fy_elem[pos];
fz += fz_elem[pos];

fx_node[g_1i]=fx;
fy_node[g_i]=fy;
fz_node[g_i]=fz;




Lingua Franca of Scientific Computing

- Scientists do not write TPU* code

void AddNodeForcesFromElems_kernel( Index_t numNode,
Index_t padded_numNode,
const Int_t* nodeElemCount,
const Int_t* nodeElemStart,
" " const Index_t* nodeElemCornerList,
-+ BIG (MFEM library alone is 737K LOC)
const Real_tx fy_elem,
const Real_tx fz_elem,
Real_t* fx_node,
Real_t* fy_node,
Real_t* fz_node,
const Int_t num_threads)
- Templated :
int tid=blockDim.x*xblockIdx.x+threadIdx.x;
if (tid < num_threads)
{
Index_t g_1i = tid;
Int_t count=nodeElemCount[g_i];
Int_t start=nodeElemStart[g_i];
Real_t fx,fy,fz;
fx=fy=fz=Real_t(0.0);

for (int j=0;j<count;j++)

{
Index_t pos=nodeElemCornerlList[start+j]; // Uncoalesced access here
fx += fx_elem[pos];
fy += fy_elem[pos];
fz += fz_elem[pos];
3

fx_node[g_1i]=fx;
fy_node[g_i]=fy;
fz_node[g_i]=fz;




Lingua Franca of Scientific Computing

- Scientists do not write TPU* code

void AddNodeForcesFromElems_kernel( Index_t numNode,
Index_t padded_numNode,
const Int_t* nodeElemCount,
const Int_t* nodeElemStart,

- BIG (MFEM library alone is 737K LOC)

const Real_tx fz_elem,
Real_t* fx_node,
Real_t* fy_node,
Real_t* fz_node,
const Int_t num_threads
- Templated : |
int tid=blockDim.x*blockIdx.x+threadIdx.x;
if (tid < num_threads)
{
Index_t g_1i = tid;
Int_t count=nodeElemCount[g_i];

° N Ot I n Py‘t h O n I:Iag’gits]’gia(I:]’E):lr,m]cc>gc;eE1emStar’cI:g_i] ;

fx=fy=fz=Real_t(0.0);

for (int j=0;j<count;j++)

{
Index_t pos=nodeElemCornerlList[start+j]; // Uncoalesced access here
fx += fx_elem[pos];
fy += fy_elem[pos];
fz += fz_elem[pos];
3

fx_node[g_1i]=fx;
fy_node[g_i]=fy;
fz_node[g_i]=fz;




Lingua Franca of Scientific Computing

- Scientists do not write TPU* code

void AddNodeForcesFromElems_kernel( Index_t numNode,
Index_t padded_numNode,
const Int_t* nodeElemCount,
const Int_t* nodeElemStart,
" " const Index_t* nodeElemCornerList,
- BIG (MFEM library alone is 737K LOC)
const Real_tx fy_elem,
const Real_tx fz_elem,
Real_t* fx_node,
Real_t* fy_node,
Real_t* fz_node,
const Int_t num_threads)
- Templated :
int tid=blockDim.x*blockIdx.x+threadIdx.x;
if (tid < num_threads)
{
Index_t g_1i = tid;
Int_t count=nodeElemCount[g_i];

° N Ot I n Py‘t h O n I:Iarel’zgits]’gia(I:]’E):lr,m]cc>gc;eE1emStar’cI:g_i] ;

fx=fy=fz=Real_t(0.0);

for (int j=0;j<count;j++)

{

" * " Index_t pos=nodeElemCornerList[start+j]; // Uncoalesced access here
- Sometimes™ in CUDA P o b erentpos;

fy += fy_elem[pos];
fz += fz_elem[pos];

}
template <>
struct RajaCuWrap<3> ] ole i1t
{ X_nodel[g_1 f X;
template <const int BLCK = MFEM_CUDA_BLOCKS, typename DBODY> Ey—nogeEg—%%:£YE
static void run(const int N, DBODY &&d_body, ) z_hodelLg_11=1Z;
const int X, const int Y, const int Z, const int G) )
{

RajaCuWrap3D(N, d_body, X, Y, Z, G);
3
¥




How do we write ML Accelerator code now?



How do we write ML Accelerator code now?

)

Transfarmers

Stable Diffusion

Stable Diffusion was made possible thanks to a collaboration with and builds
upon our previous work:




ow

Stable Diffusion

do we write ML Accelera

and builds

Stable Diffusion was made possible thanks to a collaboration with

upon our previous work:

euralGCM

e\
S

8 ///,“‘/r'// Il

GO

jaxspec

PYPI Vvo0.3.0

PYTHON  >=3.10,<3.13 DOCS - COVERAGE - ik SLACK
hanges, undocumentt

res and lack of

A is still in early re
jaxspec is an X-ray spectral fitting library built in pure Python. It can currently load an X-ray spectrum (in the
OGIP standard), define a spectral model from the implemented components, and calculate the best parameters
using state-of-the-art Bayesian approaches. It is built on top of JAX to provide just-in-time compilation and
automatic differentiation of the spectral models, enabling the use of sampling algorithm such as NUTS.

tor code now?

\ L'LM ML

LLaMae TG

JAX, M.D.

Accelerated, Differentiable, Molecular Dynamics

©) Build [P3SSIAG) DOI '10.5281/zen0do.14220247 pypi V018N license AP

Molecular dynamics is a workhorse of modern computational condensed matter physics. It is frequently used to
simulate materials to observe how small scale interactions can give rise to complex large-scale phenomenology.

e.d. HOOMD




How do we write ML Accelera

Stable Diffusion

and builds

Stable Diffusion was made possible thanks to a collaboration with

upon our previous work:

euralGCM

k&‘{\ — W “".’

M
: //r"'// 74

GO

jaxspec
DOCS COVERAGE - sk sLAck

aking API change

PYPI Vvo0.3.0 PYTHON >=3.10,<3.13

jaxspec is an X-ray spectral fitting library built in pure Python. It can currently load an X-ray spectrum (in the
OGIP standard), define a spectral model from the implemented components, and calculate the best parameters
using state-of-the-art Bayesian approaches. It is built on top of JAX to provide just-in-time compilation and
automatic differentiation of the spectral models, enabling the use of sampling algorithm such as NUTS.

tor code now?

vLLM
Laaz, Y TG 77 ML

Transfarmers

JAX, M.D.

Accelerated, Differentiable, Molecular Dynamics
| I I
©) Build [P3%5IRg] DOI 10.5281/zenodo.14220247 pypi VOGN license

Molecular dynamics is a workhorse of modern computational condensed matter physics. It is frequently used to

Rewrite it in JAX/PyTorch!



"
\ EXASCAHALE
) COMPUTING
\ PROJECT
e

The Exascale Computing Project (ECP)

The ECP ran from 2016-2024 and was the largest software research,
development, and deployment project managed to date by the US
Department of Energy (DOE). The $1.8 billion project was a joint effort by the
DOE Office of Science and the National Nuclear Security Administration that
funded nearly 2,800 multidisciplinary individuals over the lifetime of the project
to uplift the high-performance computing community toward capable
exascale platforms, software, and application codes. The outcome was the
delivery of an exascale computing ecosystem to provide breakthrough
solutions that address future challenges in energy assurance, economic
competitiveness, healthcare, and scientific discovery, as well as growing
security threats. The ECP exascale ecosystem includes DOE mission-critical
application codes, the underlying supporting software technologies, and
mechanisms for their deployment and integration.

ECP was a grand convergence of advances in modeling and simulation,
software tools and libraries, data analytics, machine learning, and artificial
intelligence in support of delivering the world'’s first capable exascale
ecosystem.

The payoff is here: exascale computing is revolutionizing nearly every domain
of science.

Home About v Research v News v Training v  Library

ECP by the Numbers

Created to develop the nation’s first capable exascale computing ecosystem,
this unprecedented DOE research, development, and deployment project has
already made a huge impact on computational science:

®
o o

va

|

.1 '_’

Y
£l

2,800 collaborators funded to develop exascale applications,
software, and hardware.

Game-changing results in a broad spectrum of science and
engineering application areas.

2 different GPU architectures now proven to work with
exascale environments.

First and only open-source scientific software stack developed
for scalability and available across all HPC platforms, including
cloud computing.



EXASCAHALE
COMPUTING
PROJECT

ECP

The Exascale Computing Project (ECP)

The ECP ran from 2016-2024 gnd was the largest software research,
development, and deployment project managed to date by the US
Department of Energy (DOE). The $1.8 billion |project was a joint effort by the
DOE Office of Science and the National Nuclear Security Administration that
funded nearly 2,800 multidisciplinary individuals over the lifetime of the project
to uplift the high-performance computing community toward capable
exascale platforms, software, and application codes. The outcome was the
delivery of an exascale computing ecosystem to provide breakthrough
solutions that address future challenges in energy assurance, economic
competitiveness, healthcare, and scientific discovery, as well as growing
security threats. The ECP exascale ecosystem includes DOE mission-critical
application codes, the underlying supporting software technologies, and
mechanisms for their deployment and integration.

ECP was a grand convergence of advances in modeling and simulation,
software tools and libraries, data analytics, machine learning, and artificial
intelligence in support of delivering the world'’s first capable exascale
ecosystem.

The payoff is here: exascale computing is revolutionizing nearly every domain
of science.

Home About v Research v News v

Training v Library

ECP by the Numbers

Created to develop the nation’s first capable exascale computing ecosystem,
this unprecedented DOE research, development, and deployment project has
already made a huge impact on computational science:

®
o

v

2,800 collaborators funded to develop exascale applications,
software, and hardware.

Game-changing results in a broad spectrum of science and
engineering application areas.

2 different GPU architectures now proven to work with
exascale environments.

First and only open-source scientific software stack developed
for scalability and available across all HPC platforms, including
cloud computing.

{

.-‘ '_’

s S
Flbe




Looking More Deeply at Scientific Code

function stencil_kernel(y, x)
= threadIdx().x + (blockIdx().x - 1) * blockDim().Xx Oceananigans
i -F < - ]. e n g t h ( ) - 2 & Fast and friendly ocean-flavored Julia software for simulating incompressible fluid dynamics in Cartesian

and spherical shell domains on CPUs and GPUs. https://clima.github.io/OceananigansDocumentation/stable

[1] = x[1] - 2 *» x[1 + 1] + x[1 + 2]
end
end

Oceananigans is a fast, friendly, flexible software package for finite volume simulations of the nonhydrostatic and
hydrostat ic Boussinesq equations on CPUs and GPUs. It runs on GPUs (wow, fast!), though we believe
Oceananigans makes the biggest waves with its ultra-flexible user interface that makes simple simulations easy,

.F U N C -t i O n m O d e 1 ( o ) and complex, creative simulations possible.
@cuda threads=... blocks=... stencil_kernel(y, x)
@cuda threads=... blocks=... stencil_kernel(x, y)

end

> 277 such kernels



Looking More Deeply at Scientific Code

function stencil_kernel(y, x)
= threadldx().x + (blockIdx().x - 1) * blockDim().x

1f 1 <= length(x) - 2
[1] = x[1] - 2 * x[1 + 1] + x[1 + 2]
end
end

function model(...)

@cuda threads=... blocks=... stencil_kernel(y, x)
@cuda threads=... blocks=... stencil_kernel(x, y)
end

> 277 such kernels

e

™N L —




function stencil_kernel(y, x)
1 = threadIdx().x + (blockIdx().x - 1) * blockDim().x
if 1 <= length(x) - 2
y[i] = x[i] - 2 * x[i+1] + x[i+2]

end

CUDA to Accelerator IR (StableHLO)

function model(...)
@cuda threads=... blocks=... stencil_kernel(y, x)
@cuda threads=... blocks=... stencil_kernel(x, y)
end

- New framework for raising and optimizing the
structure within existing kernels to stablehlio!

Compilation

define void @julia_difference_kernel_890({}* %y, {}* %x) {
top:
%3 = call 132 @llvm.nvvm.read.ptx.sreg.tid.x()

-+ 1) Compile Kernels to LLVM

br i1 %.not, label %common.ret, label %L31
3

2) Raise the underlying structure in MLIR Raising

func.func @kernel(%y : memref<100xf64>, %x : memref<100xf64>) {
affine.parallel %argl = @ to 100 {

3) Multi-dimensionalize it into tensor operators i1 = affine. load tx[xarg

%x2 = affine.load %x[%argl + 1]
affine.store %sum, %yl[%argl]

3
}

- 4) Optimize
Multi-Dimensionalization
Compiled single-node CUDA version of code to 71 = o )

%mul = stablehlo.multiply %x2, tensor<2.0>

execute on thousands of distributed TPUs and tadd = stablehlo.add %1,
GPUs

Optimization

res = stablehlo.convolve %x, tensor<[1.0, -4.0, 6.0, -4.0, 1.0]>




GPU Programming via LLVM if (tid < n)

out[tid] =
}

__global  void normalize(int *out, int* in, int n) {
int tid = blockIdx.x;

in[tid] / sum(in, n);

e Mainstream compilers do not have a void launch(int *out, int* in, int n) {

high-level representation of parallelism, |,

normalize<<<n>>>(d _out, d _in, n);

making optimization difficult or

impossible Host Code

e This is accentuated for GPU o e e
p rOg ra m S Wh e re t h e ke rn e | iS define void @ _Z6launchPiS_i(i32* %out,

i32* %in,
i32 %n) {

ke pt in a Se pa rate mOdU|e & call ::L32 @pushCallConfigur‘?tion(...)
. . . ] call i32 @cudaLaunch(@ device_stub, ..)
synchronization is a barrier to |,

Device Code

ret void
optimization.

24

target triple = ”nvptx”

define void @_Z9normalize(i32* %out,
i32* %in, i32 %n) {
%4 = call i32 @llvm.tid.x()
%5 = icmp slt i32 %4, %n
br i1 %5, label %6, label %13

%8 = getelementptr i32, i32* %in, 132 %4
%9 = load 132, i32* %8, align 4

%10 = call i32 @ _Z3sumPii(i32* %in, i32 %n)
%11 = sdiv i32 %9, %10

%12 = getelementptr i32, 132* %out, 132 %4
store i32 %11, i32* %12, align 4

br label %13

13:
ret void
}




GPU Programming via MLIR

*Preserve Host & Device code through frontend

(Clang Plugin for C++, JIT Package for Julia, etc)

*Enables optimization between caller and kernel

*Enable parallelism-specific optimization

__global  void normalize(int *out, int *in, int n) {
int tid = blockIdx.x;
if (tid < n)
out[tid] = in[tid] / sum(in, n);
}

void launch(int *out, int* in, int n) {
normalize<<<n>>>(d out, d _in, n);
}

[1] High-Performance GPU-to-CPU Transpilation and Optimization via High-Level Parallel Constructs, PPoPP’23

func @ _Z6launch(%out: memref<?xi32>,

}

%in: memref<?xi32>, %n: i32) {
%cl = constant 1 : index
%CcO = constant 9 : index

parallel (%tid) = (%c@) to (%n) step (%cl) {
%2 = load %in[%tid]
%sum = call @ Z3sumPii(%in, %n)
%4 = divsi %2, %sum : 132
store %4, %out[%tid]
yield
}

return




GPU Programming via MLIR

*Preserve Host & Device code through frontend
(Clang Plugin for C++, JIT Package for Julia, etc)

*Enables optimization between caller and kernel

*Enable parallelism-specific optimization

__global  void normalize(int *out, int *in, int n) {
int tid = blockIdx.x;
if (tid < n)
out[tid] = in[tid] / sum(in, n);
}

void launch(int *out, int* in, int n) {
normalize<<<n>>>(d out, d _in, n);
}

[1] High-Performance GPU-to-CPU Transpilation and Optimization via High-Level Parallel Constructs, PPoPP’23

func @ _Z6launch(%out: memref<?xi32>,
%in: memref<?xi32>, %n: i32) {
%cl = constant 1 : index
%CcO = constant O : index

%sum = call @ Z3sumPii(%in, %n)
parallel (%tid) = (%c@) to (%n) step (%cl) {
%2 = load %in[%tid]

%4 = divsi %2, %sum : 132
store %4, %out[%tid]
yield

}

return




GPU Programming via MLIR

func @launch(%h_out : memref<?xf32>, %h_in : memref<?xf32>, %n : i64) {
parallel.for (%gx, %gy, %gz) = (6, 0, 0) to (grid.x, grid.y, grid.z) {

memref.alloca : memref<f32>

%shared_val
parallel.for (%tx, %ty, %tz) = (0, 6, 0) to (blk.x, blk.y, blk.z) {

if %tx == 0 {
store .., %shared val[] : memref<f32>

}

polygeist.barrier(%tx, %ty, %tz)

[1] High-Performance GPU-to-CPU Transpilation and Optimization via High-Level Parallel Constructs, PPoPP’23



Synchronization via Memory

e Synchronization (sync threads) ensures all threads

within a block finish executing codeA before
executing codeB

e The desired synchronization behavior can be

reproduced by defining sync threads to have the

union of the memory semantics of the code before
and after the sync.

e This prevents code motion of instructions which

require the synchronization for correctness, but
permits other code motion (e.g. index
computation).

codeA(fib(idx));
sync_threads;

codeB(fib(idx));

|

off = fib(idx);
codeA(off);

sync_threads;

codeB(off);




Synchronization via Memory

. . . __global  void bpnn_layerforward(...) {
e High-level synchronization * hared  float node[HEIGHT];

representation enables new __shared _ float weights[HEIGHT][WIDTH];

optimizations, like sync elimination. if ((tx ==0)

node[ty] = input[index_in] ;

e A synchronize instruction is not // Unnecessary Barrier #1
. . // None of the read/writes below the sync
needed if the set of read/writes // (weights, hidden)
. // int t with th d/writ b th
before the sync don’t conflict 17 (node. dnput) o nrures SDOVE HE SYIC
__syncthreads();

with the read/writes after the sync.

// Unnecessary Store #1
weights[ty][tx] = hidden[index];

__syncthreads();

// Unnecessary Load #1
weights[ty][tx] = weights[ty][tx] * node[ty];




Synchronization via Memory

High-Performance GPU-to-CPU Transpilation and
Optimization via High-Level Parallel Constructs

William S. Moses

wmoses@mit.edu

Ivan R. Ivanov
ivanov@m.titech.ac.jp

Jens Domke
jens.domke@riken.jp

MIT CSAIL Tokyo Tech RIKEN
United States Japan Japan
Toshio Endo Johannes Doerfert Oleksandr Zinenko
endo@is.titech.ac.jp jdoerfert@linl.gov zinenko@google.com
Tokyo Tech LLNL Google
Japan United States France

Abstract

While parallelism remains the main source of performance,
architectural implementations and programming models
change with each new hardware generation, often leading
to costly application re-engineering. Most tools for perfor-
mance portability require manual and costly application port-
ing to yet another programming model.

We propose an alternative approach that automatically
translates programs written in one programming model
(CUDA), into another (CPU threads) based on Polygeist/MLIR.
Our approach includes a representation of parallel constructs
that allows conventional compiler transformations to ap-
ply transparently and without modification and enables
parallelism-specific optimizations. We evaluate our frame-
work by transpiling and optimizing the CUDA Rodinia bench-
mark suite for a multi-core CPU and achieve a 58% geomean
speedup over handwritten OpenMP code. Further, we show
how CUDA kernels from PyTorch can efficiently run and
scale on the CPU-only Supercomputer Fugaku without user
intervention. Our PyTorch compatibility layer making use of
transpiled CUDA PyTorch kernels outperforms the PyTorch
CPU native backend by 2.7x.

CCS Concepts: « Software and its engineering — Com-
pilers; - Theory of computation — Parallel computing
models.

Keywords: Polygeist, MLIR, CUDA, Barrier Synchronization

ACM Reference Format:
William S. Moses, Ivan R. Ivanov, Jens Domke, Toshio Endo, Jo-
hannes Doerfert, and Oleksandr Zinenko. 2023. High-Performance

This work is licensed under a Creative Commons Attribution International 4.0 License.

PPoPP °23, February 25-March 1, 2023, Montreal, QC, Canada
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0015-6/23/02.
https://doi.org/10.1145/3572848.3577475

GPU-to-CPU Transpilation and Optimization via High-Level Paral-
lel Constructs. In The 28th ACM SIGPLAN Annual Symposium on
Principles and Practice of Parallel Programming (PPoPP °23), February
25-March 1, 2023, Montreal, QC, Canada. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3572848.3577475

1 Introduction

Despite x86 CPUs and NVidia GPUs remaining primary plat-
forms for computation, customized and emerging architec-
tures play an important role in the computing landscape.
A custom version of an ARM CPU, A64FX, is even used
in one of the top supercomputers Fugaku [49] where its
high-bandwidth memory is expected to compete with that of
GPUs. However, these architectures are often overlooked by
efficiency-oriented frameworks and libraries. For example,
PyTorch [44] targeting Intel’s oneDNN [28] backend expect-
edly underperforms on ARM due to architecture differences
and even Fujitsu’s customized oneDNN [20] does not yield
competitive performance on some kernels. Such situations
call for performance portability.

Many non-library approaches for performance portability
have been proposed and include language extensions (e.g.,
OpenCL [14], OpenACC [26]), parallel programming frame-
works (e.g., Kokkos [3]), domain-specific languages (e.g., Sp1-
RAL [17], Halide [47] or Tensor Comprehensions [64]). All of
these approaches still require legacy applications to ported,
and sometimes entirely rewritten, due to differences in the
language, or the underlying programming model.

We explore an alternative approach based on a fully auto-
mated compiler that takes code in one programming model
(CUDA) and produces a binary targeting another one (CPU
threads). While GPU-to-CPU translation has been explored
in the past [9, 23, 58], it was rarely able to produce effi-
cient code. In fact, optimizations for CPUs and even generic
compiler transforms, such as common sub-expression elimi-
nation or loop-invariant code motion, are hindered by the
lack of analyzable representations of parallel constructs in-
side the compiler [39]. As representations of parallelism
within a mainstream compiler have only recently begun to

atior
es Ne
nc el
tion
ead/

con
after

Retargeting and Respecializing GPU Workloads for
Performance Portability

Ivan R. Ivanov
Tokyo Institute of Technology

RIKEN R-CCS
Kobe, Japan
ivanov.i.aa@m.titech.ac.jp
Jens Domke Toshio Endo
RIKEN R-CCS Tokyo Institute of Technology
Kobe, Japan Tokyo, Japan
jens.domke @riken.jp endo@is.titech.ac.jp

Abstract—In order to come close to peak performance, accel-
erators like GPUs require significant architecture-specific tuning
that understand the availability of shared memory, parallelism,
tensor cores, etc. Unfortunately, the pursuit of higher perfor-
mance and lower costs have led to a significant diversification of
architecture designs, even from the same vendor. This creates
the need for performance portability across different GPUs,
especially important for programs in a particular programming
model with a certain architecture in mind. Even when the
program can be seamlessly executed on a different architecture,
it may suffer a performance penalty due to it not being sized
appropriately to the available hardware resources such as fast
memory and registers, let alone not using newer advanced
features of the architecture.

We propose a new approach to improving performance of
(legacy) CUDA programs for modern machines by automatically
adjusting the amount of work each parallel thread does, and
the t of y and reg resources it requires. By
operating within the MLIR compiler infrastructure, we are able
to also target AMD GPUs by performing automatic translation
from CUDA and simultaneously adjust the program granularity
to fit the size of target GPUs.

Combined with autotuning assisted by the platform-specific
compiler, our approach d rates 27% g peedup on
the Rodinia benchmark suite over baseline CUDA impl ta-
tion as well as performance parity between similar NVIDIA and
AMD GPUs executing the same CUDA program.

I. INTRODUCTION

Accelerators like GPUs remain the hardware target of choice
for performance-critical software. Achieving high performance
on these accelerators requires programmers to effectively
leverage a peculiar programming model, most often exposed as
C++ language extensions such as CUDA for NVIDIA GPUs
and ROCm for AMD. While the community has developed
alternative methods to portably program GPUs, including: a
high-level block programming model in Triton [1], automatic
mapping of C++ code onto GPUs [2], NumPy-style abstractions
with varying degree of automated scheduling in JAX [3], TC [4],
and TVM [5]; many of the performance-critical scientific

e 27% speedup on real code, 2.7x on

PyTorch cross compilation!

Oleksandr Zinenko
Google DeepMind
Paris, France
zinenko@google.com

William S. Moses
University of Illinois Urbana-Champaign
Google DeepMind
Illinois, United States
wsmoses @illinois.edu

programs, including these very portability frameworks, remain
written in CUDA.!

While the CUDA programming model and syntax have
remained relatively stable over time, the underlying GPU
hardware has evolved significantly, adding many new features
and instructions. For example, earlier versions of programmable
NVIDIA GPUs used “half warps” of 16 threads for scheduling
and had a limitation of 1024 threads running concurrently
on a hardware unit while modern GPUs use “full warps” of
32 and allow up to 2048 threads per hardware unit. Similar
changes can be observed in the amount of available low-latency
memory and registers. This trend is even more important when
considering GPUs of a different vendor, like AMD, which
operate in “wavefronts” of 64 threads and allow up to 4096
threads per hardware unit.

Even when GPU kemnels written in CUDA appear to run
on newer NVIDIA GPUs, they may often fail to reach similar
utilization as the kernels are incorrectly sized for the target
architecture. However, this may be avoided through skillful
use of the programming model by writing CUDA programs
that adapt to different numbers of concurrent threads. But even
programs with this flexibility do not permit control of the
amount of allocated “shared” memory between several threads
in a group or the amount of registers used (which is proportional
to the number of threads). Both of these characteristics have
a dramatic impact on the overall performance. These sizing
problems are often amplified when porting a program to a GPU
of a different vendor, let alone the often non-trivial engineering
effort of porting itself.

In this paper, we propose a compiler-based mechanism to
“resize” GPU programs to a particular architecture. Taking
existing CUDA code, our compiler can control the granularity
of the program including the amount of work performed by

'In spite of various alternatives, like ROCm and SYCL [6], the CUDA
framework, a pioneer of the GPU programming model, is used in significantly
more applications due to legacy, maintenance, and network effects.

_ void bpnn_layerforward(...) {
d float node[HEIGHT];
d  float weights[HEIGHT][WIDTH];

0 )
input[index_in] ;

T
<
e

1|

cessary Barrier #1

of the read/writes below the sync

ights, hidden)

rsect with the read/writes above the sync
de, input)

hreads();

cessary Store #1
[ty][tx] = hidden[index];

__syncthreads();

// Unnecessary Load #1
weights[ty][tx] =

weights[ty][tx] * node[ty];




Synchronization via Memory

e A unified representation of parallelism enables
programs in one parallel architecture (e.g. CUDA)
to be compiled to another (e.g. historically
OpenMP, now TPUs)

« Some backends do not have block synchronization

e Lower a top-level synchronization by distributing
the parallel for loop around the sync, and
interchanging control flow

parallel for %i = @ to N {
codeA(%1i);
sync_threads;
codeB(%1i);

}

|

parallel for %i = @ to N {
codeA(%1i);

}

parallel for %1 = 0 to N {
codeB(%1i);

}




Synchronization via Memory

e A unified representation of parallelism enables
programs in one parallel architecture (e.g. CUDA)
to be compiled to another (e.g. historically
OpenMP, now TPUs)

« Some backends do not have block synchronization

e Lower a top-level synchronization by distributing
the parallel for loop around the sync, and
interchanging control flow

parallel for %1 = 0 to N {
for %3 = .. {
codeB1(%i, %j);
sync_threads;

codeB2(%1i, %j);

}

o

for %j = .. {
parallel_for %i = @ to N {
codeB1(%i, %3j);
sync_threads;
codeB2(%i, %j);
}
}




LLVM to StableHLO

LLVM/NVVM Dialect

llvm.call @ nv_fabsf(%argo)
llvm.br

Affine <

affine.for %i = 0 to 10 {

affine.store out[%i] = ..

}

IIIIIII#I'>>

%0 = math.abs %argo
cf.br

Arith + Control Flow

SCF (While)

scf.while %arg = %cO {

SCF (For)

%arg < %cle scf.for %arg = %c0 .. %cl0O {
| I
I _
-} }
%x = stablehlo.slice ..
%y = stablehlo.abs %x
%z = stablehlo.dynamic_update_slice %z0[...] = %y



http://cf.br

LLVM to StableHLO

LLVM/NVVM Dialect

llvm.call @ nv_fabsf(%argo)
llvm.br

Affine <

affine.for %i = 0 to 10 {

affine.store out[%i] = ..

}

IIIIIIIII'>>

%0 = math.abs %argo
cf.br

Arith + Control Flow

IIIIIIIIIIII.'P>

SCF (While)

scf.while %arg = %cO {
%arg < %cle

} do {

-}

StableHLO

SCF (For)

scf.for %arg = %cO .. %clO {

}

%x = stablehlo.slice ..
%y = stablehlo.abs %x

%z = stablehlo.dynamic_update_slice %z0[...] = %y



http://cf.br

Affine to StableHLO

e Represent permissive, device-
agnostic parallelism

e Legal to re-order and interchange
Instructions

e One execution (lock-step), runs all
of Al, then all of A2, etc

e Lets us form efficient tensor
(stablehlo) versions of kernels

parallel.for (%tx, %ty, %»tz) = (0,0,0) to (5,7,9){
%A1l = load x[%tx, »ty, %tz]
%A2 = sin(%Al)

store y[%tx, »ty, %tz] = 7%A2




Affine to StableHLO

e Represent permissive, device-
agnostic parallelism

e Legal to re-order and interchange
Instructions

e One execution (lock-step), runs all
of Al, then all of A2, etc

e Lets us form efficient tensor
(stablehlo) versions of kernels

%Al = stablehlo.slice %x[©:5, ©0:7, 0:9]
parallel.for (%tx, %ty, %tz) = (0,0,0) to (5,7,9){
%A2 = sin(%Al)

store y[%tx, »ty, %tz] = 7%A2




Affine to StableHLO

e Represent permissive, device-
agnostic parallelism

e Legal to re-order and interchange
Instructions

e One execution (lock-step), runs all
of Al, then all of A2, etc

e Lets us form efficient tensor
(stablehlo) versions of kernels

76A1

stablehlo.slice %x[©0:5, ©0:7, 0:9]
%A2 = stablehlo.sine %Al
parallel.for (%tx, %ty, %tz) = (0,0,0) to (5,7,9){

store y[%tx, %ty, %tz] = %A2




Affine to StableHLO

e Represent permissive, device-

agnostic parallelism

%Al = stablehlo.slice %x[©:5, ©0:7, 0:9]

e Legal to re-order and interchange

instructions #A2

stablehlo.sine %Al

. %Y2 = stablehlo.dynamic update slice
« One execution (lock-step), runs all S ¥To'5. 017, 0:9], %A2

of Al, then all of A2, etc parallel.for (%tx, %ty, %tz) = (0,0,0) to (5,7,9){

o Lets us form efficient tensor )
(stablehlo) versions of kernels




StableHLO ... to better StableHLO

e The direct vectorization of the code % = stablehlo.slice %x[1:98]

%x2 = stablehlo.slice %x[2:99]

works, but may not be efficient. odd = stablehlo.odd Kt tmo o
« We will lost the convolution! |
v
® Perform tensor_IeVE| OptlmlzathnS %y = stablehlo.convolve %x, tensor<[1.0, -2.0, 1.0]>
on StablehIO to recover and %z = stablehlo.convolve %y, tensor<[1.0, -2.0, 1.0]>
optimize higher-level structures ]

\4

%z = stablehlo.convolve %x, tensor<[1.0, -4.0, 6.0, -4.0, 1.0]>




StableHLO ... to better StableHLO

e The direct vectorization of the code
works, but may not be efficient.

o \We wiill Inct the ranypo|ytion!

o |

Mind the Abstraction Gap: Bringing Equality Saturation to
Real-World ML Compilers

ARYA VOHRA", University of Chicago, USA

LEO SEOJUN LEE", University of Oxford, UK

JAKUB BACHURSKI, University of Cambridge, UK
OLEKSANDR ZINENKO, Brium, France

PHITCHAYA MANGPO PHOTHILIMTHANA, OpenAlL USA
ALBERT COHEN, Google, France

WILLIAM S. MOSES, uluc, UsA

Machine learning (ML) compilers rely on graph-level transformations to enhance the runtime performance of
ML models. However, performing local transformations on individual operations can create effects far beyond
the location of the rewrite. In particular, a local rewrite can change the profitability or legality of hard-to-predict
downstream transformations, particularly regarding data layout, parallelization, fine-grained scheduling, and
memory management. As a result, program transformations are often driven by manually-tuned compiler
heuristics, which are quickly rendered obsolete by new hardware and model architectures.

Instead of hand-written local heuristics, we propose the use of equality saturation. We replace such heuristics
with a more robust global performance model, which accounts for downstream transformations. Equality
saturation addresses the challenge of local optimizations inadvertently constraining or negating the benefits
of subsequent transformations, thereby providing a solution that is inherently adaptable to newer workloads.
While this approach still requires a global performance model to evaluate the profitability of transformations,
it holds significant promise for increased automation and adaptability.

This paper addresses challenges in applying equality saturation on real-world ML compute graphs and state-
of-the-art hardware. By doing so, we present an improved method for discovering effective compositions of
graph optimizations. We study different cost modeling approaches to deal with fusion and layout optimization,
and tackle scalability issues that arise from considering a very wide range of algebraic optimizations. We design
an equality saturation pass for the XLA compiler, with an implementation in C++ and Rust. We demonstrate
an average speedup of 3.45% over XLA's optimization flow across our benchmark suite on various CPU and
GPU platforms, with a maximum speedup of 56.26% for NasRNN on CPU.

ACM Reference Format:

Arya Vohra, Leo Seojun Lee, Jakub Bachurski, Oleksandr Zinenko, Phitchaya Mangpo Phothilimthana, Albert
Cohen, and William S. Moses. 2025. Mind the Abstraction Gap: Bringing Equality Saturation to Real-World
ML Compilers. 1, 1 (August 2025), 28 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

"These authors contributed equally.

Authors’ addresses: Arya Vohra, aryavohra@uchicago.edu, University of Chicago, USA; Leo Seojun Lee, seojun.lee@oriel.ox.
ac.uk, University of Oxford, UK; Jakub Bachurski, kbachurski@gmail.com, University of Cambridge, UK; Oleksandr Zinenko,
alex@brium.ai, Brium, France; Phitchaya Mangpo Phothilimthana, , OpenAl, USA; Albert Cohen, albertcohen@google.com,
Google, France; William S. Moses, wsmoses@illinois.edu, UIUC, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Association for Computing Machinery.

XXXX-XXXX/2025/8-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

| optimizations
wver and
s| structures

6% speedup on
JaX ML workloads

%x1
%Xx2

stablehlo.slice %x[1:98]
stablehlo.slice %x[2:99]

%smul = stablehlo.multiply %x2, tensor<2.0>
%add = stablehlo.add 7%x1, 7%mu

%y = stablehlo.convolve %x, tensor<[1.0, -2.0, 1.0]>
%z = stablehlo.convolve %y, tensor<[1.0, -2.0, 1.0]>
%z = stablehlo.convolve %x, tensor<[1.0, -4.0, 6.0, -4.0, 1.0]>




function stencil_kernel(y, x)
1 = threadIdx().x + (blockIdx().x - 1) * blockDim().x
if 1 <= length(x) - 2
y[i] = x[i] - 2 * x[i+1] + x[i+2]

end

CUDA to Accelerator IR (StableHLO)

function model(...)
@cuda threads=... blocks=... stencil_kernel(y, x)
@cuda threads=... blocks=... stencil_kernel(x, y)
end

Compilation

165.0 days

define void @Qjulia_difference_kernel_890({}* %y, {}* %x) {
top:

%3 = call 132 @llvm.nvvm.read.ptx.sreg.tid.x()

%4 = add nuw nsw 132 %3, 1

br i1 %.not, label %common.ret, label %L31
3

Raising

func.func @kernel(%y : memref<100xf64>, %x : memref<100xf64>) {
affine.parallel %argl = 0 to 100 {

%x1 = affine.load %x[%argl]

%x2 = affine.load %x[%argl + 1]

affine.store %sum, %yl[%argl]
}
}

Multi-Dimensionalization

Surface speed (m s™) relative vorticity (10=> s~7) surface temperature (°C) stablehlo.slice %x[1:98]
0 1 2 3 4 5 6 -3 -2 -1 0 1 2 3 0 10 20 30 stablehlo.slice %x[2:99]

R | R ] stablehlo.multiply %x2, tensor<2.0>

stablehlo.add %x1, %mu

Optimization

res = stablehlo.convolve %x, tensor<[1.0, -4.0, 6.0, -4.0, 1.0]>




Performance Results

» Successfully ran single-node Oceanangians.jl on R S .
thousands of distributed accelerators g o [ BT
o Perlmutter (1536 nodes x 4 NVIDIA A100 GPUs) £ |, . .
e 1,679 Google TPUs v6e (918 TFLOPS each) : | T
« Communication optimizations were key T T N
10° 10°
e Good Single-Node Perf (CPU) umber of GPUS
e Vanilla Model: 272.0seconds operaton T S
. educe-Window 01%
e Tensor Optims: 11.5seconds Loop-Fusion 1 19717
Data Formatting 2.89%
Slice .59%
X64Combine (I)Z:;
Collective-Permute 0.48%

Table 1: Breakdown of TPU execution time by operation type,
on a single node 4-TPU machine.



Conclusions

« Computing hardware is increasingly moving to domain-specific accelerators,
leaving existing scientific workloads in the dust

e New tool to extract the existing accelerator-friendly tensor operators written
in existing parallel code and run them on distributed accelerators

e Opens the door for moving workloads to where you want to run them,
without needing to re-engineer them

« Works generically on LLVM code, with explicit frontends for C++ (github.com/
EnzymeAD/Reactant) and Julia (github.com/EnzymeAD/Reactant.jl)

eeeeeeeeeeeeeeeeeeeee

11111111111111111



