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Key Points:

e Four Earth system model components are successfully differentiated using the re-
verse mode of the automatic differentiation tool Enzyme.

e The Julia-based, GPU-enabled models use bespoke numerics, with finite-volume,
finite-element, and spectral spatial discretization schemes.

¢ The compiler transpilation tool Reactant enables optimized, portable performance
across diverse ML-customized HPC architectures.
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Abstract

Differentiable Earth system models (ESMs) enable powerful applications such as
sensitivity analysis, gradient-based calibration, state estimation, boundary flux inver-
sions, uncertainty quantification, and online machine learning. Reverse-mode automatic
differentiation (AD) efficiently provides gradients for such tasks, yet models have rarely
included this capability because of complex, bespoke numerical algorithms. As part of
the Differentiable programming in Julia for Earth system modeling (DJ4Earth) initia-
tive, we present enabling features that make general-purpose AD tractable and efficient
for full-fledged ESM components written in Julia. The approach leverages the AD frame-
work Enzyme.jl and the compiler transpilation tool Reactant.jl, augmented by sophis-
ticated checkpointing algorithms. Operating at the Low-Level Virtual Machine (LLVM)
intermediate representation or Multi-Level Intermediate Representation (MLIR) com-
piler levels, these frameworks support mutable memory, custom kernels, and compiler
optimizations before and after differentiation. Julia-specific challenges related to just-
in-time compilation and garbage collection are handled efficiently. Reactant further en-
ables automatic performance portability across CPUs, GPUs, and TPUs, facilitating use
of emerging Al-customized high-performance computing architectures. We demonstrate
these frameworks on four Julia-based ESM components featuring diverse spatial discretiza-
tions and numerical algorithms: (i) the rotating-sphere shallow water model ShallowWa-

ters.jl, (ii) the finite-volume ocean model Oceananigans.jl, (iii) the ice sheet model DJUICE.jl,

and (iv) the spectral atmospheric model SpeedyWeather.jl. Across these ESM compo-
nents, our tools compute efficient and correct gradients. These results establish a foun-
dation for differentiable, high-performance and performance-portable ESMs that can in-
tegrate neural networks for unresolved processes, trained online, enabling next-generation
hybrid physics—machine learning ESMs constrained by physical dynamics and observa-
tions.

Plain Language Summary

Earth system models are computer programs that simulate how Earth’s atmosphere,
ocean, ice, and biosphere interact and evolve. These models consist of millions of lines
of code and rely on uncertain inputs. To improve accuracy, scientists adjust these in-
puts to minimize the difference between simulations and observations, measured by a
“cost function”. Another computer program can efficiently determine how changes in each
input affect the outcome. This calculation, called the gradient of the cost function, would
be extremely time-consuming to code manually. Instead, we use an automatic differen-
tiation (AD) tool called Enzyme, which computes these gradients efficiently and updates
them automatically whenever the model changes. As computing systems evolve rapidly,
especially those optimized for artificial intelligence (AI), another tool called Reactant
enables models to run efficiently across different hardware, from CPUs to GPUs and Al
accelerators. We demonstrate these methods on four Earth system model components
written in the modern programming language Julia: a shallow water model, an ocean
model, an ice sheet model, and an atmospheric model. For each, the code generated via
AD produces correct gradients of the cost function. This work lays the foundation for
combining these differentiated models with machine learning to improve model accuracy
efficiently.

1 Introduction

Earth system models (ESMs) provide a comprehensive framework for simulating
weather, climate, hydrological resources, biogeochemical cycles, and cryospheric changes
across a range of spatial and temporal scales (e.g., Randall et al. (2019)). These mod-
els prove useful in quantifying magnitudes and patterns of natural climate variability,
determining the impact of climate change, and providing likely scenarios of the planet’s
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future climate to policy makers. ESMs consist of submodels or components represent-
ing the atmosphere, ocean, cryosphere, and biosphere. These components typically solve
partial differential equations representing the conservation and constitutive laws for the
component’s state on a discretized space of the rotating planet. However, ESM compo-
nents rely on parameterizations for subgrid-scale processes, such as turbulent mixing or
unresolved mesoscale eddies in the ocean, air-sea fluxes of heat, humidity, momentum,

or biogeochemical tracers (Christensen & Zanna, 2022). In the atmosphere, parameter-
izations also represent microphysics such as cloud formation and precipitation, processes
that cannot be resolved even with higher resolution. Ice sheet models have to prescribe
basal boundary conditions that cannot be estimated from remote sensing. These param-
eterizations and poorly constrained boundary conditions are sources of structural and
parametric uncertainty. Their calibration relies on observational data or high-fidelity sim-
ulations. In the context of ESMs, parameter calibration or tuning has so far been con-
ducted in a somewhat ad hoc fashion because of the computational cost and the under-
lying complexity of the problem (e.g., Hourdin et al. (2016); Balaji et al. (2022)). Ad hoc
parameter calibration, together with initial condition uncertainty, is prerceived to be the
primary reason ESM simulations have suffered persistent biases that may obscure pre-
dictive skill on weather to decadal time scales (Eyring et al., 2019).

Rigorous methods for model calibration whereby models “learn from data” have
been underexplored in climate or Earth system modeling (Schneider et al., 2017, 2023).
They rely either on ensemble methods (i.e., sampling) or gradient-based optimization,
or a combination thereof. Each of these faces a distinct set of computational challenges.
While ensemble methods have become the method of choice in various ESM applications,
they suffer from a number of potential drawbacks: (1) in the context of comprehensive
ESMs, they have mainly been applied to tackle initial condition uncertainty; (2) they
suffer from the “curse of dimensionality”: when initial condition and parametric uncer-
tainty exhibit spatial structure, as is generally the case in geoscience applications, en-
semble methods become computationally intractable as the ensemble size becomes ex-
cessively large; (3) many of the ensemble approaches used in ESMs (with the exception
of rigorous data assimilation, such as Kalman filter or inversion) do not “learn from data”
for calibration; and (4) structural model uncertainty is dealt with only in an ad hoc man-
ner via multimodel or stochastic ensemble methods.

1.1 The Case for Differentiable ESMs

Some of the shortcomings listed above may be overcome through the use of gradient-
based optimization, which is the subject of the well-established field of inverse estima-
tion and control methods (Bryson & Ho, 1975; Tarantola, 2005; Wunsch, 2006). At its
heart is the use of adjoint models, namely, models that efficiently compute the sensitiv-
ity of some scalar-valued model-data misfit or quantity of interest to a high-dimensional
space of uncertain input or control variables, such as initial conditions, boundary con-
ditions, or model parameters. Optimal input variables are then obtained through iter-
ative nonlinear gradient-based optimization. The underlying adjoint model is the for-
mal transpose of the tangent linear model of the (generally nonlinear) parent model. It
can be obtained by hand-coding, as has been done, for example, in numerical weather
prediction (Rabier et al., 2000) or regional ocean modeling (Moore et al., 2004), or through
the use of automatic differentiation (AD) tools. AD computes derivatives by applying
the chain rule of differentiation to elementary operations (e.g., Griewank & Walther (2008);
Margossian (2019)). Reverse-mode AD generates the adjoint model (which computes gra-
dients) rather than the tangent linear model (which computes directional derivatives),
making gradient-based methods computationally tractable for large-scale applications.
A key advantage of AD-generated over hand-coded adjoints is the ability to keep the ad-
joint model up to date with respect to ongoing developments of the parent model. Dif-
ferentiable programming in the context of optimal estimation and control (or inverse)
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methods consists of writing the parent model in a way that is amenable to efficient ad-
joint code generation using AD (Blondel & Roulet, 2024; Sapienza et al., 2025).

The advent or revival of machine learning (ML) techniques has introduced new strate-
gies for “learning” subgrid-scale parameterizations and model calibration (Zanna & Bolton,
2020; Yuval et al., 2021; Espinosa et al., 2022), emulating ESM components (Lam et al.,
2023; Bi et al., 2023; Perkins et al., 2023; Dheeshjith et al., 2025) and improving fore-
casting on a broad range of time scales (He et al., 2021). The key computational ingre-
dient driving many of these ML techniques is backpropagation through neural network
(NN) architectures, which is conceptually identical to propagating sensitivity informa-
tion through the use of adjoint operators for physics-based models (Baydin et al., 2018).
Whereas adjoints efficiently compute the derivative of model-data misfit functions or quan-
tities of interest with respect to input or control variables, backpropagation efficiently
computes the derivative of the loss function with respect to NN weights and biases. Both
are in fact structurally the same and are implemented via reverse-mode AD, but they
have evolved as different terminologies in the simulation-based science and machine learn-
ing domains (Griewank, 2012). Differentiable programming is essential in that it enables
rapid and accurate construction of the backpropagation operator of the NN architecture
or of the adjoint operator of the physical model using AD (Chizat et al., 2019; Sapienza
et al., 2025).

In a hybrid framework, the two differentiable programming applications discussed
in the preceding paragraph are seamlessly integrated: the physical model’s adjoint and
the NN’s backpropagation operator. Here, the role of the neural network is typically to
replace or augment a subgrid-scale parameterization scheme. During the online or full-
model training, gradients are propagated through the NN via standard backpropagation,
while the sensitivities of the model’s state variables are computed through the adjoint.
The high-dimensional input space which necessitates adjoint approaches is now composed
of (or includes) the space of NN weights. This integrated training strategy ensures that
the NN learns corrections that remain dynamically consistent with the governing phys-
ical equations. By contrast, offline training does not use the model adjoint and optimizes
the NN weights in isolation, producing solutions that may generalize less robustly across
regimes and conditions.

Driven by the rise in machine learning applications, several novel AD tools have
been developed in recent years, including the JAX framework (Bradbury et al., 2018)
and Enzyme (W. Moses & Churavy, 2020). These systems benefit from compiler opti-
mizations and offer an easy interface for potential GPU acceleration and integration of
ML into the ESM.

Equipping ESM components with AD enables:

1. Comprehensive parameter calibration through gradient-based optimization (e.g.,
Stammer (2005); Larour et al. (2014)).

2. Smoother-based, dynamically and kinematically consistent state estimation (e.g.,
Wunsch & Heimbach (2007); Badgeley et al. (2025)).

3. Comprehensive, time-resolved, and spatially resolved boundary flux inversion from
interior observations (e.g., Kaminski et al. (2013); Liang & Yu (2016)).

4. More general sensitivity analyses of (usually scalar-valued) quantities of interest
or model metrics to a range of spatially and temporally resolved input variables
(e.g., Errico & Vukicevic (1992); Fukumori et al. (2015); Pillar et al. (2016); Kos-
tov et al. (2021)).

5. Derivative-based, that is, Hessian-based, uncertainty quantification (e.g., Isaac et
al. (2015); Kaminski et al. (2018); Loose & Heimbach (2021)).

6. Combination of adjoint and backpropagation operators in a hybrid approach, whereby
a neural network is embedded within an ESM component (e.g., Kochkov et al. (2021)).
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We emphasize that, while the last point is our main motivation for developing differen-
tiable ESM components that embed ML architectures, such as subgrid-scale surrogate
models that learn from data to provide better-calibrated simulations, the purpose of this
work is not (yet) to showcase such a hybrid learning approach. Instead, we here demon-
strate the feasibility of general-purpose reverse-mode AD on a range of ESM components
to produce correct and efficient gradients, thus setting the stage for hybrid learning ap-
proaches as described above.

1.2 What Makes Development of Differentiable Models Hard

Whereas some individual components of entire ESMs have been rendered differ-
entiable (e.g., Marotzke et al. (1999); Heimbach et al. (2002); Stammer et al. (2002); Kamin-
ski et al. (2013); Morlighem et al. (2021)), no fully differentiable coupled ESM yet ex-
ists (Gelbrecht et al., 2023; Shen et al., 2023). At its core, the difficulty of whole-model
differentiation stems from both the significant computational demands of ESMs and the
need to support differentiable versions of all the complex features in modern program-
ming languages. ESMs are not written by individuals but are the effort or large teams,
connecting model components (atmosphere, ocean, land, etc.) that themselves are of-
ten the product of decade-old legacy software without a coherent programming paradigm
or differentiability in mind.

ESMs run on large supercomputers producing data at a rate of gigabytes per sec-
ond. Data and computation at this scale necessitate that the simulation code be writ-
ten in a computationally efficient fashion that obscures the mathematical structure that
the code represents. In practice this means that simulations must be written “in place”
to minimize memory usage, rely on control flow, ideally leverage just-in-time compila-
tion (a feature rarely used in current ESMs), and employ numerous custom kernels for
central processing units (CPUs), graphics processing units (GPUs), or tensor process-
ing units (TPUs) for execution. All these features break modern and traditional differ-
entiation tools such as JAX (Bradbury et al., 2018), PyTorch (Paszke et al., 2019), and
Tapenade (Hascoet & Pascual, 2013).

Beyond the difficulties presented by the code structure (Hiickelheim et al., 2024),
the structure of the computation presents further challenges to differentiation. Typical
usage of ESMs involves simulating for millions of time steps, each of which fully over-
writes the current state of the model. Reverse-mode differentiation of a time-stepping
loop, however, requires either storage of all previous time steps—asymptotically increas-
ing the memory requirements of the derivative—or recomputing the current state, either
of which in its pure form is prohibitive for comprehensive ESMs. Checkpointing balances
storing and recomputing. It reduces or limits the memory load by storing a subset of the
gradient computations (Griewank & Walther, 2008). This comes at the cost of increased
computational load, however, since the states in the intermediate steps need to be re-
computed. Thus, checkpointing requires a delicate balance between memory efficiency
and computational speed (Alhashim et al., 2025).

Another difficulty faced by differentiable ESMs is the chaotic nature of the climate
system. Pires et al. (1996); Lea et al. (2000); Metz et al. (2021) discuss how such sys-
tems render gradients computed by AD unstable, resulting in gradient explosion and,
subsequently, ill-conditioned Jacobians and large eigenvalues. The difference in the timescales
of the different processes also induces stiffness in the differential equations that may lead
to errors. Recent work is pointing to ways in which these issues may be alleviated (Kennedy
et al., 2025).



227 1.3 DJ4Earth

208 The Differentiable programming in Julia for Earth system modeling (DJ4Earth)

229 initiative is a new framework to enable differentiable Earth system models in Julia. The
230 purpose of this paper is to describe a number of algorithmic developments required to

231 render an initial set of recently developed Julia-based ESM components differentiable

232 for the DJ4Earth framework. Because each of these components uses bespoke numer-

233 ical algorithms, general-purpose reverse-mode AD has been the method of choice to gen-
234 erate derivative codes. The AD tool used is Enzyme and its Julia-specific binding En-

235 zyme.jl (W. Moses & Churavy, 2020; W. S. Moses et al., 2021, 2022). Section 2 describes
236 algorithmic developments, notably Reactant.jl, that were essential to handle Julia-specific
237 issues and to generate a Multi-Level Intermediate Representations (MLIRs) in order to

238 generate robust, efficient, and performance-portable derivative code. Further requirements
239 for iterative or time-evolving algorithms were the implementation of checkpointing schemes,
240 at both the Julia level and the MLIR level, in order to mitigate storage-related mem-

201 ory issues that are ubiquitous in reverse-mode AD.

242 These technical developments are showcased in four application case studies rep-

243 resenting ESM components that implement a range of numerical algorithms and spatial

244 discretization schemes, including finite-volume, finite-element, and spectral schemes. They
25 comprise the shallow water model ShallowWaters.jl (Section 3); a full-fledged ocean gen-
26 eral circulation model Oceananigans.jl, which forms the ocean component of the Climate
247 Modeling Alliance (CliMA) model (Section 4); the ice sheet model DJUICE.jl (Section 5);
248 and the atmospheric general circulation model SpeedyWeather.jl with parameterized physics
249 (Section 6). A concluding discussion is given in Section 7.

250 2 Techniques for Efficient Differentiable Earth System Modeling

251 ESMs are large and complex pieces of software that contain many different com-

252 ponents and numerical algorithms. Users and developers of ESMs need to be able to ex-
253 plore different configurations and model compositions. As an example, the Oceanani-

254 gans code (see Section 4) may be used as a high-resolution large eddy simulation model
255 or as a global general circulation model. Utilizing a dynamic high-level programming lan-
256 guage allows the model configuration to evolve beyond the traditional run-file approach
257 to a program as the configuration approach, enabling developers to quickly explore and
258 alter model configuration or to provide customization through user functions. The Ju-

259 lia programming language is such a high-level dynamic programming language, with a

260 host of capabilities that make it particularly attractive for ESM applications. Julia uses
261 an LLVM-based just-in-time (JIT) compiler that can natively target common acceler-

262 ators, allowing user functions to be inlined into the computational kernels.

263 In order to enable whole-model differentiation of ESMs or ESM components, sev-
264 eral novel computational algorithms and techniques needed to be developed that take

265 advantage of Julia capabilities and overcome some of the challenges created by this flex-
266 ibility and extensibility. The following section describes the development of the auto-

267 matic differentiation framework Enzyme.jl; the tracing compiler Reactant.jl; and Check-
268 pointing.jl, an implementation of checkpointing algorithms. A high-level workflow of how
260 these frameworks interact for a modern ESM component (here, an ocean model) is given

270 in Fig. 1.

on 2.1 Automatic Differentiation: Enzyme.jl

o7 AD is a technique for computing the mathematical derivatives of computer pro-

273 grams (Griewank, 2003). The most important derivative programs are tangent linear mod-
o7 els, which compute directional derivatives (i.e., the impact of changing one input on all

275 outputs), and adjoint models, which compute gradients (i.e., the sensitivity of one out-



void simulate_with_bathymetry() {

void simulate_with_turbulence() {
void

simulate_with_buoyancy() {

void simulate_with_periodicbc() {

# Generated code for ezact problem

# being run, reducing setup and

# enabling novel optimizations.

function opt_Vsimulate(model)
opt_halo(model.bc)

opt_Vhalo(model.bc)
end

function opt_Vhalo(::ConstBoundary)

end

Figure 1: Top Left: C++-style code of prior ocean simulation models, containing many

Julia

function simulate(model)
# JIT compile and conditionally
# execute the correct bonudary
halo(model.bc)

end

function halo(::PeriodicBoundary)

end

function halo(::ConstBoundary)

end

Enzyme.gradient

—

Reactant.@jit

function Vsimulate(model)
halo(model.bc)

Vhalo (model.bc)
end

function Vhalo(::PeriodicBoundary)

end

function Vhalo(::ConstBoundary)

end

separate variations of the simulation for each potential specialization. Top Right: Julia-
style ocean model program in which a single simulation is written, with each feature con-
ditionally enabled via just-in-time (JIT) compilation. Bottom Right: Enzyme-generated
derivatives of the simulation code. Bottom Left: Reactant-optimized simulation code in
which the exact problem being run is known and excess code can be removed and addi-
tional optimizations specific to the simulation at hand can be applied.
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put with respect to changes in all inputs). The former are implemented via so-called forward-

mode AD, whereas the latter via reverse-mode AD, a concept equivalent to backprop-
agation in machine learning (e.g., Rumelhart et al. (1986); Griewank (2012)). For de-
tails, we refer to monographs on the subject, such as Griewank & Walther (2008); Nau-
mann et al. (2015).

ESMs contain numerous challenges to differentiation stemming from both the nec-
essary structure of ESM application code and the structure of the computation itself.
Production-quality ESMs push the limit of what can be efficiently computed on mod-
ern hardware. They often consume all system memory, requiring the simulation to be
written in a form that mutates data in place. They require vast amounts of computa-
tion and are written with custom kernels to efficiently run on modern systems such as
CPUs, GPUs, and TPUs. Despite these efforts, current-generation ESMs can achieve only
around 5% peak performance on today’s high-performance computing (HPC) architec-
tures (e.g., Zhang et al. (2020); see Balaji et al. (2016) for a detailed discussion of ESM
performance metrics). They are often memory- and compute-bound, and the many dif-
ferent algorithms operating consecutively with varying large arrays are difficult to op-
timize collectively without reaching diminishing returns on some of them (Amdahl’s law).
To support the numerous combinations of model features, ESM code bases feature con-
trol flow to dynamically enable certain code paths. Modern ESMs increasingly leverage
JIT compilation to avoid wasting time preparing to use features that are not required
to execute a particular model. Moreover, ESM application codes are large, leveraging
nearly all features of the programming language(s) they are written in.

Most of the work to date on differentiable ESM components has relied on hand-
coded adjoints. These are essentially a second copy of the simulation code that instead
computes the derivative. Examples include the tangent linear and adjoint components
of ECMWE’s weather forecast model (Rabier et al., 2000; Janiskovd & Lopez, 2013) and
the Regional Ocean Modeling System (Moore et al. (2004, 2011)). Although this idea
is simple in principle, in practice it leads to several issues. Given the size and complex-
ity of ESM code bases, writing a second version of the application is a difficult endeavor
that is costly in money, personnel, and development time. Moreover, it presents a sig-
nificant maintenance and correctness burden. Whenever the original simulation (the pri-
mal calculation) is modified, great care must be taken to update the corresponding deriva-
tive code base to reflect these changes accurately in the corresponding gradient compu-
tation. If the inverse or control problem is changed, for example, from a pure state to
a parameter estimation problem (or a combination thereof), the structure of the deriva-
tive code may change fundamentally; simply put, for f = a-z, we have df (z) = a-dx,
or df (a) = da-z, or df (a,z) = da-z+a-dz, each of which results in different derivative
code.

In parallel, tools to automatically generate the derivatives were developed (Gier-
ing & Kaminski, 1998). However, these tools were limited in the features of the language
they support. For example, the AD tools ADIFOR, TAF, or Tapenade took many years
to extend their capabilities from Fortran77 to Fortran90/95 language features. Mean-
while, Fortran is continually evolving (e.g., Kedward et al. (2022); Magnin et al. (2023)).
To analyze existing code to generate derivatives, source-transformation tools must un-
derstand how to parse and perform semantic analysis from scratch, before they even start
differentiation. The extraordinary difficulty of this initial analysis task cannot be over-
stated. For example, the draft ISO C++ Standard published in 2020 (https://isocpp
.org/files/papers/N4860.pdf) contains 1,841 pages of text, most of which is compre-
hensible only to programming language experts. Compliant compilers, such as Clang/LLVM,
are maintained as a collaboration between several large technology companies. Over the
span of a single month (as of August 2025), the LLVM project had 4,385 active pull re-
quests from 805 unique programmers, resulting in 1,049,370 lines of code being added
to over 12,748 files. Consequently, these initial general-purpose tools were extremely lim-
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Figure 2: Top: The Enzyme compiler pipeline. Programs of a variety of languages are
first compiled to an LLVM and optimized, prior to and after differentiation. Bottom: The
Reactant compiler pipeline. Reactant first lowers into the stablehlo/tensor dialect within
MLIR and performs linear algebra optimizations. Reactant then performs automatic
differentiation with Enzyme on MLIR, before a second round of tensor optimizations.
Finally, Reactant lowers the MLIR for execution by XLA on any number of CPUs, GPUs,
or TPUs.

ited in the features they supported, and codes needed to be adapted accordingly. Struc-
ture types, pointers, control flow, templates, and more all present difficulties to auto-
mated tools.

Modern AD tools, such as JAX, PyTorch, and TensorFlow, define a fixed subset
of primitives useful for a particular domain, usually machine learning. These domain-
specific languages (DSLs) tend to support differentiation of nearly all the tensor-specific
runtime functions within their library, but this support comes with a new constraint:
all code must be written in said DSL. These tools work well if the DSL closely mirrors
the operations being performed, such as native convolution or attention layers making
it easy to perform machine learning. Unfortunately, they are not designed with the prim-
itives applicable to ESMs, necessitating significant code rewriting. In particular, these
tools tend to lack support for custom kernels (required for high-performance primal com-
putations), mutable memory (required for large ESMs), and control flow (required for
easy switching between different models).

Instead of writing tools at the frontend level that have to deal with all the com-
plexity of the input language, Enzyme performs differentiation within the compiler (Fig. 2,
upper pipeline). This approach enables Enzyme to leverage the existing production com-
pilers for their host language (here Julia) and needs to support only a smaller fixed set
of operations. For example, as of August 2025, LLVM contains 68 unique instruction types.

As a result, Enzyme can differentiate any program in any language with an LLVM-compatible

compiler. Working directly on programs instead of traces further enables Enzyme to na-
tively handle control flow, mutation, and custom kernels. Moreover, unlike other tools
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1 # Compute magnitude in O(N)

2 function mag(x) end
3 function norm(out, x)
4 # res = mag(x) code motion optimization can move outside the loop

5 for i in 1:N
6 out[i] = x[i]/mag(x)

7 end
s end

1 # LICM, then AD, O(N) 1 # AD, then LICM O(N*2)

2 function grad_norm(out, d_out, 2 function grad_norm(out, d_out,
3 X, d_x) 3 X, d_x)
4 res = mag(x) 4 float res = mag(x);

5 for i in 1:N 5 for i in 1:N

6 out[i] = x[il/res 6 out[i] = in[il/res

7 end 7 end

8 d_res = 0.0 8 d_res = 0.0

9 for i in N:-1:1 9 for i in N:-1:1

10 d_res += -x[i]*x[i]/res * d_out[i] 10 d_res = -x[iJ*x[i]/res * d_out[i]
11 d_x[i] += d_out[i]/res 11 d_x[i] += d_out[i]/res
12 end 12 grad_mag(x, d_x, d_res)
13 grad_mag(x, d_x, d_res) 13 end

14 end 14 end

Figure 3: Top: An O(N?) function norm that normalizes a vector. Running loop-
invariant code-motion (LICM) (Muchnick, 1997, Sec. 13.2) moves the O(N) call to mag
outside the loop, reducing norm’s runtime to O(N). Left: An O(N) grad_norm resulting
from running LICM before AD. Both mag and its adjoint grad_mag are outside the loop.
Right: An O(N?) grad_nornm resulting from running LICM after AD. grad_mag remains
inside the loop as it uses a value computed inside the loop, making LICM illegal.

that must perform differentiation on source code, Enzyme can perform program opti-
mizations before and after differentiation. Prior work on Enzyme has demonstrated that
combining program optimization with differentiation (Fig. 3) results in significantly im-
proved derivative code. In particular, Enzyme has demonstrated a 4.2x geometric mean
speedup on CPU code when enabling optimization before AD (W. Moses & Churavy,
2020), orders-of-magnitude speedups on GPU programs (W. S. Moses et al., 2021), and
optimal program scaling on distributed and task-parallel programs (W. S. Moses et al.,
2022).

Applying differentiation in a dynamic language such as Julia, however, presents sev-
eral core challenges: dynamism, customized algorithms, and automatic memory man-
agement (garbage collection). For many algorithmic pieces of an ESM optimal adjoints
are known, and we developed facilities in Enzyme.jl to provide custom differentiation
rules. To appreciate the issues in the context of rendering ESMs differentiable or extend-
ing the AD tool capabilities, we briefly outline them in the following.

2.1.1 Dynamism

Julia’s execution model poses additional challenges. Julia is a dynamic program-
ming language utilizing multiple dispatch. This means that at each call site, the target
method of a function is computed utilizing the concrete types of all arguments. To ex-
ecute programs faster, Julia compiles methods just before their execution and caches the
result; during the compilation phase, it uses abstract interpretation to discover the types
of all variables inside a method from the types of the arguments. A type instability in
a Julia program is a failure during the compilation process to infer the specific type of
a variable; this allows Julia to represent uncertainty about variables that will be resolved
during runtime. Using abstract interpretation, Julia recovers a partially static and par-
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tially dynamic call graph of a program. Unlike dynamic function calls in statically com-
piled languages such as C4++ or Fortran, Julia defers the resolution of dynamic function
calls to runtime using its JIT compiler, thus not emitting the corresponding code im-
mediately. In contrast, Enzyme requires all relevant functions and their LLVM interme-
diate representation to be available for differentiation. Enzyme.jl works around this by
first extracting the static subset of the current program and differentiating code within
this compilation unit. If there are dynamic JIT calls, these will be marked with corre-
sponding Julia runtime functions such as j1_apply_generic, with function arguments
that describe the function to be dynamically compiled and executed. Leveraging Enzyme’s
handler for custom calls, Enzyme.jl defines the derivative of a dynamic function dispatch
to instead perform a dynamic dispatch to a modified function, which will again call into
Enzyme to extract and differentiate the target code, and then JIT-compile the result.
This process will repeat recursively until all the dynamic dispatches that are actually
required by the program have been executed. Enzyme.jl thus follows the execution model
of the host language, delaying the compilation of the derivative code until execution ne-
cessitates it.

2.1.2 Custom Differentiation Rules

Sometimes the automatically generated derivative code is far from optimal and not
the code one wants to run. For example, when differentiating the determinant of a uni-
tary matrix, the derivative is always zero. Rather than wasting time adding up values
from the implementation of the determinant which will eventually compute zero, Enzyme
can simply avoid performing the computation entirely. As another example, one may
want to change how Enzyme decides to save or recompute certain values to improve per-
formance (e.g., checkpointing; Section 2.3.2 utilizes custom rules for this purpose).

Enzyme enables this functionality by providing support for custom differentiation

rules of any user-defined function. In particular, users should override the method Enzyme . forward

with a specialization for any function £ they want to define a rule for. Whenever Enzyme
sees a call to £, instead of differentiating it directly, Enzyme will JIT-compile the user-
provided implementation within Enzyme.forward. When Enzyme is used to differenti-
ate entire applications, this means that Enzyme will use the user-defined rules when spec-
ified and automatically generate the corresponding derivative routines for all other code.

2.1.3 Automated Memory Management (Garbage Collection)

The Julia runtime maintains control of all allocations performed within the lan-
guage. This enables users to avoid considering the lifetime of their memory allocations,
preventing a large class of potential bugs. The decision of when to free memory is made
by a garbage collector (GC) that tracks all allocations, freeing them when there is prov-
ably no remaining user of the memory. This presents a new challenge for reverse-mode
AD. Some data must be preserved from the original forward pass evaluation for use in
the reverse pass. For example, when differentiating A * B, the corresponding derivative
of A ¥ dB + dA * B requires both A and B to be available during differentiation. Con-
sequently, Enzyme needs to extend the lifetime of these values from the forward pass to
the reverse pass. Enzyme may also generate new differentiation-specific memory. This
includes storage for dA and dB. Enzyme consequently must inform the GC about any mem-
ory that it creates or whose lifetime needs to be changed. To do so, it places references
onto a data tape and generates a descriptor for the data tape that allows the GC to mark
this subtape.

2.2 Automatic Device Scheduling and Distribution: Reactant.jl

The use of a dynamic language such as Julia provides many benefits, including ease
of development. Dynamic dispatch makes it easy to write flexible code that can be reused
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but consequently may make it difficult to perform whole-model optimization. A trac-
ing compiler can partially evaluate the simulation code and overcome the loss of infor-
mation induced by dynamic dispatch, reducing the amount of code to analyze for au-
tomatic differentiation and opening opportunities for additional performance optimiza-
tions.

As we saw before, optimizing a simulation results in compound performance gains
for the derivative simulation (Fig. 3). Reactant.jl is a new compiler framework for Ju-
lia that leverages the MLIR (Lattner et al., 2021) and the Accelerated Linear Algebra
(XLA) compiler to perform domain-specific optimization. Unlike LLVM, which has a fixed
instruction set that corresponds to individual scalar integer and floating-point operations,
one can define operations with arbitrary high-level meaning. For example, Reactant di-
rectly preserves the high-level tensors and linear algebra operations from Julia within
a dialect of MLIR, StableHLO, which contains primitive instructions for matrix multi-
plication, convolution, and more.

Reactant begins by mapping the corresponding instructions within Julia with high-
level tensor operations within the StableHLO dialect (Fig. 2, lower pipeline). This map-
ping involves partially evaluating out any sources of type instability, such as discussed
above. Reactant then performs a series of linear algebra optimizations on the tensor code.

For example, if Reactant detects that one intends to compute transpose(x .+ transpose(x)),

it will instead choose to optimize it as simply x .+ transpose(x). In isolation, these
linear algebra optimizations have been demonstrated to provide significant speedups to
tensor programs, including double-digit improvements in ML training (Liicke et al., 2025).
Subsequently, Enzyme performs differentiation on the program, now on MLIR rather
than LLVM. Finally, Reactant lowers the program into XLA for execution, which en-
ables the final program to be run on CPU, GPU, or TPU—including distributed clus-
ters thereof—without any rewriting required.

While the need for Reactant in our workflow to differentiate ESMs is primarily to
remove type instabilities and other performance pitfalls, it comes with a number of ad-
ditional performance benefits. Scientific codes, such as ESMs, maintain hundreds of hand-
written kernels, preventing them from using the advanced tensor capabilities of modern
ML accelerators. Yet the core computations within such kernels are often similar to ML
workloads. For example, a simple stencil kernel is roughly analogous to a convolution.
Reactant enables these existing stencil kernels to efficiently leverage the ML-specific hard-
ware features, such as tensor cores on NVIDIA GPUs or Google TPUs.

2.3 Automatic Memory Reduction: Checkpointing

In general, a numerical model is implemented as a function y = f(x), where z are
the inputs and y are the outputs. For calculating sensitivities, we can apply calculus and
derive the adjoint model Z = f(z, §), where the adjoint & is computed with respect to
the input x and input adjoint §. When f is applied iteratively over N iterations as y; =
f(x¢), the adjoint model imposes a computational reversal z; = V f(z;—1,9:), where
x needs to be provided in reverse order of the original forward model f execution. Prac-
tical applications of ESMs at state-of-the-art resolution of 25 km globally can consist of
0(10°%) timesteps (e.g., 100 years at 10-minute time steps), each requiring O(10 GB) (e.g.,
1,000,000 horizontal grid points, 100 vertical layers, 20 variables including scratch ar-
rays) making it prohibitively large to hold all time steps simultaneously in memory (Gaik-

wad et al., 2025). In AD, this data flow reversal is known as the checkpointing problem (Griewank

& Walther, 2000). It can be described as a mixed-integer programming problem where
the fastest way of computing the adjoint is determined under constraints such as avail-
able memory space and the latency to read and write data. Several checkpointing strate-
gies exist, including square root (periodic) checkpointing (Fig. 4), multilevel checkpoint-
ing, and binomial checkpointing.

—12—



480

481

482

483

484

485

486

487

489

490

492

493

494

495

497

499

500

501

—a—eo—o—>
ceed
—a—o—o—>
ceeed
'_'_'_'_)'3 ® = write checkpoint
oLrorenene e = read checkpoint
*———o——o—>
P P S 3 o = state

o Ro= forward step
o—)t‘: adjoint step
o0

Figure 4: Square root checkpointing schedule for I = 16 time steps (0-15). The forward
computation stores checkpoints at timesteps 0, 4, 8, and 12. The adjoint computation for
steps 12-15 uses the checkpoint stored at at 12. Then the adjoint computation for steps
8-11 using checkpoint at 8. Then the adjoint computation for steps 4-7 using checkpoint
at 4. Finally, the adjoint computation for steps 0-3 uses checkpoint at 0.

We have made checkpointing transparent to the user and implemented two com-
plementary strategies: (1) a low-level implementation integrated directly into Enzyme
and (2) a higher-level approach that leverages the Julia metaprogramming macro fea-
ture to checkpoint iterative loops (Schanen et al., 2023), provided through a native Ju-
lia package, Checkpointing.jl.

2.3.1 Enzyme MLIR Checkpointing

The low-level scheme is directly integrated into EnzymeMLIR to make checkpoint-
ing directly embedded into the device codes. Checkpointing in EnzymeMLIR implements
a form of periodic checkpointing called square root checkpointing (Fig. 4). Here, check-
points for N time steps are taken at a period of v/N time steps. The state to be check-
pointed is determined automatically by Enzyme’s analyses, and the checkpoints are stored
in memory. This also enables program optimization to occur prior to checkpointing, po-
tentially reducing the number of variables that must be preserved.

2.3.2 Checkpointing.jl

In contrast to the low-level approach described above, Checkpointing.jl is imple-
mented natively in Julia and has access to all language features. It is split into three ar-
eas: checkpointing algorithm, storage device (RAM, disk), and rules (ChainRules, En-
zymeRules). As opposed to the MLIR implementation, we support multiple checkpoint-
ing algorithms (periodic, revolve, online), and with the rules support we target nearly
all AD tools in Julia. This accessible implementation was largely made possible through
Julia’s multiple dispatch and metaprogramming features. This allows us to automati-
cally and transparently transform loop iterations into differentiated loops.

3 Application 1: Shallow Water Model in a Rotating System

The first example used to demonstrate the capabilities of general-purpose AD in
Julia with Enzyme is a shallow water model for a fluid in a rotating Cartesian coordi-
nate system on a f-plane (Vallis, 2017), representing the idealized surface circulation of
the North Atlantic. Contained in the package ShallowWaters.jl (Klower et al., 2020, 2022),
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Figure 5: Derivative of the quantity of interest J (Eq. (3)) with respect to the initial
conditions (a) u(x,y,to) and (b) v(z,y,to). In both panels a dashed purple line shows
where derivatives are checked in Fig. 6.

the model solves the conservation equations for momentum and volume

0 0 0 0

Ut u—utvou— fo=—g—n+ M, +F,

ottt T gy T = gt Me

0 0 0 0

av—&—u%v—l—va—yv—kfu: —ga—yn+My+Fy (1)
0 0 0
8tn+8m(u )+ay(v )=0

for the prognostic variables u = (u,v)?, and 1. The former define the 2 and y com-

ponents of the velocity vector, and the latter is the sea-surface displacement from rest.
The right-hand side of the momentum equations represents horizontal pressure gradi-

ents, surface wind stress F = (F, F}))T, and the combined effects of turbulent mixing

and bottom drag denoted by M = (M, M,)T. The Coriolis force f is computed with

a [-plane approximation at a latitude of 45°N, and gravitational acceleration is set to
g =9.81 m/s?.

Equation (1) is solved on a square domain with sides of length L, = L, = 3840 km
and a single-layer depth of Hy = 500 m at rest. The grid is set at 30 km resolution, cor-
responding to a discretized domain with 128 x 128 cells. Equation (1) is solved by us-
ing a fourth-order Runge-Kutta time integration with time step At = 385 s. The cir-
culation is driven by a sinusoidal wind stress function in the x direction that varies solely
with latitude y, given by

- ffoe (o) e (D))

and shown in Fig. 1(b) in the supplemental material. Here the water density is p = 1000
kg/m3, and the forcing strength is Fy = 0.12 Pa. There is no wind forcing in the y di-
rection (Fy = 0). The time-averaged sea-surface displacement 1 exposes two gyres, basin-
wide closed circulations (Fig. 1(a) in the Supporting Information). Experiments are con-
ducted following a ten-year model spinup.
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3.1 Sensitivity Analysis

Our first example demonstrating correct and efficient derivative code generation
with Enzyme is a sensitivity analysis. Our quantity of interest is

Tty 1)) = 5 3 {ulw .10 + v, 1)} 3)

where tf is the final time step of the integration and N = n, - ny, with n,, n, is the
number of cells in the x and y directions, respectively. J thus defines a measure of the
average kinetic energy at the end of the integration window. To compute derivatives of
J, ShallowWaters is integrated for ten days beyond the ten-year spinup, after which the
backwards problem is run with Enzyme and Checkpointing for ¢ — ¢t; = 10 days (or
roughly 2,250 time steps). Two sample derivative fields are shown in Fig. 5, represent-
ing the gradient of 7 with respect to v and v at initial time ¢3. Values of these gradi-
ents were verified by using a finite-difference calculation, results of which are provided
for specific z- and y-coordinates in Fig. 6. The location of the derivative checks is shown
via dashed purple lines in Fig. 5; for 0.7 /du(to) the z-coordinate is fixed at 600 km, and
for 0 /Ov(to) the y-coordinate is fixed at 2190 km. The gradients computed via reverse-
mode AD versus a finite-difference approximation show excellent agreement.

3.2 Data Assimilation

Another important use of reverse-mode AD is data assimilation, showcased in our
second example. Here, data assimilation is used to seek improved initial conditions x(x,y, to)
by minimizing the loss

J = Z Z {i(l‘,y,t) - d(I,y,t) }27 (4)

t=t; x,y

Tt

where X indicates the predicted model state (a vector of u, v, and ) and d the available
data. The data d are daily state snapshots at each model point, obtained from a “truth”
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Figure 7: Data assimilation results shown for the zonal velocity component at the initial
time tg. (a) Perturbation applied to initial zonal velocity; (b) unperturbed initial zonal
velocity, u(z,y,to); (c) perturbed initial zonal velocity, @(z,y,to); (d) optimized initial
zonal velocity, @(z,y, to, +)

integration. A long wavelength Gaussian perturbation (Fig. 7(a)) of the form

5
du(z,y,ty) = Z Z {anm cos(kpx) cos(kmy) + bnm cos(knx) sin(kny) +

m=1n=1

Cnm Sin(kn ) €08(kmy) + dny, sin(k,z) sin(k,y) }

with wavenumbers k, = mn/L, k,, = 7m/L and random numbers anm, bnm, Cnm, dnm ~
N(0,0.1) is applied to the true initial conditions u(z,y, o), v(z,y,to) (Fig. 7(b)), result-
ing in an incorrect predicted model state at time to (Fig. 7(c)). The data assimilation

is run over a 10-day integration, using the L-BFGS algorithm implemented in MadNLP.jl
(Pacaud et al. (2024), Shin et al. (2021)) for the optimization. The algorithm success-
fully converges to an optimized initial state @(x,y,to,+) (Fig. 7(d)), which closely re-
sembles the true initial conditions (Fig. 7(b)). The value of the loss function decreases
by three orders of magnitude over the first 50 iterations and another order of magnitude

over the following 150 iterations.

The optimized initial state greatly improves the accuracy of the model output af-
ter ten days of integration, seen in Fig. 8. The result of the model beginning from the
perturbed initial state (Fig. 8(b)) deviates from the truth (Fig. 8(a)) despite being in-
tegrated for only ten days. With an optimized initial condition, the result of the inte-
gration (Fig. 8(c)) closely resembles the true final state. The value of the non-accumulated
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Figure 8: Effect of data assimilation on the evolving model state up to the final time ¢y
= 10 days. (a) True final zonal velocity component, u(z,y,t¢); (b) predicted final zonal
velocity component, @(x,y,ts) from the perturbed initial condition (Fig. 7(c)); (c) pre-
dicted final zonal velocity component, u(z,y,ts, +) from the optimized initial condition
(Fig. 7(d)); (d) non-accumulated loss J; (Eq. (4)) for each day of the integration, com-
puted using the perturbed initial state (blue line) and optimized initial state (yellow line).

loss function J; (Eq. (4)) remains consistently lower for each day of integration in the

optimized model (yellow line in Fig. 8(d)) than in the perturbed model (blue line in Fig. 8(d)).

3.3 Performance

Figure 9 compares execution time and memory utilization as a function of integra-

tion length for the adjoint sensitivity analysis without (yellow curves) and with (blue curves)

checkpointing under the revolve checkpointing scheme. With checkpointing, metrics are
computed for integrations of up to approximately 22,000 time steps (100 days). With-
out checkpointing, the simulation can be run only for about 4,500 time steps (20 days)
before the memory required to store the time-evolving state exceeds the laptop’s avail-
able system capacity.

Checkpointing allows one to compute sensitivities for time windows beyond 20 days
while maintaining a minimal memory footprint (Fig. 9b). The amount of memory al-
located to store checkpoints typically is configured to be machine dependent and con-
stant. Here it is configured to be proportional to the square root of the number of time
steps. In contrast, using Enzyme AD alone requires storing each model state during the
forward pass, resulting in a drastic increase in memory utilization. Starting at around
1,000 time steps (around 5 days), the checkpointed reverse-mode AD becomes faster than
using AD alone (Fig. 9a). The reason is that, beyond that point, more time is spent al-
locating memory to compute model derivatives than on the derivative computation it-
self. Despite the fact that ShallowWaters is a relatively simple model, this result demon-
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Figure 9: Comparison of (a) derivative computation execution time and (b) memory uti-
lization, with and without checkpointing for the sensitivity analysis (Section 3.1).

strates that implementing a checkpointing scheme alongside AD is essential to feasibly
lay the framework for differentiable ocean models.

4 Application 2: Ocean General Circulation Model in a Re-entrant Chan-
nel Configuration

Our second application features Oceananigans.jl, a Julia-based software package
for finite-volume simulations of the ocean general circulation, designed to run efficiently
using CPUs or GPUs (Silvestri et al. (2025); Wagner et al. (2025), hereafter referred to
as Oceananigans). This package forms the ocean model component of the Climate Mod-
eling Alliance. For our example, we construct a re-entrant channel configuration of an
idealized Southern Ocean circulation, similar to the setup in Abernathey et al. (2011).

We solve the Boussinesq and hydrostatic approximations of the incompressible Navier—
Stokes equations of a fluid on a rotating sphere, using conservation of momentum

du+ (v-Viu+fxu= -Vp(p+gn) -V -7+ Fy

5
O:_azp+b7 ()

conservation of volume

th + 8zw = 0; (6)

as well as conservation of heat and salt. Here u = (u,v) and w are the horizontal and
vertical components of the three-dimensional velocity field v(x,y, z); 7 is the hydrostatic
kinematic stress tensor; F,, is the external forcing of u; p is kinematic pressure; 7 is free
surface displacement (i.e., sea surface height); f is the Coriolis parameter associated with
rotation; and b = —gp’/p is the buoyancy computed from the density p = p’ + po,
where pg is a constant reference density, p’ is the density perturbation, and g is grav-
itational acceleration (for details see Silvestri et al. (2025); Wagner et al. (2025)).

Following Abernathey et al. (2011), our model has dimensions 1000 km x 2000 km
x 2187 m. It is discretized by using a rectilinear Arakawa C-grid with 80x160 evenly
spaced horizontal cells at a 12.5 km resolution and 32 vertical levels of varying thicknesses,
ranging from 10 m at the surface to approximately 214 m at the bottom. We use Oceanani-
gans’s HydrostaticFreeSurfaceModel on GPU architecture to numerically solve our
re-entrant channel model. Our setup features periodic boundary conditions in the zonal
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(east-west) direction, a sponge layer at the northern boundary, a heat flux that loosely
approximates observed buoyancy fluxes in the Southern Ocean, and an idealized mid-
latitude westerly surface zonal wind stress.

We make some modifications to the Abernathey et al. (2011) configuration. Most
notably, we add a wall topography with a gap from y = 400 km to y = 1000 km that
provides effects analogous to the Drake Passage in the real Antarctic Circumpolar Cur-
rent. We also replace the implicit free surface with a split-explicit free surface and make
use of a flux-form weighted essentially non-oscillatory method (WENO) for our advec-
tion schemes. There is no vertical mixing scheme, although the vertical diffusivity is in-
creased in the top five surface layers (approximately the upper 60 m). Example figures
of the spun-up state are deferred to Section 2 of the Supporting Information.

Sensitivity Analysis

In our re-entrant channel model, the quantity of interest J is the zonal volume trans-
port across the gap present in the model’s topography that mimics the Drake Passage,

j(u(.%o,y,Z,t)) = U(‘TOat) - Zu(fﬂo,y,Z,t) AyAZ (7)

Y,z

Here the location of the passage is g = 500 km, and Ay Az is the cross-sectional area
element in the y—z-plane. To showcase the range of sensitivities that can be computed
with the adjoint, we seek sensitivities of J with respect to the initial state, surface bound-
ary conditions, and model parameters.

Our first investigation concerns the sensitivity of zonal volume transport to wind
stress, V. J = (0T /O07s, 8]/8@). Figure 10a,b depict the sensitivity of J to changes
in zonal and meridional wind stress 14 days prior to evaluation of J, corresponding to
a 14-day adjoint integration. Surface wind stress drives large-scale horizontal momen-
tum input to the ocean through the Ekman layer. This sensitivity helps describe how
the wind stress drives eastward volume flow through the gap in our topography. Note
that within Oceananigans, wind stresses are negative-east (zonal) and negative-north (merid-
ional), so a negative gradient suggests an eastward or northward wind stress in that lo-
cation increases zonal volume transport.

Sensitivity values for zonal wind stress 7, are highest within the gap and progres-
sively decrease further away from it, especially to the north and south. This sensitivity
pattern is explained by the fact that eastward 7, upstream of the gap (noting that the
configuration is periodic) directly accelerates the upper ocean eastward, funneling it through
the gap and increasing zonal transport. In general, 7, gradients have the expected sign
and magnitude.

Although our forward model configuration features only an idealized zonal wind
stress, we may also consider the derivative of J with respect to meridional wind stress
Ty. Again, these gradients follow a reasonably expected pattern when accounting for sign
conventions. On the west side of the topography they have opposite signs north and south
of the gap, which reflect how 7, controls the pressure difference across the gap via Ek-
man transport and surface map divergence. Similar, but opposite, sign values are seen
in the gradients downstream of the gap. They produce weaker gradients in magnitude
since they are not positioned directly upstream of the gap, although they still exert in-
fluence due to the periodic boundary conditions. Wind stress sensitivity patterns sim-
ilar to those computed here have been obtained in MITgem adjoint simulations with “re-
alistic” Drake Passage topography (e.g., Fig. 6 of Losch & Heimbach (2007) but used longer
integrations and opposite sign convention, or Fig. 4 of Kalmikov & Heimbach (2014)).

Sensitivities of the zonal volume transport across the gap to changes in initial tem-
perature at two depth levels, z = 15 m and z = 504 m, are depicted in Fig. 11a,b. Re-
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Figure 10: Sensitivities of zonal volume transport through the topography gap (Eq. (7))
with respect to zonal (a) and meridional (b) wind stress, 7, and 7,,. This was a run

of 8,100 time steps (approximately 14 days). Within Oceananigans, wind stresses are
negative-east (zonal) and negative-north (meridional), so a negative gradient suggests an
eastward or northward momentum flux (out of the atmosphere) in that location increases
zonal volume transport.

lated, full-depth sensitivities are shown in Fig. 12 for a meridional section at the longi-
tude of the gap (xo = 550 km, panel a) and for a zonal section at a latitude near the north-
ern end of the gap (yo = 1000 km). The dipole pattern that builds near the northern

end and upstream of the gap is visible in the zonal section and amplified at depth. Sim-
ilarly, sensitivities are amplified at depth for the meridional section, both south (y <

500 km) and north (y > 1000 km) of the gap. There are a couple reasonable explana-
tions: we know that local warming creates a steeper meridional density gradient across
the gap, which itself creates vertical shear in u via thermal wind (Ju/0z x 9p/9y). More-
over, the density gradient also raises steric height, which changes horizontal pressure gra-
dients that drive zonal flow. Furthermore, the narrowing at the gap (and presence of to-
pography) means the same horizontal pressure change creates a larger change in bottom
pressure and forms stress that affects the momentum balance.

As a third category of sensitivities besides surface boundary condition and initial
condition sensitivities, panels (¢) and (d) of Fig. 11 showcase sensitivities of J to changes
in the vertical diffusivity model parameter. Again, a spatially highly non-uniform im-
pact of changes in vertical mixing on the transport is evident. A similarity in pattern
between this sensitivity and initial temperature sensitivity is apparent, which, over the
limited duration of the adjoint calculation is physically sensible. While the initial tem-
perature sets the background stratification, the diffusivity field contributes to how it evolves.
Altering the diffusivity which generally acts to even out tracer gradients will alter the
baroclinic structure of the water column thus contributing to changes in thermal wind
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Figure 11: Sensitivities of zonal volume transport through the topography gap (Eq. (7))
with respect to initial temperature T (a and b), and vertical temperature diffusivity xr (c
and d) at select depths.

shear and steric height (differentiating over a longer run may reveal new patterns in the
diffusivity sensitivities). Similarly to the previous application (Fig. 6), finite-difference
“gradient checks” have been conducted to verify the gradient computed with the adjoint
for a representative range of elements of the different control variables (not shown).

Producing the gradients presented in the section required end-to-end differentia-
tion of Oceananigans using Enzyme and Reactant. This, in turn, involved successful AD
of a hydrostatic free-surface model featuring WENO momentum and tracer (tempera-
ture and salinity) advection, linear equations of state for buoyancy, volumetric forcings
and flux boundary conditions, harmonic and biharmonic Smagorinsky-like turbulence
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closures, and a periodic domain with masking by an idealized passage. A recurring prob-

lem with differentiating the Oceananigans code was type instability. Although the com-

putationally intensive portions of the Oceananigans code base are type stable, the pack-
age features an extensive array of configuration options stored in nested tuples and other
type-unstable structures. These configuration options do not impact the package’s com-

putational performance but do pose problems for Enzyme AD (see Section 2). Use of
Reactant first produced type-stable model code that could then be successfully differ-
entiated. Reactant also improved the runtime for CPU-based models by an order of mag-
nitude, which helped with development, although the runs presented here were computed

and differentiated by using a GPU backend.

5 Application 3: Ice Sheet Model

For our third example we employ the Differentiable JUlia ICE sheet model (DJUICE. j1).

This model is essentially a carbon copy of the finite-element C++ Ice-Sheet and Sea-

level System Model (ISSM, Larour et al., 2012). DJUICE follows ISSM’s object-oriented
structure, which requires a number of mutable structures, and has a large number of dy-

namic memory allocations. These two aspects make automatic differentiation particu-

larly challenging. We show that Enzyme is able to differentiate static and transient mod-

els.

5.1 Inferring Basal Friction

First, we explore a standard problem in glaciology that involves inferring basal con
ditions, which typically cannot be measured, from surface observations (MacAyeal, 1992;
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Morlighem et al., 2013). Ice sheet flow is modeled by using the Shelfy Stream Approx-
imation (MacAyeal, 1989):

0 ou Ov 0 ou Ov 0s
— (4Hp— +2Hu— — (Hpu— + Hu—— ) = pgH =~ + >N
Ox ( Hoz * M8y> + Y ( May + u@x) PIE B ot
(8)
0 ov Ou 0 ou ov 0Os
— (4Hp— +2Hpu— — | Hp— +Hpu— ) = pgH — N
Ay < u8y+ N8x> R < 'u(?y+ u8x> P9 8y+a v

where H is the ice thickness, u and v are the two components of the horizontal ice ve-
locity vector, u is the nonlinear ice viscosity that follows Glen’s flow law (Glen, 1955),

s is the ice surface elevation, IV is the effective pressure at the base of the ice, and « is
the unknown friction coefficient. To infer the spatially varying a(z,y), we typically min-
imize a cost function that measures the misfit between the modeled velocity, u = (u, v),
and the satellite-derived observed ice velocity, u®® = (u°", y°Ps):

I (a(z,y)) =/ %{(u—u"bs)2 + (v—v°b3)2}dﬂ,

Q

(9)

where  is the model domain. Automatic differentiation is used to determine the gra-
dient of this cost function with respect to the spatial distribution of the basal friction
coefficient a(zx,y), which then feeds a standard gradient descent algorithm to infer an
optimal field for a(x,y).

We apply this approach to Pine Island Glacier in West Antarctica. Our model has
18,227 elements on a two-dimensional unstructured mesh, with element sizes varying from
1 km to 20 km. We adopt the model configuration of Seroussi et al. (2014). The initial
ice geometry is taken from BedMachine Antarctica (Morlighem et al., 2011) and the ob-
served ice velocity from Rignot et al. (2011).

For comparison, we run an identical experiment with ISSM. Figure 13 compares
the sensitivity ?TZ obtained with ISSM and DJUICE, along with their difference. The
root mean square difference between the two sensitivity fields is 7.87x107°. Notably,
we used a relatively loose tolerance for the nonlinear solver, 0.01 for the relative resid-
ual, to achieve faster solves. Even under this setting the two packages agree to O(1073).

4

%10°  ISSM Sensitivity %10° DJUICE Sensitivity %10°  ISSM - DJUICE ><110'
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Figure 13: Sensitivity map g—‘g (m®/2575/2) of the squared misfit between simulated and
observed ice velocities, J(a(x,y)), to changes in the basal friction coefficient «a(z,y), for
Pine Island Glacier computed by using ISSM (left), DJUICE (middle), and their differ-

ence (right).

5.2 Sensitivity Mapping for a Transient Model

In addition to computing sensitivities of model-data misfit functions used for gradient-
based optimization (preceding section), automatic differentiation can be used to map sen-
sitivities of a wide range of quantities of interest. For example, Morlighem et al. (2021)
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used ISSM and STREAMICE to map the sensitivity of Pine Island Glacier’s future vol-
ume above floatation to basal friction and basal melt under the floating ice shelf. We ap-
ply the same experiment but with DJUICE instead of ISSM. The model mesh has 23,767
elements. We solve for the Shallow Shelf Approximation, and the geometry evolves in
time based on the conservation of mass. We use a similar depth-dependent parameter-
ization for basal melt:

0 if 2 >0,

. 1
m(z,y) =m(z,y) + —1g7 if0>z> 500, (10)

50 it z < —500,

where z is the base elevation of the ice. Following Morlighem et al. (2021), we are in-
terested in quantifying the spatial sensitivity of the volume above flotation (V') to per-
turbations in basal melting. For example, the Gateaux derivative of V, DV (m), with
respect to ocean melting, m, is

5m) —
vom € ML () (DV (), dm) = lim Vim+edm)=V(m) (11)
e— €
where dm indicates a perturbation in m, (-, -) is the inner product, and H! (£2) denotes
the space of square-integrable functions whose first derivatives are also square integrable

on the model domain, €.

Enzyme computes the gradient of J = V with respect to m at each vertex of the
mesh, and we recover DV (m) on the H! (2) space by multiplying this output by the mass
matrix inverse. This procedure avoids mesh-dependency sensitivities, as described in Morlighem
et al. (2021).

Instead of running the model for 20 years, we perform only 5 time iterations (half-
year) given the computational cost of the model. The sensitivity maps on the ice shelf
are shown in Fig. 14. The root mean square difference between the two sensitivity fields
is 2.7368x103. Notably, we used the same loose tolerance, 0.01, for the relative resid-
ual in the nonlinear solver, as the experiment in Section 5.1.
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Figure 14: Sensitivity map DV (m) of the volume above flotation, V(m(z,y)), to changes
in the melting perturbation m(z,y) for the Amundsen Sea Embayment computed by us-
ing ISSM (left), DJUICE (middle), and their difference (right), in the unit of m3/(m?/s).

6 Application 4: Atmospheric General Circulation Model

For our fourth technical example we analyze the general circulation of the atmo-
sphere as simulated by SpeedyWeather.jl (Klower et al., 2024). To adapt it to usage with
Enzyme.jl, we had to implement only minor changes. Type stability has been a central

—24—



755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

776

777

778

779

780

781

783

784

785

786

787

788

789

790

programming paradigm of SpeedyWeather from the start, but Enzyme also requires this
for performance-irrelevant code where we were less consistent. Then we slightly revised
our state variable and scratch memory handling. The experiment shown here uses En-
zyme.jl in combination with Checkpointing.jl.

As a spectral atmospheric model, Speedy Weather.jl uses spherical harmonics in com-
bination with a grid, discretizing the so-called primitive equations, which are widely used
in numerical weather prediction, on the sphere. Each time step performs numerous spher-
ical harmonic transforms to transfer variables between the gridpoint and spectral space.
We use a horizontal resolution of T31 (spherical harmonics up to degree and order 31)
combined with an octahedral Gaussian grid of 96 latitudes, corresponding to a 3.75° res-
olution at the equator (about 400 km globally) and eight vertical layers. The time step
is 40 min using a semi-implicit filtered leapfrog scheme. The prognostic variables P are
the relative vorticity ( = V x u and divergence D = V - u of the horizontal wind vec-
tor u, the logarithm of surface pressure In pg, temperature 7', and specific humidity g,
each discretized in spectral space horizontally and in sigma coordinates (fraction of sur-
face pressure) vertically. The primitive equations are

)
O VX (Pt (f+ Ous W)~ R,V np,)
oD 1
o =V (Pa+ (f + Our — W(u) — RyT,VInp,) — V> <2(u2 +v%) + @)
Olnp,
_ 1 12
En V / udp (12)
or _ @ Dlnp
E PT uT) +TD W( ) e TU 7Dt
dq
En =Py~ V- (ug) +¢D - Wi(q),

with Coriolis parameter f, dry gas constant Ry, virtual temperature 7,,, geopotential ®,
heat capacity c,, and vertical advection operator W. Many atmospheric processes are
summarized in P, (drag in the planetary boundary layer) and Pr, Pq (e.g., radiation,
convection, large-scale condensation, surface fluxes with land and ocean). SpeedyWeather’s
primitive equation model is coupled to a simple thermodynamic model of the ocean (a
so-called slab ocean model), a thermodynamic sea-ice model, and a 2-layer land surface
bucket model.

Sensitivity Analysis

We demonstrate the differentiability of SpeedyWeather by conducting a sensitiv-
ity analysis of the temperature J = T of the lowest atmospheric layer at a grid point
in Der}mark (55° N, 11° E) over a short integration of the model. We compute deriva-
tives g? of the final temperature 7 after 6 hours and 2 days of integration with respect
to the initial conditions of the prognostic variables Py = {(o, Inpsq, To}. For the sake
of brevity we show only a few selected variables and layers in Fig. 15. As expected, the
sensitivities decrease with distance from the selected grid point (locality principle in clas-
sical physics). They are more localized for the short 6-hour integration (Fig. 15 a-d) and
spread during the course of the longer 2-day integration (Fig. 15 e-h). The vorticity and
surface pressure of the 2-day integration, in particular, exhibit a sensitivity pattern that
is consistent with the underlying westerly wind over the Atlantic causing an eastward
transport (see arrows in Fig. 15).
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Figure 15: Sensitivities of the temperature of the lowest atmospheric layer in (55° N, 11°
E) over Denmark, marked with a cross, with respect to the initial conditions of a 6-hour
(a—d) and 2-day (e-h) integration of the SpeedyWeather.jl global atmospheric model. Ar-
rows depict the wind vector field of the respective layer of the initial condition. Layer 8
corresponds to o = 0.9375 (near-surface) and layer 5 to 0 = 0.5625 (mid-troposphere),
where o is a fraction of surface pressure used as vertical coordinate.

,26,



792 7 Discussion

793 We have successfully differentiated four ESM components written in the Julia pro-
704 gramming language. These models implement a range of spatial discretization methods,
705 including finite-volume, finite-element, and spectral schemes, and bespoke numerical al-
796 gorithms.

707 At the heart of this work is the use of the general-purpose AD tool Enzyme and

798 its reverse mode. Other approaches exist for achieving differentiable models. Specifically
799 within Julia, the SciML package (Rackauckas et al., 2020) is based on composable al-

800 gorithms and solvers that make the availability of differentiable models notionally more
801 straightforward. However, high-end and highly performant ESMs typically rely on highly
802 customized algorithms that do not easily fit within such frameworks. Similar issues arise
803 in the context of other customized programming languages such as JAX. A main mo-

804 tivation for exploring the general-purpose AD route within Julia was the already exist-
805 ing ESM components, in particular Oceananigans.jl and ClimaQOcean.jl (Ramadhan et

806 al., 2020; Silvestri et al., 2025; Wagner et al., 2025) that are being developed as part of

807 CliMA (Yatunin et al., 2025), as well as the flexible, light-weight atmospheric general

808 circulation model (GCM) SpeedyWeather.jl (Klower et al., 2024). A new ice sheet model.
809 DJUICE.jl, was rewritten from an existing C++ code to complement the Julia-based ESM

810 components. None of this software was written for Enzyme, and only relatively small

811 changes had to be implemented to use Enzyme successfully. This contrasts with mod-

812 els written in JAX, such as the ocean model Veros (Héfner et al., 2021) and the atmo-

813 spheric model NeuralGCM (Kochkov et al., 2024), which often demand more extensive

814 adaption. Nevertheless, achieving full end-to-end differentiation with Enzyme required

815 several important extensions and tool developments, available and reusable now. These
816 efforts focused on key features of the Julia programming language, including JIT com-

817 pilation, dynamic dispatch, and memory management via garbage collection.

818 Two major aspects that favored the choice of the emerging AD tool Enzyme over

819 existing tools such as Zygote.jl were the requirement to efficiently handle mutable ar-

820 rays, which are ubiquitous in time-stepping ESM components, and Enzyme’s performance
821 characteristics. A major novelty of Enzyme over existing AD tools is that it acts at the
822 LLVM compiler’s intermediate representation level, thus enabling code optimization both
823 before and after algorithmic differentiation takes place. This has shown to deliver more
824 efficient derivative calculations compared with other AD tools.

825 The ESM components also necessitated work to integrate reverse-mode checkpoint-
826 ing algorithms. This was achieved in two ways: (i) integration of Checkpointing.jl (Scha-
827 nen et al., 2023) within Enzyme and (ii) development of checkpointing algorithms at the
828 MLIR level. The latter was required for workflows that use Reactant in combination with
820 Enzyme (see Application 2 showcased in Section 4).

830 The value of the tight collaboration between Earth system model developers and

831 computer scientists cannot be overestimated in driving significant improvements and mat-
832 uration of the capabilities of software transformation tools featured here, Enzyme and

833 Reactant, that were critical to the work. In particular, both of these software packages

834 aim to consume and rewrite generic programs for either differentiation or improved per-
835 formance/portability, respectively. Rewriting general code is a major task, especially in
836 the context of comprehensive ESMs, and likely to fail if attempted all at once. Instead,
837 both software projects adopted an incremental approach: they began with a limited set
838 of features, ensured full support for these, and gradually expanded the feature set un-

839 til all functionalities required by the various ESM components were covered. Co-developing
840 the scientific simulation features alongside the Enzyme and Reactant software tools that
8a1 support them was key to the success of all projects. Arguably, such tight collaborations
842 are easier to achieve in smaller communities like those around the Julia programming

843 language.
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In terms of applications, we worked through a hierarchy of ESM components, at
each step creating minimal reproducible examples (MREs) to unblock AD tool limita-
tions that were encountered at the time. A first application (not presented here) used
a simple three-box model of the ocean’s thermohaline circulation inspired by Stommel (Stom-
mel, 1961; Tziperman & Ioannou, 2002). This work motivated the initial development
of Checkpointing.jl (Schanen et al., 2023) and drove the support for handling Julia’s dy-
namic dispatch within Enzyme.

Moving up in terms of model complexity, we subjected a shallow water model for
a fluid on the rotating beta plane to Enzyme and checkpointing to investigate scalabil-
ity and performance aspects (Section 3). The work on the shallow water model helped
identify bottlenecks in the early Enzyme versions through the provision of MREs that
provided rapid tool fixes. In this way, it also supported the differentiation of the com-
prehensive finite-volume, vertical height-coordinate ocean general circulation model Oceanani-
gans, which we conducted in parallel with the shallow water model work.

The power of the Reactant tool was exposed in the work on Oceananigans, our sec-
ond application. The Reactant pipeline offers reduction in code complexity through a
tracing approach along with automated performance portability across different HPC
hardware (in our case using CPUs and GPUs). The Multi-Level Intermediate Represen-
tation created by this tool provides more stable code that Enzyme can transform robustly
and efficiently. An added benefit of investing in the Reactant pipeline is the ability to
lower both the parent and the Enzyme-differentiated code to the XLA compiler, which
provides code optimization for high-performance execution across different compute hard-
ware including CPUs, GPUs, TPUs, and emerging ML accelerators. Given the rapid ML-
driven hardware development, this work offers the prospect of automated performance
portability across a range of emerging HPC platforms that will become available for ESM
simulations in both research and industry, particularly within the ML-driven sector.

Our third application, DJUICE, relies heavily on mutable arrays and mutable struc-
tures, which make other AD tools such as Zygote.jl and Diffractor.jl, which do not sup-
port mutation, impractical for this application. Mutation is essential for large climate
models, since reallocating memory at every update would quickly exhaust resources and
hinder GPU acceleration. Significant developments were required for Enzyme.jl to sup-
port mutation. Another important development necessary to differentiate DJUICE was
to properly handle the differentiation of the backslash operator. DJUICE uses implicit
solvers and requires solving large linear systems. One remaining point of development
is to support sparse arrays. Currently Enzyme.jl supports only standard arrays, likely
limiting the performance of the adjoint. We are working on adding support for SparseArray.jl
in order to further improve the performance of the code, as the left-hand side of the lin-
ear systems (i.e., the stiffness matrices) are highly sparse. A related study by Utkin et
al. (2025) used Enzyme.jl to generate the adjoint of a simple glacier model based on a
depth-averaged shallow ice approximation to simulate Alpine mountain valley glaciers,
further demonstrating the versatility of the AD tool.

The developments of Enzyme.jl and Checkpointing.jl that enabled differentiabil-
ity of the shallow water, ocean, and ice sheet models described above subsequently fa-
cilitated their application to the spectral atmospheric general circulation model Speedy-
Weather. Similarly to the other showcased models, Speedy Weather’s computations rely
heavily on mutating data structures. Adapting it to the usage with other AD tools would
therefore have been prohibitively impractical. Adapting it to Enzyme.jl, on the other hand,
required fairly minor revisions: ensuring type stability throughout the model, slightly
restructuring how variables are handled during time stepping, and defining two differ-
entiation rules for the transforms used. The sensitivity analysis shown here is just the
first step demonstrating successful gradient calculation via reverse-mode AD.
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805 The availability of differentiable ESM components offers a range of exciting oppor-

896 tunities for advancing data-constrained, data-driven, and mixed modeling approaches.

897 A main incentive of this development has been the recognition of the conceptual and al-
898 gorithmic similarity between adjoint-based inverse methods and backpropagation-based
899 neural network learning. Combining these two approaches enables the embedding of NN
900 architectures within physics-based models where the goal is to faithfully represent con-
901 servation laws but to learn empirical subgrid-scale parameterization schemes. This holds
902 for climate applications, in particular, which rely on long integration that requires sta-
903 ble schemes, and where property conservation plays an essential role to detect small resid-
904 uals in the climate change signal within the noise of natural variability. Differentiable

905 ESMs offer the prospect of better utilizing “training data” through gradient-based op-
906 timization, whether derived from observations of the climate system, associated clima-
907 tologies, or high-fidelity data from higher-resolution or more complex simulations. This
908 approach has been referred to as “online learning,” “full-model learning,” or “a poste-

909 riori learning” in the recent literature and has been investigated in a number of ideal-

010 ized quasi-geostrophic simulations (e.g., Frezat et al. (2022); Maddison (2024); Yan et

o11 al. (2025)). Our work represents a breakthrough in that it makes these approaches fea-
012 sible for a range of high-end ESMs. To date, only one study has demonstrated this ap-

013 proach with Neural GCM, a spectral model using similar numerics to Speedy Weather but
014 written in JAX (Kochkov et al., 2024). The ability to conduct such approaches efficiently
015 on Al-customized compute hardware (GPUs, TPUs) further unleashes the potential of

016 seamless integration of physics-based and ML algorithms for ESM learning. We hope this

017 work encourages wider adoption of such methods in the modeling community, leading

018 to a greater use of observations for constraining and more rigorously calibrating ESMs.

019 Open Research Section

920 The frameworks used in this work are Enzyme.jl, Reactant.jl, and Checkpointing.jl.
01 These were applied to four ESM components: ShallowWater.jl, Oceananigans.jl, DJUICE.JL,
02 and SpeedyWeather.jl. Because of the different provenances of these software packages,

023 we are making them available as sub-modules through a central GitHub repository at

024 https://github.com/DJ4Earth/differentiable-esm-components-2025. Scripts to

025 reproduce the simulations and figures are contained in the sub-modules for each appli-

926 cation. All software packages are open-source.
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