
Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma

Differentiable lagrangian shock hydrodynamics with application

to stable shock acceleration of density interfaces

Kevin Korner a, Brandon Talamini a, Julian Andrej a, Michael Tupek a,
William Moses b, Daniel Tortorelli a, Robert Rieben a, Tzanio Kolev a,
Jamie Bramwell a, Daniel White a, Jonathan Belof a, William Schill a

a Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, 94550, California, USA
bUniversity of Illinois Urbana-Champaign, 506 S. Wright St., Urbana, 61801, Illinois, USA

a r t i c l e i n f o

Keywords:
Topology optimization
Hydrophysics
Richtmyer-Meshkov instability
Shock shaping
Interfaces

 a b s t r a c t

We develop a gradient based optimization approach for the equations of compressible, Lagrangian
hydrodynamics and demonstrate how it can be employed to automatically uncover strategies to
control hydrodynamic instabilities arising from shock acceleration of density interfaces. Strategies
for controlling the Richtmyer-Meshkov instability (RMI) are of great benefit for inertial confine-
ment fusion (ICF) where shock interactions with many small imperfections in the density interface
lead to instabilities which rapidly grow over time. These instabilities lead to mixing which, in the
case of laser driven ICF, quenches the runaway fusion process ruining the potential for positive
energy return. We demonstrate that control of these instabilities can be achieved by optimization
of initial conditions with (> 100) parameters. Optimizing over a large parameter space like this
is not possible with gradient-free optimization strategies.
 This requires computation of the gradient of the outputs of a numerical solution to the equa-
tions of Lagrangian hydrodynamics with respect to the inputs.
 We show that the efficient computation of these gradients is made possible via a judicious
application of (i) adjoint methods, the exact formal representation of sensitivities involving par-
tial differential equations, and (ii) automatic differentiation (AD), the algorithmic calculation of
derivatives of functions.
 Careful regularization of multiple operators including artificial viscosity and timestep control
is required.
 We perform design optimization of > 100 parameter energy field driving the Richtmyer
Meshkov instability showing significant suppression while simultaneously enhancing the acceler-
ation of the interface relative to a nominal baseline case.

1. Introduction

Shock hydrodynamics describe the behavior of some of the most complex phenomena in science and technology. Examples abound
including supernovae in astrophysics and inertial or magnetic confinement fusion in the laboratory. The physical processes that may
occur are manifold; however, much of the complexity may be thought of as arising from dynamical instabilities. By way of exam-
ple, the Richtmyer-Meshkov instability (RMI) occurs when a shock wave – a discontinuous jump in the thermodynamic state of the
material – impinges on an interface between two materials of differing densities [1,2]. The resulting dynamics are famously uncon-
ditionally unstable resulting in jetting which rips up the interface and mixes the materials together. For a comprehensive review of
RMI, see [3,4] and the references therein. RMI has held a critical role in both scientific and technological applications including
astrophysics [5], mining [6], many applications of fluid transport [7] including scramjets [5], and laser driven inertial confinement

https://doi.org/10.1016/j.cma.2025.118663
Received 23 September 2025; Received in revised form 19 November 2025; Accepted 8 December 2025

Computer Methods in Applied Mechanics and Engineering 451 (2026) 118663

Available online 31 December 2025
0045-7825/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/cma
https://www.elsevier.com/locate/cma
https://orcid.org/0000-0002-2967-9657

>100

>100

>100

$\beta $

y

\begin {align}\label {eq:infdim-ibvp} \dot {y} (t, \beta) & = f(y(t,\beta), \beta , t) ,\\ y(0, \beta) & = y_0 \, .\end {align}

y

$\beta $

y_0

$\beta $

y

O

\begin {equation}\label {eq:infdim-qoi} O(\beta) = \int _0^T o(y(t,\beta),\beta) dt + \hat {o}(y(T, \beta), \beta)\, ,\end {equation}

o

$\hat {o}$

y

$\beta $

o

$\hat {o}$

y

O

$\beta $

$\beta $

\begin {equation}\delta O(\beta , \delta \beta) = \int _0^T \left (\dfrac {\partial o}{\partial y}(y(t,\beta), \beta) \cdot \delta y(t, \beta , \delta \beta) + \dfrac {\partial o}{\partial \beta }(y(t,\beta),\beta) \cdot \delta \beta \right) dt + \dfrac {\partial \hat {o}}{\partial y} \cdot \delta y(T, \beta , \delta \beta) + \dfrac {\partial \hat {o}}{\partial \beta } \cdot \delta \beta \, . \label {Xeqn2-3}\end {equation}

$\delta y(\beta , \delta \beta)$

\begin {equation}O(\beta) = \int _0^T o(y(t,\beta), \beta) dt + \hat {o}(y(T, \beta), \beta)+ \int _0^T \lambda (t) \cdot (\dot {y}(t, \beta) - f(y(t, \beta), \beta , t)) dt \label {Xeqn3-4}\end {equation}

$\lambda $

y

$\lambda $

$t \in [0,T]$

\begin {align}\label {eq:infdim-sensitivity} \delta O & = \int _0^T \left (\dfrac {\partial o}{\partial y} \cdot \delta y + \dfrac {\partial o}{\partial \beta } \right) dt + \dfrac {\partial \hat {o}}{\partial y}\cdot \delta y(T) + \dfrac {\partial \hat {o}}{\partial \beta } \cdot \delta \beta + \\ & \int _0^T \lambda \cdot \left (\delta \dot {y} - \dfrac {\partial f}{\partial y} \cdot \delta y - \dfrac {\partial f}{\partial \beta }\cdot \delta \beta \right) dt \\ & = \int _0^T \left (\dfrac {\partial o}{\partial y} \cdot \delta y + \dfrac {\partial o}{\partial \beta } \right) dt + \dfrac {\partial \hat {o}}{\partial y}\cdot \delta y(T) + \dfrac {\partial \hat {o}}{\partial \beta } \cdot \delta \beta + \\ & \int _0^T \left [\delta y \cdot \left (- \dot {\lambda } - \left (\dfrac {\partial f}{\partial y} \right)^T \cdot \lambda \right) - \lambda \cdot \dfrac {\partial f}{\partial \beta } \cdot \delta \beta \right] dt + \left . \delta y \cdot \lambda \right |_0^T \\ & = \int _0^T \left (\dfrac {\partial o}{\partial \beta } \cdot \delta \beta - \lambda \cdot \dfrac {\partial f}{\partial \beta }\cdot \delta \beta \right) dt - \delta y(0)\cdot \lambda (0) + \dfrac {\partial \hat {o}}{\partial \beta } \cdot \delta \beta + \\ & \int _0^T \delta y \cdot \left (\dfrac {\partial o}{\partial y} - \dot {\lambda } - \left (\dfrac {\partial f}{\partial y} \right)^T \cdot \lambda \right) dt + \delta y(T) \cdot \left (\dfrac {\partial \hat {o}}{\partial y}(y(T, \beta), \beta) + \lambda (T)\right)\end {align}

$\delta y(0)$

$\delta y_0(\beta , \delta \beta)$

$\beta $

y_0

f

δy

$\delta y(T)$

$\lambda $

\begin {align}\dot {\lambda } & = \dfrac {\partial o}{\partial y} - \lambda \cdot \dfrac {\partial f}{\partial y} \\ \lambda (T) & = -\dfrac {\partial \hat {o}}{\partial y}(y(T, \beta),\beta)\, .\end {align}

\begin {equation}\delta O = \int _0^T \left (\dfrac {\partial o}{\partial \beta } \cdot \delta \beta - \lambda \cdot \dfrac {\partial f}{\partial \beta }\cdot \delta \beta \right) dt - \delta y_0 \cdot \lambda (0) + \dfrac {\partial \hat {o}}{\partial \beta }\cdot \delta \beta \, . \label {Xeqn4-7}\end {equation}

$\lambda $

δO

\begin {align}\label {eq:discretedynamics} y_k & = f_k(y_{k-1}, \beta , \Delta t) ,\\ y_0 & = y_0\, ,\end {align}

k

$k-1$

$y_k = y(t_k)$

$y(t_k)$

Δt

$\beta $

$\beta $

f_k

\begin {equation}\label {eq:discreteqoi} O(\beta) = \sum _{i=1}^N o_k(y_k, \beta , \Delta t) \, .\end {equation}

$\dfrac {\partial O}{\partial \beta }$

δO

O

$\dfrac {\partial O}{\partial \beta }$

\begin {align}O_N(\beta) = \sum _{k = 1}^N o_k(y_k, \beta , \Delta t) + \sum _{k = 1}^N \lambda _k^T (y_k - f_k(y_{k-1}, \beta , \Delta t))\end {align}

$\beta $

\begin {align}\dfrac {\partial O}{\partial \beta } & = \sum _{k=1}^N \left (\dfrac {\partial o_k}{\partial \beta }(y_k, \beta , \Delta t) - \lambda _k^T \dfrac {\partial f_k}{\partial \beta }(y_{k-1}, \beta , \Delta t) \right) - \lambda _1^T \dfrac {\partial f_1}{\partial y_0}(y_0, \beta , \Delta t) \dfrac {\partial y_0}{\partial \beta } + \\ & \left (\dfrac {\partial y_N}{\partial \beta } \right)^T \left [\left (\dfrac {\partial o_N}{\partial y_N}(y_N, \beta , \Delta T)\right)^T + \lambda _N \right] + \\ & \sum _{k=1}^{N-1} \left (\dfrac {\partial y_k}{\partial \beta } \right)^T \left [\left (\dfrac {\partial o_k}{\partial y_k}(y_k, \beta , \Delta t) \right)^T +\lambda _k - \left (\dfrac {\partial f_{k+1}}{\partial y_k}(y_k, \beta , \Delta t) \right)^T \lambda _{k+1} \right] \, .\end {align}

$\dfrac {\partial y_k}{\partial \beta }$

t_N

\begin {equation}\lambda _N = - \left (\dfrac {\partial o_N}{\partial y_N}(y_N, \beta , \Delta t) \right)^T \label {Xeqn6-12}\end {equation}

$y_{N-1}, y_{N-2},\ldots $

\begin {equation}\label {eq:adjointresponse} \lambda _k = \left (\dfrac {\partial f_{k+1}}{\partial y_k} \right)^T \lambda _{k+1} - \left (\dfrac {\partial o_k}{\partial y_k}(y_k, \beta , \Delta t) \right)^T\end {equation}

$\lambda _k$

\begin {equation}\label {eq:qoi-sensitivity} \dfrac {\partial O}{\partial \beta } = \sum _{i=1}^N \left (\dfrac {\partial o_k}{\partial \beta }(y_k, \beta , \Delta t) - \lambda _k^T \dfrac {\partial f_k}{\partial \beta } (y_{k-1}, \beta , \Delta t) \right) - \lambda _1^T \dfrac {\partial f_1}{\partial y_0}(y_0, \beta , \Delta t) \dfrac {\partial y_0}{\partial \beta }\, .\end {equation}

$y_0 = y_0$

t_k

$k = 1,2,\ldots ,N$

y_k

$\lambda _N = - \left (\dfrac {\partial o_N}{\partial y_N}(y_N, \beta , \Delta t)^T \right)$

t_k

$k = N-1, N-2,\ldots ,1$

$\lambda _k$

y_0

$\beta $

$\lambda _1^T \dfrac {\partial f_1}{\partial y_0}(y_0, \beta , \Delta t) \dfrac {\partial y_0}{\partial \beta }$

O_N

\begin {equation}\label {eq:graph_qoi} O_k(\beta) = O_{k-1} + o_{k}(y_N, \beta , \Delta t)\, ,\end {equation}

$k=1,2,\ldots ,N$

$O_0 = 0$

$y_0 = y_0$

t_k

$k = 1,2,\ldots , N$

y_k

O_N

$\bar {\beta }$

$\sum \beta = \dfrac {\partial O_N}{\partial \beta }$

$\bar {y}_k$

$\sum \bar {y}_k = \dfrac {\partial O_N}{\partial y_k}$

$\sum \bar {y}_k = \dfrac {\partial O_N}{\partial y_k}$

$\bar {\beta }$

$\bar {y}_{k-1}$

$\dfrac {\partial O_N}{\partial \beta }$

$\dfrac {\partial O_N}{\partial y_{k-1}}$

$\sum \bar {y}_{k-1} = \dfrac {\partial O_N}{\partial y_{k-1}}$

t_k

t_{k-1}

$\bar {\beta }$

$\dfrac {\partial O_N}{\partial \beta }$

$\dfrac {\partial O_N}{\partial y_0} = \dfrac {\partial O_N}{\partial y_0}$

y_k

$y_k = f_k(y_{k-1}, \beta , \Delta t)$

$O_k = O_{k-1} + o_k(y_k, \beta , \Delta t)$

$y_{k-1} = y_k$

$\bar {y}_k$

$(y_{k-1}, \beta , \Delta t)$

y_k

$\sum \bar {y} = \dfrac {\partial O_N}{\partial y_k}$

$\bar {y}_{k-1}$

$\bar {\beta }$

Δt

$\bar {y}_k$

$\bar {\beta }$

$\bar {y}_k$

$\bar {\beta }$

f

df

f

\begin {align}f(x + h \delta x) = f(x) + h df(x)\cdot \delta x + O(h^2) \, ,\end {align}

δx

$h \in \mathbb {R}$

\begin {align}\label {eq:taylor_test} T(x, h, \delta x) = \|f(x + h \delta x) - f(x) - h df(x) \cdot \delta x \| = O(h^2)\, .\end {align}

df

f

$h T(x, h, \delta x)$

$\ddot {y}(t) + k y(t) + \alpha y(t)^3 + b \dot {y}(t) = 0$

k

$\alpha $

$\beta $

$k = \alpha = b = 1$

$y_{i+1} = y_i + \Delta t f(y_i)$

$\left (\lambda _{i-1} = \lambda _i + \Delta t \lambda _i \cdot \dfrac {\partial f}{\partial y}(y_i)\right)$

$y(0) = 1.1$

$\dot {y}(0) = 5.0$

$T = 10$

$O(y_f) = y(T) + \dot {y}(T)$

h

$\partial \text {FEM}$

$O(1M)$

\begin {align*}\left (\frac {8 \text { bytes}}{\text {parameter}} \right) \left (10^6 \text { parameters} \right) \left (10^6 \text { time steps} \right) \approx 8 \text { terabytes} \, .\end {align*}

1.5%

1

100%

y_0

$O(y_0)$

$\dfrac {\partial O}{\partial y_0}$

\begin {align*}y_0 \leftarrow y_0 - \alpha \dfrac {\partial O}{\partial y_0} \, ,\end {align*}

$\alpha $

y_0

y_0

O

\begin {align*}\text {Position} & - \mathbf {x} \\ \text {Velocity} & - \mathbf {v} \\ \text {Charge} & - q\end {align*}

\begin {align*}\mathbf {F}_i = \sum _{j \neq i} \frac {q_i q_j \mathbf {r}_{ij}}{\| \mathbf {r}_{ij}\|^3} - g \mathbf {e}_2\, ,\end {align*}

i

j

$\mathbf {r}_{ij} = \mathbf {x}_i - \mathbf {x}_j$

g

$\mathbf {e}_2$

\begin {align*}\dot {\mathbf {x}}_i & = \mathbf {v}_i \\ \dot {\mathbf {v}}_i & = \mathbf {F}_i \\ \dot {q}_i & = 0\end {align*}

$q_i = 1.0$

\begin {align}\label {eq:rk4} y_{k+1} & = y_k + \frac {\Delta t}{6}(k_1 + 2 k_2 + 2 k_3 + k_4)\, , \\ k_1 & = f(t_k, y_k)\, , \\ k_2 & = f \left (t_k + \frac {\Delta t}{2}, y_k + \frac {\Delta t}{2} k_1 \right),\\ k_3 & = f \left (t_k + \frac {\Delta t}{2}, y_k + \frac {\Delta t}{2} k_2 \right) ,\\ k_4 & = f \left (t_k + \Delta t, y_k + \Delta t k_3 \right) \, .\end {align}

\begin {align*}O = \frac {1}{2}\sum _{i = 0}^{N_p - 1} \| \mathbf {x}_i^f - \mathbf {x}_i^* \|^2\end {align*}

$\mathbf {x}_i^f$

$\mathbf {x}_i^* = R (\cos \left (\frac {2 \pi i}{N_p} \right) \mathbf {e}_1 - \sin \left (\frac {2 \pi i }{N_p} \right) \mathbf {e}_2)$

R

\begin {align*}M & = \lambda \cdot y_{k+1} \\ \bar {M} & = 1 \\ \bar {y}_{k+1} & = \bar {M} \lambda \\ \bar {k}_4 & = \frac {\Delta t}{6}\bar {y}_{k+1} \\ \bar {k}_3 & = \Delta t \bar {k}_4 \cdot \dfrac {\partial f}{\partial y}(t_k + \Delta t, y_k + \Delta t k_3) + \frac {\Delta t}{3}\bar {y}_{k+1} \\ \bar {k}_2 & = \frac {\Delta t}{2}\bar {k}_3 \cdot \dfrac {\partial f}{\partial y} \left (t_k + \frac {\Delta t}{2}, y_k + \frac {\Delta t}{2} k_2 \right) + \frac {\Delta t}{3}\bar {y}_{k+1} \\ \bar {k}_1 & = \frac {\Delta t}{2}\bar {k}_2 \cdot \dfrac {\partial f}{\partial y} \left (t_k + \frac {\Delta t}{2}, y_k + \frac {\Delta t}{2} k_1\right) + \frac {\Delta t}{6} \bar {y}_{k+1} \\ \bar {y}_k & = \bar {y}_{k+1} + \bar {k}_4 \cdot \dfrac {\partial f}{\partial y}\left (t_k + \Delta t, y_k + \Delta t k_3 \right) + \bar {k}_3 \cdot \dfrac {\partial f}{\partial y}\left (t_k + \frac {\Delta t}{2}, y_k + \frac {\Delta t}{2} k_2 \right) \\ &\quad + \bar {k}_2 \cdot \dfrac {\partial f}{\partial y}\left (t_k + \frac {\Delta t}{2}, y_k + \frac {\Delta t}{2} k_1 \right) + \bar {k}_1 \cdot \dfrac {\partial f}{\partial y}\left (t_k, y_k \right)\, .\end {align*}

$\bar {y}_k$

\begin {align*}\mathbf {x}_i\, ,\mathbf {v}_i\, , q_i\end {align*}

\begin {align}\label {eq:lagrangianhydroequations} \text {Momentum conservation}: \quad \quad \rho \dfrac {d v}{dt} & = \nabla \cdot \sigma ,\\ \text {Mass conservation}: \quad \quad \frac {1}{\rho } \dfrac {d \rho }{dt} & = - \nabla \cdot v \, , \\ \text {Energy conservation}: \quad \quad \rho \dfrac {d e}{d t} & = \sigma : \nabla v \, , \\ \text {Equation of motion}: \quad \quad \dfrac {d x}{d t} & = v\, , \\ \text {Stress Relation}: \quad \quad \sigma & = - p I + \sigma _v \, ,\end {align}

v

e

$\rho $

p

$\sigma $

$\sigma _v$

$\nabla $

$\phi _i^v$

$\phi _i^e$

$\Omega $

v

e

\begin {align}\int _\Omega \rho \dfrac {dv}{dt} \cdot \phi ^v dx & = \int _{\Omega (t)} \left (\nabla \cdot \sigma \right) \cdot \phi ^v dx \\ & = -\int _{\Omega (t)} \sigma : \nabla \phi ^v dx \\ & = -\int _{\Omega _0}\sigma : \left (\nabla _X \phi ^v F^{-1}\right) J dX \\ & = -\int _{\Omega _0} \left (J \sigma F^{-T} \right) : \nabla _X \phi ^v dX \\ & = -\int _{\Omega _0} P:\nabla _X \phi ^v dX\end {align}

$\Omega _0$

$F = \nabla _X(x)$

$J = \det (F)$

P

H^1

x, v

L^2

e

$\det (F)\rho = \rho _0$

$\rho $

$\rho _0$

\begin {align*}p = \frac {\rho _0 C_0^2 \chi }{(1 - s \chi)^2}\left (1 - \frac {\Gamma _0}{2} \chi \right) + \rho _0 \Gamma _0 e\, , \quad \quad \chi = 1 - \frac {\rho _0}{\rho }\end {align*}

$\Gamma _0$

s

\begin {equation}\sigma _v = 0.75 \rho (\gamma _1 l c + \gamma _2 l |\Delta v|) H\left (\Delta v \right) \text {sym}(\nabla v) \label {Xeqn10-21}\end {equation}

$\gamma _i$

l

$l = l_0 \det (F)^{1/\text {dim}}$

l_0

c

$\Delta v = \text {tr} (\nabla v)l$

H

$\text {sym}(\nabla v)$

\begin {align*}H(- x) \rightarrow \text {sigmoid}\left (-\frac {x}{h}\right) \, .\end {align*}

\begin {align*}|x| \rightarrow \text {softabs} (x, h) = \text {silu} \left (\frac {x}{h} \right) + \text {silu}\left (\frac {-x}{h} \right)\end {align*}

h

\begin {align}\label {eq:cont_funcs} \text {sigmoid}(x) & = \frac {1}{1 + \exp (-x)} \\ \text {silu}(x) & = x * \text {sigmoid}(x)\end {align}

$h = 0.2 c$

c

\begin {equation}M = \lambda \cdot \dot {y} = \sum _i \lambda _i^x \dot {x}_i + \sum _i \lambda _i^v \dot {v}_i + \sum _i \lambda _i^e \dot {e}_i \label {Xeqn11-22}\end {equation}

\begin {align}M & = \sum _i \lambda _i^x v_i - \sum _{ij} \lambda _i^v M_{v,ij}^{-1}\int _{\Omega _0} \left (P : \nabla _X \phi _j^v \right) dX + \sum _{ij} \lambda _i^e M_{e,ij}^{-1} \int _{\Omega _0}\left (P:\nabla _X v\right)\phi _e^j dX \\ & = \sum _i \lambda _i^x v_i - \int _{\Omega _0} \left (P:\nabla _X \tilde {\lambda }_v \right) dX + \int _{\Omega _0} \left (P:\nabla _X v \right) \tilde {\lambda }_e dX \\ & = \sum _i \lambda _i^x v_i + \int _{\Omega _0} \left (P:(\tilde {\lambda }_e \nabla _X v - \nabla _X \tilde {\lambda }_v)\right) dX \\ & = \sum _i \lambda _i^x v_i + \int _{\Omega _0} m dX\, ,\end {align}

$\tilde {\lambda }_i = \sum _j M_{ij}^{-1} \lambda _j$

$m = P:\left (\tilde {\lambda }_e \nabla _X v - \nabla _X \tilde {\lambda }_v \right)$

$\xi _i$

$\xi $

M

\begin {equation}\dfrac {\partial M}{\partial v_i} = \lambda _i^x + \int _{\Omega _0} \left (\dfrac {\partial m}{\partial v} \cdot \phi _i^v + \dfrac {\partial m}{\partial \nabla _X v} : \nabla _X \phi _i^v \right) dX\, . \label {Xeqn12-24}\end {equation}

m

m

$\rho _0 = 10$

$\rho _0 = 1$

$\Omega _1 \subset \Omega \text { s.t. } X < 1$

$e(X \in \Omega _1,0) = 0.15$

$e(X \notin \Omega _1, 0) = 0.0$

$t=7$

$\Omega _1$

\begin {align}\label {eq:rmi-objective} O = \frac {1}{2} \lambda _1 (x_1 - x_\text {outer})^2 + \frac {\lambda _2}{\delta + |v_\text {ave}|}\end {align}

x_i

X

i

v_i

X

i

$x_\text {outer} = \text {ave}(x_2, x_3)$

$v_\text {ave} = \text {ave}(v_1, v_2, v_3)$

$\lambda _i \geq 0$

\begin {align*}x_\text {outer} = x_1 \, , \quad \quad & \text {Flatten the interface} \\ v_\text {ave} = \pm \infty \, , \quad \quad & \text {Accelerate interface}\end {align*}

$\lambda _i > 0$

$v_\text {ave} \to +\infty $

\begin {align}\label {eq:tracer} \mathbf {x}_i & = \mathbf {x}_i(X, x, v, e) ,\\ \mathbf {v}_i & = \mathbf {v}_i(X, x, v, e) ,\\ e_i & = e_i(X, x, v, e) \, ,\end {align}

\begin {align*}\dfrac {\partial O}{\partial X} & = \sum _i\left (\dfrac {\partial O}{\partial \mathbf {x}_i} \cdot \dfrac {\partial \mathbf {x}_i}{\partial X} + \dfrac {\partial O}{\partial \mathbf {v}_i }\cdot \dfrac {\partial \mathbf {v}_i}{\partial X} + \dfrac {\partial O}{\partial e_i} \dfrac {\partial e_i}{\partial X}\right) ,\\ \dfrac {\partial O}{\partial x} & = \sum _i\left (\dfrac {\partial O}{\partial \mathbf {x}_i} \cdot \dfrac {\partial \mathbf {x}_i}{\partial x} + \dfrac {\partial O}{\partial \mathbf {v}_i }\cdot \dfrac {\partial \mathbf {v}_i}{\partial x} + \dfrac {\partial O}{\partial e_i} \dfrac {\partial e_i}{\partial x}\right) ,\\ \dfrac {\partial O}{\partial v} & = \sum _i\left (\dfrac {\partial O}{\partial \mathbf {x}_i} \cdot \dfrac {\partial \mathbf {x}_i}{\partial v} + \dfrac {\partial O}{\partial \mathbf {v}_i }\cdot \dfrac {\partial \mathbf {v}_i}{\partial v} + \dfrac {\partial O}{\partial e_i} \dfrac {\partial e_i}{\partial v}\right) ,\\ \dfrac {\partial O}{\partial e} & = \sum _i\left (\dfrac {\partial O}{\partial \mathbf {x}_i} \cdot \dfrac {\partial \mathbf {x}_i}{\partial e} + \dfrac {\partial O}{\partial \mathbf {v}_i }\cdot \dfrac {\partial \mathbf {v}_i}{\partial e} + \dfrac {\partial O}{\partial e_i} \dfrac {\partial e_i}{\partial e}\right)\end {align*}

X, x, v, e

$\Omega _1$

$t=0$

$t = 7$

$\Omega _1$

$t=0$

$\Omega _1$

$\Omega _1$

\begin {align}\int _{\Omega |_{t=0}} e d\Omega = C ,\\ e(X, t = 0) \geq 0 \, .\end {align}

\begin {equation}g(y) = 0\, . \label {Xeqn13-29}\end {equation}

δy

\begin {equation*}g(y + \delta y) = 0\, .\end {equation*}

\begin {equation}\dfrac {\partial g}{\partial y} \cdot \delta y = g_y \cdot \delta y= 0 \, . \label {Xeqn14-30}\end {equation}

$\delta \tilde {y}$

\begin {equation}\delta \tilde {y} = \left (I - \frac {1}{\left | g_y \right |^2} g_y \otimes g_y\right) \delta y \, . \label {Xeqn15-31}\end {equation}

\begin {align}g(\mathbf {e}) = \int _\Omega e d\Omega \end {align}

\begin {align}\dfrac {\partial g}{\partial e_i} = \int _\Omega \dfrac {\partial e}{\partial e_i} d\Omega = \int _\Omega \phi _i d\Omega \, .\end {align}

$\delta \hat {e} = P(\delta e)$

$e \in L^2(\Omega , t)$

e

e_i

\begin {align}\delta \hat {e} = \text {ReLU}(e + \delta e) - e\, ,\end {align}

$\text {ReLU}(x) = \max (0, x)$

δe

e

\begin {align}\delta \hat {e} = R(\delta e, e)\, ,\end {align}

δe

$\delta e \leftarrow R(\delta e, e)$

$\delta e \leftarrow P(\delta e)$

$= E(e + \delta e)$

$E(x) = \text {max}(\text {ReLU}(-x))$

$L^\infty $

P

d

n

$C(d + n, d)$

$C(d+n, d)$

n

2

10

66

6

6

5151

51

$N (1 + n) = C(d + n, d)$

\begin {equation*}\text {Cost Ratio} = \frac {C(d + n, d)}{2\thinspace N} = \frac {1 + n}{2} \, .\end {equation*}

\begin {align}O_N(\beta) = \sum _{k = 1}^N o_k(y_k, \beta , \Delta t) + \sum _{k = 1}^N \lambda _k^T (y_k - f_k(y_{k-1}, \beta , \Delta t))\end {align}

$\beta $

\begin {align}\dfrac {\partial O_N}{\partial \beta } = \sum _{k=1}^N \left (\dfrac {\partial o_k}{\partial y_k} \dfrac {\partial y_k}{\partial \beta } + \dfrac {\partial o_k}{\partial \beta } \right) + \sum _{k=1}^N \lambda _k^T \left (\dfrac {\partial y_k}{\partial \beta } - \dfrac {\partial f_k}{\partial y_{k-1}} \dfrac {\partial y_{k-1}}{\partial \beta } - \dfrac {\partial f_k}{\partial \beta } \right)\end {align}

\begin {align}\dfrac {\partial O_N}{\partial \beta } = \sum _{k=1}^N \left (\dfrac {\partial o_k}{\partial y_k} \dfrac {\partial y_k}{\partial \beta } + \dfrac {\partial o_k}{\partial \beta } \right) + \sum _{k=1}^N \lambda _k^T \left (\dfrac {\partial y_k}{\partial \beta } - \dfrac {\partial f_k}{\partial \beta }\right) - \sum _{k=0}^{N-1} \lambda _{k+1}^T \dfrac {\partial f_{k+1}}{\partial y_{k}} \dfrac {\partial y_{k}}{\partial \beta }\end {align}

\begin {align}\dfrac {\partial O_N}{\partial \beta } & = \dfrac {\partial o_N}{\partial y_N} \dfrac {\partial y_N}{\partial \beta } + \dfrac {\partial o_N}{\partial \beta } + \lambda _N^T \left (\dfrac {\partial y_N}{\partial \beta } - \dfrac {\partial f_N}{\partial \beta } \right) + \sum _{k=1}^{N-1} \left (\dfrac {\partial o_k}{\partial y_k}\dfrac {\partial y_k}{\partial \beta } + \dfrac {\partial o_k}{\partial \beta } + \lambda _k^T \left (\dfrac {\partial y_k}{\partial \beta } - \dfrac {\partial f_k}{\partial \beta }\right) - \lambda _{k+1}^T \dfrac {\partial f_{k+1}}{\partial y_k} \dfrac {\partial y_k}{\partial \beta } \right) - \lambda _1^T \dfrac {\partial f_1}{\partial y_0} \dfrac {\partial y_0}{\partial \beta }\end {align}

$\partial y_k/\partial \beta $

\begin {align}\dfrac {\partial O_N}{\partial \beta } = \left (\dfrac {\partial o_N}{\partial y_N} + \lambda _N^T \right)\dfrac {\partial y_N}{\partial \beta } + \sum _{k=1}^{N-1} \left (\dfrac {\partial o_k}{\partial y_k} + \lambda _k^T - \lambda _{k+1}^T \dfrac {\partial f_{k+1}}{\partial y}\right) \dfrac {\partial y_k}{\partial \beta } + \sum _{k=1}^{N}\left (\dfrac {\partial o_k}{\partial \beta } - \lambda _k^T \dfrac {\partial f_k}{\partial \beta }\right) - \lambda _1^T \dfrac {\partial f_1}{\partial y_0} \dfrac {\partial y_0}{\partial \beta }\end {align}

\begin {equation}F_i = \int _{\Omega } \left (f(x, y(x), \nabla y(x)) \cdot \phi _i(x) + f'(x, y(x), \nabla y(x)) \cdot \nabla \phi _i(x) \right) dx \label {Xeqn16-A.7}\end {equation}

y

$\phi $

∇y

$\nabla \phi $

H^1

\begin {align}M = \sum _i \lambda _i F_i & = \sum _i \lambda _i \int _\Omega \left (f(x, y(x), \nabla y(x) \cdot \phi _i(x) + f'(x, y(x, \nabla y(x)) \cdot \nabla \phi _i(x)))\right) dx \\ & = \int _\Omega \left (f(x, y(x), \nabla y(x)) \cdot \lambda (x) + f'(x, y(x), \nabla y(x)) \cdot \nabla \lambda (x)\right) dx \, .\end {align}

$m(x, y, \nabla y, \lambda , \nabla \lambda) = f(x, y, \nabla y) \cdot \lambda + f'(x, y, \nabla y) \cdot \nabla \lambda $

\begin {equation}M = \sum _i \lambda _i F_i = \int _\Omega m(x, y(x), \nabla y(x), \lambda (x), \nabla \lambda (x)) dx \label {Xeqn17-A.9}\end {equation}

y_i

\begin {align}\dfrac {\partial }{\partial y_i} \left (\sum _k \xi _k F_k \right) = \sum _k \xi _k \dfrac {\partial F_k}{\partial y_i} & = \int _\Omega \left (\dfrac {\partial m}{\partial y} \cdot \phi _i(x) + \dfrac {\partial m}{\partial \nabla y} \cdot \nabla \phi _i(x) \right) dx\end {align}

$y(x) = \sum _i y_i \phi _i(x)$

m

$\dfrac {\partial m}{\partial y}$

$\dfrac {\partial m}{\partial \nabla y}$

$f(v, y) = v \cdot \dot {y}$

v

y

x,v,e

$y = y_0 + h \delta y$

h

δy

$e(\Omega _1, 0) = 0.5$

https://orcid.org/0000-0002-9449-3728
https://orcid.org/0000-0001-7661-4840
https://orcid.org/0000-0003-3568-410X
https://orcid.org/0000-0003-2627-0642
https://orcid.org/0000-0001-5346-5520
https://orcid.org/0000-0003-3526-0649
https://orcid.org/0000-0002-2810-3090
https://orcid.org/0000-0001-8597-5234
https://orcid.org/0000-0001-8461-2829
https://orcid.org/0000-0001-6551-7439
https://orcid.org/0000-0003-0950-7433
https://doi.org/10.1016/j.cma.2025.118663
https://doi.org/10.1016/j.cma.2025.118663
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2025.118663&domain=pdf

K. Korner et al.

fusion (ICF) [8,9] such as is pursued at the National Ignition Facility (NIF). Control over RMI induced jetting is thus a grand
challenge.

Significant recent effort has gone into optimization involving hydrodynamic control over jetting including gas gun driven exper-
iments [10], and explosively driven linear shaped charges [11,12]. These strategies typically proceed by identifying a small number
of parameters describing a physical system of interest, performing a large suite of calculations, fitting a machine-learned model to
predict certain interesting quantities from a simulation, and then using the resulting model to optimize or otherwise interrogate
the behavior of the system [13,14]. It is even possible to develop an analytic solution [15] to a reduced and simplified version of
this problem. A closely related class of problems is the inference of material parameters from complex extreme pressure materials
science experiments such as those conducted on pulsed power [16,17] or laser [18] platforms. These techniques are powerful but
they are currently limited to a small number of design variables; however, the general case – i.e. control over an arbitrary interface
with potentially > 100 degrees of freedom remains unsolved. The fundamental reason for this has to do with basic characteristics
of optimization theory; optimization is very expensive for large numbers of variables in the absence of gradient information and
the computation of the objective function gradients in these problems rely on the derivative of the hydrocode outputs with respect to
their inputs. In general optimization problems where the forward solve requires significant computation tends to be limited to O(10)
optimization parameters while the inclusion of gradients can readily handle far greater than O(100) degrees of freedom much more
efficiently (see [19] and the references therein). A brief demonstration of the scaling benefit of gradients can be found in Section (A.1).
Computing this gradient in the context of Lagrangian Shock Hydrodynamics is a challenging task and is one of the key contributions
of this paper.

The subject of gradient based optimization involving partial differential equations has seen extensive study. For instance, topology
optimization is a field of engineering and mathematics which deals with optimizing the material layout within a given design space
to achieve the best performance under specified conditions and has been applied to studying many different problems [20–22]. Basic
adjoint calculations can be found in a variety of texts (see, for instance, Akerson[21], Plessix[23], Zhang and Sandu[24], Zhang
et al. [25,26]). This has seen significant recent development by some of the authors [27] for nonlinear problems in solid mechanics.
Recently, a number of authors have begun applying these techniques to challenging problems in high energy physics [28].

In this article, we present a computational approach that efficiently computes the derivatives of predicted outputs from a high-
order finite element Lagrangian hydrodynamics code with respect to its inputs, using a combination of adjoint theory and automatic
differentiation. We apply this method to a complex interface stability problem, which requires differentiating the time-stepping
update, the (partially) assembled force vector, and the zero-dimensional physics at the quadrature points.

The remainder of this article will be organized as follows: (i) gradient based optimization of time dependent problems (Section 2),
(ii) discretization by finite elements of Lagrangian shock hydrodynamics (Section 3), and (iii) the application of this technique to the
suppression of RMI suggesting a tantalizing pathway to stable shock acceleration of density interfaces (Section 4).

2. Gradient based optimization of time dependent problems

In this section, we introduce several concepts that are necessary for our ultimate goal of computing gradients of a Lagrangian
hydrodynamics discretization. First, we discuss the two main strategies used to develop adjoints of time dependent problems: differ-
entiate then discretize and discretize then differentiate. We argue for the latter case; however, we include the fundamental framwork
for both as they provide valuable insight into the structure of the problem. Next we discuss methods for verifying the computation of
gradients by checking the error order of convergence. We then introduce automatic differentiation (AD), quantities of interest (QoIs)
and check-pointing for time dependent problems. Finally, we consider a simple example involving multi-particle systems to illustrate
the combination of these components.

2.1. Differentiate then discretize

One method of conducting an adjoint calculation is to differentiate then discretize [23]. This approach is also sometimes refered
to as the infdim approach because all continuous fields are varied on their respective function spaces. We find a system of equations
which can be solved to find the derivative, then we discretize the system in time in order to do calculations. We have a design field
𝛽 and a response 𝑦 that are linked through an initial boundary value problem IBVP such that

𝑦̇(𝑡, 𝛽) = 𝑓 (𝑦(𝑡, 𝛽), 𝛽, 𝑡), (1)

𝑦(0, 𝛽) = 𝑦0 . (2)

As seen above, 𝑦 is both an implicit and explicit function of 𝛽, with the exception of the initial condition 𝑦0, which may be an explicit
function of 𝛽. We refer to (1) as the primal analysis and 𝑦 as the primal response. Upon solving the IBVP, we evaluate a Quantity of
Interest (QoI) 𝑂 that might be the cost or constraint function in an optimization, or the error function in an inverse or identification
analysis. We define

𝑂(𝛽) = ∫

𝑇

0
𝑜(𝑦(𝑡, 𝛽), 𝛽)𝑑𝑡 + 𝑜̂(𝑦(𝑇 , 𝛽), 𝛽) , (3)

where the integrand 𝑜, 𝑜̂ is a differentiable function of 𝑦 and 𝛽. In this notation, 𝑜 is a running objective while 𝑜̂ is a terminal objective.
The solution of the primal problem for 𝑦 and integration of 𝑂 generally proceed in tandem. We call this the forward pass. To solve
the optimization/inverse/identification problem we use nonlinear programming algorithms to determine the 𝛽 that minimizes the

Computer Methods in Applied Mechanics and Engineering 451 (2026) 118663

2

K. Korner et al.

cost/error function. These iterative algorithms require gradients/variations of the QoIs to efficiently update 𝛽 and to verify optimality.
The variation of our QoI becomes

𝛿𝑂(𝛽, 𝛿𝛽) = ∫

𝑇

0

(

𝜕𝑜
𝜕𝑦

(𝑦(𝑡, 𝛽), 𝛽) ⋅ 𝛿𝑦(𝑡, 𝛽, 𝛿𝛽) + 𝜕𝑜
𝜕𝛽

(𝑦(𝑡, 𝛽), 𝛽) ⋅ 𝛿𝛽
)

𝑑𝑡 + 𝜕𝑜̂
𝜕𝑦

⋅ 𝛿𝑦(𝑇 , 𝛽, 𝛿𝛽) + 𝜕𝑜̂
𝜕𝛽

⋅ 𝛿𝛽 . (4)

We use the adjoint method to eliminate the implicit response variation 𝛿𝑦(𝛽, 𝛿𝛽) in the above expression. In this method, we aug-
ment (3) such that

𝑂(𝛽) = ∫

𝑇

0
𝑜(𝑦(𝑡, 𝛽), 𝛽)𝑑𝑡 + 𝑜̂(𝑦(𝑇 , 𝛽), 𝛽) + ∫

𝑇

0
𝜆(𝑡) ⋅ (𝑦̇(𝑡, 𝛽) − 𝑓 (𝑦(𝑡, 𝛽), 𝛽, 𝑡))𝑑𝑡 (5)

The adjoint response 𝜆, which is presently an arbitrary field, is used to convert the vector valued dynamics from Eq. (1) into a scalar
and integrate it into the objective. Because the solution 𝑦 satisfies the dynamics, the augmented term equals zero. We integrate the
product of Eq. (1) and 𝜆 over time to leverage the equality (1) at all time 𝑡 ∈ [0, 𝑇]. Taking the variation of the above, integrating by
parts, rearranging and dropping the arguments for conciseness gives

𝛿𝑂 = ∫

𝑇

0

(

𝜕𝑜
𝜕𝑦

⋅ 𝛿𝑦 + 𝜕𝑜
𝜕𝛽

)

𝑑𝑡 + 𝜕𝑜̂
𝜕𝑦

⋅ 𝛿𝑦(𝑇) + 𝜕𝑜̂
𝜕𝛽

⋅ 𝛿𝛽+ (6)

∫

𝑇

0
𝜆 ⋅

(

𝛿𝑦̇ −
𝜕𝑓
𝜕𝑦

⋅ 𝛿𝑦 −
𝜕𝑓
𝜕𝛽

⋅ 𝛿𝛽
)

𝑑𝑡 (7)

= ∫

𝑇

0

(

𝜕𝑜
𝜕𝑦

⋅ 𝛿𝑦 + 𝜕𝑜
𝜕𝛽

)

𝑑𝑡 + 𝜕𝑜̂
𝜕𝑦

⋅ 𝛿𝑦(𝑇) + 𝜕𝑜̂
𝜕𝛽

⋅ 𝛿𝛽+ (8)

∫

𝑇

0

[

𝛿𝑦 ⋅

(

−𝜆̇ −
(

𝜕𝑓
𝜕𝑦

)𝑇
⋅ 𝜆

)

− 𝜆 ⋅
𝜕𝑓
𝜕𝛽

⋅ 𝛿𝛽

]

𝑑𝑡 + 𝛿𝑦 ⋅ 𝜆|𝑇0 (9)

= ∫

𝑇

0

(

𝜕𝑜
𝜕𝛽

⋅ 𝛿𝛽 − 𝜆 ⋅
𝜕𝑓
𝜕𝛽

⋅ 𝛿𝛽
)

𝑑𝑡 − 𝛿𝑦(0) ⋅ 𝜆(0) + 𝜕𝑜̂
𝜕𝛽

⋅ 𝛿𝛽+ (10)

∫

𝑇

0
𝛿𝑦 ⋅

(

𝜕𝑜
𝜕𝑦

− 𝜆̇ −
(

𝜕𝑓
𝜕𝑦

)𝑇
⋅ 𝜆

)

𝑑𝑡 + 𝛿𝑦(𝑇) ⋅
(

𝜕𝑜̂
𝜕𝑦

(𝑦(𝑇 , 𝛽), 𝛽) + 𝜆(𝑇)
)

(11)

where we note that 𝛿𝑦(0) equals the explicity known variation 𝛿𝑦0(𝛽, 𝛿𝛽), i.e. 𝛽 can describe 𝑦0 as well as the function 𝑓 . To eliminate
the implicitly defined variation 𝛿𝑦 and 𝛿𝑦(𝑇) we now require heretofore arbitrary adjoint variable 𝜆 to solve the adjoint terminal value
boundary value problem

𝜆̇ = 𝜕𝑜
𝜕𝑦

− 𝜆 ⋅
𝜕𝑓
𝜕𝑦

(12)

𝜆(𝑇) = − 𝜕𝑜̂
𝜕𝑦

(𝑦(𝑇 , 𝛽), 𝛽) . (13)

In this way, the sensitivity (6) reduces to

𝛿𝑂 = ∫

𝑇

0

(

𝜕𝑜
𝜕𝛽

⋅ 𝛿𝛽 − 𝜆 ⋅
𝜕𝑓
𝜕𝛽

⋅ 𝛿𝛽
)

𝑑𝑡 − 𝛿𝑦0 ⋅ 𝜆(0) +
𝜕𝑜̂
𝜕𝛽

⋅ 𝛿𝛽 . (14)

The solution of the adjoint terminal value problem for 𝜆 and backward integration of 𝛿𝑂 generally proceed in tandom. We call this
the reverse pass.

Due to the fact that no discretization was necessary in order to describe both the forward and reverse problems mathematically,
it presents itself nicely for theoretical work in the subject. This makes it ideal for studying properties of solutions using analytical
methods. Unfortunately, the vast majority of problems are not analytically integrable in time, so, in order to represent the solution,
we must choose time integrators for both the forward and reverse passes as well as any integrators we use for calculating QoIs.

2.2. Discretize then differentiate

In this work, we argue its best to discretize then differentiate for the case of nonlinear partial differential equations representing
temporal evolution of conserved physical quantities. We cannot generally solve (1) analytically so we resort to some discretization
scheme, e.g. Crank-Nicolson, Runge-Kutta, etc. so that (1) becomes

𝑦𝑘 = 𝑓𝑘(𝑦𝑘−1, 𝛽,Δ𝑡), (15)

𝑦0 = 𝑦0 , (16)

where the subscripts 𝑘 and 𝑘 − 1 refer to the times that the quantities are evaluated, e.g. 𝑦𝑘 = 𝑦(𝑡𝑘) contains the degrees-of-freedom
that are used to approximate 𝑦(𝑡𝑘), Δ𝑡 is the fixed time-step interval, and 𝛽 contains the parameters that are used to discretize 𝛽. Note
that 𝑓𝑘 is the discrete timestep update which is found by composing the dynamics from Eq. (1) with the particular time integration
scheme. The above equations hold for explicit dynamics, however they can easily be modified to account for implicit updates. We

Computer Methods in Applied Mechanics and Engineering 451 (2026) 118663

3

K. Korner et al.

likewise cannot integrate the QoI analytically so we again resort to a discretization scheme, e.g. trapezoid, Simpson, etc. so that (3)
becomes

𝑂(𝛽) =
𝑁
∑

𝑖=1
𝑜𝑘(𝑦𝑘, 𝛽,Δ𝑡) . (17)

Similar remarks apply for the resolution of the adjoint problem (6) and the evaluation of the sensitivity which is now the derivative
𝜕𝑂
𝜕𝛽

 rather than the variation 𝛿𝑂.
Note that in the previous analysis, we require consistency in space-time discretization schemes for primal analysis, evaluation of

the objective 𝑂, the adjoint analysis, and evaluation of 𝜕𝑂
𝜕𝛽
. If the integration schemes for each of these operations are not chosen

to be internally consistent (i.e. the spatial discretization is identical and the reverse time integration is appropriately adjoint to the
forward time integrator), then each calculation will generate a discretization error which will propagate through to the gradient,
see [29] and the references therein. The notion of a “good” or accurate derivative will be discussed in Section (2.4.1).

In the discretize and differentiate adjoint sensitivity analysis, we follow the same steps as in the infdim formulation, but we replace
the infdim (1) with its discretized counterparts. Mimicking the infdim analysis with the augment QoI becomes

𝑂𝑁 (𝛽) =
𝑁
∑

𝑘=1
𝑜𝑘(𝑦𝑘, 𝛽,Δ𝑡) +

𝑁
∑

𝑘=1
𝜆𝑇𝑘 (𝑦𝑘 − 𝑓𝑘(𝑦𝑘−1, 𝛽,Δ𝑡)) (18)

Note that we omit an explicit terminal objective because it can be integrated into the sum. Differentiating with respect to 𝛽 and
rearranging leads to

𝜕𝑂
𝜕𝛽

=
𝑁
∑

𝑘=1

(

𝜕𝑜𝑘
𝜕𝛽

(𝑦𝑘, 𝛽,Δ𝑡) − 𝜆𝑇𝑘
𝜕𝑓𝑘
𝜕𝛽

(𝑦𝑘−1, 𝛽,Δ𝑡)
)

− 𝜆𝑇1
𝜕𝑓1
𝜕𝑦0

(𝑦0, 𝛽,Δ𝑡)
𝜕𝑦0
𝜕𝛽

+ (19)

(

𝜕𝑦𝑁
𝜕𝛽

)𝑇
[

(

𝜕𝑜𝑁
𝜕𝑦𝑁

(𝑦𝑁 , 𝛽,Δ𝑇)
)𝑇

+ 𝜆𝑁

]

+ (20)

𝑁−1
∑

𝑘=1

(

𝜕𝑦𝑘
𝜕𝛽

)𝑇
[

(

𝜕𝑜𝑘
𝜕𝑦𝑘

(𝑦𝑘, 𝛽,Δ𝑡)
)𝑇

+ 𝜆𝑘 −
(

𝜕𝑓𝑘+1
𝜕𝑦𝑘

(𝑦𝑘, 𝛽,Δ𝑡)
)𝑇

𝜆𝑘+1

]

. (21)

Intermediate steps of the above calculation can be found in Section (A.2) We eliminate the terms involving implicitly defined deriva-
tives 𝜕𝑦𝑘

𝜕𝛽
 by solving the terminal value adjoint problem: at 𝑡𝑁 we equate

𝜆𝑁 = −
(

𝜕𝑜𝑁
𝜕𝑦𝑁

(𝑦𝑁 , 𝛽,Δ𝑡)
)𝑇

(22)

and then we proceed backward in time evaluating 𝑦𝑁−1, 𝑦𝑁−2,… where

𝜆𝑘 =
(

𝜕𝑓𝑘+1
𝜕𝑦𝑘

)𝑇
𝜆𝑘+1 −

(

𝜕𝑜𝑘
𝜕𝑦𝑘

(𝑦𝑘, 𝛽,Δ𝑡)
)𝑇

(23)

Upon computing 𝜆𝑘, the sensitivity reduces to the readily evaluated expression

𝜕𝑂
𝜕𝛽

=
𝑁
∑

𝑖=1

(

𝜕𝑜𝑘
𝜕𝛽

(𝑦𝑘, 𝛽,Δ𝑡) − 𝜆𝑇𝑘
𝜕𝑓𝑘
𝜕𝛽

(𝑦𝑘−1, 𝛽,Δ𝑡)
)

− 𝜆𝑇1
𝜕𝑓1
𝜕𝑦0

(𝑦0, 𝛽,Δ𝑡)
𝜕𝑦0
𝜕𝛽

. (24)

We now summarize the computations. In the forward pass, we assign the initial conditions 𝑦0 = 𝑦0 and then, for each time step
𝑡𝑘 for 𝑘 = 1, 2,… , 𝑁 , we evaluate 𝑦𝑘 from (15) and accumulate the QoI of (17). In the reverse pass, we assign the terminal condition
𝜆𝑁 = −

(

𝜕𝑜𝑁
𝜕𝑦𝑁

(𝑦𝑁 , 𝛽,Δ𝑡)𝑇
)

 and then, for each time step 𝑡𝑘 for 𝑘 = 𝑁 − 1, 𝑁 − 2,… , 1, we evaluate the adjoint repsonse 𝜆𝑘 from (23)

and accumulate the QoI sensitivity of (24). If the initial condition 𝑦0 is a function of 𝛽, then we lastly subtract 𝜆𝑇1
𝜕𝑓1
𝜕𝑦0

(𝑦0, 𝛽,Δ𝑡)
𝜕𝑦0
𝜕𝛽

from the sensitivity. The main benefit of the discretize then differentiate approach lies in the automatic consistency of all the discretiza-
tion methods used. In particular, we require numerical consistency in how the objective functions are evaluated, the forward time
integration scheme, and particularly the reverse time integration scheme. As will be shown in Section (2.4.1), if integration schemes
do not match, non-zero errors will propagate through our solutions. This is avoided when discretizing then differentiating as all the
integration schemes are kept consistent and there is no choice in backward integration scheme.

2.3. Graph network approach.

The graph network approach builds from the discretize then differentiate sensitivity analysis in the previous section. To begin we
express (17) 𝑂𝑁 using the forward calculation as

𝑂𝑘(𝛽) = 𝑂𝑘−1 + 𝑜𝑘(𝑦𝑁 , 𝛽,Δ𝑡) , (25)

Computer Methods in Applied Mechanics and Engineering 451 (2026) 118663

4

K. Korner et al.

Fig. 1. Forward pass: QoI computation.

for 𝑘 = 1, 2,… , 𝑁 with the understanding that 𝑂0 = 0. In this way, the forward pass can be summarized via the graph depicted in
Fig. 1.

Indeed, as just mentioned, in the forward pass we assign the initial condition 𝑦0 = 𝑦0 and then for each time step 𝑡𝑘 for 𝑘 = 1, 2,… , 𝑁
we evaluate 𝑦𝑘 from (15) and accumulate the QoI of (25) (Fig. 2).

In calculating the gradients of the objective with respect to our intitial states and design parameters, we slightly modify the
previously discussed discretize then differentiate reverse pass. Mathematically, the graph and discretize then differentiate approaches
are identical, we merely introduce some notational conveniences and intermediate quantities. The main benefit of a graph network
approach is that complex sets of function calls can be considered as nodes of a graph. Then, we simply need to traverse the graph
backwards to calculate derivatives. This process allows for additional flexibility when considering complex physics and dynamical
systems. In so far as the notation is concerned, we use the over-line to denote summands of the partial derivatives of 𝑂𝑁 wrt. the
overlined quantities quantities, e.g. all 𝛽 are summed to evaluate ∑ 𝛽 =

𝜕𝑂𝑁
𝜕𝛽

, likewise all 𝑦̄𝑘 are summed to evalutate
∑

𝑦̄𝑘 =
𝜕𝑂𝑁
𝜕𝑦𝑘

.

Note that the ∑ 𝑦̄𝑘 =
𝜕𝑂𝑁
𝜕𝑦𝑘

 are not know; they are annihilated by the backward recursion adjoint sensitivity whereupon the are

replaced by 𝛽 and 𝑦̄𝑘−1 summands to
𝜕𝑂𝑁
𝜕𝛽

 and 𝜕𝑂𝑁
𝜕𝑦𝑘−1

. The unknown sensitivity ∑ 𝑦̄𝑘−1 =
𝜕𝑂𝑁
𝜕𝑦𝑘−1

 from time step 𝑡𝑘 is reset for time
step 𝑡𝑘−1 and subsequently eliminated whereas the sensitvity summands 𝛽 are continually added for all time steps. These backward
recursions continue until we are left with 𝜕𝑂𝑁

𝜕𝛽
 and 𝜕𝑂𝑁

𝜕𝑦0
=

𝜕𝑂𝑁
𝜕𝑦0

, the latter being the sensitivity wrt. the initial conditions. Note that
in the reverse pass, sums occur at the nodes where information splits in the forward pass. For instance, in the forward pass, the output
𝑦𝑘 of the 𝑦𝑘 = 𝑓𝑘(𝑦𝑘−1, 𝛽,Δ𝑡) analysis block is input into both the 𝑂𝑘 = 𝑂𝑘−1 + 𝑜𝑘(𝑦𝑘, 𝛽,Δ𝑡) QoI accumulation block and the 𝑦𝑘−1 = 𝑦𝑘
increment block; in the reverse pass 𝑦̄𝑘 is output from QoI accumulation and increment blocks and summed before it is input to the
analysis block.

The beauty of the graph is that it automatically organizes the sensitivity computations. For example, the analysis block takes as
input (𝑦𝑘−1, 𝛽,Δ𝑡) and spits out 𝑦𝑘. In the sensitivity analysis, the input to this block is

∑

𝑦̄ =
𝜕𝑂𝑁
𝜕𝑦𝑘

 and the output is 𝑦̄𝑘−1 and 𝛽 (as Δ𝑡
is a constant). The derivatives 𝑦̄𝑘 and 𝛽 can be evaluated with AD. The exact implementation of AD at this level depends somewhat
on the type and scale of the problem. In simple problems, the whole 𝑦̄𝑘 and 𝛽 can be found by writing the forward problem as a
simple function call and using a code based automatic differentiation library to parse the derivatives of these calls. In more complex
problems, such as those involving HPC, it is important to control the scale where software based AD tools are used in order to avoid
holding large states in memory and avoid non-differentiable function calls such as scatter and gather operations. We demonstrate
the specific implementation for large scale problems in Section 4 where automatic differentiation libraries are used in scalable and

Computer Methods in Applied Mechanics and Engineering 451 (2026) 118663

5

K. Korner et al.

Fig. 2. Reverse pass: Adjoint computation.

memory efficient ways. Summarizing, the graph organizes the sequence of the computations for the sensitivity analysis and AD
evaluates the necessary derivatives for the sensitivity analysis; thus fully automating the sensitivity analysis.

2.4. Computational considerations

While the above calculations are fundamental for building and studying the sensitivity analysis of a dynamical system, there are
aspects we consider outside of the scope of the sensitivity analysis.

2.4.1. Assessment of gradient behavior
Our metric for what we consider to be an “accurate” gradient is whether it satisfies the famous Taylor remainder convergence

test. Assume we are given a function 𝑓 and another function 𝑑𝑓 which is claimed to be the derivative of 𝑓 . We can verify this claim
by Taylor expanding it and checking the convergence.

𝑓 (𝑥 + ℎ𝛿𝑥) = 𝑓 (𝑥) + ℎ𝑑𝑓 (𝑥) ⋅ 𝛿𝑥 + 𝑂(ℎ2) , (26)

if we choose 𝛿𝑥 to be normalized and ℎ ∈ ℝ to be small. This can also be written as
𝑇 (𝑥, ℎ, 𝛿𝑥) = ‖𝑓 (𝑥 + ℎ𝛿𝑥) − 𝑓 (𝑥) − ℎ𝑑𝑓 (𝑥) ⋅ 𝛿𝑥‖ = 𝑂(ℎ2) . (27)

Therefore, in order to verify whether the given function 𝑑𝑓 is the derivative of the function 𝑓 , we verify not only that the error goes
to zero, but that we have quadratic convergence of the left hand side of Eq. 27. Additionally, we verify that the direct error in the
gradient (ℎ𝑇 (𝑥, ℎ, 𝛿𝑥)) also goes to zero.

To demonstrate, consider a nonlinear spring with dynamics given by 𝑦̈(𝑡) + 𝑘𝑦(𝑡) + 𝛼𝑦(𝑡)3 + 𝑏𝑦̇(𝑡) = 0. The parameters 𝑘, 𝛼, and
𝛽 are the spring constant, hardening, and viscosity parameters, respectively. For simplicity, we set 𝑘 = 𝛼 = 𝑏 = 1. To integrate the
system in time, we use a forward Euler integration scheme where 𝑦𝑖+1 = 𝑦𝑖 + Δ𝑡𝑓 (𝑦𝑖) For the backwards solve of the differentiate then

Computer Methods in Applied Mechanics and Engineering 451 (2026) 118663

6

K. Korner et al.

Fig. 3. Error for the Taylor test for various perturbation magnitudes ℎ. The red line demonstrates incorrect scaling when mismatched integration
schemes are used to calculate derivatives over a timestep. The black line (using the graph network approach) shows agreement with the blue line,
indicating correct derivatives. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

discretize approach, we use a backwards Euler scheme which uses the forward step
(

𝜆𝑖−1 = 𝜆𝑖 + Δ𝑡𝜆𝑖 ⋅
𝜕𝑓
𝜕𝑦

(𝑦𝑖)
)

. Note that this choice
of backwards integration scheme is equivalent to if we had used an implicit forward method; however, because we use standard
forward Euler, we introduce a numerical inconsistency.

We integrate this system with initial conditions of 𝑦(0) = 1.1, 𝑦̇(0) = 5.0 and integrate until 𝑇 = 10, define a scalar objective function
𝑂(𝑦𝑓) = 𝑦(𝑇) + 𝑦̇(𝑇), and conduct the above Taylor test and plot the Taylor error in Fig. 3. We note that the graph network approach
is numerically equivalent to the discretize then differentiate approach and thus gives the same gradient values. As can be seen, the
graph network has proper convergence compared to that of the differentiate then discretize approach. Additionally, the differentiate
then discretize gradient doesn’t properly converge in the correct sense. This can present many problems in higher order optimization
schemes, as accurate gradients are necessary.

Note that the discrepancy came in the choice of backwards integrator for the reverse problem in the differentiate then discretize
method. While choosing the “correct” integrator when using a forward Euler method can easily be remedied, when using more
complex time integrators, namely higher order Runge-Kutta schemes, the choice is not as obvious.

Various works, see [30–33], discuss the topic of consistency of discrete adjoint time integration schemes. While there are analytic
solutions for some cases, namely one-step integration schemes, a general solution for complex multi-step methods is not known to
exist, especially in the case of adaptive timestepping.

The graph network approach, consequently, presents a significant advantage over the differentiate then discretize approach in that
the choice of integrator for the reverse pass is exactly specified.

2.4.2. Automatic differentiation
Automatic differentiation (also known as “auto-diff”, “auto-grad”, or simply “AD”) is a computational technique used to efficiently

and accurately evaluate derivatives of mathematical functions. It plays a crucial role in various fields such as machine learning,
optimization, physics, simulations, and scientific computing. The most popular AD libraries are PyTorch [34], TensorFlow [35], and
Jax [36], specifically due to their integrations into popular machine learning libraries.

The basic idea behind AD is to decompose functions into a sequence of elementary operations (such as addition, multiplication,
exponentiation, etc.), for which the derivatives are well known. Then by applying the chain rule recursively to these operations, AD
can compute the derivative of the entire function with respect to its input variables. This technology enables rapid prototyping of
tools involving differentiation, and can readily differentiate complex functions.

AD is extremely useful when developing analytical tools. Consider the case where AD is currently being used extensively: machine
learning. Without AD tools, users of ML packages such as PyTorch and Tensorflow would have to manually specify gradients of their
loss functions with respect to the neural network architecture. While this is not an impossible task, it would put severe limitations on
who can use these tools, how quickly different models can be tested, and introduce many avenues for error. Arguably, the integration
of automatic differentiation is the impetus which allowed the field to thrive as it has today.

AD is also important in expanding the scope of problems we can study. In many cases, especially problems with iteration, composi-
tion, recursion, branches, and complex algebras, taking derivatives by hand is not feasible and, as with the previous point, extremely
prone to error. A much more convenient approach is to define computational methods which can handle the complexity and accurately
traverse the computational graphs.

Automatic differentiation, however, is not without its faults and drawbacks. Often, naive implementations of AD can lead to inef-
ficient run times and massive memory usages. This is because, unless otherwise specified, the tool must hold the entire computational
graph, including sensitivities, in memory all at once. In large scale problems, particularly those involving dynamic simulations of
hydrodynamic systems, this is cost prohibitive. As a result, we must control how we apply automatic differentiation and carefully
consider various aspects such as memory allocation and code structure.

Computer Methods in Applied Mechanics and Engineering 451 (2026) 118663

7

K. Korner et al.

Fig. 4. Amount of additional compute time added (measured in terms of the time of the forward solve) added given a memory budget written as a
percentage of the total number of states from the forward solve. The different lines are for different numbers of total states from the forward solve.

For the following work, we use the automatic differentiation library Enzyme ([37,38]). This framework presents a few benefits.
First, LLVM compilers allow us to use various programming languages in conjunction with this tool, opening up opportunities such
as Julia and C++. Next, compile time optimization creates fast and reliable tools which are essential to generate code which can
run at large scales on HPC.

For the work in Section 3, we use the MFEM library ([39]) due to its excellent scaling to HPC as well as various features such
as partial assembly, sum factorization, native support for arbitrarily high order elements. Additionally, it is written in C++, which
allows us to use Clang compilers (https://llvm.org/) to link with the Enzyme library for automatic differentiation. A differentiable
finite element library named 𝜕FEM ([40]) is currently in production to natively support automatic differentiation through the finite
element function call stack.

2.4.3. Data storage/checkpointing
When calculating adjoints for nonlinear dynamial systems it is necessary to access the state data of every timestep from the forward

solve during the reverse pass. This presents an issue in complex problems with many time steps and fine discretizations, as memory
(RAM) can quickly become a limitation. For example, a typical hydrodynamic problem can involve solving for a system with a few
million parameters. This system may require 𝑂(1𝑀) time steps to fully resolve. Assuming we are storing each parameter in double
precision,

(

8 bytes
parameter

)

(

106 parameters)(106 time steps) ≈ 8 terabytes .

This, unfortunately, is already exceeding the memory resources of current compute systems, and the problem becomes worse with
more complex multiphysics and long duration simulations.

One option for addressing this issue is to selectively store data to disk and load it into RAM when needed. This process is often
inefficient in practice due to the relatively low bandwidth and high latency of disk reads and writes, leading to bad performance of
both the forward and reverse solves. Another option is the use a checkpointing scheme. The strategy here is to only save a relatively
small number of simulation states in (relatively higher bandwidth) RAM. On the reverse pass, the data for each state going back in
time is required for the adjoint calculation. When a state is reached that is not currently stored in RAM, the most recently saved
checkpoint is fetched from RAM and the subsequent data states are recomputed by integrating forward in time again until the desired
state is available. Algorithms for constructing an optimal schedule for checkpointing and fetching to minimize the required number
of recompute steps have been developed in: Griewank and Walther[41], which provides an optimal method when the number of time
steps is known up front; Wang et al. [42], which has good performance even when the number of steps is initially unknown (e.g., when
the stable timestep evolves as the simulation progresses); and Herrmann and [43] (and other references within), where different levels
of available memory with varying costs and resources are considered. Here we use the dynamic checkpointing algorithm from Wang
et al. [42] to eventually allow for the possibility of varying timesteps, and we are currently only checkpointing to a single level of
memory, namely, RAM. The tradeoff between memory and compute time in our framework can be seen in Fig. 4. When traversing
the states backwards in order to accumulate the gradients, we will reach states which are not saved in the checkpoint buffer. When
this occurs, we load the last checkpointed state and reconstruct the current needed state, saving and recalculating as necessary as per
the checkpointing algorithm. In all cases shown, by storing only 1.5% of the total data in an optimal manner, we incur an additional
cost of about 1 forward solve for recomputing the required states. The additional cost decays roughly linearly to zero in the limit
where 100% of the data is stored.

2.4.4. Gradient based optimization
The above methods allow us to calculate the derivative of some objective function with respect to the initial (generalized) state.

Access to this gradient, coupled with a gradient descent algorithm, allows us to minimize (or maximize) the given objective function.

Computer Methods in Applied Mechanics and Engineering 451 (2026) 118663

8

https://llvm.org/

K. Korner et al.

Fig. 5. Graph outline of the optimization cycle starting with an initial guess 𝑦0. The solution is propagated from 𝑦0 to 𝑂. If the objective is not
sufficiently converged, then the bottom path is taken to calculate the gradient. Then, the filters can be applied then the initial guess can be updated.
This process can be iterated until convergence.

For example, given an initial state 𝑦0, we can calculate the forward solve to evaluate 𝑂(𝑦0), then the adjoint solve to evaluate 𝜕𝑂𝜕𝑦0
.

We then update the initial state with

𝑦0 ← 𝑦0 − 𝛼 𝜕𝑂
𝜕𝑦0

,

where 𝛼 is a chosen gradient descent parameter. An outline of this problem structure can be seen in (Fig. 5).
Many of these optimization problems follow a similar structure (i) problem setup which defines physics and initial conditions, (ii)

forward pass which advances time-stepping algorithm, (iii) objective function which maps final state(s) to a scalar value which we
wish to minimize, and (iv) adjoint calculation via reverse pass where the gradient is accumulated.

2.4.5. Filters
After completing the adjoint solve loop as shown in Fig. 5, there is a step where filters are applied. A filter, in this case, is any

operation which changes the full gradient vector. A few common uses of filters for optimization problems can be regularity (enforcing
continuity or differentiability), subsampling (reducing the DOFs to a subset), or physical constraints. Historically this this step was
used to eliminate the ubiquitous checkerboarding modes present in density based design optimization [44]. The choice of filter is
problem dependent and outside of the scope of this work, however it plays a vital role in the performance and implementation of many
optimization algorithms [45]. A more complete discussion of filters in PDE constrained optimization can be found in Bourdin[45],
Sigmund[46], Zhou et al. [47] and many more works.

2.4.6. Example: optimizing multi-particle systems
For an introductory example, we introduce a system of interacting particles with two-body interactions. We label particles with

degrees of freedom
Position − 𝐱
Velocity − 𝐯
Charge − 𝑞

Each particle is being acted upon by Coulomb and gravitational forces of the form

𝐅𝑖 =
∑

𝑗≠𝑖

𝑞𝑖𝑞𝑗𝐫𝑖𝑗
‖𝐫𝑖𝑗‖3

− 𝑔𝐞2 ,

where the subscripts 𝑖 and 𝑗 indicate individual particles, 𝐫𝑖𝑗 = 𝐱𝑖 − 𝐱𝑗 , 𝑔 is the gravitational constant, and 𝐞2 is the direction of the
gravitational force. The inclusion of the Coulomb interaction causes the dynamics of the system to be nonlinear. The dynamics of the
system are given by

𝐱̇𝑖 = 𝐯𝑖
𝐯̇𝑖 = 𝐅𝑖

𝑞̇𝑖 = 0

Particles are initialized at random (non-overlapping) locations with zero initial velocity and uniform charge 𝑞𝑖 = 1.0. The forward
trajectory can be found by composing the physics with a time integration scheme. We choose a 4th order Runge-Kutta scheme
summarized by

𝑦𝑘+1 = 𝑦𝑘 +
Δ𝑡
6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) , (28)

𝑘1 = 𝑓 (𝑡𝑘, 𝑦𝑘) , (29)

𝑘2 = 𝑓
(

𝑡𝑘 +
Δ𝑡
2
, 𝑦𝑘 +

Δ𝑡
2
𝑘1
)

, (30)

Computer Methods in Applied Mechanics and Engineering 451 (2026) 118663

9

K. Korner et al.

𝑘3 = 𝑓
(

𝑡𝑘 +
Δ𝑡
2
, 𝑦𝑘 +

Δ𝑡
2
𝑘2
)

, (31)

𝑘4 = 𝑓
(

𝑡𝑘 + Δ𝑡, 𝑦𝑘 + Δ𝑡𝑘3
)

. (32)

As an illustrative objective function, let’s define a quantity of interest of the form

𝑂 = 1
2

𝑁𝑝−1
∑

𝑖=0
‖𝐱𝑓𝑖 − 𝐱∗𝑖 ‖

2

where 𝐱𝑓𝑖 is the final position of the particle, 𝐱∗𝑖 = 𝑅(cos
(

2𝜋𝑖
𝑁𝑝

)

𝐞1 − sin
(

2𝜋𝑖
𝑁𝑝

)

𝐞2) and 𝑅 is the radius of the circle we wish to target.
The goal is to minimize the above function with respect to the initial state variables. We will specifically consider the case where we
are only allowed to control the initial velocity of each particle and not the position or charge. The initial derivative of the objective
function can be found either through manual calculation or by using automatic differentiation.

The adjoint of this integration scheme can be summarized as
𝑀 = 𝜆 ⋅ 𝑦𝑘+1
𝑀̄ = 1

𝑦̄𝑘+1 = 𝑀̄𝜆

𝑘̄4 =
Δ𝑡
6
𝑦̄𝑘+1

𝑘̄3 = Δ𝑡𝑘̄4 ⋅
𝜕𝑓
𝜕𝑦

(𝑡𝑘 + Δ𝑡, 𝑦𝑘 + Δ𝑡𝑘3) +
Δ𝑡
3
𝑦̄𝑘+1

𝑘̄2 =
Δ𝑡
2
𝑘̄3 ⋅

𝜕𝑓
𝜕𝑦

(

𝑡𝑘 +
Δ𝑡
2
, 𝑦𝑘 +

Δ𝑡
2
𝑘2
)

+ Δ𝑡
3
𝑦̄𝑘+1

𝑘̄1 =
Δ𝑡
2
𝑘̄2 ⋅

𝜕𝑓
𝜕𝑦

(

𝑡𝑘 +
Δ𝑡
2
, 𝑦𝑘 +

Δ𝑡
2
𝑘1
)

+ Δ𝑡
6
𝑦̄𝑘+1

𝑦̄𝑘 = 𝑦̄𝑘+1 + 𝑘̄4 ⋅
𝜕𝑓
𝜕𝑦

(

𝑡𝑘 + Δ𝑡, 𝑦𝑘 + Δ𝑡𝑘3
)

+ 𝑘̄3 ⋅
𝜕𝑓
𝜕𝑦

(

𝑡𝑘 +
Δ𝑡
2
, 𝑦𝑘 +

Δ𝑡
2
𝑘2
)

+ 𝑘̄2 ⋅
𝜕𝑓
𝜕𝑦

(

𝑡𝑘 +
Δ𝑡
2
, 𝑦𝑘 +

Δ𝑡
2
𝑘1
)

+ 𝑘̄1 ⋅
𝜕𝑓
𝜕𝑦

(

𝑡𝑘, 𝑦𝑘
)

.

By calculating 𝑦̄𝑘 using the above algorithm, we have the incremental adjoint. Note that the above can be implemented manually,
or calculated using an automatic differentiation package, defining custom gradients for the adjoints of the physics. By accumulating
the incremental adjoint from the final time step to the initial time step using methods described in 2.3, we obtain the gradient with
respect to the objective function. Using the methods described in the previous sections, we begin with a set of initial states

𝐱𝑖 , 𝐯𝑖 , 𝑞𝑖
We can simulate the forward problem by using the 4th Order Runge-Kutta described in Eq. 28. In the solve, we cache all of the states
in the forward solve. We then calculate the objective function and its initial gradient (with respect to the final state). Then, apply the
incremental adjoint to march backwards in time (using the cached data) until the initial time step. At the end of this process, we have
the gradient of the objective function with respect to the initial positions, velocities, and charges. We can then use an optimization
algorithm, in our case conjugate gradient descent, to update the initial conditions. Because we only wish to optimize with respect to
the initial velocities, we only update those quantities and zero out the perturbations of the positions and charges. This process can
be repeated until convergence. The results are demonstrated in Fig. 6.

While optimization of the positions of a system of particles seems straightforward, it actually illuminates many features of dynamic
optimization. Inspection of the numerical solution of this particular particle system gives chaotic results in the informal sense that
seemingly small changes may yield significantly different outcomes. We have found that there is often an interesting sweet spot in
such hyperbolic systems wherein usage of gradient information is exceptionally meaningful; systems which are either very chaotic
or not chaotic at all are rather boring from a gradient optimization perspective, whereas systems which are somewhat chaotic can
be readily controlled employing gradient optimization. While we have no formal proof of this behavior, we suspect that this trend is
actually quite general.

3. Finite element method discretization of Lagrangian hydrodynamics

In this section, we apply the techniques discussed in the previous section to develop a method for computing adjoints of the
equations of Lagrangian Hydrodynamics. We focus on a particular high-order discretization method which is described in Dobrev
et al. [48]. This requires special considerations for features like artificial viscosity and time step estimates. We review the spatial
discretization of these equations into finite element bases, and the computation of the adjoint of each of these terms.

3.1. Summary of equations

The equations of Lagrangian Hydrodynamics (see [48,49] for considerably more background and detail) describe the flow of
continuous matter under the action of extreme pressures and energy deposition. The differential forms of the equations of motion, as

Computer Methods in Applied Mechanics and Engineering 451 (2026) 118663

10

K. Korner et al.

Fig. 6. (a) Plots of the unoptimized (black) and optimized solutions (blue). (b) Plot of the error in the conjugate gradient solve demonstrating linear
slope in the log-y scale. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

defined in an Eulerian reference frame are:
Momentum conservation ∶ 𝜌𝑑𝑣

𝑑𝑡
= ∇ ⋅ 𝜎, (33)

Mass conservation ∶ 1
𝜌
𝑑𝜌
𝑑𝑡

= −∇ ⋅ 𝑣 , (34)

Energy conservation ∶ 𝜌𝑑𝑒
𝑑𝑡

= 𝜎 ∶ ∇𝑣 , (35)

Equation of motion ∶ 𝑑𝑥
𝑑𝑡

= 𝑣 , (36)

Stress Relation ∶ 𝜎 = −𝑝𝐼 + 𝜎𝑣 , (37)

where 𝑣 is the material velocity, 𝑒 is the internal energy per unit density, 𝜌 is the current density, 𝑝 is the pressure calculated through
an equation of state (EOS), 𝜎 is the stress, and 𝜎𝑣 is an artificial viscosity Additionally, ∇ is the spatial differential operator with
respect to the current configuration. Note that the stress is often a nonlinear function of the state and therefore the dynamics are
nonlinear. The artificial viscosity regularizes strong shocks which otherwise would have a thickness significantly below the spatial
resolution of the computational mesh [50]. This topic will be discussed in more detail in Section 3.2.

To generate the weak form, we multiply by test functions 𝜙𝑣
𝑖 and 𝜙𝑒

𝑖 then integrate over the domain Ω where the superscripts
𝑣 and 𝑒 indicate the kinematic and thermodynamic function spaces, respectively. For brevity, we only demonstrate the momentum
conservation equation with similar steps for the energy conservation equation. We have

∫Ω
𝜌𝑑𝑣
𝑑𝑡

⋅ 𝜙𝑣𝑑𝑥 = ∫Ω(𝑡)
(∇ ⋅ 𝜎) ⋅ 𝜙𝑣𝑑𝑥 (38)

= −∫Ω(𝑡)
𝜎 ∶ ∇𝜙𝑣𝑑𝑥 (39)

= −∫Ω0

𝜎 ∶
(

∇𝑋𝜙
𝑣𝐹−1)𝐽𝑑𝑋 (40)

= −∫Ω0

(

𝐽𝜎𝐹−𝑇) ∶ ∇𝑋𝜙
𝑣𝑑𝑋 (41)

= −∫Ω0

𝑃 ∶ ∇𝑋𝜙
𝑣𝑑𝑋 (42)

where Ω0 is the initial/reference configuration, 𝐹 = ∇𝑋 (𝑥) is the deformation gradient, 𝐽 = det(𝐹) is the Jacobian, and 𝑃 is the Piola-
Kirchhoff stress. Each spatial dimension is discretized using 3rd order 𝐻1 elements in kinematic variables (𝑥, 𝑣) and 2nd order 𝐿2

elements with positive Bernstein polynomials in the thermodynamic variable 𝑒.
The pull-back operation into the reference configuration carries a few advantages. First, the mass matrix has constant coefficients

in time. This significantly reduces the total amount of computation because the mass matrix only needs to be calculated and inverted
once and can be re-used as long the mesh is not moving relative to the reference configuration. A consequence of this is that the relation
for density becomes algebraic through mass conservation as det(𝐹)𝜌 = 𝜌0 where 𝜌, 𝜌0 are the densities in the current and reference

Computer Methods in Applied Mechanics and Engineering 451 (2026) 118663

11

K. Korner et al.

configuations, respectively, and we no longer need to solve for the mass conservation component of Eq. (33). Next, anisotropic
material properties do not need to be advected as material points have fixed locations in the mesh.

We use a Mie-Guneisen equation of state of the form

𝑝 =
𝜌0𝐶2

0𝜒

(1 − 𝑠𝜒)2

(

1 −
Γ0
2
𝜒
)

+ 𝜌0Γ0𝑒 , 𝜒 = 1 −
𝜌0
𝜌

where Γ0 is the Gruneisen parameter and 𝑠 is the linear Hugoniot slope coefficient.

3.2. Artificial viscosity

As stated in the previous section, artificial viscosity is critically important when considering shock propagation in order to pre-
vent spurious oscillations without damping out the features of the shock. Various works, see [50–52], discuss the formulations and
derivations. We use the particular form of artificial viscosity [48,52] given by

𝜎𝑣 = 0.75𝜌(𝛾1𝑙𝑐 + 𝛾2𝑙|Δ𝑣|)𝐻(Δ𝑣)sym(∇𝑣) (43)

where 𝛾𝑖 are strength parameters, 𝑙 is a length scale associated with an element (𝑙 = 𝑙0 det(𝐹)1∕dim), 𝑙0 is the initial length scale, 𝑐 is
the wave speed in the element, Δ𝑣 = tr(∇𝑣)𝑙 is the velocity jump across the element, and 𝐻 is the Heaviside function. This form has
been demonstrated to sufficiently resolve the shock front while not overly damping the rest of the behavior; although we note that
for truly high-order dissipation, which we will not consider here. Additional limiting is required, such as the hyperviscosity treatment
shown in Bello-Maldonado et al. [53]. The choice of artificial viscosity, however, does not change the mathematical formulation, as
the automatic differentiation tools allow for seamless transition between functional forms without having to recalculate derivatives.

One complication of this function in the context of calculating adjoints is the compression switch. In standard methods, we use a
Heaviside function which is both non-differentiable, but also discontinuous. This is partially remedied by being multiplied by sym(∇𝑣),
which raises this to being continuous but non-differentiable. We will discuss the issue of non-differentiability in a future work. For
now, we remedy this by replacing all non-differentiability with a suitable smoothing function. In the case of the Heaviside function,
we use a sigmoid scaled with the wave speed

𝐻(−𝑥) → sigmoid
(

−𝑥
ℎ

)

.

Additionally, the absolute value in the quadratic term must replaced with a soft absolute value. This is done by
|𝑥| → softabs(𝑥, ℎ) = silu

(𝑥
ℎ

)

+ silu
(−𝑥

ℎ

)

where silu is the sigmoid linear unit and ℎ is a length scale. Exact definitions of these functions can be seen in Eq. (A.6).
In both these cases we choose ℎ = 0.2𝑐 to properly scale the transition in the smoothed regions to properly account for the behavior

yet maintain differentiability where 𝑐 is a representative wave speed.

3.3. Vector Jacobian products with automatic differentiation

Many of the above rely on a vector-Jacobian product (VJP) to propagate and accumulate the gradient. In many cases we will use
this synonymously with the term adjoint product. Recall from Section (2.2) that we require the computation of the VJP of the time
derivatives. To generate the VJP, we construct the global inner product

𝑀 = 𝜆 ⋅ 𝑦̇ =
∑

𝑖
𝜆𝑥𝑖 𝑥̇𝑖 +

∑

𝑖
𝜆𝑣𝑖 𝑣̇𝑖 +

∑

𝑖
𝜆𝑒𝑖 𝑒̇𝑖 (44)

where the vector values refer to the discrete state vectors associated with those degrees of freedom.
If we plug in the semi-discrete forms of the equations of motion, we have

𝑀 =
∑

𝑖
𝜆𝑥𝑖 𝑣𝑖 −

∑

𝑖𝑗
𝜆𝑣𝑖𝑀

−1
𝑣,𝑖𝑗 ∫Ω0

(

𝑃 ∶ ∇𝑋𝜙
𝑣
𝑗

)

𝑑𝑋 +
∑

𝑖𝑗
𝜆𝑒𝑖𝑀

−1
𝑒,𝑖𝑗 ∫Ω0

(

𝑃 ∶ ∇𝑋𝑣
)

𝜙𝑗
𝑒𝑑𝑋 (45)

=
∑

𝑖
𝜆𝑥𝑖 𝑣𝑖 − ∫Ω0

(

𝑃 ∶ ∇𝑋 𝜆̃𝑣
)

𝑑𝑋 + ∫Ω0

(

𝑃 ∶ ∇𝑋𝑣
)

𝜆̃𝑒𝑑𝑋 (46)

=
∑

𝑖
𝜆𝑥𝑖 𝑣𝑖 + ∫Ω0

(

𝑃 ∶ (𝜆̃𝑒∇𝑋𝑣 − ∇𝑋 𝜆̃𝑣)
)

𝑑𝑋 (47)

=
∑

𝑖
𝜆𝑥𝑖 𝑣𝑖 + ∫Ω0

𝑚𝑑𝑋 , (48)

where we 𝜆̃𝑖 =
∑

𝑗 𝑀
−1
𝑖𝑗 𝜆𝑗 and 𝑚 = 𝑃 ∶

(

𝜆̃𝑒∇𝑋𝑣 − ∇𝑋 𝜆̃𝑣
) is the local inner product. Note that we project the discrete adjoints 𝜉𝑖 onto

their continuous space counterparts 𝜉 by using the shape functions associated with those fields. By taking the derivative of 𝑀 with
respect to the primal fields, we are able to construct the VJP of the time derivatives.

For example, if we take the derivative with respect to the velocity state variable, we have
𝜕𝑀
𝜕𝑣𝑖

= 𝜆𝑥𝑖 + ∫Ω0

(

𝜕𝑚
𝜕𝑣

⋅ 𝜙𝑣
𝑖 +

𝜕𝑚
𝜕∇𝑋𝑣

∶ ∇𝑋𝜙
𝑣
𝑖

)

𝑑𝑋 . (49)

Computer Methods in Applied Mechanics and Engineering 451 (2026) 118663

12

K. Korner et al.

The above expression allows us to immediately see the benefit of constructing 𝑚. First, we have turned the adjoint product calculation
into a term which looks like a force call. This allows us to take advantage the standard finite element framework which exists to
calculate linear forms and calculate adjoints in a matrix-free manner. Next, the derivatives of 𝑚 are now done at the quadrature points
and are entirely local and parallelizable. This is ideal for automatic differentiation as we no longer have to consider information transfer
across compute nodes in our computational graph. This treatment of adjoints can be generalized and can be see in Section A.4 and the
“correctness” is verified in Section A.5.

4. Suppression of Richmyer-Meshkov instability induced jetting

As noted in the introduction, RMI plays an important role in many scientific and engineering applications. Depending on the use
case, either enhancement or suppression of the RMI jet may be desired. In this section, we develop a computational model of RMI,
multi-objective functions to describe what we are after in terms of stable shock acceleration, the adjoint computation, some specific
discussion of tracer particles practically needed to implement our specific objective function, and results showing RMI suppression.

4.1. Forward pass

The domain is separated into two regions. The left is high density (𝜌0 = 10) and the right is low density (𝜌0 = 1). A subset of the
left domain (Ω1 ⊂ Ω s.t. 𝑋 < 1) is the controllable domain and is initialized to a higher internal energy state 𝑒(𝑋 ∈ Ω1, 0) = 0.15 with
the rest 𝑒(𝑋 ∉ Ω1, 0) = 0.0. The top, left, and bottom boundaries allow for sliding boundary conditions while the right boundary is
completely free.

A shock wave is generated due to the internal energy of the left side being higher than the rest of the domain. This causes a high
pressure region with a sharp interface against a low pressure region, resulting in a force along the interface. As the high energy region
expands, it generates a shock wave which propagates through the high density region. Once it hits the interface, baroclinic torque is
generated due to the misalignment between the pressure gradient and the density gradient. This torque causes the system to evolve
in such a way that the interface will invert itself and continue to grow. We use the 4th order Runge-Kutta for time integration and
solve until 𝑡 = 7.

The goal is to design the profile of the internal energy in Ω1 to minimize the RMI jet length at a particular time.

4.2. Objective function

In order to minimize the jet length, we need a metric which takes the state of the system as an input and returns a single scalar
value. By minimizing said functional, we obtain better results (i.e. reducing the jet length). Additionally, we would like to push the
interface and not remove all accelerations (i.e. we want the optimizer to avoid the trivial solution of no acceleration). As a result, we
would also like to include a term in the objective that increases the velocity of the interface while decreasing the objective value. In
order to accomplish this, we introduce Lagrangian tracer particles. These are virtual particles which are linked to particular material
points. One point of complexity is that, although tracer particles traditionally can be defined completely locally to the thread that
“owns” that point, this is not true when conducting adjoint calculations. Here, we must collect the data from all the tracer particles
onto a root thread in order to take derivatives of mathematical operations between the tracers, then propagate those derivatives back
to the relevant threads. This will become clear in Eq. (50) as simply calculating that objective requires all of the tracer data to be
known to a single thread. The total gradient of this objective (with respect to the tracer point values) then needs to be distributed to
the threads which take “ownership” over the data.

We introduce a notation where 𝑥𝑖 are the 𝑋 components of the deformation of particles 𝑖, 𝑣𝑖 are the 𝑋 components of the velocities
of particles 𝑖, 𝑥outer = ave(𝑥2, 𝑥3), 𝑣ave = ave(𝑣1, 𝑣2, 𝑣3); then define the terminal objective

𝑂 = 1
2
𝜆1(𝑥1 − 𝑥outer)2 +

𝜆2
𝛿 + |𝑣ave|

(50)

where 𝜆𝑖 ≥ 0 are scaling factors and all measurements are taken at the final timestep. By inspection, it can be seen that this function
is minimized when

𝑥outer = 𝑥1 , Flatten the interface
𝑣ave = ±∞ , Accelerate interface

when 𝜆𝑖 > 0.
In our particular case, we would like to push 𝑣ave → +∞ as opposed to the other side. This is remedied by picking a suitable initial

guess and using a local optimizer to push the solution towards one solution as opposed to the other. If using completely random initial
conditions or a global minimizer, then a different objective function may be necessary. Also, note that Lagrangian tracer particles use
local data to construct their state, as a result, we can generally write that

𝐱𝑖 = 𝐱𝑖(𝑋, 𝑥, 𝑣, 𝑒), (51)

𝐯𝑖 = 𝐯𝑖(𝑋, 𝑥, 𝑣, 𝑒), (52)

𝑒𝑖 = 𝑒𝑖(𝑋, 𝑥, 𝑣, 𝑒) , (53)

where the terms on the left are features of the tracer particles and the equations on the right are functions which project the global
state vectors to the tracer data.

Computer Methods in Applied Mechanics and Engineering 451 (2026) 118663

13

K. Korner et al.

Fig. 7. Domain and initial energy configuration for the RMI case study. The nodes (1, 2 ,3) indicate where the tracer particles are placed (used in
Eq. (50)).

4.3. Adjoint calculation

As a result of the tracer definition in (51), we can calculate the gradient of the objective as
𝜕𝑂
𝜕𝑋

=
∑

𝑖

(

𝜕𝑂
𝜕𝐱𝑖

⋅
𝜕𝐱𝑖
𝜕𝑋

+ 𝜕𝑂
𝜕𝐯𝑖

⋅
𝜕𝐯𝑖
𝜕𝑋

+ 𝜕𝑂
𝜕𝑒𝑖

𝜕𝑒𝑖
𝜕𝑋

)

,

𝜕𝑂
𝜕𝑥

=
∑

𝑖

(

𝜕𝑂
𝜕𝐱𝑖

⋅
𝜕𝐱𝑖
𝜕𝑥

+ 𝜕𝑂
𝜕𝐯𝑖

⋅
𝜕𝐯𝑖
𝜕𝑥

+ 𝜕𝑂
𝜕𝑒𝑖

𝜕𝑒𝑖
𝜕𝑥

)

,

𝜕𝑂
𝜕𝑣

=
∑

𝑖

(

𝜕𝑂
𝜕𝐱𝑖

⋅
𝜕𝐱𝑖
𝜕𝑣

+ 𝜕𝑂
𝜕𝐯𝑖

⋅
𝜕𝐯𝑖
𝜕𝑣

+ 𝜕𝑂
𝜕𝑒𝑖

𝜕𝑒𝑖
𝜕𝑣

)

,

𝜕𝑂
𝜕𝑒

=
∑

𝑖

(

𝜕𝑂
𝜕𝐱𝑖

⋅
𝜕𝐱𝑖
𝜕𝑒

+ 𝜕𝑂
𝜕𝐯𝑖

⋅
𝜕𝐯𝑖
𝜕𝑒

+ 𝜕𝑂
𝜕𝑒𝑖

𝜕𝑒𝑖
𝜕𝑒

)

Note that the relations above tend to be simple, but we maintain all the terms for the sake of generality. Similar to previously discussed
methods, we calculate the adjoints of the time integration scheme and of the physics separately and compose them in order to find
the incremental adjoint. By stepping backwards in time until the initial timestep, we can accumulate the adjoint of the objective
with respect to the entire initial state 𝑋, 𝑥, 𝑣, 𝑒. From here, we mask the adjoint to only include the components in Ω1. We note
that, although we are using tracer particles and our objective function is dependent on only a few state variables, the overall adjoint
structure will propagate the sensitivities to the whole domain as we move backwards in time, so the sensitivity does not maintain the
sparsity of the initial variations.

An example of the forward and adjoint loops are shown in Fig. 8. We plot the pressure evolution from the forward pass; however,
we cache all the data needed to recreate the state using the checkpointing methods from Section 2.4.3. Then, we calculate our
objective function (see Eq. 50) and its gradient with respect to the final state. Performing adjoint calculations, we step backwards
in time, recreating the state as needed using the checkpoints. We visualize the adjoint of the energy field (masked by the domain
of control Ω1) as we step backward in time. At the final time step of the adjoint solve (𝑡 = 0) we are left with the gradient of our
objective with respect to the initial state within Ω1. After subsampling our full gradient vector to the sub-domain Ω1, we are left with
about 400 degrees of freedom. We then update our initial state using gradient descent with the provided perturbation. Visualization
of the adjoint fields is extremely useful when trying to understand the system’s sensitivities. Additionally, these fields provide vital
information which designers can use to improve designs ad hoc.

4.4. Results

(Fig. 9) summarizes the results of the optimization procedure described in the previous sections.
We note a few features of the solution. First, consider the bifurcation of the initial energy into left and right “hot spots”. These

regions will cause expansion in both of these locations, causing a complex shock front. Notably, it actually splits the shock into two
different features. First, it will split the shock so it hits the bottom and top faces harder than the middle inclusion. This will temper

Computer Methods in Applied Mechanics and Engineering 451 (2026) 118663

14

K. Korner et al.

Fig. 8. Visualization of pressure and adjoint fields through the solve. The top plots are solutions at time 𝑡 = 0 while the bottom are the final steps
at 𝑡 = 7. Following the result from the top left and working down, we integrate forward in time. Then from the bottom left to bottom right, we
calculate the objective and initial gradient. Moving up, we integrate backwards in time to solve for the adjoint energy field to calculate the gradient.
Note that the system has the density interface seen in Fig. 7.

Fig. 9. Demonstration of mitigation of RMI through the gradient descent procedure. (a) The initial energy profile at three different stages (initial
guess, 8 steps, 88 steps). (b) The deformation profile at the final timestep for each of those same three stages. (c) The evolution of the jet length
over time for different iterations of gradient descent. (d) The average interface velocity over time for different iterations. (e) The change in objective
function for each iteration.

RMI growth to flatten the interface. Next, a second, stronger shock wave hits the (now flattened) interface accelerating it more. This
type of energy distribution is intuitive in hindsight, but we find it remarkable that this was discovered automatically through gradient
based optimization.

The optimization algorithm can be seen to go through multiple stages. This is due to the competing objectives given in Eq. (50).
Initially, the priority is interface flattening. Then, when that error is sufficiently low, the interface velocity is slowly increased. This
behavior can be seen in (Fig. 9) as the final interface velocity initial is lowered, then, while maintaining a flat interface, the interface
velocity is raised. Eventually, the interface velocity even surpasses that of the initial guess. Remarkably, this demonstrates that
utilizing gradient optimization, RMI suppression is readily achievable without a decreasing the intensity of the drive. Moreover, as

Computer Methods in Applied Mechanics and Engineering 451 (2026) 118663

15

K. Korner et al.

RMI is a general, challenging prototype for hydrodynamic behavior, this example demonstrates the ability of this class of optimization
methods to be used in practical applications involving Lagrangian hydrodynamics.

4.5. Energy constrained optimization

A potential issue with the above results (with regard to the energy field) is that the optimized solution may be infeasible for
multiple reasons. Two factors we consider here are (1) we want to operate within a particular energy budget and (2) the initial
energies cannot be negative locally. The first condition follows from the fact that we do not want to produce solutions which require
arbitrary large or small amounts of energy in order to produce. In practical problems, such as laser drives, this is represented by a
maximal laser intensity allowed in the specifications.

The second condition is a consequence of physical principals of thermodynamics. Specifically, it is impossible to create a system
with negative absolute temperature anywhere. Thus, we want all our designs to remain in the strictly positive regime.

In mathematical terms, we have two separate conditions we would like to satisfy:

∫Ω|𝑡=0
𝑒𝑑Ω = 𝐶, (54)

𝑒(𝑋, 𝑡 = 0) ≥ 0 . (55)

The first enforces that the total energy remains constant in the optimization procedure and the second that the energy remains in the
feasible regime. This is a limitation, not of the optimization procedure, but of the formulation of the physics we are trying to model.
As a result, incorporating both of these constraints into an optimization procedure is necessary to produce both feasible and practical
results.

4.5.1. Equality constraint
Consider a constraint given by the equation

𝑔(𝑦) = 0 . (56)

We require that a perturbation 𝛿𝑦 also satisfies the constraint, i.e.,
𝑔(𝑦 + 𝛿𝑦) = 0 .

Assuming small perturbations, we can Taylor expand the above equation to get
𝜕𝑔
𝜕𝑦

⋅ 𝛿𝑦 = 𝑔𝑦 ⋅ 𝛿𝑦 = 0 . (57)

As a result, we can define a new perturbation 𝛿𝑦̃ such that

𝛿𝑦̃ =

⎛

⎜

⎜

⎜

⎝

𝐼 − 1
|

|

|

𝑔𝑦
|

|

|

2
𝑔𝑦 ⊗ 𝑔𝑦

⎞

⎟

⎟

⎟

⎠

𝛿𝑦 . (58)

For the specific case where we want to keep the total internal energy constant, we have the constraint

𝑔(𝐞) = ∫Ω
𝑒𝑑Ω (59)

Taking the derivative as above, we have
𝜕𝑔
𝜕𝑒𝑖

= ∫Ω
𝜕𝑒
𝜕𝑒𝑖

𝑑Ω = ∫Ω
𝜙𝑖𝑑Ω . (60)

Conveniently, this derivative is constant with respect to the state variables, owing to the linearity of the energy conservation constraint.
As a result, the application of the projection method described above will satisfy the constraint exactly. For shorthand, we will refer
to the constraint projection as 𝛿𝑒 = 𝑃 (𝛿𝑒).

4.5.2. Inequality constraint
The second constraint we want to satisfy is that the initial energy is locally non-negative. Because we are considering functions

𝑒 ∈ 𝐿2(Ω, 𝑡) with positive Bernstein polynomials, we can take advantage of the property that values of 𝑒 within the element will be
extremal at node values [54]. Therefore, it is sufficient to apply the constraint on the discretization 𝑒𝑖. The rectification of values is
not a unique process; however, we choose the simplest as

𝛿𝑒 = ReLU(𝑒 + 𝛿𝑒) − 𝑒 , (61)

where ReLU(𝑥) = max(0, 𝑥). This transformation takes a perturbation 𝛿𝑒 and energy state 𝑒 as inputs, rectifies the sum of the two, then
returns the perturbation such that all values of the resulting energy are non-negative. Note that we can equivalently verify that the
updated state maintains energy positivity. For shorthand, we will refer to this transformation as

𝛿𝑒 = 𝑅(𝛿𝑒, 𝑒) , (62)

Computer Methods in Applied Mechanics and Engineering 451 (2026) 118663

16

K. Korner et al.

Fig. 10. Demonstration of mitigation of RMI through the gradient descent procedure. (a) The initial energy profile at three different stages (initial
guess, 8 steps, 88 steps). (b) The deformation profile at the final timestep for each of those same three stages. (c) The evolution of the jet length
over time for different iterations of gradient descent. (d) The average interface velocity over time for different iterations. (e) The change in objective
function for each iteration.

4.5.3. Combination
There are many ways to satisfy the above two constraints in an optimization paradigm. The standard is to define Lagrange

multipliers for both constraints, then evaluate the KKT conditions to ensure feasibility of the perturbations. We take a different
approach. Because the dimensionality of the inequality constraint can be quite high, we choose to modify the perturbations to ensure
that the constraints remain satisfied. We use the following algorithm to enforce the constraint

1. Solve the adjoint problem to obtain an initial 𝛿𝑒
2. Set a tolerance value for constraint violation
3. While error is greater than tolerance
(a) Solve 𝛿𝑒 ← 𝑅(𝛿𝑒, 𝑒)
(b) Solve 𝛿𝑒 ← 𝑃 (𝛿𝑒)
(c) Evaluate infeasibility error = 𝐸(𝑒 + 𝛿𝑒)

where we use an infeasibility error 𝐸(𝑥) = max(ReLU(−𝑥)) which is effectively a 𝐿∞ norm on the error. Additionally, because the
projection operator 𝑃 is always applied second, we ensure that the resulting perturbation exactly satisfies energy conservation. We
note that the projection step may break the positivity constraint and thus we need to verify that the infeasibility error is sufficiently
small.

4.5.4. Results
We repeat the optimization procedure described in Section 4.4 with the additional energy constraints described in Section 4.5.3.
It can be seen in Fig. 10 that the addition of energy conservation and non-negativity constraints does indeed change the structure

of the optimized solution. In particular, the solution avoids large amounts of energy locally above and below the hot spot in the
center. Generally, designing for experiments will often include constraints such as this in order to generate feasible designs. More
information about this solution process can be seen in Fig. A.11–A.13.

5. Conclusion

In this article, we have developed a computational strategy for efficiently differentiating the predicted outputs of a high-order
finite element Lagrangian hydrodynamics code with respect to its inputs via a combination of adjoint theory and automatic differ-
entiation; further, we have applied this to a challenging problem of interface stability. This involved individually differentiating the
time-stepping update, the (partially-)assembled force vector, and zero-dimensional physics (quadrature point update). The above

Computer Methods in Applied Mechanics and Engineering 451 (2026) 118663

17

K. Korner et al.

demonstrations required various simultaneous developments (i) an efficient checkpointing algorithm and (ii) efficient vector-matrix
product strategy for the time updates. (iii) We needed a proper regularization of the artificial viscosity which provides computational
regularity for studying shocks – discontinuities in the thermodynamic state of the material - which gives this area of physics chal-
lenging character. In order to efficiently represent the derivative of the finite element force vector, we have leveraged (iv) partial
assembly to compute the action of the resulting operator; this enables efficient computation of vector-matrix products in the time-
stepping and optimization. Finally, we have utilized an efficient implementation of automatic differentiation at the quadrature point
level to account for the extensive complexity of material function calls; this allows us to use the extreme human-time efficiency in
terms of functional complexity of AD while simultaneously retaining computational efficiency of adjoint methods.

We have applied this efficient computation of gradients to optimization of the historically challenging problem in hydrodynamics
of stable shock-acceleration of density interfaces; this application is critically important to major scientific challenges in fusion energy
experiments such as those conducted at the national ignition facility. In these applications, the process of confining the fusion fuel to
ignition conditions invariably involves launching multiple shock waves via a laser energy source which pass through density interfaces
(typically diamond - DT). We show that for a prototype problem of this phenomenon called RMI, the gradient based optimization
rapidly tailors a complex spatially dependent high dimensional energy drive which simultaneously suppresses the instability and
accelerates the interface to a higher velocity than the baseline case. In addition, we apply various constraints to our solutions with
the optimization procedure in order to more accurately represent both physical and practical limitations of experimental methods.
This simultaneous achievement is remarkable and demonstrates the value of bringing gradient based optimization to bear on problems
involving computational hydrodynamics.

We close with some speculation on the future of this field; we advocate that there are many important tasks to do. First, we have
shown this for Lagrangian Hydrodynamics; state-of-the-art codes utilize arbitrary Lagrangian-Eulerian (ALE) strategies to manage the
computational mesh via the introduction of a remap step which moves the materials appropriately to a new mesh. The absence of such
a strategy tends to lead to mesh tangling. A key near-term topic of research is the differentiation of this step. This is made challenging
since formally, one must differentiate the remap, the re-mesh, and consider the multi-material case which involves discontinuous
material interfaces. Second, hydrodynamics oftentimes does not operate alone. In general, we must track many additional state
variables associated with, for instance, phase transitions, material strength, or other multiphysics. Tracking the dependencies in the
resulting differentiation calculation in a robust and extensible manner is challenging. Third, we believe that there are many interesting
problems in hydrodynamics that should be considered, for instance, the authors intend to eventually conduct realistic simulations of
NIF laser driven shots aiming to optimize capsule shape to account for well known and persistent laser drive asymmetries. Finally,
there is ample opportunity to apply these techniques to machine learning and uncertainty quantification. A cheap gradient evaluation,
as we have provided in this article, can be utilized by Sobolev learning strategies [55] and Hamiltonian Monte Carlo [56].

CRediT authorship contribution statement

Kevin Korner: Writing – review & editing, Writing – original draft, Visualization, Software, Methodology, Investigation, Formal
analysis, Data curation, Conceptualization; Brandon Talamini: Writing – review & editing, Writing – original draft, Methodology,
Formal analysis, Conceptualization; Julian Andrej: Writing – review & editing, Writing – original draft, Software, Investigation,
Formal analysis, Conceptualization; Michael Tupek: Writing – review & editing, Writing – original draft, Software, Methodology,
Investigation, Formal analysis, Conceptualization; William Moses: Software, Conceptualization; Daniel Tortorelli: Writing – review
& editing, Writing – original draft, Methodology, Investigation, Conceptualization; Robert Rieben: Writing – review & editing, Writ-
ing – original draft, Methodology, Investigation, Conceptualization; Tzanio Kolev: Writing – review & editing, Writing – original
draft, Methodology, Investigation, Conceptualization; Jamie Bramwell: Writing – review & editing, Methodology, Conceptualiza-
tion; Daniel White: Writing – review & editing, Writing – original draft, Software, Methodology, Investigation, Conceptualization;
Jonathan Belof: Writing – review & editing, Writing – original draft, Supervision, Project administration, Methodology, Investiga-
tion, Funding acquisition, Conceptualization; William Schill: Writing – review & editing, Writing – original draft, Resources, Project
administration, Methodology, Investigation, Funding acquisition, Formal analysis, Conceptualization.

Data availability

The authors do not have permission to share data.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under
contract DE-AC52-07NA27344. This work was supported by the LLNL-LDRD Program under Project no. 21-SI-006, Project no. 24-
ERD-005, and Project no. 26-SI-002. The Lawrence Livermore National Security journal number is LLNL-JRNL-872441. We thank
Libby Glascoe, John Edwards, and Teresa Bailey for their outstanding programmatic leadership and advocacy for this topic. We
thank Sam Mish and Robert Carson for numerous interesting discussions.

Computer Methods in Applied Mechanics and Engineering 451 (2026) 118663

18

https://doi.org/10.13039/100000015
https://doi.org/10.13039/100006227

K. Korner et al.

Appendix A. Supplemental information

A.1. Scaling with derivatives

Consider a 𝑑th order polynomial in 𝑛 dimensions. This will have 𝐶(𝑑 + 𝑛, 𝑑) coefficients associated with it. In order to fully define
the coefficients from an unknown function, we will then require 𝐶(𝑑 + 𝑛, 𝑑) individual function evaluations. In order to consider the
cost benefit of calculating derivatives, we compare the cost of fully defining the polynomial if, every time we do a forward solve, we
also calculate the gradient at that point. The forward solve gives one equation while the derivative gives 𝑛 additional equations. If
we were to match a 2nd order polynomial in 10 dimensions, we would require 66 forward solves. With gradients we would require
6 forward solves and 6 gradient solves. In 100 dimensions, this becomes 5151 forward solves but including gradient calculations
requires 51 forward and gradient. We calculate the number of forward and gradient solves necessary to fully solve the system by
solving when 𝑁(1 + 𝑛) = 𝐶(𝑑 + 𝑛, 𝑑). We then find the ratio of number of solves necessary for just the forward solve vs number of
forward + gradient solves with

Cost Ratio =
𝐶(𝑑 + 𝑛, 𝑑)

2𝑁
= 1 + 𝑛

2
.

As a result we see that the cost of evaluating with just forward solves scales linearly with the number of dimensions we are solving
in.

There is additional benefit that the gradient solved returns the steepest descent direction which is particularly useful in optimiza-
tion when you are not trying to fully characterize the functional form.

A.2. Infdim math

𝑂𝑁 (𝛽) =
𝑁
∑

𝑘=1
𝑜𝑘(𝑦𝑘, 𝛽,Δ𝑡) +

𝑁
∑

𝑘=1
𝜆𝑇𝑘 (𝑦𝑘 − 𝑓𝑘(𝑦𝑘−1, 𝛽,Δ𝑡)) (A.1)

Taking the derivative with respect to 𝛽 we have
𝜕𝑂𝑁
𝜕𝛽

=
𝑁
∑

𝑘=1

(

𝜕𝑜𝑘
𝜕𝑦𝑘

𝜕𝑦𝑘
𝜕𝛽

+
𝜕𝑜𝑘
𝜕𝛽

)

+
𝑁
∑

𝑘=1
𝜆𝑇𝑘

(

𝜕𝑦𝑘
𝜕𝛽

−
𝜕𝑓𝑘
𝜕𝑦𝑘−1

𝜕𝑦𝑘−1
𝜕𝛽

−
𝜕𝑓𝑘
𝜕𝛽

)

(A.2)

Adjusting indices in the second term gives
𝜕𝑂𝑁
𝜕𝛽

=
𝑁
∑

𝑘=1

(

𝜕𝑜𝑘
𝜕𝑦𝑘

𝜕𝑦𝑘
𝜕𝛽

+
𝜕𝑜𝑘
𝜕𝛽

)

+
𝑁
∑

𝑘=1
𝜆𝑇𝑘

(

𝜕𝑦𝑘
𝜕𝛽

−
𝜕𝑓𝑘
𝜕𝛽

)

−
𝑁−1
∑

𝑘=0
𝜆𝑇𝑘+1

𝜕𝑓𝑘+1
𝜕𝑦𝑘

𝜕𝑦𝑘
𝜕𝛽

(A.3)

Expanding out the sums to combine the internal summation,
𝜕𝑂𝑁
𝜕𝛽

=
𝜕𝑜𝑁
𝜕𝑦𝑁

𝜕𝑦𝑁
𝜕𝛽

+
𝜕𝑜𝑁
𝜕𝛽

+ 𝜆𝑇𝑁

(

𝜕𝑦𝑁
𝜕𝛽

−
𝜕𝑓𝑁
𝜕𝛽

)

+
𝑁−1
∑

𝑘=1

(

𝜕𝑜𝑘
𝜕𝑦𝑘

𝜕𝑦𝑘
𝜕𝛽

+
𝜕𝑜𝑘
𝜕𝛽

+ 𝜆𝑇𝑘

(

𝜕𝑦𝑘
𝜕𝛽

−
𝜕𝑓𝑘
𝜕𝛽

)

− 𝜆𝑇𝑘+1
𝜕𝑓𝑘+1
𝜕𝑦𝑘

𝜕𝑦𝑘
𝜕𝛽

)

− 𝜆𝑇1
𝜕𝑓1
𝜕𝑦0

𝜕𝑦0
𝜕𝛽

(A.4)

Grouping terms that contain 𝜕𝑦𝑘∕𝜕𝛽, we have
𝜕𝑂𝑁
𝜕𝛽

=
(

𝜕𝑜𝑁
𝜕𝑦𝑁

+ 𝜆𝑇𝑁

)

𝜕𝑦𝑁
𝜕𝛽

+
𝑁−1
∑

𝑘=1

(

𝜕𝑜𝑘
𝜕𝑦𝑘

+ 𝜆𝑇𝑘 − 𝜆𝑇𝑘+1
𝜕𝑓𝑘+1
𝜕𝑦

)

𝜕𝑦𝑘
𝜕𝛽

+
𝑁
∑

𝑘=1

(

𝜕𝑜𝑘
𝜕𝛽

− 𝜆𝑇𝑘
𝜕𝑓𝑘
𝜕𝛽

)

− 𝜆𝑇1
𝜕𝑓1
𝜕𝑦0

𝜕𝑦0
𝜕𝛽

(A.5)

A.3. Continuous analogues of non-differentiable functions

In some cases we smooth non-differentiable or discontinuous functions. Some functions used are
sigmoid(𝑥) = 1

1 + exp(−𝑥)
(A.6)

silu(𝑥) = 𝑥 ∗ sigmoid(𝑥) (A.7)

A.4. Adjoints of generic finite element systems

Consider a generic forcing function of the form

𝐹𝑖 = ∫Ω

(

𝑓 (𝑥, 𝑦(𝑥),∇𝑦(𝑥)) ⋅ 𝜙𝑖(𝑥) + 𝑓 ′(𝑥, 𝑦(𝑥),∇𝑦(𝑥)) ⋅ ∇𝜙𝑖(𝑥)
)

𝑑𝑥 (A.8)

Given that we have terms which involve functions 𝑦, 𝜙 and their derivatives ∇𝑦, ∇𝜙, we ensure we are working in an appropriate
function space, such as 𝐻1. If we consider the inner product of this term and some arbitrary adjoint variable, we have

𝑀 =
∑

𝑖
𝜆𝑖𝐹𝑖 =

∑

𝑖
𝜆𝑖 ∫Ω

(

𝑓 (𝑥, 𝑦(𝑥),∇𝑦(𝑥) ⋅ 𝜙𝑖(𝑥) + 𝑓 ′(𝑥, 𝑦(𝑥,∇𝑦(𝑥)) ⋅ ∇𝜙𝑖(𝑥)))
)

𝑑𝑥 (A.9)

Computer Methods in Applied Mechanics and Engineering 451 (2026) 118663

19

K. Korner et al.

Fig. A.11. Taylor test of Lagrangian hydrodynamics.

= ∫Ω

(

𝑓 (𝑥, 𝑦(𝑥),∇𝑦(𝑥)) ⋅ 𝜆(𝑥) + 𝑓 ′(𝑥, 𝑦(𝑥),∇𝑦(𝑥)) ⋅ ∇𝜆(𝑥)
)

𝑑𝑥 . (A.10)

Combining the integrand into a single variable as 𝑚(𝑥, 𝑦,∇𝑦, 𝜆,∇𝜆) = 𝑓 (𝑥, 𝑦,∇𝑦) ⋅ 𝜆 + 𝑓 ′(𝑥, 𝑦,∇𝑦) ⋅ ∇𝜆, we write this integral in the
simplest form

𝑀 =
∑

𝑖
𝜆𝑖𝐹𝑖 = ∫Ω

𝑚(𝑥, 𝑦(𝑥),∇𝑦(𝑥), 𝜆(𝑥),∇𝜆(𝑥))𝑑𝑥 (A.11)

If we now take the derivative with respect to the primal discretized field variable 𝑦𝑖, we have

𝜕
𝜕𝑦𝑖

(

∑

𝑘
𝜉𝑘𝐹𝑘

)

=
∑

𝑘
𝜉𝑘

𝜕𝐹𝑘
𝜕𝑦𝑖

= ∫Ω

(

𝜕𝑚
𝜕𝑦

⋅ 𝜙𝑖(𝑥) +
𝜕𝑚
𝜕∇𝑦

⋅ ∇𝜙𝑖(𝑥)
)

𝑑𝑥 (A.12)

where we use that 𝑦(𝑥) = ∑

𝑖 𝑦𝑖𝜙𝑖(𝑥) as the standard Galerkin expansion. As mentioned in the main text, this form has several advan-
tages.

1. The vector-Jacobian product involved in the adjoint calculation becomes matrix free,
2. The calculation of 𝑚 is local and parallelizable to calculations at quadrature points,
3. The calculations of the derivatives 𝜕𝑚

𝜕𝑦
 and 𝜕𝑚

𝜕∇𝑦
 are entirely parallelized and utilize the same force calculation structure present

in all finite element codes.

This allows us to construct computationally efficient adjoint products which are necessary in computationally intensive problems
such as hydrocodes.

A.5. Taylor test of hydrodynamic system

We verify the consistency of gradients by conducting a Taylor test on the Lagrangian hydrodynamic system.
The process is outlined in Section 2.4.1. We define a functional form 𝑓 (𝑣, 𝑦) = 𝑣 ⋅ 𝑦̇ where 𝑣 is a random vector and 𝑦 is the current

state (𝑥, 𝑣, 𝑒). The state is then perturbed using 𝑦 = 𝑦0 + ℎ𝛿𝑦 for various ℎ and 𝛿𝑦 is another random vector which conforms to boundary
conditions.

A.6. Mesh convergence

We verify the convergence with respect to the mesh by visualizing the adjoint field.

A.7. Lower energy results

We also run the results with the initial energy initialized to 𝑒(Ω1, 0) = 0.5.

Computer Methods in Applied Mechanics and Engineering 451 (2026) 118663

20

K. Korner et al.

Fig. A.12. Solution comparison for different meshes.

Fig. A.13. Demonstration of mitigation of RMI through the gradient descent procedure. (a) The initial energy profile at three different stages (initial
guess, 8 steps, 88 steps). (b) The deformation profile at the final timestep for each of those same three stages. (c) The evolution of the jet length
over time for different iterations of gradient descent. (d) The average interface velocity over time for different iterations. (e) The change in objective
function for each iteration.

References

[1] R.D. Richtmyer, Taylor instability in shock acceleration of compressible fluids, Commun. Pure Appl. Math. 13 (2) (1960) 297–319. https://doi.org/10.1002/
cpa.3160130207

[2] G.I. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I, Proceed. Roy. Soc. Lond. Ser. A. Math. Phys. Sci.
201 (1065) (1997) 192–196. https://doi.org/10.1098/rspa.1950.0052

[3] Y. Zhou, Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I, Phys. Rep. 720–722 (2017) 1–136. https://doi.org/10.
1016/j.physrep.2017.07.005

[4] Y. Zhou, Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II, Phys. Rep. 723–725 (2017) 1–160. https://doi.org/10.
1016/j.physrep.2017.07.008

[5] Y. Zhou, R.J.R. Williams, P. Ramaprabhu, M. Groom, B. Thornber, A. Hillier, W. Mostert, B. Rollin, S. Balachandar, P.D. Powell, A. Mahalov, N. Attal, et al.,
Rayleigh–Taylor and Richtmyer–Meshkov instabilities: a journey through scales, Phys. D 423 (2021) 132838. https://doi.org/10.1016/j.physd.2020.132838

[6] G. Birkhoff, D.P. MacDougall, E.M. Pugh, S.G. Taylor, et al., Explosives with lined cavities, J. Appl. Phys. 19 (6) (1948) 563–582. https://doi.org/10.1063/1.
1698173

Computer Methods in Applied Mechanics and Engineering 451 (2026) 118663

21

https://doi.org/10.1002/cpa.3160130207
https://doi.org/10.1002/cpa.3160130207
https://doi.org/10.1002/cpa.3160130207
https://doi.org/10.1002/cpa.3160130207
https://doi.org/10.1098/rspa.1950.0052
https://doi.org/10.1098/rspa.1950.0052
https://doi.org/10.1016/j.physrep.2017.07.005
https://doi.org/10.1016/j.physrep.2017.07.005
https://doi.org/10.1016/j.physrep.2017.07.005
https://doi.org/10.1016/j.physrep.2017.07.005
https://doi.org/10.1016/j.physrep.2017.07.008
https://doi.org/10.1016/j.physrep.2017.07.008
https://doi.org/10.1016/j.physrep.2017.07.008
https://doi.org/10.1016/j.physrep.2017.07.008
https://doi.org/10.1016/j.physd.2020.132838
https://doi.org/10.1016/j.physd.2020.132838
https://doi.org/10.1063/1.1698173
https://doi.org/10.1063/1.1698173
https://doi.org/10.1063/1.1698173
https://doi.org/10.1063/1.1698173

K. Korner et al.

[7] Y. Zhou, T.T. Clark, D.S. Clark, S. Gail Glendinning, M. Aaron Skinner, C.M. Huntington, O.A. Hurricane, A.M. Dimits, B.A. Remington, Turbulent mixing and
transition criteria of flows induced by hydrodynamic instabilities, Phys. Plasma. 26 (8) (2019) 080901. https://doi.org/10.1063/1.5088745

[8] K.O. Mikaelian, Extended model for Richtmyer–Meshkov mix, Phys. D 240 (11) (2011) 935–942. https://doi.org/10.1016/j.physd.2011.01.008
[9] B.A. Remington, H.-S. Park, D.T. Casey, R.M. Cavallo, D.S. Clark, C.M. Huntington, D.H. Kalantar, C.C. Kuranz, A.R. Miles, S.R. Nagel, K.S. Raman, C.E. Wehren-

berg, V.A. Smalyuk, Rayleigh–Taylor instabilities in high-energy density settings on the national ignition facility, Proceed. Natl. Acad. Sci. 116 (37) (2019)
18233–18238. https://doi.org/10.1073/pnas.1717236115

[10] D.M. Sterbentz, C.F. Jekel, D.A. White, S. Aubry, H.E. Lorenzana, J.L. Belof, et al., Design optimization for Richtmyer–Meshkov instability suppression at shock-
compressed material interfaces, Phys. Fluid. 34 (8) (2022) 082109. https://doi.org/10.1063/5.0100100

[11] D.J. Kline, M.P. Hennessey, D.K. Amondson, S. Lin, M.D. Grapes, M. Ferrucci, P. Li, H.K. Springer, R.V. Reeves, K.T. Sullivan, J.L. Belof, et al., Reducing
Richtmyer–Meshkov instability jet velocity via inverse design, J. Appl. Phys. 135 (7) (2024) 074902. https://doi.org/10.1063/5.0180712

[12] D.M. Sterbentz, D.J. Kline, D.A. White, C.F. Jekel, M.P. Hennessey, D.K. Amondson, A.J. Wilson, M.J. Sevcik, M.F.L. Villena, S.S. Lin, M.D. Grapes, K.T. Sullivan,
J.L. Belof, et al., Explosively driven Richtmyer–Meshkov instability jet suppression and enhancement via coupling machine learning and additive manufacturing,
J. Appl. Phys. 136 (3) (2024) 035102. https://doi.org/10.1063/5.0213123

[13] C.F. Jekel, D.M. Sterbentz, T.M. Stitt, P. Mocz, R.N. Rieben, D.A. White, J.L. Belof, et al., Machine learning visualization tool for exploring parameterized
hydrodynamics*, Mach. Learn.: Sci. Technol. 5 (4) (2024) 045048. https://doi.org/10.1088/2632-2153/ad8daa

[14] D.M. Sterbentz, C.F. Jekel, D.A. White, R.N. Rieben, J.L. Belof, et al., Linear shaped-charge jet optimization using machine learning methods, J. Appl. Phys. 134
(4) (2023) 045102. https://doi.org/10.1063/5.0156373

[15] W.J. Schill, M.R. Armstrong, J.H. Nguyen, D.M. Sterbentz, D.A. White, L.X. Benedict, R.N. Rieben, A. Hoff, H.E. Lorenzana, J.L. Belof, B.M. La Lone, M.D. Staska,
Suppression of Richtmyer-Meshkov instability via special pairs of shocks and phase transitions, Phys. Rev. Lett. 132 (2) (2024) 024001. https://doi.org/10.
1103/PhysRevLett.132.024001

[16] W.J. Schill, R.A. Austin, K.L. Schimdt, J.L. Brown, N.R. Barton, et al., Simultaneous inference of the compressibility and inelastic response of tantalum under
extreme loading, J. Appl. Phys. 130 (5) (2021) 055901. https://doi.org/10.1063/5.0056437

[17] W.J. Schill, K.L. Schmidt, R.A. Austin, W.W. Anderson, J.L. Belof, J.L. Brown, N.R. Barton, Inference of strength and phase transition kinetics in dynamically-
compressed tin, J. Appl. Phys. 133 (24) (2023) 245903. https://doi.org/10.1063/5.0150749

[18] M.G. Gorman, C.J. Wu, R.F. Smith, L.X. Benedict, C.J. Prisbrey, W. Schill, S.A. Bonev, Z.C. Long, P. S. öderlind, D. Braun, D.C. Swift, R. Briggs, T.J. Volz, E.F.
O’Bannon, P.M. Celliers, D.E. Fratanduono, J.H. Eggert, S.J. Ali, J.M. McNaney, et al., Ramp compression of tantalum to multiterapascal pressures: constraints
of the thermal equation of state to 2.3 TPa and 5000 K, Phys. Rev. B 107 (1) (2023) 014109. https://doi.org/10.1103/PhysRevB.107.014109

[19] R. Hottois, A. Châtel, G. Coussement, T. Debruyn, T. Verstraete, Comparing gradient-free and gradient-based multi-objective optimization methodologies on the
VKI-LS89 turbine vane test case, J. Turbomach. 145 (3) (2022) 031001. https://doi.org/10.1115/1.4055577

[20] A. Akerson, B. Bourdin, K. Bhattacharya, et al., Optimal design of responsive structures, Struct. Multidiscip. Optim. 65 (4) (2022) 111. https://doi.org/10.1007/
s00158-022-03200-5

[21] A. Akerson, Optimal structures for failure resistance under impact, J. Mech. Phys. Solid. 172 (2023) 105172. https://doi.org/10.1016/j.jmps.2022.105172
[22] M.P. Bendsøe, O. Sigmund, Topology Optimization, Springer, Berlin, Heidelberg, 2004. https://doi.org/10.1007/978-3-662-05086-6
[23] R.E. Plessix, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications, Geophys. J. Int. 167 (2) (2006)

495–503. https://doi.org/10.1111/j.1365-246X.2006.02978.x
[24] H. Zhang, A. Sandu, FATODE: A library for forward, adjoint, and tangent linear integration of ODEs, SIAM J. Sci. Comput. 36 (5) (2014) C504–C523. https:

//doi.org/10.1137/130912335
[25] H. Zhang, S. Abhyankar, E. Constantinescu, M. Anitescu, et al., Discrete adjoint sensitivity analysis of hybrid dynamical systems with switching, IEEE Trans.

Circuits Syst. I Regul. Pap. 64 (5) (2017) 1247–1259. https://doi.org/10.1109/TCSI.2017.2651683
[26] H. Zhang, E.M. Constantinescu, B.F. Smith, et al., PETSc TSAdjoint: A discrete adjoint ODE solver for first-order and second-order sensitivity analysis, SIAM J.

Sci. Comput. 44 (1) (2022) C1–C24. https://doi.org/10.1137/21M140078X
[27] B. Talamini, M. Tupek, OptimiSM v.0.0.1, 2021, https://doi.org/10.11578/dc.20221005.6
[28] S. Carli, L. Hascoët, W. Dekeyser, M. Blommaert, et al., Algorithmic differentiation for adjoint sensitivity calculation in plasma edge codes, J. Comput. Phys. 491

(2023) 112403. https://doi.org/10.1016/j.jcp.2023.112403
[29] J.S. Jensen, P.B. Nakshatrala, D.A. Tortorelli, et al., On the consistency of adjoint sensitivity analysis for structural optimization of linear dynamic problems,

Struct. Multidiscip. Optim. 49 (5) (2014) 831–837. https://doi.org/10.1007/s00158-013-1024-4
[30] A. Sandu, On the properties of Runge-Kutta discrete adjoints, in: V.N. Alexandrov, G.D. van Albada, P.M.A. Sloot, J. Dongarra (Eds.), Computational Science –

ICCS 2006, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 550–557.
[31] A. Sandu, On Consistency Properties of Discrete Adjoint Linear Multistep Methods, Technical Report TR-07-40, 2007.
[32] J.M. Sanz-Serna, Symplectic Runge–Kutta schemes for adjoint equations, automatic differentiation, optimal control, and more, SIAM Rev. 58 (1) (2016) 3–33.

https://doi.org/10.1137/151002769
[33] B.K. Tran, B.S. Southworth, M. Leok, On properties of adjoint systems for evolutionary PDEs 34 (5) 95. https://doi.org/10.1007/s00332-024-10071-1
[34] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, A. Lerer, Automatic differentiation in PyTorch (2017).
[35] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M.

Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. 2015. https://www.tensorflow.org/.

[36] J. Bradbury, R. Frostig, P. Hawkins, M.J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, Q. Zhang, JAX: Composable
Transformations of Python+NumPy Programs, 2018.

[37] W.S. Moses, V. Churavy, Instead of rewriting foreign code for machine learning, automatically synthesize fast gradients, in: Proceedings of the 34th International
Conference on Neural Information Processing Systems, NIPS ’20, Curran Associates Inc., Red Hook, NY, USA, 2020, pp. 12472–12485.

[38] W.S. Moses, V. Churavy, L. Paehler, J. Hückelheim, S.H.K. Narayanan, M. Schanen, J. Doerfert, et al., Reverse-mode automatic differentiation and optimization of
GPU kernels via enzyme, in: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’21, Association
for Computing Machinery, New York, NY, USA, 2021, pp. 1–16. https://doi.org/10.1145/3458817.3476165

[39] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny, V. Dobrev, Y. Dudouit, A. Fisher, T. Kolev, W. Pazner, M. Stowell, V. Tomov, I. Akkerman,
J. Dahm, D. Medina, S. Zampini, et al., MFEM: A modular finite element methods library, Comput. Math. Applic. 81 (2021) 42–74. https://doi.org/10.1016/j.
camwa.2020.06.009

[40] J. Andrej, N. Atallah, J.-P. Bäcker, J.-S. Camier, D. Copeland, V. Dobrev, Y. Dudouit, T. Duswald, B. Keith, D. Kim, T. Kolev, B. Lazarov, K. Mittal, W. Pazner, S.
Petrides, S. Shiraiwa, M. Stowell, V. Tomov, et al., High-performance finite elements with MFEM, Int. J. High Perform. Comput. Appl. 38 (5) (2024) 447–467.
https://doi.org/10.1177/10943420241261981

[41] A. Griewank, A. Walther, Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation, ACM
Trans. Math. Softw. 26 (1) (2000) 19–45. https://doi.org/10.1145/347837.347846

[42] Q. Wang, P. Moin, G. Iaccarino, et al., Minimal repetition dynamic checkpointing algorithm for unsteady adjoint calculation, SIAM J. Sci. Comput. 31 (4) (2009)
2549–2567. https://doi.org/10.1137/080727890

[43] J. Herrmann, G.P. (Aupy), H-Revolve: a framework for adjoint computation on synchronous hierarchical platforms, ACM Trans. Math. Softw. 46 (2) (2020)
12:1–12:25. https://doi.org/10.1145/3378672

[44] O. Sigmund, On the design of compliant mechanisms using topology optimization* 25 (4) 493–524. Publisher: Taylor & Francis, https://doi.org/10.1080/
08905459708945415

[45] B. Bourdin, Filters in topology optimization, Int. J. Numer. Method. Eng. 50 (9) (2001) 2143–2158. https://doi.org/10.1002/nme.116

Computer Methods in Applied Mechanics and Engineering 451 (2026) 118663

22

https://doi.org/10.1063/1.5088745
https://doi.org/10.1063/1.5088745
https://doi.org/10.1016/j.physd.2011.01.008
https://doi.org/10.1016/j.physd.2011.01.008
https://doi.org/10.1073/pnas.1717236115
https://doi.org/10.1073/pnas.1717236115
https://doi.org/10.1063/5.0100100
https://doi.org/10.1063/5.0100100
https://doi.org/10.1063/5.0180712
https://doi.org/10.1063/5.0180712
https://doi.org/10.1063/5.0213123
https://doi.org/10.1063/5.0213123
https://doi.org/10.1088/2632-2153/ad8daa
https://doi.org/10.1088/2632-2153/ad8daa
https://doi.org/10.1063/5.0156373
https://doi.org/10.1063/5.0156373
https://doi.org/10.1103/PhysRevLett.132.024001
https://doi.org/10.1103/PhysRevLett.132.024001
https://doi.org/10.1103/PhysRevLett.132.024001
https://doi.org/10.1103/PhysRevLett.132.024001
https://doi.org/10.1063/5.0056437
https://doi.org/10.1063/5.0056437
https://doi.org/10.1063/5.0150749
https://doi.org/10.1063/5.0150749
https://doi.org/10.1103/PhysRevB.107.014109
https://doi.org/10.1103/PhysRevB.107.014109
https://doi.org/10.1115/1.4055577
https://doi.org/10.1115/1.4055577
https://doi.org/10.1007/s00158-022-03200-5
https://doi.org/10.1007/s00158-022-03200-5
https://doi.org/10.1007/s00158-022-03200-5
https://doi.org/10.1007/s00158-022-03200-5
https://doi.org/10.1016/j.jmps.2022.105172
https://doi.org/10.1016/j.jmps.2022.105172
https://doi.org/10.1007/978-3-662-05086-6
https://doi.org/10.1007/978-3-662-05086-6
https://doi.org/10.1111/j.1365-246X.2006.02978.x
https://doi.org/10.1111/j.1365-246X.2006.02978.x
https://doi.org/10.1137/130912335
https://doi.org/10.1137/130912335
https://doi.org/10.1137/130912335
https://doi.org/10.1137/130912335
https://doi.org/10.1109/TCSI.2017.2651683
https://doi.org/10.1109/TCSI.2017.2651683
https://doi.org/10.1137/21M140078X
https://doi.org/10.1137/21M140078X
https://doi.org/10.11578/dc.20221005.6
https://doi.org/10.11578/dc.20221005.6
https://doi.org/10.1016/j.jcp.2023.112403
https://doi.org/10.1016/j.jcp.2023.112403
https://doi.org/10.1007/s00158-013-1024-4
https://doi.org/10.1007/s00158-013-1024-4
http://refhub.elsevier.com/S0045-7825(25)00935-1/sbref0029
http://refhub.elsevier.com/S0045-7825(25)00935-1/sbref0029
http://refhub.elsevier.com/S0045-7825(25)00935-1/sbref0030
https://doi.org/10.1137/151002769
https://doi.org/10.1137/151002769
https://doi.org/10.1007/s00332-024-10071-1
https://doi.org/10.1007/s00332-024-10071-1
http://refhub.elsevier.com/S0045-7825(25)00935-1/sbref0032
https://www.tensorflow.org/
http://refhub.elsevier.com/S0045-7825(25)00935-1/sbref0033
http://refhub.elsevier.com/S0045-7825(25)00935-1/sbref0033
https://doi.org/10.1145/3458817.3476165
https://doi.org/10.1145/3458817.3476165
https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1177/10943420241261981
https://doi.org/10.1177/10943420241261981
https://doi.org/10.1145/347837.347846
https://doi.org/10.1145/347837.347846
https://doi.org/10.1137/080727890
https://doi.org/10.1137/080727890
https://doi.org/10.1145/3378672
https://doi.org/10.1145/3378672
https://doi.org/10.1080/08905459708945415
https://doi.org/10.1080/08905459708945415
https://doi.org/10.1080/08905459708945415
https://doi.org/10.1080/08905459708945415
https://doi.org/10.1002/nme.116
https://doi.org/10.1002/nme.116

K. Korner et al.

[46] O. Sigmund, Morphology-based black and white filters for topology optimization 33 (4) 401–424. https://doi.org/10.1007/s00158-006-0087-x
[47] M. Zhou, B.S. Lazarov, F. Wang, O. Sigmund, Minimum length scale in topology optimization by geometric constraints 293 266–282. https://www.sciencedirect.

com/science/article/pii/S0045782515001693. https://doi.org/10.1016/j.cma.2015.05.003
[48] V.A. Dobrev, T.V. Kolev, R.N. Rieben, et al., High-order curvilinear finite element methods for Lagrangian hydrodynamics, SIAM J. Sci. Comput. 34 (LLNL-JRNL-

516394) (2012). https://doi.org/10.1137/120864672
[49] F.H. Harlow, A.A. Amsden, Fluid Dynamics. A Lasl Monograph, Technical Report LA4700, Los alamos Scientific Lab., N. Mex., 1971.
[50] A. Lew, R. Radovitzky, M. Ortiz, et al., An artificial-viscosity method for the Lagrangian analysis of shocks in solids with strength on unstructured, arbitrary-order

tetrahedral meshes, J. Comput.-Aid. Mater. Des. 8 (2) (2001) 213–231. https://doi.org/10.1023/A:1020064403005
[51] J.C. Campbell, M.J. Shashkov, A tensor artificial viscosity using a mimetic finite difference algorithm, J. Comput. Phys. 172 (2) (2001) 739–765. https://doi.

org/10.1006/jcph.2001.6856
[52] M.L. Wilkins, Use of artificial viscosity in multidimensional fluid dynamic calculations, J. Comput. Phys. 36 (3) (1980) 281–303. https://doi.org/10.1016/

0021-9991(80)90161-8
[53] P.D. Bello-Maldonado, T.V. Kolev, R.N. Rieben, V.Z. Tomov, et al., A matrix-free hyperviscosity formulation for high-order ALE hydrodynamics, Comput. Fluid.

205 (2020) 104577. https://doi.org/10.1016/j.compfluid.2020.104577
[54] R.W. Anderson, V.A. Dobrev, T.V. Kolev, R.N. Rieben, V.Z. Tomov, et al., High-order multi-material ALE hydrodynamics, SIAM J. Sci. Comput. 40 (1) (2018)

B32–B58. https://doi.org/10.1137/17M1116453
[55] W.M. Czarnecki, S. Osindero, M. Jaderberg, G. ́Swirszcz, R. Pascanu, et al., Sobolev Training for Neural Networks, 2017, https://doi.org/10.48550/arXiv.1706.

04859
[56] M.D. Homan, A. Gelman, The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo, J. Mach. Learn. Res. 15 (1) (2014) 1593–1623.

Computer Methods in Applied Mechanics and Engineering 451 (2026) 118663

23

https://doi.org/10.1007/s00158-006-0087-x
https://doi.org/10.1007/s00158-006-0087-x
https://www.sciencedirect.com/science/article/pii/S0045782515001693
https://www.sciencedirect.com/science/article/pii/S0045782515001693
https://doi.org/10.1016/j.cma.2015.05.003
https://doi.org/10.1016/j.cma.2015.05.003
https://doi.org/10.1137/120864672
https://doi.org/10.1137/120864672
http://refhub.elsevier.com/S0045-7825(25)00935-1/sbref0042
https://doi.org/10.1023/A:1020064403005
https://doi.org/10.1023/A:1020064403005
https://doi.org/10.1006/jcph.2001.6856
https://doi.org/10.1006/jcph.2001.6856
https://doi.org/10.1006/jcph.2001.6856
https://doi.org/10.1006/jcph.2001.6856
https://doi.org/10.1016/0021-9991(80)90161-8
https://doi.org/10.1016/0021-9991(80)90161-8
https://doi.org/10.1016/0021-9991(80)90161-8
https://doi.org/10.1016/0021-9991(80)90161-8
https://doi.org/10.1016/j.compfluid.2020.104577
https://doi.org/10.1016/j.compfluid.2020.104577
https://doi.org/10.1137/17M1116453
https://doi.org/10.1137/17M1116453
https://doi.org/10.48550/arXiv.1706.04859
https://doi.org/10.48550/arXiv.1706.04859
https://doi.org/10.48550/arXiv.1706.04859
https://doi.org/10.48550/arXiv.1706.04859
http://refhub.elsevier.com/S0045-7825(25)00935-1/sbref0048

	Differentiable lagrangian shock hydrodynamics with application to stable shock acceleration of density interfaces
	1 Introduction
	2 Gradient based optimization of time dependent problems
	2.1 Differentiate then discretize
	2.2 Discretize then differentiate
	2.3 Graph network approach.
	2.4 Computational considerations
	2.4.1 Assessment of gradient behavior
	2.4.2 Automatic differentiation
	2.4.3 Data storage/checkpointing
	2.4.4 Gradient based optimization
	2.4.5 Filters
	2.4.6 Example: optimizing multi-particle systems

	3 Finite element method discretization of Lagrangian hydrodynamics
	3.1 Summary of equations
	3.2 Artificial viscosity
	3.3 Vector Jacobian products with automatic differentiation

	4 Suppression of Richmyer-Meshkov instability induced jetting
	4.1 Forward pass
	4.2 Objective function
	4.3 Adjoint calculation
	4.4 Results
	4.5 Energy constrained optimization
	4.5.1 Equality constraint
	4.5.2 Inequality constraint
	4.5.3 Combination
	4.5.4 Results

	5 Conclusion
	A Supplemental information
	A.1 Scaling with derivatives
	A.2 Infdim math
	A.3 Continuous analogues of non-differentiable functions
	A.4 Adjoints of generic finite element systems
	A.5 Taylor test of hydrodynamic system
	A.6 Mesh convergence
	A.7 Lower energy results

