
Transparent Checkpointing for Automatic
Differentiation of Program Loops Through

Expression Transformations

Michel Schanen1,4 , Sri Hari Krishna Narayanan1,4(B) ,
Sarah Williamson2,4 , Valentin Churavy3,4 , William S. Moses3,4 ,

and Ludger Paehler3,4

1 Argonne National Laboratory, Lemont, IL 60439, USA
{mschanen,snarayan}@anl.gov

2 Oden Institute for Computational Engineering and Sciences, University of Texas
at Austin, Austin, TX 78712, USA

swilliamson@utexas.edu
3 MIT CSAIL, Cambridge, MA 02139, USA

{vchuravy,wmoses}@mit.edu
4 Technical University of Munich, Munich 78712, Germany

ludger.paehler@tum.de

Abstract. Automatic differentiation (AutoDiff) in machine learning is
largely restricted to expressions used for neural networks (NN), with the
depth rarely exceeding a few tens of layers. Compared to NN, numeri-
cal simulations typically involve iterative algorithms like time steppers
that lead to millions of iterations. Even for modest-sized models, this may
yield infeasible memory requirements when applying the adjoint method,
also called backpropagation, to time-dependent problems. In this situa-
tion, checkpointing algorithms provide a trade-off between recomputation
and storage. This paper presents the package Checkpointing.jl that lever-
ages expression transformations in the programming language Julia and
the package ChainRules.jl to automatically and transparently transform
loop iterations into differentiated loops. The user may choose between var-
ious checkpointing algorithm schemes and storage devices. We describe the
unique design ofCheckpointing.jl and demonstrate its features on an auto-
matically differentiated MPI implementation of Burgers’ equation on the
Polaris cluster at the Argonne Leadership Computing Facility.

Keywords: Julia · Automatic differentiation · Checkpointing

1 Introduction

Automatic differentiation [8] (AutoDiff) is a technique for generating derivatives
of a given implemented function y = f(x) with input x ∈ R

n and output y ∈ R
m,

by differentiating the code at the statement level and applying the chain rule of
derivative calculus. The differentiated code is required in optimization, nonlinear
partial differential equations (PDE), sensitivity analysis, inverse problems, and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Mikyška et al. (Eds.): ICCS 2023, LNCS 14075, pp. 483–497, 2023.
https://doi.org/10.1007/978-3-031-36024-4_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-36024-4_37&domain=pdf
http://orcid.org/0000-0002-4164-027X
http://orcid.org/0000-0003-0388-5943
http://orcid.org/0000-0002-0583-1546
http://orcid.org/0000-0002-9033-165X
http://orcid.org/0000-0003-2627-0642
http://orcid.org/0000-0002-7200-7637
https://doi.org/10.1007/978-3-031-36024-4_37

484 M. Schanen et al.

machine learning. The associativity of the chain rule leads to two main modes
of code differentiation: the forward mode and the reverse mode. The forward
mode computes the Jacobian-vector product ẏ = ∇J(x) · ẋ with ˙ denoting the
tangents or directional derivatives. The reverse mode, also known as backprop-
agation in machine learning, computes the transposed Jacobian-vector product
x̄ = ȳ · ∇J(x), with ¯ denoting adjoints. Note that the adjoint of the input x̄ is
computed with respect to the adjoint of the output ȳ. This implies a data flow
reversal throughout the entire program. During the forward run y = f(x), all the
intermediate values of x at each statement need to be stored for the reverse run
x̄ = ȳ · ∇J(x). This comes at a high cost of memory, increasing its complexity
to at least the runtime complexity when assuming nonlinear functions f . The
upside of the reverse mode is that the gradient of a scalar function f with m = 1
can be computed at O (1)·cost(f) versus O (n)·cost(f) for the forward mode. As
a remedy, checkpointing in AutoDiff refers to a trade-off between recomputation
and the memory requirement for storing the intermediate values.

In this paper, we will focus on the common pattern of time-stepping loops or
iterative loops in general that appear in numerical simulations further explained
in Sect. 1.1 and apply it to the Burgers’ equation (see Fig. 1). For the first time,
through expression transformations and code reflection in Julia, we make check-
pointing for iterative loops in AutoDiff fully transparent to the user.

1.1 Adjoint Timestepping Checkpointing

Most numerical problems require the evaluation of nonlinear expressions, either
due to direct nonlinear function expressions (e.g., polynomials, trigonometric
functions, etc.) or due to the evaluation of conditional expressions (e.g., IF-
ELSE). Furthermore, these expressions are found in iterative sequences, either
as part of a time-stepping model or an iterative solver (or both). In reverse-mode
AutoDiff, these variables are required in reverse order compared to the execution
of the nonlinear primal model (see f and f̄ in Fig. 2). Two extreme approaches
exist to access these variables, either storing all (see Fig. 2) or recomputing all
that are necessary. For complex models, neither of these approaches is practical.
Checkpointing provides a computational solution that can help circumvent these
issues by reducing the amount of storage at the expense of increased run time.

One well-known use is the computation of the so-called adjoint (gradient) of
a model-data misfit (or cost) function, as is done in data assimilation based on
gradient-based, PDE-constrained optimization. For example, the gradient of a
cost function with respect to a very high-dimensional space of control variables
via minimization of a Lagrangian,

L = J −
tf∑

t=1

x̄t (xt − f(xt−1)) , (3)

where J is a previously defined cost function and, in general, requires knowledge
of all forward steps. In this notation, xt refers to the model state at time t, and
f is a nonlinear model that steps the state from time t − 1 to time t. In this

Transparent Checkpointing for Automatic Differentiation 485

Fig. 1. Adjoint solution to Burgers’ equation with dx = 3e−2, dy = 3e−2, dt = 3e−3,
and ν = 1e− 2 on a grid (Nx, Ny) = (1 000, 1 000) and 10 000 timesteps. This requires
around 10002×10 000×4 fields ×8B = 320GB of memory to store all the intermediate
timesteps for the adjoint computation. Our solution enables a user to transparently
trade this high memory footprint for a runtime overhead of around 10 − −12 while
reducing the footprint to 1.6GB

(and other examples), where the numerical state at each time step t may be of
the order 105 − −107, and with iteration (i.e., time-stepping) loops of the order
104 − −106 keeping the required state in memory is not feasible. The solution is
to use checkpointing. Instead of storing all system states during the forward pass,
“checkpoints” at specified intervals are stored on disk, which can subsequently
be restored to recompute future states.

Adjoint Method. The adjoint method aims to minimize the Lagrangian
described in (3) to compute the adjoint variables, x̄t. Say the cost function
is given by J(xtf), and we wish to know how J depends on the initial condition
x0. This sensitivity is captured in x̄0, the adjoint variable at the initial time.
Taking a derivative of (3) with respect to x̄t, one finds the first normal Eq. (1),

486 M. Schanen et al.

Fig. 2. Evaluation process of iteratively applying function f for t = 1 : 9 iterations, f
is called with state xt as the input and state xt+1 as the output. The adjoint function f̄
of f computes state x̄t with respect to state x̄t+1 and xt. The red down and up arrows
mark a stored and restored state, respectively.

the forward evolution. The second normal Eq. (2) is found via the derivative of
(3) with respect to xt, and gives a rule for stepping backward to compute the
adjoint variables. The initial value for the back-propagation described by (2) is
found as

x̄tf =
∂J

∂xtf

. (4)

Equation (2) shows why all states are necessary for computation of the adjoint
variables when ft is nonlinear (i.e. computation of ft(xt) will require knowledge
of prior states), and thus why checkpointing is an essential tool. A schematic of
computing the forward and backward problems is given in Fig. 2.

The adjoint method has many applications throughout geophysical sciences.
Most notable are data assimilation, in which the cost function is a data misfit,
and sensitivity analysis, where the cost function is a physical quantity of interest.
In this paper, we employ the adjoint method for sensitivity analysis of solutions
to the Burgers’ equation.

1.2 Contribution

Checkpointing capability has been implemented in source transformation
AutoDiff tools as well as popular differentiable programming frameworks for
machine learning. In this work, we show how languages that support code reflec-
tion or metaprogramming can be leveraged to make checkpointing for AutoDiff
of loops fully transparent to the user. While we use the programming language
Julia, the various constraints and generalizations laid out in the design section
Sect. 2 can be extrapolated to other programming languages. This significantly
improves the user experience for inexperienced AutoDiff users who run into
memory bottlenecks when differentiating their time-dependent numerical code.

We implemented our design in the software package Checkpointing.jl1. It
currently supports

1 https://github.com/Argonne-National-Laboratory/Checkpointing.jl.

https://github.com/Argonne-National-Laboratory/Checkpointing.jl

Transparent Checkpointing for Automatic Differentiation 487

– automated generation of the store and restore for the checkpointed object
type,

– modular support of three checkpointing schemes: periodic, binomial, and
online,

– and modular support of two storage devices Array and HDF5 files.

1.3 Use Case: Burgers’ Equation

Checkpointing will be applied to the two-dimensional Burgers’ equation2

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν∇2u (5)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= ν∇2v (6)

where u and v represent the x and y velocities of a fluid and ν is the viscosity
coefficient. The equation is solved on a square domain, (x, y) ∈ [−L,L]× [−L,L],
with the initial velocities

u(0, x, y) = exp
(−x2 − y2

)
, v(0, x, y) = exp

(−x2 − y2
)
,

and Dirichlet conditions on all four boundaries

u(t, x,−L) = u(t, x, L) = u(t,−L, y) = u(t, L, y) = 0.

An identical boundary condition is imposed on v.
To discretize the system, we use a centered finite difference scheme in space

and an explicit forward Euler scheme in time.

Adjoint Example. Let Nx, Ny be the total number of grid points in x and y,
respectively. Using the notation from Sect. 1.1 we define the cost function

J =
1

Nx · Ny

Nx∑

j=1

Ny∑

k=1

(
u(tf , xj , yk)2 + v(tf , xj , yk)2

)
, (7)

a measure of total kinetic energy in the system at the final time tf . The interest
then lies in computing

ū0 =
∂J

∂u(0, x, y)
, v̄0 =

∂J

∂v(0, x, y)
, (8)

the sensitivity of the final energy with respect to the initial velocities. A
schematic of computing the forward and backward problems is given in Fig. 2,
and Eqs. 1, 2 demonstrate why all states are necessary for computation of the
adjoint variables when ft is nonlinear (i.e. computation of ft(xt) will require
knowledge of prior states), and thus why checkpointing is an essential tool.
2 https://github.com/DJ4Earth/Burgers.jl.

https://github.com/DJ4Earth/Burgers.jl

488 M. Schanen et al.

2 Design of Checkpointing.jl

The goal of Checkpointing.jl is to implement a fully transparent and flexible
solution for adjoint checkpointing in timestepping loops. This includes (1) the
automated store and restore of the checkpointed variables, (2) support of multi-
ple checkpointing schemes, and (3) support for various types of storage devices.

Model Object. To achieve this goal, we define a standard structure in Julia of
such timestepped models. These codes use a context model object where the
state of the current model is stored. This style of writing code is very common
in Julia as it allows to dispatch methods on the object type using the language’s
multiple dispatch feature. In our case, the model type is Burgers as shown in
Listing 1.1.

Burgers struct

1 mutable struct Burgers
2 nextu::Matrix{Float64}
3 nextv::Matrix{Float64}
4 lastu::Matrix{Float64}
5 lastv::Matrix{Float64}
6 Nx::Int
7 Ny::Int

8 µ::Float64
9 dx::Float64

10 dy::Float64
11 dt::Float64
12 tsteps::Int
13 ...
14 end

Listing 1.1. Model datatype that the timestepping loop will be dispatched on.

The model includes a field of type Matrix for u and v and for each a next and
last storage place for the stencil where next is computed from last . In addition,
it includes all the model parameters ν, dt, dx, dy, and the grid size Nx and Ny.
Only the fields u and v need to be checkpointed. However, this requires the user
to manually specify all the variables that are required in the adjoint computation.
To alleviate this, we checkpoint the entire struct. This is an overestimation, but it
enables us to automate the adjoint checkpointing, rendering it fully transparent.
The assumption is that most of the memory required to store the struct is
associated with variables required in the adjoint computation.

To store the checkpoints Checkpointing.jl currently implements two storage
types. ArrayStorage <: AbstractStorage is used to store the checkpoints in
RAM whereas HDF5Storage <: AbstractStorage is used to store them in an
HDF5 file. For binary storage in a file we use Julia’s built-in Serialization
module to serialize the Burgers struct into disk-storable data. To extend Check-
pointing.jl with additional storage devices, one can easily add another storage
type derived from AbstractStorage and add an implementation of getindex
and setindex method for the storage device, which allows the [] operator to
be used for all stores and restores of a checkpoint with index i (see Listing 1.2).

Transparent Checkpointing for Automatic Differentiation 489

Loops. Relying on this abstraction, our timestepping loop is written as a for
loop over the number of timesteps with an advance function and a halo exchange
for the MPI implementation (see Listing 1.3). Note that the loop’s body can
be composed of any arbitrary code. In addition, Checkpointing.jl also supports
while loops. It is important that the loop iterator bounds for the for loop and
the variables in the evaluation of the while condition belong to the model object,
here burgers.tsteps .

Final energy with final_energy

1 function final_energy(
2 burgers::Burgers,
3 scheme::Scheme,
4)
5 @checkpoint_struct scheme burgers
6 for i in 1:burgers.tsteps
7 advance(burgers)

8 halo(burgers)
9 copyto!(burgers.lastu, burgers.nextu)

10 copyto!(burgers.lastv, burgers.nextv)
11 end
12 return energy(burgers)
13 end

Listing 1.3. Timestepping loop implementation with a single time step (advance),
halo exchange using MPI (halo), and field swaps with Julia’s copyto! function.

Differentiation of Loops via Expression Transformations. In Checkpointing.jl we
treat for and while loops as just another function that can be differentiated
with the additional benefit of applying a checkpointing scheme that drastically
reduces the memory footprint for storing the intermediate values. To achieve this
we create a marco @checkpoint_struct that transforms for loops into function
calls (see Listing 1.4). Using this macro as a decorator in Listing 1.3 allows the
user to mark a loop to be differentiated using Checkpointing.jl by transforming
it into a function call that is differentiated based on a rule defined in Sect. 2. In
addition to this transformation, we make a copy of the original model object and
create a shadow copy that is used to store the adjoints of the adjoint evaluation.

490 M. Schanen et al.

Now, we must make the AutoDiff tool aware of how to differentiate the
checkpoint_struct_for function call. Multiple efforts exist to standardize dif-
ferentiation rules. Most AutoDiff tools differentiate the language’s intrinsic opera-
tions like arithmetic operations (e.g., multiplication, addition) and certain special
functions (e.g., cosine, sine). However, higher-level functions (e.g., linear solvers)
or rarely used special functions like BesselK [1] are rarely supported out of the box
and have to be defined as external functions. In Julia, the popular package Chain-
Rules.jl [11] allows the specification of differentiation rules which AutoDiff tools
may then rely on to apply the chain rule. That way, the differentiation rules do not
have to be reimplemented for each AutoDiff tool. We refer the reader to the manual
of ChainRules.jl for the details on defining such differentiation rules. In summary,
it requires a user to define a rule for forward mode differentiation (frule) and a
reverse mode differentiation rule (rrule). By defining those two rules, any com-
bination of higher-order models using, for example, a forward over forward or for-
ward over reverse model, may be generated by an AutoDiff tool. Our reverse rule is
presented in Listing 1.5. ChainRules.jl implements joint reversal (Fig. 3) for exter-
nal functions (see [8] for more details). The outer loop AutoDiff tool will execute
the augmented forward run of the’Before" block (green) and store all intermediate
values. When this tool hits the checkpointed loop it will apply our rule. The rule
is composed of the forward run implementing the original function (orange). Then
it defines a callback or pullback function that the outer AutoDiff tool will execute
once it has executed the reverse run (blue) of the ’After’ block. This pullback will
set the adjoints of the time loop shadow model to zero and then copy the com-
puted adjoints of the ’After’ block into the starting adjoints or seeds of the time
loop. Now, the augmented forward run (green) of the time loop will be executed in
checkpoint_struct_for, followed by the reverse run (blue) based on the selected
checkpointing scheme. After the adjoints are computed, they are again copied back
into the respective seeds for the ’Before’ block using create_tangent . Note that
all other arguments of checkpoint_struct_for are passive and do not need to be
differentiated. This is marked by NoTangent() .

Transparent Checkpointing for Automatic Differentiation 491

ChainRules.jl implementation

1 function ChainRulesCore.rrule(::typeof(Checkpointing.checkpoint_struct_for),
2 body::Function, alg::Scheme, model::MT, shadowmodel::MT,
3 range::Function) where {MT}
4 model_input = deepcopy(model)
5 for i in 1:alg.steps
6 body(model)
7 end
8 function checkpoint_struct_pullback(dmodel)
9 set_zero!(shadowmodel)

10 copyto!(shadowmodel, dmodel)
11 model = checkpoint_struct_for(body, alg, model_input, shadowmodel, range)
12 dshadowmodel = create_tangent(shadowmodel)
13 return NoTangent(), NoTangent(), NoTangent(), dshadowmodel, NoTangent(),
14 NoTangent()
15 end
16 return model, checkpoint_struct_pullback
17 end

Listing 1.5. Reverse rule for time loop

Such a differentiation rule may be defined for other differentiation rule sys-
tems that may be general or AutoDiff tool specific. ChainRules.jl covers the most
general case, while other rule systems may include other attributes.

Fig. 3. Adjoining a time loop embedded into another code using ChainRules.jl. (green)
denotes an augmented forward run where all the intermediate variables are stored.
(blue) denotes a reverse run where the intermediate variables of the augmented forward
run are used for the evaluation of the adjoints. (orange) is the original undifferentiated
function evaluation.(Color figure online)

492 M. Schanen et al.

Modular Support of Schemes. The package currently provides three checkpoint-
ing schemes

– Periodic Checkpointing: For a computation consisting of l timesteps and c
available checkpoints, the periodic checkpointing scheme that stores the input
and the output of each � l

c� iterations and restores them for computing the
adjoint [3].

– Binomial Checkpointing: For a computation consisting of N time steps
with the availability of c checkpoints, binomial checkpointing [2] gives a for-
mulation for the minimal number of time steps t(l, c), evaluated during the
adjoint calculation with t(l, c) = rl − β(c + 1, r − 1) where β(c, r) =

(
c+r
c

)

and the repetition number r is the unique integer, such that β(c, r − 1) < l ≤
β(c, r). We have ported the software revolve for providing an implementation
of the binomial checkpointing algorithm.

– Online Checkpointing: In adaptive time-stepping procedures, the number
of time steps, l, is not known a priori. Periodic checkpointing and binomial
checkpointing are therefore not appropriate here. The online checkpointing
scheme determines during the first forward integration where a checkpoint
must be placed. Given the number of available checkpoints c, and the repeti-
tion number r, it is possible to determine the range of timesteps l for which
the online checkpointing scheme generates an optimal schedule [10]. We have
currently implemented the cases where r = 1 and r = 2.

Listing 1.6 gives an overview of the supported checkpointing schemes and storage
devices. The created scheme Scheme <: AbstractScheme has to be passed to
the macro @checkpoint_struct together with the checkpointed object.

Example code

1 checkpoints = 50
2 tsteps = 10000
3 # Storage in RAM
4 storage = ArrayStorage{Burgers}(checkpoints)
5 # Storage to disk with HDF5
6 rank = MPI.Comm_rank(MPI.COMM_WORLD)
7 storage=HDF5Storage{Burgers}(snaps, filename="$rank.chkp")
8 # Storage to on-node SSD with HDF5
9 storage=HDF5Storage{Burgers}(snaps, filename="/local/scratch/$rank.chkp")

10 # Our three currently supported checkpointing schemes
11 scheme = Revolve{Burgers}(tsteps, snaps, verbose=1, storage=storage)
12 scheme = Periodic{Burgers}(tsteps, snaps, verbose=1, storage=storage)
13 # No tsteps needed for Online scheme!
14 scheme = Online_r2{Burgers}(snaps, verbose=1, storage=storage)

Listing 1.6. Example of checkpointing schemes and storage object instantiations based
on the Burgers type

Transparent Checkpointing for Automatic Differentiation 493

3 Implementation

Our implementation is available at [9]. It currently supports three checkpoint-
ing schemes (Periodic, Revolve, and Online_R2). It distinguishes between an
outer AutoDiff tool for differentiating the code outside the loop and an inner
AutoDiff tool that is used to differentiate the actual loop body. Both tools
can be the same; however, the outer AutoDiff tool has to support differen-
tiation rules through ChainRules.jl. Consider the Burgers’ example, we apply
the @checkpoint_struct to the timestepping loop and the code computes the
energy with the energy function (Listing 1.3). The outside code uses the AutoD-
iff package Zygote.jl while the timestepping loop is differentiated with Enzyme.jl.
The loop body consists of an advance function implementing one forward time
step and halo implementing the halo exchange (see Sect. 3).

Enzyme [5–7] is an AutoDiff tool acting on the LLVM IR. It, therefore,
supports C++ and Julia alike, with the Julia package Enzyme.jl providing Julia-
specific support. The novel advantage of Enzyme is its optimization capabilities.
AutoDiff tools are usually not integrated directly into a compiler, but use either
language-inherent features like operator overloading or are implemented as a
separate parsing and generation process before the code is passed to the compiled
(source transformation). Enzyme, on the other hand, uses parts of the LLVM
optimization pipeline, then differentiates the code, and finally, this IR is again
optimized before the code is finally passed to the machine code generation. This
three-stage process adds unique performance capabilities to Enzyme that other
AutoDiff tools have trouble achieving.

In our example, we use Enzyme to differentiate the inner loop body. Any
AutoDiff tool can be used here if it implements Jacobian-transposed vector prod-
ucts, which is the basic operation in the reverse mode of AutoDiff. Although
Enzyme.jl does currently not support ChainRules.jl, it is not a requirement for
the inner AutoDiff tool in Checkpointing.jl, and we can use it in our test case. A
similar differentiation rule system is in development for Enzyme.

Zygote.jl [4] is an AutoDiff package originally designed for machine learning.
As such, it lacks the support of mutation. This implies that in-place manipula-
tion of array elements is impossible and requires a code to be written without
any mutation, which our code outside the loop adheres to. Zygote.jl treats the
underlying LLVM IR as static single assignment code and allows the compiler to
highly optimize the generated differentiated code. However, due to its limitation
to immutable code, it is not well suited for numerical simulations where in-place
manipulation of values is common.

MPI. The halo function uses MPI send and receives to do the nearest neighbor
halo exchange in all 4 directions of the 2D discretized Burgers’ equation. The
outside code uses MPI for the summation reduction of the local energy to the
global energy of the velocity fields u and v. Enzyme.jl has intrinsic support of
MPI, whereas Zygote is not aware of MPI. We added a ChainRules.jl rule for
the MPI reduction that allows Zygote to differentiate through this method for
the summation.

494 M. Schanen et al.

4 Results

Our experiments are conducted on an HPE Apollo 6500 Gen 10+ based system.
Each node has a single 2.8GHz AMD EPYC Milan 7543P 32-core CPU with
512GB of DDR4 RAM and four Nvidia A100 GPUs connected via NVLink,
a pair of local 1.6TB of SSDs in RAID0 as on-node scratch disks, and a pair
of slingshot network adapters. For the timings, we used the Julia 1.8 built-in
macro @time and the BenchmarkTools.jl provided @btime . To maximize the
throughput of our code and avoid any overhead, we optimized it gradually based
on PProf.jl results. An estimate of the total memory footprint was reported by
the maximum resident memory through /usr/bin/time.

For the large-scale runs, we increase the grid size to (Nx, Ny)
= (10 000, 10 000). To achieve the same final state as in Fig. 1 the number of
timesteps needs to be increased to 100 000. However, due to compute time limi-
tations, we reduce this to 10 000. This has no effect on the overall claims of this
paper. Other runtime parameters are dx = 0.01, dy = 0.01, dt = 0.001 with 100
ranks and a checkpoint size of 32MB.

The entire case of 10 000 × 10 000 grid points is partitioned among 100 MPI
ranks. The goal of the increased resolution is to reduce the numerical error
introduced by the sharp gradients at the shock boundary in Fig. 1. Each node has
32 cores, so we distribute the 100 MPI ranks over 4 nodes which in total have 2TB
of RAM. Each rank gets a partition of the 106 points, which amounts to roughly
8MB. Each Burgers object includes 4 of these fields: nextu , nextv , lastu ,
and lastv . This gives us a total checkpoint size of 32MB, which agrees with
our observed disk checkpoint file sizes. To store all 10 000 time steps, this would
amount to 320GB per process or 32 TB for all 100 processes. This implies that
we cannot run our case without checkpointing at all because we have only 2TB
of RAM available. In Figure 4a and Fig. 4b, we compare the relative runtime and
memory overhead of the adjoint computation compared to the primal evaluation
of the final energy. In addition, we use checkpointing to RAM, to disk, and to a
local on-node SSD drive.

The theoretical runtime is derived from the sum of additional forward steps
that binomial checkpointing requires and the joint adjoint reversal that is imple-
mented using ChainRules.jl (see Fig. 3). Joint reversal incurs a cost of at least
a factor of 3 in integrating the loop function into ChainRules.jl. In addition, we
add the forward steps necessary for binomial checkpointing. If the number of
checkpoints equals the number of time steps tsteps, binomial checkpointing still
executes tsteps forward steps. So in the most optimistic case, we end up with an
overhead factor of 4. With fewer checkpoints than time steps, we can compute
the required forward steps laid out in the binomial checkpointing analysis in [2].
The sum of all required steps gives us the theoretical overhead factor in Fig. 4a.

Each data point in the graph is computed from the average execution time
of 3 separate runs. We did not obtain results for the 250 checkpoints data
point of the “Node SSD” storage device due to instability with HDF5. In gen-
eral, we are impacted by noise in our test runs. Due to compute time limi-
tations, we are unable to provide a thorough statistical analysis of this noise.

Transparent Checkpointing for Automatic Differentiation 495

Fig. 4. Results of adjoint runtime overhead (a) and memory consumption (b)

However, we can extract some patterns based on the results. First, we observe
that RAM checkpointing yields the fastest results with an overhead of around
10–12 between 50 and 250 checkpoints. There is no substantial benefit to increas-
ing the number of checkpoints beyond 50. Second, we have a general pattern from
fast to slowest of RAM, on-node, and disk checkpointing, with disk checkpointing
being the slowest and the one most impacted by noise since it is most affected
by other jobs running on the system.

The memory reduction is the total number of time steps divided by the
number of checkpoints. We measured 32MB per checkpoint per process. So mul-
tiplying the number of checkpoints by 32MB and by 100 processes gives the
actual memory requirement ranging from 64GB for 20 checkpoints up to 0.8TB
for 250 checkpoints. Due to MPI parallelism, this memory requirement is divided
among 4 compute nodes. This is a dramatic reduction from the 32TB required
for storing all 10 000 time steps. Moreover, on-node SSD and disk checkpointing
have the additional benefit of reducing the RAM overhead to zero, providing
more RAM for the actual application. This allows for a decrease in the num-
ber of partitions and potentially reduces the required compute time spent on
the run despite exhibiting a higher wall clock time. On-node SSD checkpointing
provides an overhead of around 13 with more regular runtime results than disk
checkpointing. Thus, it may provide the right compromise for this application.

496 M. Schanen et al.

5 Conclusion

We have implemented an extendable and flexible time-loop checkpointing pack-
age in Julia that can be integrated into any code that supports AutoDiff based
on ChainRules.jl. According to their webpage, 6 AutoDiff tools currently sup-
port ChainRules.jl, with more in the works. Our macro-based solution is non-
invasive and only requires the user to create a checkpointing scheme object
with the desired parameters and decorate the checkpointed loop with our
@checkpoint_struct macro. It relies on a common abstraction found in numer-
ical simulations where models are encapsulated in a single context object based
on a model type. Our results show the flexibility and performance of Checkpoint-
ing.jl illustrated by a canonical nonlinear PDE implementation of the Burgers’
equation that runs on a state-of-the-art supercomputer with minimal develop-
ment effort and without introducing any domain-specific language. It allows for
fast testing of various checkpointing schemes and storage devices. The user may
implement their own scheme or storage devices with a few lines of code with-
out worrying about the technicalities of the underlying AutoDiff tool. In theory,
such a package may be implemented in any programming language. However, the
access to expression transformation in Julia reduces the complexity for both users
and developers significantly, increases the modularity of the code, and avoids
any restriction to a domain-specific language. All available storage options in
Checkpointing.jl are currently implemented using synchronous reads and writes.
Furthermore, although binomial checkpointing has a random access pattern, it
does access the memory locations deterministically according to the binomial
checkpointing algorithm. We will investigate the asynchronous prefetching of
the next checkpoint concurrently with the adjoint computation relative to the
last checkpoint.

Acknowledgements. We would like to thank Paul Hovland and Jan Hückelheim for
their valuable suggestions and discussions. This work was funded and/or supported by
NSF Cyberinfrastructure for Sustained Scientific Innovation (CSSI) award numbers:
2104068, 2103942, and 2103804, Argonne Leadership Computing Facility, which is a
U.S. Department of Energy (DOE) Office of Science User Facility supported under
Contract DE-AC02-06CH11357, DOE Computational Sciences Graduate Fellowship,
NSF (grants OAC-1835443, AGS-1835860, and AGS-1835881), DARPA under agree-
ment number HR0011-20-9-0016 (PaPPa), Schmidt Futures program, Paul G. Allen
Family Foundation, Charles Trimble, Audi Environmental Foundation, DOE, National
Nuclear Security Administration under Award Number DE-NA0003965, LANL grant
531711, and German Research Council (DFG) under grant agreement No. 326472365.
Research was sponsored in part by the US Air Force Research Laboratory and the
United States Air Force Artificial Intelligence Accelerator and was accomplished under
Cooperative Agreement Number FA8750-19-2-1000. The views and conclusions con-
tained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the United States Air

Transparent Checkpointing for Automatic Differentiation 497

Force or the U.S. Government. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright notation
herein. This material is based upon work supported by the DOE, Office of Science,
Office of Advanced Scientific Computing Research.

References

1. Geoga, C.J., Marin, O., Schanen, M., Stein, M.L.: Fitting matérn smoothness
parameters using automatic differentiation. Stat. Comput. 33(2), 48 (2023).
https://doi.org/10.1007/s11222-022-10127-w

2. Griewank, A., Walther, A.: Algorithm 799: revolve: an implementation of check-
pointing for the reverse or adjoint mode of computational differentiation. ACM
Trans. Math. Softw. 26(1), 19–45 (2000). https://doi.org/10.1145/347837.347846

3. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation. 2nd edn. No. 105 in Other Titles in Applied Mathe-
matics. SIAM, Philadelphia (2008). http://bookstore.siam.org/ot105/

4. Innes, M.: Don’t unroll adjoint: differentiating SSA-form programs (2018). https://
doi.org/10.48550/ARXIV.1810.07951

5. Moses, W.S., et al.: Scalable automatic differentiation of multiple parallel
paradigms through compiler augmentation. In: SC22: International Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 1–18. IEEE
Computer Society, Los Alamitos (2022). https://doi.org/10.1109/SC41404.2022.
00065

6. Moses, W., Churavy, V.: Instead of rewriting foreign code for machine learning,
automatically synthesize fast gradients. In: Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing
Systems, vol. 33, pp. 12472–12485. Curran Associates, Inc. (2020). https://
proceedings.neurips.cc/paper/2020/file/9332c513ef44b682e9347822c2e457ac-
Paper.pdf

7. Moses, W.S., et al.: Reverse-mode automatic differentiation and optimization of
GPU kernels via enzyme. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. SC 2021, Association
for Computing Machinery, New York (2021). https://doi.org/10.1145/3458817.
3476165

8. Naumann, U.: The art of differentiating computer programs. Soc. Ind. Appl. Math.
(2011). https://doi.org/10.1137/1.9781611972078

9. Schanen, M., Narayanan, S.H.K.: Argonne-National-Laboratory/Checkpointing.jl:
v0.6.3 (2023). https://doi.org/10.5281/zenodo.7607916

10. Stumm, P., Walther, A.: New algorithms for optimal online checkpointing. SIAM
J. Sci. Comput. 32(2), 836–854 (2010). https://doi.org/10.1137/080742439

11. White, F.C., et al.: JuliaDiff/ChainRules.jl: v1.45.0 (2022). https://doi.org/10.
5281/zenodo.7312560

https://doi.org/10.1007/s11222-022-10127-w
https://doi.org/10.1145/347837.347846
http://bookstore.siam.org/ot105/
https://doi.org/10.48550/ARXIV.1810.07951
https://doi.org/10.48550/ARXIV.1810.07951
https://doi.org/10.1109/SC41404.2022.00065
https://doi.org/10.1109/SC41404.2022.00065
https://proceedings.neurips.cc/paper/2020/file/9332c513ef44b682e9347822c2e457ac-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/9332c513ef44b682e9347822c2e457ac-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/9332c513ef44b682e9347822c2e457ac-Paper.pdf
https://doi.org/10.1145/3458817.3476165
https://doi.org/10.1145/3458817.3476165
https://doi.org/10.1137/1.9781611972078
https://doi.org/10.5281/zenodo.7607916
https://doi.org/10.1137/080742439
https://doi.org/10.5281/zenodo.7312560
https://doi.org/10.5281/zenodo.7312560

	Transparent Checkpointing for Automatic Differentiation of Program Loops Through Expression Transformations
	1 Introduction
	1.1 Adjoint Timestepping Checkpointing
	1.2 Contribution
	1.3 Use Case: Burgers' Equation

	2 Design of Checkpointing.jl
	3 Implementation
	4 Results
	5 Conclusion
	References

