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Abstract

Very long baseline interferometry (VLBI) achieves the highest angular resolution in astronomy. VLBI measures
corrupted Fourier components, known as visibilities. Reconstructing on-sky images from these visibilities is a
challenging inverse problem, particularly for sparse arrays such as the Event Horizon Telescope (EHT) and the Very
Long Baseline Array, where incomplete sampling and severe calibration errors introduce significant uncertainty in
the image. To help guide convergence and control the uncertainty in image reconstructions, regularization on the
space of images is utilized, such as enforcing smoothness or similarity to a fiducial image. Coupled with this
regularization is the introduction of a new set of parameters that modulate its strength. We present a hierarchical
Bayesian imaging approach (hierarchical interferometric Bayesian Imaging, HIBI) that enables the quantification of
uncertainty for all parameters. Incorporating instrumental effects within HIBI is straightforward, allowing for
simultaneous imaging and calibration of data. To showcase HIBI’s effectiveness and flexibility, we build a simple
imaging model based on Markov random fields and demonstrate how different physical components can be
included, e.g., black hole shadow size, and their uncertainties can be inferred. For example, while the original EHT
publications were unable to constrain the ring width of M87*, HIBI measures a width of 9.3 & 1.3 pas. We apply
HIBI to image and calibrate EHT synthetic data, real EHT observations of M87*, and multifrequency observations
of OJ287. Across these tests, HIBI accurately recovers a wide variety of image structures and quantifies their
uncertainties. HIBI is publicly available in the Comrade VLBI software repository.

Unified Astronomy Thesaurus concepts: Very long baseline interferometry (1769); Black holes (162); Active
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galactic nuclei (16); Astronomy data analysis (1858); Aperture synthesis (53); Bayesian statistics (1900)

1. Introduction

Very long baseline interferometry (VLBI) produces the
highest-resolution images among all astronomical techniques,
now achieving angular resolutions of ~10uas (e.g.,
N. S. Kardashev et al. 2013; Event Horizon Telescope
Collaboration et al. 2019a). However, VLBI does not directly
image the on-sky source. A perfect VLBI interferometer
samples interferometric visibilities, which are related to the
Fourier transform of the corresponding image (A. R. Thompson
et al. 2017). For instance, visibilities 7(u, v) corresponding to
the total intensity (Stokes /) image I(x, y) are given by

T, v) = f](x, ) e2m W) dxdy. (1)

Given a pair of sites a, b, this implies that the baseline (a, b)
measures a single Fourier component of the image, whose
position in the Fourier space, (1, v), is given by the projected
distance in units of wavelength between the sites. We will
denote this Fourier component by Ly = I(ugp, vp). The
resolution of the interferometer is, therefore, roughly set by

Original content from this work may be used under the terms

BY of the Creative Commons Attribution 4.0 licence. Any further
distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOL

the maximum distance between two sites,
Ppir =~ 1/ Umax- )

VLBI imaging aims to invert the measurement process,
removing the impact of instrumental corruption and incom-
plete Fourier sampling to reconstruct the true on-sky image. As
a result, VLBI imaging attempts to rebuild the infinite degree
of freedom on-sky intensity map from a finite set of
observations.

The primary difficulty in VLBI imaging is that the problem is
nonidentifiable. To define identifiability, consider that we have a
family of distributions that depends on a set of parameters 0,
which we denote py. An example of this is the likelihood
distribution L£(D|6), where D is the hypothetical data we
observe. The family of distributions 6 — p, is identifiable if, for
each set of parameters, the resulting likelihood distribution is
unique. That is, the mapping from parameters to the likelihood
distribution is one-to-one. If this mapping is not unique, the
problem is stated to be nonidentifiable. For VLBI imaging, this
degeneracy is typically of a form that there exists a smooth
transformation of the parameters that leaves the likelihood
invariant. As a result, this kind of nonidentifiability implies that
repeating an observation infinitely many times will not result in
a single image. Instead, the resulting space of images will
converge to a lower-dimensional surface in the space of all
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parameters. This kind of identifiability issue is common in
VLBI imaging.

Consider an image I(x, y), together with a second function 6
(x,y) that is zero-mean and that has a characteristic scale of
variation far below the resolution of the VLBI interferometer
(Equation (2)). In this case, I(x,y) + 6(x,y) will produce an
identical likelihood even though we have changed the image
potentially everywhere. For posterior inference, this means
that naive estimation of the image will result in a non-
normalizable distribution. That is, there are infinitely many
variations ¢ that will produce identical fits to the data. To limit
the space of images, we must make additional assumptions
about the source structure. For example, we could consider a
simple parametric model, such as simple geometric shapes
(Event Horizon Telescope Collaboration et al. 2019b, hereafter
Paper VI), if we have a priori knowledge of what we are
analyzing. However, for VLBI, this is often not warranted.
Simplified geometric models typically underfit the data, since
VLBI images describe complicated environments, e.g.,
turbulent jets, that are difficult to know a priori. The other,
more common way to solve this problem in VLBI imaging is
to focus on nonparametric models and then regularize the
space of images to make it finite and at least weakly
identifiable. In VLBI imaging, this is typically achieved
through regularization of the space of images. If we focus on
forward modeling of the source, this implies the use of
Bayesian priors or similar regularizers within the regularized
maximum likelihood (RML) methods that have recently
become popular in VLBI imaging (R. Narayan &
R. Nityananda 1986; A. A. Chael et al. 2018; K. Kuramochi
et al. 2018; B. Zawadzki et al. 2023). The goal of these
regularizers is to modify the resulting probability distribution
such that the map is now identifiable, although this is often
difficult to achieve in practice.

However, pure imaging is not the only source of
nonidentifiability; when instrumental effects are considered,
additional degeneracies occur. For a realistic interferometer,
the observed visibilities are corrupted by both baseline-
dependent thermal noise effects (e,,) and station-based
complex gains (g,), giving

Vip = 8aluv ) + €ans 3)

where €., is drawn from a complex Gaussian with real and
imaginary standard deviation, o,,. In this paper, we will
parameterize g with a set of parameters that we will
collectively refer to with s. Namely, we will typically
decompose g into

gu = eXp(’Yu + i@a)? (4)
where 7, and ¢, are real numbers and are typically denoted by
log-gain amplitudes and gain phases, respectively.

The VLBI likelihood for a single frequency and time is
given by

L(Vablrv Sa» sb)

lva - Sa ia *(s1,) 12
(zwgib)lexp(_ b= 880 sy () ) “

2
ZO'ab
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Assuming each time and frequency measurement is indepen-
dent, the total likelihood is given by

LVIr,s) =[] LV, Seas Sep)s (6)

t,a,b

where a, b denote the baselines and ¢ the observation times.

For high-frequency VLBI, these gains are typically only
known to within 10%-20% and can have order-unity
uncertainties for some sites due to technical issues or poor
weather. Therefore, these gains are estimated during imaging
in a procedure typically denoted iterative self-calibration
(P. N. Wilkinson et al. 1977, T. J. Cornwell &
P. N. Wilkinson 1981). The need to jointly estimate /(x, y) and
g, induces additional nonidentifiability issues. For example, a
shift in the image centroid I(x) — I(x + ¢) can be absorbed in
each telescope gain phase, meaning that the VLBI likelihood
cannot constrain the absolute image position. Similarly, the
change in the total flux of the image degenerates with the
scaling of the gain amplitude of each telescope. Moreover,
while these degeneracies are in principle easy to eliminate,
more complicated degeneracies can occur, depending on the
telescope performance and coverage of the array, making them
impossible to eliminate a priori.

Given that completely eliminating these degeneracies is
extremely difficult, generic VLBI imaging must be able to
explore this space of degeneracies and quantify the resulting
uncertainty. In that vein, we seek a method that allows us to
quantify and even parameterize the space of potential images,
and together solve for both the image and instrumental
response. To regularize the space of images, we first notice
that regularizing the space of images, it is often natural to
decompose the set of unknown parameters into different
components.

One component is parameters directly related to the image
intensities, which we will denote generically as r. These could
be, for instance, the specific intensities for a rasterized image.
The second set of parameters, which we denote by ¢, encode
global properties of the image or parameters of the
regularization of r. Such parameters include the image
correlation length, image variation, image size, and image
shape. Following the language of statistical inference, we call r
the latent variables, and ¢ the parameters or hyperparameters
of the model. The space of potential images we wish to explore
is then given by the joint prior

p(r, @) = prid)p(9), (N

where the right-hand side utilizes Bayes’ rule to explicitly
denote the conditional dependence of the latent variables on
the global parameters of the model. This kind of prior is
typically called a hierarchical Bayesian prior, and reflects the
natural hierarchy of knowledge that is typical in scientific
inference.

Within the Bayesian framework, adding the instrumental
response is straightforward: include the gains as parameters
with priors in the model. Putting the different model
components together, the total imaging posterior becomes

LVIr, ¢, s)prld)p(p)p(s)
p(V)
We call this formulation of VLBI imaging hierarchical

interferometric Bayesian imaging (HIBI). The benefit of this
approach is that depending on the problem at hand, we can

pr, @,slV) = ®)
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assess a large variety of different problems that arise in VLBI
inference. For instance, for standard imaging problems, our
main goal is to compute averages or expectations of the image
structure. This is typically expressed in terms of the marginal
posterior p(r|V), which averages over both the different
parameters and instrumental effects. That is, we are averaging
over the impact of different imaging priors and their related
instrumental effects. In this setting, ¢ and s serve as nuisance
parameters whose uncertainty we do want to consider but
whose values are not of direct interest to the scientific output.

Conversely, suppose that we are modeling the image as
some average feature, i.e., the average state of an accretion
flow, plus a turbulent process. Within this setting, » would
represent the specific realization of the turbulent field, and ¢
would represent the physical parameters of interest, e.g., black
hole mass, ring size, and black hole spin. The distribution of
interest in this case would be p(¢|V) and so r would be the
nuisance parameters that we average over. HIBI provides
direct uncertainty quantification in both instances, and in this
paper, we will explore both perspectives.

This paper is organized as follows. In Section 2, we present
a specific implementation of HIBI in terms of Markov random
fields and then relate it to other imaging techniques. In
Section 3, we test HIBI on a variety of image structures based
on the 2017 Event Horizon Telescope (EHT) observations of
MS87* (Event Horizon Telescope Collaboration et al. 2019c¢,
hereafter Paper IV) and apply HIBI to the 2017 EHT M87"
data reproducing the results from Paper IV. In Section 4, we
demonstrate how additional physical information, e.g., the
expected appearance of an optically thin accretion flow, can be
incorporated into the HIBI framework and reduce the
uncertainty of image parameter estimates. In Section 5 we
apply HIBI to the active galactic nucleus (AGN) OJ 287 across
three frequencies independently, demonstrating HIBI’s super-
resolution capabilities. Finally, in Section 6 we summarize our
results and discuss future work.

Finally, the HIBI algorithms and a tutorial are available in
the Comrade VLBI analysis package (P. Tiede 2022). All
tests in this paper were run with Comrade version 0.11.18 and
Julia 1.10.

2. Hierarchical Bayesian Imaging

The locations of the pixels are given by

1 1
= FOV,| —= + —(i — 1/2
X [ 2-l-N(l /)]

X

1 1.
yj—FOVy[—E + Fy(] - 1/2)], €))

where FOV, , is the field of view of the image, and i, j go from
1 to N, and N,, respectively. Note that A(x,y) =FOV,,/N,,
are the pixels sizes. Associated with each pixel is a specific
intensity, F;;, whose collection we denote by F. To create a
continuous representation of the image, we use the formula

N, Ny _

A x—x; Y

IF(-X’ }’) = EH( s )’ (10)
;; / Ax Ay

where k(x, y) is a continuous function often called the kernel or
pulse function.
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The Fourier transform of Equation (10) is given by

Ip(u, v) = Rulx, vAy) AxAy ) Fye?mwxitm), (11)

g

where & is the Fourier transform of x. To efficiently compute
the visibilities for a set of u — v locations, we use a nonuniform
fast Fourier transform implemented within the NFFT.]jl
package (T. Knopp et al. 2023). For our pulse function, we use
the third-order B-spline b3(x), which is given by the square
wave pulse,

1 —1/2<x<1/2

) (12)
0 otherwise

bo(x) = {

convolved with itself three times. Note that the pulse function
choice is arbitrary, and our results do not strongly depend on it.

2.1. Prior Properties of the Stochastic Process

Different image priors may give qualitatively different
results. Therefore, we aim to construct a prior that encodes the
minimal properties we expect our images to obey. For a
general image I, two generic properties should be considered:

1. Intensities are positive. I(x,y) > 0 for all (x, y). For our
raster, Fy; > 0 for all 7, j.

2. Spatial Correlation. Neighboring pixels should have
similar fluxes.

Positivity is enforced because each F;; measures an energy flux
density. The inclusion of spatial correlation in the model is
intended to enforce the idea that astrophysical images are often
correlated at some spatial scale. Previous Bayesian imaging
methods (A. E. Broderick et al. 2020a; D. W. Pesce 2021)
have assumed uncorrelated image priors.® As a result, the
number of pixels becomes an important hyperparameter that
can influence the structure of the resulting image posterior. If
too few pixels are used, the model underfits the data, often
leading to overly tight posteriors. At the same time, too many
pixels cause overfitting of the data, resulting in an overly broad
posterior and weak inference. A. E. Broderick et al. (2020a)
used the Bayesian information criterion to find the optimal
number of pixels. However, estimating the Bayesian evidence
for each set of data is computationally expensive. Furthermore,
the Bayesian evidence is also sensitive to the choice of priors
and may not always choose the most predictive model
(A. Gelman & Y. Yao 2020).

Using a correlated image prior and fitting for the correlation
length, we effectively average over different numbers of
effective pixels, finding the optimal configuration in a data-
driven manner. As a result, the number of pixels is no longer a
critical parameter to consider. Instead, rasterization is a
discretization of some underlying continuous model, and as
the number of pixels increases, the effects of rasterization
decrease. Finally, by specifically introducing a correlation
parameter, we can impose a prior that utilizes our prior
information that the images should not be dominated by
features with a much smaller length scale than what the
telescope is sensitive to. For VLBI imaging, it is standard
practice to suppress structure on scales below pp;s.

8 The Dirichlet parameterization used in D. W. Pesce (2021) could include

local correlation in the concentration parameter matrix.
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To parameterize the raster emission, we formulate F; as
p(xis )1y

POMIECES AT

Here, 1(x, y) models the a priori structure of the image assumed
before imaging the data, which are modulated by the stochastic
fluctuations 7);;. This model implies that the imaging process is a
multiplicative stochastic process, where y models the geometric
mean structure of the process, and 7 encodes the correlation
structure of the image. Finally, we normalize the process to have
total flux density F so that the degeneracy between total flux Fj
and a total scaling of gain amplitudes is fixed.

The other main degeneracy is the lack of an image centroid
constraint. The critical component of this degeneracy is that it
strongly correlates the image structure with the gain phases
across all sites. To remove this correlation from the gain
phases, we first modify Equation (11) by

iC — e*zﬂi(”xC"LVyc)iF, (14)

Fj=F (13)

where (x¢, yc) is the centroid of Ir. This rescaling renders the
visibility phases (and, hence, the gain phases) independent of
the image centroid. Note that this does not uniquely identify
the center of the image with respect to the raster. However, in
practice we find that computing this projection dramatically
improves sampling efficiency when estimating the image
posterior.

To ensure that 77; > 0, we first augment these variables using
a transformation from Euclidean space to strictly positive
values. For low dynamic range image reconstructions, such as
the 2017 EHT array, we seek a function that is approximately
linear for values r > 0 and then decays to zero r < 0. A simple
function that satisfies these constraints is the softplus function:

Njsp = softplus(ry) = log(1 + e'v). (15)
For r;>> 0, it is approximately linear, while for r; <0, it is
similar to a decaying exponential. This ensures that 7; >0
smoothly transitions to zero as r; — —oo, while remaining
roughly linear for larger values, i.e., where the image is bright.

For very high-dynamic range images, such as Very Long
Baseline Array (VLBA) jet imaging, which we consider in
Section 5, placing the image fluctuations on a linear scale is
often a poor description of the data, e.g., the jet is often orders
of magnitude dimmer than the core. Therefore, for these higher
dynamic range images, the exponential function is preferable
to map between fluxes F;; and ry:

Mijsm = e'i, (16)
Given the decomposition Equation (13), and our specification
of n; in terms of ry, the last component of the model is the
prior structure for r, which we now specify.

2.2. Correlated Image Prior

Gaussian random fields (GRFs) provide a flexible frame-
work for parameterizing the space of functions, thereby
forming a prior on this space. The Gaussian nature of these
fields implies that the distribution of functions is completely
characterized by the mean function m(x) and a two-point
autocorrelation function k(x, x’). Therefore, we assume that
stochastic fluctuations of our image, r;;, are the discretization

Tiede et al.

of some continuous GRF. We assume that the process is mean
zero: m(x) = 0. Therefore, to specify our GRF, only k(x;, x;)
must be specified.

Given a discretization, x;, the autocorrelation function
becomes a matrix XJ;

Sijiy = ke, Xy)s A7)

and the transformed image fluctuations are a zero-mean
multivariate Gaussian

r~ Mo, X). (18)

However, choosing an autocorrelation function k is not
straightforward. To ensure that k is a valid GRF, we need to
ensure that > will always be a positive definite covariance
matrix. One way to simplify the construction of k is to assume
that the GREF is stationary. That is, the statistical properties at x
and at x+c¢ are identical. This implies that k(x, x')=
k(|l]x — x'||) and the Wiener-Khinchin theorem then states that
k(r) is the Fourier transform of a positive semidefinite function
or measure often called the power spectrum or spectral density.
Stationary GRFs’ form the basis of the RESOLVE algorithm
(P. Arras et al. 2019), and have been successfully applied to
previous EHT observations (P. Arras et al. 2022).

For stationary GRFs on a regular Cartesian grid with
periodic boundary conditions, the computational complexity to
evaluate the GRF is O(K log K). However, a general GRF
typically scales O(K?) for irregular grids, making it infeasible
for large rasters. Another complication in estimating the GRFs
is that estimating the correct shape of the power spectrum for
small data volume, such as for the 2017 EHT arrays, can be
quite difficult (G.-A. Fuglstad et al. 2019).

Rather than solving for a general power spectrum, in this
paper, we restrict our correlated image priors to Gaussian
Markov random fields (GMRFs). The basis of GMRFs is that
the inverse covariance matrix, or precision matrix Q, encodes
the condition dependencies between variables. That is, suppose
that r;, rj; are conditionally independent given the rest of the
variables r_; ', i.e., that

P (rijs i) = priglr—qia)p (Fralr—gj i) (19)

Then the resultant precision matrix Q;;;; = 0. For a Markov
random field where the pixels will depend only on some small
set of neighbors, this implies that the precision matrix will be
sparse (see, e.g., H. Rue & L. Held 2005).

In general, GMRFs are given by the formula

prip, ) = [ exp(—2r7Qr), (20)
where Q is a sparse precision matrix. GMREF priors have been
extensively used in geostatistical and epidemiological (see,
e.g., F. Lindgren et al. 2022, for a review) studies, form the
basis of the popular R-INLA spatiotemporal statistical
modeling package (T. G. Martins et al. 2013), and have
already been used in black hole inference by EHT (D. Lee &
C. F. Gammie 2021; A. Levis et al. 2021). This paper will
consider simple stochastic spatial fluctuations encoded by the
precision matrix @, which we now describe.

 RESOLVE uses a GRF prior on both the image and the power spectrum.

10 The negative sign means all pixel values except —ij.
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Figure 1. Draws from the GMREF prior in the r space (left) and in the linear image space 7 (right) assuming that they are related by Equation (15). The columns of the
figures show different correlation lengths for the log-ratio image, while the rows are different values of the image dispersion.

2.2.1. First-order Markov Random Field

For simplicity and to connect with RML imaging, this paper
will mainly use a first-order GMRF, whose precision matrix is
denoted Q. To start, we divide our precision matrix into two parts:

0 = %(Lzﬂ + G), 21
g \p
where 1 denotes the identity matrix, and G sets the correlation
structure of the random field. For this work, we followed
F. Lindgren et al. (2011) and used the first-order intrinsic
GMRF matrix:
4 ij=kl
Giju=1—-1 ij ~kl (22)
0 otherwise

where ij ~ kI means that on the image pixel grid, ij is adjacent
to kl. With this description, J. Besag (1981) demonstrated that
this 2D GMRF Equation (21) converges to a continuous
process with spectral density,

d’k
L+ p? Ikl

This spectral density implies that the first-order GMREF is a
stochastic process with a power law with slope —1 and break
~p. Therefore, we interpret o> and p as hyperparameters that
modulate the marginal variance and correlation length of the
process.

Random draws from the GMRF distribution are shown in
Figure 1 in both r and the 1) representation.

To generate higher-order GMRF, F. Lindgren et al. (2011)
showed that by convolving this process with itself n times, it
approximates the n™-order Matern Gaussian process. We briefly
overview higher—order GMRFs and Matern processes in
Appendix G."' A benefit of the GMRF approach is that the

S(k)d% (23)

1 See the Julia package VLBIImagePriors.jl for its open source
implementation.

eigenvalues of Q are easily computed in O(K) time and are
given by

N, N,
detQ =0 ] T (02 + Aww)

n=1 m=1
Ay =4 + 2cos[mn/(Ny + D] + 2cos[mm/(Ny + 1],
(24

which is derived in Appendix F. This makes computing the
GMREF prior O(K), cheaper than the Fourier representation of
generic stationary random fields (O(K logK) ), albeit at the
cost of flexibility.

2.3. Parameter Estimation

Within the Bayesian interpretation of regularization and
GMRF priors, there is a natural and self-consistent way to
estimate the image and the “regularization” hyperparameters
through a hierarchical model. The Bayesian image posterior
with the GMREF prior Equation (28) up to constants is given by

logp(r, p, olV) =1logL(V10) — %rTer
+ %log detQ(p, o) + logp(p, o)  (25)

where constants denote terms that do not depend on any of the
posterior parameters, and logp(p, o) is the prior on the
imaging hyperparameters. Ignoring the hyperparameter prior
and constants, we see that Equation (25) is equal to the
negative of Equation (26) up to the addition of the log
determinant of the precision matrix. Inspecting Equation (24),
we see that detQ acts as a volume correction that prevents the
collapse of the regularizer weights. When the prior is very
wide (p small and o large), det@ is close to zero. In contrast,
as the GMREF prior volume shrinks (p large and o small), we
get detQ to grow geometrically. Therefore, the Bayesian
regularization formulation favors images with large p and
small o, namely simpler images closer to our prior image. This
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simplicity is then balanced against the data likelihood terms,
resulting in a fit that naturally increases the prior volume to
account for data complexity.

2.4. Relating HIBI to Other Imaging Methods
2.4.1. RML Methods

The usage of priors in Bayesian imaging has been
qualitatively compared to RML imaging regularizers, which
are commonly wused in VLBI (R. Narayan &
R. Nityananda 1986; K. L. Bouman et al. 2016; A. A. Chael
et al. 2016, 2018; K. Kuramochi et al. 2018). This section
explores the relationship between the GMRF prior
Equation (22) and two commonly used regularizers.

RML imaging is a maximum likelihood method that
reconstructs a single image given the data by minimizing the
cost function

JF; A D)= an3F) + > \RAF), (26)
delDI relll

where |-| denotes the set of indices for some tuple, («;, Xf) is the
weight and data chi-square of data product i, and (R;);) is the
regularizer and its weight, respectively. Relating HIBI to RML, it
is natural to associate HIBI’s data likelihood with the chi-square
term in Equation (26), its latent variable prior with the
regularizer, and its hyperparameters with the regularizer weights.
For the data terms, HIBI and RML both utilize similar data
products; however, from a Bayesian perspective, RML’s data
chi-squares will modify the weights of various terms.
Additionally, RML assumes that each data product is
independent, which is true if, for instance, closures and
visibility are simultaneously included in the data fits, which is
common in EHT analyses (Event Horizon Telescope Collabora-
tion et al. 2019c). Additionally, the weights «; are often
different from the VLBI likelihood Equation (6); for example, «
is usually given by the inverse of the number of measurements,
while the VLBI likelihood omits that factor. Note that while
RML only cares about relative weights, Bayesian inference,
specifically uncertainty estimates, depends on the absolute
scale/weights of all data products. Two commonly used
regularizers are the total squared variation (TSV) and L,
regularizers (K. Kuramochi et al. 2018), which are given by

Rasv(F) =Y (Fy1j — F))* + (Fjp1 — Fy)?

ij
RiaF) =Y Fj. 27)
ij

Expanding the negative log density of the GMRF prior
(Equation (20)),'* we have

— logp(rip, 0)
1
= FZ(”HIJ — i) + (i — 1))’
g
2(P0)2 ij Y
— %log det Q, + constants. (28)

12 We are ignoring boundary terms in this equation.
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The first term corresponds to the TSV regularization, while the
second is the ¢, regularization. Furthermore, we can relate the
regularization hyperparameters to the standard deviation and
correlation length

ATsv 1
p= 0= —. 29)
V' Ao V2A1sv

At face value, our prior example is TSV and L, regularization
with a nonstandard parameterization of the regularization
weights. By letting p — oo, we recover the standard TSV
regularization.

Other classes of regularizers can also be included in this
framework. For instance, one could consider a combination of
the total variation and ¢ regularizers for the log prior:

longV (I‘|>\Tv, )\gl)
=—Mv) \/(ri,j+1 — 1)+ i1y — )’
ij

=AY Iyl + 1og N (Ary, Ag), (30)

y

where N is the normalization constant. Similar to TSV and /5,
we can relate the regularization hyperparameters to a pseudo-
variance and correlation length using Equation (29). Unfortu-
nately, a closed-form expression for N is not known unless
Ay =0. As we will see in Section 2.3, estimating the
hyperparameters in a Bayesian framework requires an
expression for the normalization N; therefore, we do not
consider this prior family in this paper.

Before continuing, we note an important consideration:
RML imaging tends to regularize the image pixel fluxes
directly rather than the transformed quantities. To enforce
positivity, the image priors are then effectively truncated
multivariate normal distributions. However, this truncation
makes the calculation of the normalization term in
Equation (25) computationally expensive. Given that this
normalization constant is critical to self-consistently estimat-
ing the optimal hyperparameters, we do not explore applying
the GMREF prior directly to the pixel fluxes.

Finally, we note that there exists a simple extension of this
formalism to multiple regularizers. The standard RML
approach of summing multiple regularizers is not easily
expressible within HIBI. Unfortunately, the prior volume term
in Equation (25) is generally not analytic. However, we can
extend the formalism described in Section 2.3 to multiple
priors through model averaging. Let p(r|;), denote each prior
considered, with their own set of hyperparameters ;. For each
Di, a posterior pi(r, ¢;|V) can be found with the typical HIBI
algorithm. These posteriors can be averaged using a model
averaging scheme (see, e.g., Y. Yao et al. 2018 for different
averaging approaches). Using this averaging approach, multi-
ple image reconstruction priors can be combined, weighing
each posterior according to the specific averaging scheme. In
Appendix G, we describe different Markov random field priors
that could be considered in such a scheme.

2.4.2. Comparing RML with HIBI

Within the HIBI framework, the estimation of the joint
image and hyperparameter posterior 7(r, p, o|V) is analogous
to the image and hyperparameter survey in RML imaging. A
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natural question is whether the HIBI formalism could be
incorporated into RML imaging by including the missing
volume term. The maximum likelihood estimate would then be
replaced with the maximum a posteriori (MAP) estimate, but
otherwise the rest of the RML algorithm would remain the
same. However, as we will show below, the MAP estimate is
often a poor approximation of the kind of structure
characteristic of the posterior. This is often because the
MAP estimate tends to overfit the data and results in various
image artifacts. However, another problem exists with the
MAP estimates in the HIBI imaging framework: the MAP
solution is not invariant to parameterizations. Specifically, the
HIBI MAP strongly depends on the choice of parameteriza-
tion, especially for weakly informative data relative to the
model complexity, as is often the case for VLBI imaging.

To demonstrate how the location of the MAP can be
changed arbitrarily, we consider the common model known as
Neal’s funnel. This distribution has the probability density,

N
px,v) = [ Mxil0, e)NW|0, b?), @31
i=1
and corresponds to a Gaussian hierarchical model where the
variance of the process has a log-normal prior with variance b."?
The log probability density of this model (ignoring constant
terms) is
Nv eV, 2

logp(x, v) = —— — xp— = 32
gp(x, v) 5 2; S (32)

The MAP does not exist within this parameterization, but its
location tends to v — —oo, x; = 0. Note that this parameteriza-
tion is similar to the one typically used in RML imaging.

Now consider the transformed parameters %, ¥, where
x; = e"2%%, + %y, v = DbV + ¥, where %, and ¥, are the
effective origin. This parameterization effectively standardizes
the distribution, and the probability density becomes the
multiplication of two independent unit normal distributions in
v and %. In this case, the MAP is finite and is given in our
original parameters by x;=v=0. By making a relatively
simple parameterization change, we shifted the map by an
infinite amount.

This dependence makes the parameterization or coordinate
frame a critical piece of HIBI imaging, even though the
expectations from the posterior are invariant to the choice of
parameterization. As a result, we do not recommend that RML
methods switch to the hierarchical prior approach, given that
the choice of parameterization, especially for sparse data, can
significantly impact the MAP’s location and imaging results.
Instead, we refer the reader to other methods for hyperpara-
meter optimization, such as the multiobjective optimization
approach in H. Miiller et al. (2023).

2.5. RESOLVE

The RESOLVE algorithm is an example of HIBI with an
additional hierarchical level. Namely, RESOLVE typically uses
Equation (13), typically with p flat and the exponential transfer
function Equation (16) (J.-S. Kim et al. 2024). For the
stochastic field, RESOLVE uses stationary random fields on a
periodic regular grid to utilize the power spectrum

13 This distribution is equivalent to the VLBI image posterior with the first-
order uncorrelated GMRF prior and no observations.
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decomposition. However, instead of assuming some para-
metric form for the power spectrum, they then use a second
GREF for the power spectrum itself. The prior decomposition
equals

pr. f, ®) =prlHp(flo)p(P), (33)

where f are the parameters of the discretized power spectrum,
and ¢ are the hyperparameters for the stochastic process
governing f. This model is more expressive than the GMRF
prior described in Section 2.2, which assumes a specific power
spectrum slope.

The tradeoff between RESOLVE’s expressibility and the
GMRF approach in this paper comes during inference.
Namely, in this paper, we employ Markov Chain Monte Carlo
(MCMC) methods to approximate the posterior, whereas
RESOLVE typically relies on more approximate parametric
methods, such as metric Gaussian variational inference
(J. Knollmiiller & T. A. EnBlin 2019). A downside of the
variational approach is that expectations may be poorly
approximated if the variational family, e.g., a Gaussian, does
not match the posterior. For very sparse arrays like the EHT or
VLBA, the posterior may highly non-Gaussian; however, a
more detailed study is warranted to better understand the
impact of the variational approximation.

Given the sparsity of the EHT data, this paper uses MCMC
methods to approximate posterior expectations. Specifically,
given that imaging typically requires 1000—10,000 parameters
for EHT data, we employ Hamiltonian Monte Carlo and the
NUTS algorithm (M. D. Hoffman & A. Gelman 2014). To
demonstrate the effectiveness of this approach, we now
consider a suite of synthetic data tests.

3. Imaging With HIBI
3.1. Synthetic Data Tests

To demonstrate the applicability of our approach to different
image source morphologies, we consider a suite of synthetic
data that model the observations of the 2017 EHT array
following Event Horizon Telescope Collaboration et al.
(2019¢):

1. Disk: uniform disk with a diameter of 70 pas, convolved
with a Gaussian with an FWHM of 10 pas.

2. Double: Two circular Gaussian components each with an
FWHM of 20 pas and a separation of 30 pas R.A. and
12 pas in decl. One Gaussian has a flux of 0.33 Jy and the
other 0.27 Jy.

3. Ring: An infinitely thin ring with radius 22 pas, flux
0.6Jy. The ring is convolved with a 10 uas FWHM
Gaussian.

4. Crescent 150: An infinitely thin crescent model with
radius 22 pas, flux 0.6 Jy, and brightness position angle
of 150°, which is blurred with a 10 uas FWHM
Gaussian.

5. Crescent 180: An infinitely thin crescent model with
radius 22 pas, flux 0.6Jy, and brightness position angle
of 180°, which is blurred with a 10 yas FWHM
Gaussian.

6. GRMHD: A general relativistic magnetohydrodynamic
(GRMHD) simulation of MS87. We use the same
simulation as in Event Horizon Telescope Collaboration
et al. (2019c¢).
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Figure 2. Example reconstructions of various geometric model morphologies using the GMRF prior. The prior is flexible enough to capture various image

morphologies and features, including the ring brightness profile.

The ground truth images are shown in the first row of Figure 2.
For each image, we then create synthetic data using eht-
imaging with the EHT coverage and thermal noise
properties of the observation of the LO band on April 6. The
synthetic data for each source was also corrupted with random
gain phase and gain amplitude errors. In addition, we added a
fractional systematic error equal to 2% of the measured
visibility amplitudes in quadrature to the thermal noise to all
baselines. This additional systematic error models the
unresolved errors in the 2017 EHT data, e.g., leakage and
coherence loss, that were estimated in Event Horizon
Telescope Collaboration et al. (2019d). Note that the same
systematic error budget was added to the 2017 EHT data in
Section 3.4.

3.2. Model Priors

For imaging, we used the GMREF prior, with a field of view
of 200 pas with a 64 x 64 raster. A Gaussian profile was used
for a priori image structure with the parameterization:

Ug(x) — 410g2(2) e—410g(2)x-x/s;' (34)

s
g

The size or FWHM of the Gaussian profile, s,, is included as a

free parameter during inference with the prior,

8¢ ~ TN(50 pas, 20 pas; a = 20 pas, b = 100 pas), (35)

where TN(u, o; a, b) is a truncated normal distribution with
mean, y, standard deviation o, and lower and upper bounds a
and b, respectively. This prior was chosen to match the
estimated size of M87" based on the analysis from Paper IV.

For the log-ratio correlation length of the GMRF p and
dispersion o, we used the priors

p ~ ZG[1, —1og(0.01) Agur/ Ax)] (36)
o ~ HN(O, 0.5%), (37)

where ZG(«v, ) denotes inverse-gamma distribution,
prg(la, B) oc x~ (D (38)

and HN(p, o) is the half-normal distribution. The parameters
for p were chosen such that 1% of the prior mass for the
correlation length of the MRF was below the telescope
beam size.

For our instrument model priors, we used a log-normal prior
on the gain amplitudes with a log-mean of zero and a standard
deviation of 0.2 for all baselines except LMT, which assumed
a standard deviation of 1 to model the poor performance of
LMT in 2017 observations (Event Horizon Telescope
Collaboration et al. 2019d). For the gain phases, we used a
von Mises distribution,

pvm(elp, K) el eostemm, (39)

2l (k)
with mean zero and concentration parameter x =7 > for all
non-Atacama Large Millimeter/submillimeter Array (ALMA)
gain phases. This prior is essentially flat on its support [0, 27)
and is temporally uncorrelated. ALMA is used as the reference
station of the array, meaning we set its gain phases to O for all
scans.

3.3. Synthetic Data Results

To reconstruct the image, we used a two-step procedure.
The first step is similar to RML, where we found the MAP
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Figure 3. The parameter estimation results from the synthetic data tests in Figure 2. Overall, HIBI can measure all of the parameters of the ground truth image except
the disk, where the diameter definition gives a slightly too small result. Analyzing the profile of the disk reconstruction, shown between the disk diameter marginal
and on-sky truth, we see that at smaller distances from the origin (<20 pas), the disk is slightly too dim, while at larger distances (>40 pas) it is too bright.

estimate using the Optimization. jl library and the Adam
optimizer from Optimisers.jl. The goal of the first step
was to reduce the burn-in time when sampling the posterior,
which is the second step. To sample the posterior, we used the
AdvancedHMC.jl NUTS sampler with a diagonal mass
matrix adaptively tuned over 8000 MCMC steps. To compute
the posterior gradient with respect to the parameters, we used
the automatic differentiation software Enzyme and its Julia
extension Enzyme.jl (W. Moses & V. Churavy 2020;
W. S. Moses et al. 2021, 2022). After tuning, the sampler
ran for an additional 7000 MCMC steps. The runtime of the
sampler depended on the dataset, but it generally took 1-2 hr
for Stokes / imaging on an AMD Ryzen 7950X CPU using a
single core.

The image reconstructions for each synthetic data test are
shown in Figure 2. The second row shows the mean
reconstruction, and the third row shows the relative uncertainty
of the posterior reconstructions. Qualitatively, we see that
HIBI recovers all of the different image morphologies
considered.

Note that the disk displays a ring-like inner depression in the
mean image. This is only visible in the mean image, and
reflects the fact that the central region of the disk is quite
uncertain (see Figure 3). In conjunction with the a priori image
being a Gaussian that prefers to concentrate flux near the
center, the mean image tends to be brighter near the middle of
the disk. A benefit of HIBI’s Bayesian approach is that we can
assess the significance of this feature and other quantitative
features. From the third row of Figure 3, we see that the
relative uncertainty in the central region of the disk is larger
than near the edge. Samples from the disk do not consistently
show an increased flux near the center, which means that this
enhanced brightness near the disk center is not statistically
significant.

To quantitatively assess image reconstruction quality, we
apply VIDA (P. Tiede et al. 2022a), a template matching
scheme, to extract estimates of key image features. VIDA
requires a cost function (usually a probability divergence) and
a template family to match to the observed image. For the
crescent, ring, and GRMHD models, we followed P. Tiede

et al. (2022b) and used an elliptical ring template with a
fourth-order cosine expansion for the azimuthal brightness
profile. For a definition of the template, see P. Tiede et al.
(2022b) for a complete description. The parameters we report
in this paper are:

1. d = Jab the geometric average of the ellipse semi-
major/minor axis of the elliptical ring template

2. w the FWHM of the Gaussian ring profile

3. A one-half the first-order amplitude in the cosine
expansion, which we refer to as the brightness
asymmetry

4. ¢ the first-order phase in the cosine expansion, which we
refer to as the ring position angle (PA).

For the double synthetic data, we used a two-component
circular Gaussian blob template, and modeled the two
Gaussian blob relative separations and their absolute size.
For the disk synthetic data, we used a top-hat disk with a
Gaussian taper for the disk synthetic data template (see
P. Tiede et al. 2022a, for a description) and only report the
diameter of the disk.

Given a template family, the optimal template parameters
are found by minimizing the Bhattacharyya divergence,

Bh(t|r) = flogz VtamTam - (40)

To optimize the function, we use the Evolutionary Centers
Algorithm from the Julia package Metaheuristics.
31 (J.-A. M. de Dios & E. Mezura-Montes 2022) within the
Optimization.jl package.

The parameter estimation results for all models are
summarized in Figure 3. For each synthetic data test, the true
values are within the bulk of the posterior except for the disk
diameter. Analyzing the reason for the bias, we plot the true
disk profile compared to the recovered profile in Figure 3. The
origin of the bias is that the profile of the disk edge is not
accurately reconstructed, especially in the vertical direction,
where it is biased to be small near the center and larger near
the edge. This is due to the choice of a Gaussian profile p,
which a priori concentrates the emission near the center, as
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Figure 4. HIBI image reconstructions of M87" for each observing day and frequency band. The top row shows the MAP image, which is often littered with artifacts,
such as ghost rings. The second and third rows display the mean image and its relative uncertainty, respectively. Finally, the bottom row shows a random sample
from the posterior, blurred to match the resolution of the mean image using the NXCORR metric.

seen in the profile. In Appendix D, we demonstrate that a
different p can remove this bias and recover the true diameter
of the disk. Regardless, this bias is minor and generally
indicates that HIBI can recover a wide variety of image
structures, even when the a priori image structure is not an
accurate description. This robustness is critical for arrays such
as the EHT, since it provides novel insights into the core
region of a variety of AGNs (J.-Y. Kim et al. 2020; M. Janssen
et al. 2021; S. Issaoun et al. 2022; S. Jorstad et al. 2023;
J. Roder et al. 2025) whose structure is highly uncertain
a priori.

3.4. Application to 2017 EHT M87 Data

In the previous section, we demonstrated that the GMRF
prior and hyperparameter selection algorithms we developed
are capable of recovering a wide array of image features from
synthetic EHT data. This section applies an identical procedure
to the 2017 EHT data.'* We explore the stability of the image
and the properties of the ring.

For the reconstructions of M87*, we followed a similar
procedure to Section 3. The instrument priors are identical to
those for the synthetic data, except on April 11, where a large
initial gain in JCMT was found. Therefore, for the data on
April 11, we used a log-normal prior with zero-mean and a
standard deviation of 0.5 for JCMT.

The imaging results for the 4 days and the two frequency
bands are shown in Figure 4. The top row of Figure 4
demonstrates the dangers of using an MAP estimate compared
to posterior expectations (e.g., the second row of Figure 4). For
the imaging results for M87*, the MAP estimate had a reduced
chi-square of ~0.4-0.5, significantly smaller than the reduced
chi-square in the posterior bulk (1.0 £ 0.1). This result implies
that the MAP estimate overfits the data and produces

14 We used the public EHT data on the CyVerse Data Commons (The Event
Horizon Telescope Collaboration 2019).

10

significant artifacts in the image. Samples from the posterior
row in the lower row of Figure 4 demonstrate that the MAP is
not characteristic of the posterior bulk and should not be used
to assess the features of the image when using HIBI.

The second row shows that the mean posterior image is
qualitatively similar throughout the four days, as found in
Paper IV. We examined the relative uncertainty map and found
that the ring is robustly recovered using HIBI. However, beyond
the ring, there is evidence for an extended emission knot in the
southwestern region of the image. This extended emission was
also found in P. Arras et al. (2022), A. E. Broderick et al.
(2022), and C. L. Carilli & N. Thyagarajan (2022).

4. Parameter Estimation with HIBI

Typically, VLBI imaging attempts to be largely agnostic about
the on-sky source structure. This approach is ideal when we do
not want to make strong structural assumptions about the source,
as was the case for the first images of M87"’s shadow. However,
this approach often ignores our physical understanding of the
source and introduces additional sources of uncertainty in our
conclusions. Relatedly, being entirely agnostic to the underlying
physics often means that physical quantities of interest, e.g.,
black hole mass and spin, must be extracted, introducing new
sources of uncertainty and methodology.

In this section, we take a different perspective and view the
image itself as a set of nuisance parameters, while the
parameters ¢ represent the physical quantities of interest. By
using this formulation, we will demonstrate how HIBI can
incorporate our knowledge that optically thin accretion flows
around supermassive black holes generically produce ring-like
morphologies (e.g., Event Horizon Telescope Collaboration
et al. 2019¢e; Event Horizon Telescope Collaboration et al.
2022), and estimate physical parameters of interest directly,
e.g., the ring size and its profile.

We seek to create a simple model that describes the generic
parameters of the emission profile around a supermassive
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Figure 5. Reconstructions of M87" using the ring profile prior and first-order GMRF for multiplicative noise.

black hole. From simulations of accretion flows, these
emission profiles often appear to have a profile where the
inner profile differs from the outer profile (Event Horizon
Telescope Collaboration et al. 2019e; W. Lockhart &
S. E. Gralla 2022a). A simple model that captures this
behavior is the double power-law radial profile

(r/ro)*m

1+ (r/rO)ai“Jrnouﬁl >

Mr(x|r03 Qlin, Qout) = N (41)

Here, ay,on are the inner and outer power-law indices, rg
denotes the rough location of the transition of the power law
from the inner to outer scale, and N is a normalization constant
to ensure the mean image raster has unit flux. The radius of the
peak intensity in Equation (41) is given by

Qin

1/ (@in+aout1)
—) “2)
Qo + 1

Tpeak = VO(

To incorporate this model into the HIBI framework, we
replace the mean profile p with Equation (41) and include
Qlin.out Fo @S parameters to be estimated as part of the HIBI
posterior. Compared to Equation (10), we kept the other
parameters and priors identical, except we increased the
number of pixels in the raster to 95 x 95 to better resolve the
mean image structure when o« was large. Specifically, we
maintain the same priors for r and its related parameters p and
0. The only remaining piece is to specify the priors for the ring
parameters. For the characteristic radius r(, we used a uniform
prior U(5 pas, 40 pas); for the inner power law, we used the
uniform prior U(0, 10), and for the outer power law, we used
the prior U(1, 10). Setting «;, =0 yields profiles without
central depression, i.e., disk-like profiles.

Note that while in this section we are mainly concerned with
the parameters g, Qtinou, W Will also produce a new set of
images of M87". Given that M87" has been established as a
ring, we expect the uncertainty of the image to decrease, since a
large portion of the image will be described by the simple
profile p,. One potential concern with this informative model
for y is that it can bias the results if there is no ring in the image.
To test this, we repeated the synthetic data tests from Section 3.
Generally, we found better results with the ring prior than the
previous Gaussian prior image. We suspect that the reason for
this is that the ring mean image better describes the general

11

image structure for four out of five of the synthetic datasets. The
profile Equation (41) is a near-perfect match for the symmetric
ring and disk models, and the GMRF models the brightness
asymmetry in the crescent and GRMHD models. The only
nontrivial result is the double Gaussian blob model. In this case,
the ring radius matches the blob separation, and the GMRF then
modulates the rest of the brightness to match the true on-sky
image. For more details on the results, see Appendix D.

Moving to the estimation of M87*’s ring parameters, we repeat
the analysis of Section 3.4 using this ring mean image prior. To
fit the M87" data, we use the same sampling procedure as
Section 3.3. The image reconstructions are shown in Figure 5.
Qualitatively, the ring morphology appears similar to Figure 4,
with a circular ring close to ~40 pas and brighter at the bottom.
To extract the ring parameters, we again use VIDA with the same
fourth-order ring template. The parameter estimates relative to
the more agnostic prior are shown in Figure 6. We find consistent
values with the Gaussian profile. However, the uncertainty of the
diameter and width of the ring are reduced by around 50%, and
the brightness asymmetry and position angle are reduced by
10%—-20%. This reduced uncertainty is expected, as the observed
ring more closely matches the assumed p structure, thereby
reducing the variance of the GMRF and lowering the overall
uncertainty in the image reconstructions.

Comparing both the ring and Gaussian profile HIBI imaging
results to the original EHT results (Paper 1V), we find
consistent results, although the uncertainties reported tend to
differ. For both the Gaussian and ring profiles, the measured
uncertainties for the asymmetry and position angle reported by
HIBI tend to be larger than those originally reported by the
EHT. This is likely because the uncertainty reported by the
EHT did not account for the uncertainty in image
reconstruction given a set of hyperparameters. Instead, the
EHT’s hyperparameter surveys focused on estimating changes
in the image structure due to different hyperparameter choices.
HIBI estimates both the image and hyperparameter uncertain-
ties jointly. For the ring width, we find that both the Gaussian
and ring profiles give consistent measurements, unlike the
EHT results, which only reported an upper bound of 20 pas.

To test whether HIBI's ring width estimate is reliable, we
imaged synthetic data of a symmetric delta ring blurred with a
Gaussian with FWHM of 5 pas, 10 pas, 15 pas, and 20 pas
using both the Gaussian and ring profiles. The detailed results
are shown in Appendix C. We found that the Gaussian profile
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Figure 6. Marginal distribution of the extracted ring parameters from the M87" LO band data from the Gaussian (orange) and ring (blue) a priori image model. Overall,
the reconstructed parameters are similar across the two models, but the ring prior produces tighter measurements of all of the ring quantities.The EHT values are from
Paper IV Table 7, and combine the two RML imaging pipelines. The black dotted lines show the mean and gray band the standard deviation, except for the ring width,
where the dotted line and gray region show the upper limit reported by the EHT (Paper I). In general, we find that HIBI is consistent with the reported EHT values.

recovered the correct width for the 10, 15, and 20 pas cases.
However, for the 5 pas synthetic data, the Gaussian profile
reconstruction was biased high, providing a measurement of
8.070:% puas, rather than the actual value of 5.7 pas measured by
VIDA. However, the ring profile u, accurately measured the
ring width for all cases, likely due to the ring profile being a
better match to the true image. Given that the synthetic data
tests demonstrate the reliability of the measurement of the
width of the ring profile, we believe that it is an accurate
measurement of the width of M87* in 2017. Combining the
measurements of M87" across all 4 days and two frequency
bands, the total width estimate is 9.3 £ 1.3 pas.

Turning to the estimation of the parameters of the ring
profile, Table 1 reports the parameter estimates for the peak
radius, characteristic radius, and the inner and outer power-law
slope. Interestingly, we find that the inner slope is quite large,
typically ranging from 10-40, while the outer power-law slope
is closer to between 1.5 and 2.5 for all 4 days. This suggests
that the ring emission tends to peak closer to the inner edge of
the shadow and declines more gradually.

5. Application to VLBA Data

Although the algorithms developed in this paper focus on
black hole imaging with the EHT, they apply to any VLBI array.
To demonstrate HIBI’s capabilities, we now consider VLBA
AGN data. Specifically, we analyzed the AGN OJ287
observations on November 1 at 43 and 86 GHz and on November
2 at 15 GHz. For the 43 and 86 GHz data, we utilize public data
from the Boston University BEAM-ME project (S. Jorstad &
A. Marscher 2016; S. G. Jorstad et al. 2017; Z. R. Weaver et al.
2022). For the 15GHz data, we use public data from the
MOJAVE AGN monitoring program (M. L. Lister et al. 2018).

For the 15 GHz data, a 144 x 112 raster with an FOV of
7.8 x 6 mas was chosen. For the 43 GHz data, a 192 x 96
raster with a 4 x 2 mas raster was used. For the 86 GHz data, a
96 x 96 raster with an FOV of 1 x 1 mas was used. The raster
size was chosen for efficiency when computing the NFFT. For
the total flux of each image, we use the total flux reported from
each experiment: Fr30=7.17Jy, Fgg=6.50]y, and
Fsegr, = 4.58 Jy. Similarly to the above, a first-order GMRF
prior is assumed for each dataset, with the same priors on the
hyperparameters as mentioned in Section 3.4. For the a priori
image structure of the GMRF, we used

poylfy) = (1 = fy) Heore ) + 1y /K. (43)
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Table 1
Ring Profile Estimates LO Band (68% CI)

Param. April 5 April 6 April 10 April 11
2peak (1as) 344411 34,6413 36.0132 36.4+)1
2ro (pias) 32,6114 32.8%12 3421148 346114
Qin 58.872]¢ 628779 5547302 54.77303
out 17483 1.6703 23768 25188
VIDA est.
d (pas) 419+ 424419 432413 43449
w (uas) 8.9714 9.0%3:4 9.171% 9.179%
A 0.201904 0.27+9%; 0.29%993 0.255503
£ (deg) 160.2+8$ 159.01785 177.9%¢1 176.3%¢7

Here (1., (x) is a Gaussian profile with FWHM 400 pas, f;, is
the fraction of the flux in the background component, and K is
the total number of image pixels. This profile corresponds to a
core image with a potential constant background whose
fractional flux, f},, is also a free parameter fit during sampling.
The point of the Gaussian core component is to encourage
0J 287’s core to reside near the phase center of the image,
which the data does not constrain because we refit for
instrumental gain phases as mentioned below. Finally, we used
the exponential map Equation (16) to map from r;; to §; due to
the potentially high-dynamic range image structure.

For simplicity, we used the publicly available calibrated
data. However, we refit the gain solutions to correct for any
residual calibration errors. Given that we used well-calibrated
data, we averaged each dataset over a “scan” using the
scan_average function from Pyehtim.jl and added
0.2% systematic error. Similarly to the M87* analysis, we fit
the gain phases for each station using a von Mises prior with
the concentration parameter 7 °. We used a normal
distribution for the log-gain amplitudes with a mean of zero
and a standard deviation of 0.25 for all stations. The fitting and
sampling strategy is identical to Section 3.3.

Figure 7 shows the resulting fits. The first column shows the
native resolution image reconstruction results at 15, 43, and 86
GHz from top to bottom. For all frequencies, a qualitatively
similar core structure consisting of 2-3 pointlike objects was
recovered using HIBI. The third column shows the image
reconstructions blurred to match the CLEAN images (fourth
column), demonstrating mostly consistent results, although the
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Figure 7. The mean Comrade reconstructions of OJ 287 on 2016 November 1 and 2 at 15 GHz, 43 GHz, and 86 GHz compared to CLEAN images. The first
(leftmost) column shows the Comrade reconstructions results at its native resolution. The second column shows the Comrade reconstructions blurred to match the
beam at the next higher frequency. For example, the second row is the 15 GHz reconstruction blurred to match the resolution of the 43 GHz CLEAN reconstructions.
The third column shows the Comrade reconstructions blurred to match the resolution of the native CLEAN reconstructions shown in the fourth column. Overall, we
find that Comrade’s super resolution of the core is supported by the image reconstructions at higher frequencies.

HIBI images from Comrade images are less noisy. The
second column of the figure shows the 15(43) GHz HIBI
reconstruction, blurred to match the 43(86) GHz CLEAN
resolution in the second(third) rows. For all three frequencies,
we see that the HIBI reconstruction achieves significantly
improved resolution compared to the CLEAN reconstruction
blurred with the nominal beam. The improved resolution
observed at 15 and 43 GHz is similar to the observed structure
at higher frequencies and supports the conclusion that the
improved resolution is faithful to the true source structure.
Note, however, that the improved resolution is significantly
higher near the core region of the image, where we have the
largest effective signal-to-noise ratio (SNR) of the image. For
the more extended emission observed at 15 GHz, the
resolution is more similar to CLEAN reconstructions. The
result demonstrates how effective resolution depends on the
SNR of various image components (A. P. Lobanov 2005).

6. Summary

This paper presents a new perspective on VLBI imaging,
casting it as a hierarchical Bayesian inference problem. HIBI
separates imaging into two distinct types of parameters: the latent
parameters, which are the image itself, and the higher-level or
structural parameters, sometimes referred to as hyperparameters.
Within this hierarchical framework, HIBI can reconstruct both
types of parameters and estimate their joint uncertainty.

To demonstrate HIBI, we implemented a scalable version
using Markov random fields and demonstrated how physical
information can be incorporated, e.g., ring-like morphology,
into the model. The HIBI algorithm itself is available in the
Comrade VLBI imaginsg software, and examples can be
found in documentation.'

To test the applicability of HIBI to various image structures,
we repeated the synthetic data tests from Paper IV. In all cases,

'3 https: / /ptiede.github.io/Comrade.jl /stable/
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after marginalizing over the gain and hyperparameter
parameters, we found that HIBI reconstructs the correct image
morphology and quantitative features for EHT 2017 coverage.
We then applied HIBI to the 2017 EHT data, reproducing the
original EHT results, and measuring M87"’s diameter, width,
brightness asymmetry, and position angle.

While the HIBI posterior can be used to construct images
marginalized over different structural and instrumental
assumptions, we can also marginalize over image fluctuations
to estimate more fundamental parameters. In Section 4 we
demonstrated how we can use HIBI to directly measure
properties of the ring, such as its radius and profile shape,
after marginalizing over different image fluctuations. We
anticipate that this approach to feature extraction will be
highly beneficial for science cases where the rough
morphology or physics is known a priori. For example, the
demographics of marginally resolved black hole shadow
candidates from future missions like the ngEHT
(S. S. Doeleman et al. 2023; M. D. Johnson et al. 2023)
and the Black Hole Explorer (M. D. Johnson et al. 2024),
could utilize the ring modeling in this paper to measure the
radius of the shadow of other black holes. This approach to
imaging could also be expanded to include more physically
interesting models, including semianalytic accretion models
(e.g., A. E. Broderick et al. 2016; D. C. M. Palumbo et al.
2022; D. Chang et al. 2024) where the imaging component
would focus on modeling the stochastic turbulence in
plasmas around black holes.

In Section 5 we applied HIBI to non-EHT data, imaging the
well-known blazar OJ 287 and demonstrating the reliability of
HIBI’s super-resolution by comparing the reconstructions
across frequency for near-simultaneous observations. We
found that HIBI dramatically improved the image reconstruc-
tion resolution in the bright core region, and the core
morphology was confirmed upon examining higher-frequency
data.
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Appendix A
Imaging Parameters

Table 2 shows the parameters used for the image reconstruc-
tions for the various sets of data considered in this paper.

Tiede et al.

Appendix B
Impact of Correlation in the Image Prior

To explore the impact of including correlation in the image
prior, this section will re-image the April 11 lo-band data using
two commonly used priors in Bayesian imaging from
A. E. Broderick et al. (2020a) and D. W. Pesce (2021). The
A. E. Broderick et al. (2020a) inspired prior assumes a log-
uniform prior for the pixel fluxes F with lower bound A and
upper bound B. This prior tends to enforce a high degree of
sparsity in the data and does not have any hyperparameters
other than the number of pixels in the raster and the field of
view of the image. The D. W. Pesce (2021) prior assumes that
F is drawn from a symmetric Dirichlet distribution with
probability density

(B1)

where c is the concentration parameter and enforces a global
notion of smoothness or sparsity. For ¢ = 1, this distribution
corresponds to the uniform distribution on the simplex. For
¢ < 1, the prior tends to promote sparsity in the image, while
for ¢ > 1, it tends to prefer homogeneous images. Given that it
is unclear what to choose for ¢ a priori, we included it as a
hyperparameter during imaging. Similarly to the GMRF prior,
we used a hyperprior that tends to prefer simple images, i.e.,
images with similar flux everywhere, i.e., ¢ > 1. To enforce the
preference for a smooth image, we use an inverse-gamma prior
with a =6, 3=9.25. This distribution has its mode at ¢ ~ 1.3
and has 10% of its probability mass ¢ < 1.0.

As the log-uniform and Dirichlet priors did not include
correlation parameters, we ideally should search over different
FOVs and raster dimensions to find the optimal number of
pixels according to some cost function, such as the Bayesian
evidence or Bayesian leave-one-out cross-validation. How-
ever, in this paper, we instead fixed the values of the field of
view of to 80uas since it was large enough to contain all of the
flux seen in Figure 4. To select the pixel size, we followed
A. E. Broderick et al. (2020a) and used a pixel size of
~12 pas, which corresponds to a 7 x 7 raster. This is far below
the resolution of the GMREF prior in the main text, so we also
considered a raster identical to the GMRF run to demonstrate
the impact of enforcing zero correlation in the image. To
sample the image posterior, we employed the same procedure
from Section 3.3.

The image reconstructions for the log-uniform (left),
Dirichlet (middle), and GMRF (right) priors are shown in
Figure 8. Overall, the qualitative image structure looked
similar except for the uncorrelated priors that use a large FOV
and a large number of pixels. Both lower-resolution and log-
uniform priors produce similar rings in appearance, and
qualitatively, as can be seen in Table 3. However, when the

Table 2
Imaging Parameters

Data w(x, y) n(r) GMRF Order Raster Size FOV

EHT M87"/synth. (Gauss.) g (34) 7Nsp (15) 1 64 x 64 (200 pas, 200 pas)
EHT M87"/synth. (ring) Ly (41) Nsp (15) 1 95 x 95 (200 pas, 200 pas)
VLBA 0J 287 (15 GHz) Loy (43) Nsm (16) 1 143 x 111 (7.8 mas, 6 mas)
VLBA 0J 287 (43 GHz) Loy (43) Nsm (16) 1 191 x 95 (4 mas, 2 mas)
VLBA 0OJ 287 (86 GHz) Loy (43) Nsm (16) 1 95 x 95 (1 mas, 1 mas)
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Figure 8. Comparison between three alternative Bayesian imaging priors.

Table 3
April 6 Ring Parameters
Prior d w A 13
(pas) (pas) (deg)
GMREF Order 1 (u,) 41,0132 1Y 027758 155.2+14¢
GMREF Order 2 (s1,) 414722 11551 0267090 158.01048
Dirichlet (9 x 9) 403t 14840 0.297°9% 177.3%37
Dirichlet (64 x 64) 367198 76738 0331017 1284732
Log-Uniform (9 x 9) 405412 142492 031109 176.914%
Log-Uniform (64 x 64) 534168, 827351 033017 157.0714%°

FOV and number of pixels were increased to match the GMRF
values, both the Dirichlet and log-uniform prior struggled to
identify a unique image structure. For the Dirichlet prior, we
see that the mean image displays a ring-like feature, albeit at a
low significance. For the log-uniform prior, no significant ring-
like feature can be identified in the image reconstruction, and
samples from the posterior look like random noise. This
random noise is due to the extreme overfitting. Since no spatial
correlation is enforced, the number of degrees of freedom
(64 x 64) in the image is much greater than the size of the data
(~200 visibilities). As a result, the data are not very
informative relative to the model, and the posterior starts to
approach the prior distribution. If we view this model within
the HIBI framework, the number of pixels could be included as
a discrete hyperparameter in the model. A. E. Broderick et al.
(2020a) approximately demonstrated that in such a scheme,
high-resolution rasters are heavily disfavored compared to
lower-resolution ones.

Appendix C
EHT and GMREF Prior Sensitivity to On-sky Ring
Thickness

The thickness of M87*’s ring was reported by the EHT as an
upper limit of 20 pas across imaging and modeling methods
(Event Horizon Telescope Collaboration et al. 2019b, 2019c).
Later work (W. Lockhart & S. E. Gralla 2022a, 2022b)

analyzed the 2017 EHT data with a variety of geometric
models and found that the fractional width of the ring model
was <0.25, which, for a ~40 pas ring, gives a width of
~10 pas. However, the authors noted that the fractional width
bound could increase to 0.3-0.4 or 12-16 pas when using a
different approximate closure likelihood.

Using Comrade and the GMRF prior with a Gaussian
profile, we measured the thickness of the ring to be
11.7 £ 0.7 pas averaged over the 4 days and two frequency
bands. Meanwhile, for the ring profile, we found a similar
width of 11.0£0.5 pas. Both of the measurements are
consistent with Event Horizon Telescope Collaboration et al.
(2019c), Event Horizon Telescope Collaboration et al.
(2019b), and W. Lockhart & S. E. Gralla (2022a). However,
due to the finite resolution of the EHT, the width
measurements may be biased. Namely, the EHT is not
sensitive to changes in the ring width below a certain limit.
To test whether HIBI’s ring thickness measurement is reliable
for the scales measured by EHT, we imaged rings with several
different thicknesses. Namely, we used the same azimuthally
symmetric delta ring from Section 3, but blurred using
different Gaussian kernels with FWHM of 5, 10, 15, and
20 pas. We then imaged the said synthetic data using both the
Gaussian and ring profiles.

The results are shown in Figure 9. We found that HIBI
recovers the true diameter and width of the rings for the 10, 15,
and 20 pas rings for both y, and p,. However, for the 5 uas
ring, in Figure 9, the Gaussian profile reconstructions have
widths that are slightly too large compared to the ground truth
measurement 5.1-10 pas. However, the ring profile pu,
recovers the true width of the ring. To ensure that u, was
not biased by the rasterization resolution, we reran the 5 pas
synthetic data with a higher-resolution raster and found
equivalent results. Therefore, this bias is likely due to a
combination of the EHT’s limited resolution and the fact that
the Gaussian profile does not accurately match the true value.

For M87* we found that both the ring and Gaussian profile
provided identical width measurements. Additionally, M87*’s
measured width value more closely matches the 10 pas ring
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Figure 9. Testing the sensitivity of the EHT array to different ring thicknesses for the Gaussian (left group) and ring (right group) mean prior. For each group, the
columns show rings with intrinsic widths 5 pas, 10 pas, 15 pas, and 20 pas from left to right. The first row is the ground truth, the middle row is the mean
reconstruction using the first-order GMRF, and the bottom row shows the posterior density of the ring width versus diameter, with contours denoting the 50%, 90%,
and 95% credible intervals. The measured M87" width and diameter averaged over the observing days and frequency are shown by the orange region.

data, which was recovered for both profiles considered.
Therefore, we believe that HIBI’s estimate of the ring width
of M87" is reliable.

Appendix D
Robustness of the a priori Ring Profile to Different
Structures

In this appendix, we demonstrate that the EHT data is
informative enough to produce non-ring images even when a
ring model is used for w(x,y). This is complementary to the
synthetic data tests in Paper IV, which demonstrate that the
EHT can reconstruct various image structures with minimal
assumptions about the source morphology.

For the data, we used the same synthetic data described in
Section 3. However, for the a priori profile u(x, y), we used the
ring profile Section 4. This profile consists of a ring, although

16

the ring radius and the inner and outer power-law slopes are
included as parameters in the model. Furthermore, the inner
power-law prior has support around zero, meaning that a flat
disk is in the space of prior images.

The imaging results are shown in Figure 10. For the ring
synthetic data, we observed that the ring prior significantly
reduces the uncertainty in the image reconstructions, because
the profile p is a near-perfect model of the image. The disk
reconstruction also improved considerably, as it is included in
the family of u(x,y) profiles. Encouragingly, even when a
ring-like structure was assumed, the double synthetic data
were constructed correctly. This result implies that the EHT
data are informative enough to create non-ring images even
when a ring prior is assumed when using HIBI. Therefore, we
conclude that the ring profile does not rigidly enforce ring-like
images when analyzing the 2017 EHT data.
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Figure 10. Reconstructions of synthetic data from Section 3, but using a ring prior on the mean image of the MRF.

Appendix E
Robustness of M87* Image to Different Gain Assumptions

E.1. Closure Likelihood

Fitting complex visibilities directly means that we require an
instrument model to describe both atmospheric and instru-
mental effects. Since VLBI imaging is typically only interested
in the image posterior p(8|V), another mathematically
equivalent approach is to first marginalize over the instrument
model parameters s:

»©®)
p(V)

L. Blackburn et al. (2020) demonstrated that the marginal
image posterior is equivalent to fitting closure products in the
high-SNR limit when improper flat priors are assumed for the
instrumental gains. This assumption can be viewed as a
maximally conservative view of our a priori knowledge of the
instrument. Therefore, to explore the impact of our instrument
model in Section 3.4, this section considers image reconstruc-
tions using log-closure amplitudes and closure phases.

Closure phases are defined as the argument of the
bispectrum of three measured visibilities:

Yijx = arg Vi Vig Vig,

and provide the gain-invariant phase information of the set of
measured visibilities. Amplitude information can be recovered
by analyzing the closure amplitudes:

[Vl |Vl
| Viel |Vl

pOV) = 22 [pvi6, syps)as. ED

(E2)

ikl = (E3)
Instead, we consider the log-closure amplitudes A = logA.
The reason for this is that log-closure amplitudes are related to
log amplitudes by a linear transformation, and their errors are

better approximated by Gaussian noise than the direct closure
amplitudes (A. R. Thompson et al. 2017; A. E. Broderick et al.
2020b).

For high-SNR measurements (=3), the closure likelihood is
approximately a correlated Gaussian (A. R. Thompson et al.
2017; A. E. Broderick et al. 2020b; L. Blackburn et al. 2020).
For the closure phases, we used the approximate likelihood

L(1)|0) exp(f%Ac*EwAc), (E4)
where A¢; = €'Vt — e/, and 1)y, is the image model, Ith
closure phase. Note that the normalization of this likelihood is
not easily calculable; however, it amounts to a scaling
constant, so it does not affect posterior estimation.

Similarly, for the log-closure amplitudes, we make a similar
high-SNR Gaussian approximation for the likelihood:

L(AIB)  exp (—%AATEAAA). (ES)
Here, AA; = A; — Ay, and Ay is the image model, Ith log-
closure amplitude.

To construct the set of closure phases and log-closure
amplitudes, we follow L. Blackburn et al. (2020). Let L4 and
L, denote the linear maps from log amplitudes/phases to log-
closure amplitudes/phases. We will assume that L is

constructed such that both are full-rank matrices. Then we
have that

o’ r
EAJ/) == LA,w—L‘A?w.

(E6)
V]
The total closure likelihood is therefore given by
pOIV) = pOlyp, A) o L(1|0) L(AIO)p(6). (E7)
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Figure 11. Comparison between complex visibility (blue) and closure-only (orange) reconstructions using the April 6 LO band data. The top row of the images
shows the mean image, while the bottom are random draws from their respective posterior. The right grid of images show the parameter estimates computed using

the VIDA template matching approach described in Section 3

To compare the impact of our gain priors on the images, we
compare the results in Section 3.4 with closure-only fits. To
simplify the comparison, we only show the results for the April
11 LO band. However, we found similar results on other days.
For closure-only reconstructions, we flag any closures whose
SNR <3 to remove closures that violate our Gaussian
likelihood assumption. Otherwise, we use identical fitting
and sampling procedures.

The imaging results are shown in Figure 11. We measured
similar diameters, ellipticities, brightness asymmetries (A), and
position angles (£) for both complex visibilities and closures.
The major difference in the reconstruction is the width or
resolution of the ring. That is, the complex visibility fits appear
sharper, and the inferred ring width posterior is shifted slightly
downward. The difference is likely explained by the loss of
information when moving to closures, and the flagging of low-
SNR points, which tend to remove longer baselines and
baselines near M87"’s amplitude null (Paper VI). Regardless,
this result implies that the measurements of M87*’s properties
in the main text are not significantly biased by the assumed
instrument model.

Appendix F
Eigenvalues of the First-order GMRF

In this section, we prove Equation (24). The precision
matrix Q; for the unit variance first-order GMRF is

0--_1+0G

p

(F1)

To compute its eigenvalues, we first note that G is given by the
Kronecker sum

G=D,®1+1®D,, (F2)
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where D is the tridiagonal matrix,

2 i=],
D; =1-1 i=j+1, (F3)
0 otherwise,

the subscripts denote the number of pixels in the x- and y-
directions, and ® denotes the tensor product.

Given the form of G, its eigenvalues are just the sum of the
eigenvalues of D, and D,, i.e., the eigenvalues of G are given
by

)\SWIZAH_'—)\W 1<n<Nx,1<m<M (F4)
Therefore, to find the spectrum of G, we need to find the
eigenvalues for D. First, note that the eigenvalues of the N x N

matrix

0 -1
-1 ; (F5)
are given by
n
2 cos (71' ), <n<N. (F6)
N+1

This equation can be derived by noting that the characteristic
polynomial of Equation (F5) defines the recurrence relation,

T,(N) = AT 1(N) — T2 (), (F7)
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where Ty=X and we set Tp=1. Let x=\/2, then
Equation (F7) becomes

Iix)=1
Ti(x) =2x

T (x) = 2xT, -1 (x) — (F8)

which are the recurrence relations for Chebyshev polynomials
of the second kind, whose roots give Equation (F6).
Given Equation (F6), the eigenvalues for D are given by

n72(x)7

A=2 + 2cos(7r " ) (F9)
N+ 1
and thus eigenvalues for O, are
M= p 244+ 2cos|7 1 + 2cos|m—2 |,
N+ 1 Ny + 1
(F10)

whose product gives Equation (24).
Note that using a similar computation, one can show that the
eigenvectors of D, are given by

nj)
N+1/)

for the jth component of the nth eigenvector. This implies that
the type 1 discrete sine transform diagonalizes the matrix D.

(W)j o sin (7r (F11)

Appendix G
Extending the GMRF Priors

While the GMRF prior used in the main text is flexible, it
assumes that the noise structure of the image is conditionally
dependent only on the nearest neighbors and that the noise
structure is Gaussian. This appendix demonstrates how you
can relax both constraints.

G.1. Non-Gaussian Markov Random Fields

Recall that the general form of a GMRF is given by
Equation (20). We can easily extend this to non-GRFs, such as
the exponential distribution,

d
Pt @ = | S exp(-K 7O (@)
and T-distribution,
prrlp, O, s)
T'(v/2 + K/2) [detQ 1, ]<V+K>/2
= 14+ — 2
Tw/2) \/(m)K[ e - 92
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where v > 1 denotes the degrees of freedom of the process.

The net effect of the exponential and T-distribution is that
the tails of their density function are heavier than those of the
GMREF. These heavier tails may be more applicable for sources
that have some outliers, such as pointlike features, in the
image.

G.2. Higher-order Markov Random Fields

To generalize any Markov Random fields, including the
exponential and T-distribution MRF, we need to alter the
structure of the precision matrix Q. Following F. Lindgren
et al. (2011), we can easily extend the first-order process by
changing the precision matrix to

0, =70+ kG)", (G3)

where n is a positive integer. In the spectral domain and
assuming Gaussian noise and large raster, this process has the
power spectrum (F. Lindgren et al. 2011)

S(k)d’k (G4)

(K2 + k)’

and is a discrete approximation of the integer-order 2D Matern
Gaussian process, which has autocorrelation function:

iy =—2 | J8al| k.|V8all (G5)
2T\ p p
Here, « =n — 1 and o and p are related to 7 and « by
kK=+8a/p
o= 1 &_ (G6)
7k I'(a 4+ 1)4m

Increasing the order of the GMREF increases the power-law
slope and, thus, the smoothness of the image reconstruction.
Note that the first-order GMRF is not an example of the
Matern process but remains a valid random field on a grid.

The higher-order random field can be easily included in the
exponential and T-distribution random fields by setting Q =
Q,.- The impact of changing the base distribution and order of
the Markov random field is shown in Figure 12 for the 2017
MS87 observations on April 6, LO band. In general, Figure 12
demonstrates that the mean reconstructions are nearly identical
across the different priors. The fractional uncertainty maps are
also very similar across the different priors and orders.
However, the second-order MRF reconstructions tend to be
smoother, which is expected due to its steeper power spectrum
compared to the first-order process.
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Figure 12. Imaging results on April 6 LO band using different MRF priors. The left group shows the results for a Gaussian base distribution, the middle shows an
exponential distribution, and the right shows a T-distribution with degrees of freedom v = 4. The top row shows the results for the first-order MRF, and the bottom

row shows the second-order MRF.
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