20

21

22

23

24

25

26

DJ4Earth: Differentiable, and Performance-portable
Earth System Modeling via Program Transformations

William S. Moses', Gong Cheng?, Valentin Churavy?, Maximilian Gelbrecht?,

Milan Klswer®, Joseph Kump®, Mathieu Morlighem?, Sarah Williamson®,

Dhruv Apte®, Paul Berg’, Mosé Giordano®, Christopher Hill°, Nora Loose!?,
Alexis Montoison!!, Sri Hari Krishna Narayanan'!, Avik Pal®, Michel
Schanen'!, Simone Silvestri ?''?2, Greg Wagner?, and Patrick Heimbach®

1Universit¥ of Illinois Urbana-Champaign, IL, USA
) Dartmouth College, NH, USA
3 Johannes Gutenberg University Mainz & University of Augsburg, Germany
4Technical University of Munich 85c Potsdam Institute for Climate Impact Research, Germany
University of Oxford, UK
6University of Texas at Austin, TX, USA
"Bern University of Applied Sciences, Switzerland
8University College London, UK
9Massachusetts Institute of Technology, MA, USA
10[C]Worthy, LLC, USA
11 Argonne National Laboratory, IL, USA
12Politecnico di Torino, Italy

Key Points:

e Four Earth system model components are successfully differentiated using the re-
verse mode of the automatic differentiation tool Enzyme.

e The Julia-based, GPU-enabled models use bespoke numerics, with finite-volume,
finite-element, and spectral spatial discretization schemes.

¢ The compiler transpilation tool Reactant enables optimized, portable performance
across diverse ML-customized HPC architectures.

Corresponding author: Patrick Heimbach, heimbach@utexas.edu

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

7%

76

Abstract

Differentiable Earth system models (ESMs) enable powerful applications such as
sensitivity analysis, gradient-based calibration, state estimation, boundary flux inver-
sions, uncertainty quantification, and online machine learning. Reverse-mode automatic
differentiation (AD) efficiently provides gradients for such tasks, yet models have rarely
included this capability because of complex, bespoke numerical algorithms. As part of
the Differentiable programming in Julia for Earth system modeling (DJ4Earth) initia-
tive, we present enabling features that make general-purpose AD tractable and efficient
for full-fledged ESM components written in Julia. The approach leverages the AD frame-
work Enzyme.jl and the compiler transpilation tool Reactant.jl, augmented by sophis-
ticated checkpointing algorithms. Operating at the Low-Level Virtual Machine (LLVM)
intermediate representation or Multi-Level Intermediate Representation (MLIR) com-
piler levels, these frameworks support mutable memory, custom kernels, and compiler
optimizations before and after differentiation. Julia-specific challenges related to just-
in-time compilation and garbage collection are handled efficiently. Reactant further en-
ables automatic performance portability across CPUs, GPUs, and TPUs, facilitating use
of emerging Al-customized high-performance computing architectures. We demonstrate
these frameworks on four Julia-based ESM components featuring diverse spatial discretiza-
tions and numerical algorithms: (i) the rotating-sphere shallow water model ShallowWa-

ters.jl, (ii) the finite-volume ocean model Oceananigans.jl, (iii) the ice sheet model DJUICE.jl,

and (iv) the spectral atmospheric model SpeedyWeather.jl. Across these ESM compo-
nents, our tools compute efficient and correct gradients. These results establish a foun-
dation for differentiable, high-performance and performance-portable ESMs that can in-
tegrate neural networks for unresolved processes, trained online, enabling next-generation
hybrid physics—machine learning ESMs constrained by physical dynamics and observa-
tions.

Plain Language Summary

Earth system models are computer programs that simulate how Earth’s atmosphere,
ocean, ice, and biosphere interact and evolve. These models consist of millions of lines
of code and rely on uncertain inputs. To improve accuracy, scientists adjust these in-
puts to minimize the difference between simulations and observations, measured by a
“cost function”. Another computer program can efficiently determine how changes in each
input affect the outcome. This calculation, called the gradient of the cost function, would
be extremely time-consuming to code manually. Instead, we use an automatic differen-
tiation (AD) tool called Enzyme, which computes these gradients efficiently and updates
them automatically whenever the model changes. As computing systems evolve rapidly,
especially those optimized for artificial intelligence (AI), another tool called Reactant
enables models to run efficiently across different hardware, from CPUs to GPUs and Al
accelerators. We demonstrate these methods on four Earth system model components
written in the modern programming language Julia: a shallow water model, an ocean
model, an ice sheet model, and an atmospheric model. For each, the code generated via
AD produces correct gradients of the cost function. This work lays the foundation for
combining these differentiated models with machine learning to improve model accuracy
efficiently.

1 Introduction

Earth system models (ESMs) provide a comprehensive framework for simulating
weather, climate, hydrological resources, biogeochemical cycles, and cryospheric changes
across a range of spatial and temporal scales (e.g., Randall et al. (2019)). These mod-
els prove useful in quantifying magnitudes and patterns of natural climate variability,
determining the impact of climate change, and providing likely scenarios of the planet’s

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

o

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

future climate to policy makers. ESMs consist of submodels or components represent-
ing the atmosphere, ocean, cryosphere, and biosphere. These components typically solve
partial differential equations representing the conservation and constitutive laws for the
component’s state on a discretized space of the rotating planet. However, ESM compo-
nents rely on parameterizations for subgrid-scale processes, such as turbulent mixing or
unresolved mesoscale eddies in the ocean, air-sea fluxes of heat, humidity, momentum,

or biogeochemical tracers (Christensen & Zanna, 2022). In the atmosphere, parameter-
izations also represent microphysics such as cloud formation and precipitation, processes
that cannot be resolved even with higher resolution. Ice sheet models have to prescribe
basal boundary conditions that cannot be estimated from remote sensing. These param-
eterizations and poorly constrained boundary conditions are sources of structural and
parametric uncertainty. Their calibration relies on observational data or high-fidelity sim-
ulations. In the context of ESMs, parameter calibration or tuning has so far been con-
ducted in a somewhat ad hoc fashion because of the computational cost and the under-
lying complexity of the problem (e.g., Hourdin et al. (2016); Balaji et al. (2022)). Ad hoc
parameter calibration, together with initial condition uncertainty, is prerceived to be the
primary reason ESM simulations have suffered persistent biases that may obscure pre-
dictive skill on weather to decadal time scales (Eyring et al., 2019).

Rigorous methods for model calibration whereby models “learn from data” have
been underexplored in climate or Earth system modeling (Schneider et al., 2017, 2023).
They rely either on ensemble methods (i.e., sampling) or gradient-based optimization,
or a combination thereof. Each of these faces a distinct set of computational challenges.
While ensemble methods have become the method of choice in various ESM applications,
they suffer from a number of potential drawbacks: (1) in the context of comprehensive
ESMs, they have mainly been applied to tackle initial condition uncertainty; (2) they
suffer from the “curse of dimensionality”: when initial condition and parametric uncer-
tainty exhibit spatial structure, as is generally the case in geoscience applications, en-
semble methods become computationally intractable as the ensemble size becomes ex-
cessively large; (3) many of the ensemble approaches used in ESMs (with the exception
of rigorous data assimilation, such as Kalman filter or inversion) do not “learn from data”
for calibration; and (4) structural model uncertainty is dealt with only in an ad hoc man-
ner via multimodel or stochastic ensemble methods.

1.1 The Case for Differentiable ESMs

Some of the shortcomings listed above may be overcome through the use of gradient-
based optimization, which is the subject of the well-established field of inverse estima-
tion and control methods (Bryson & Ho, 1975; Tarantola, 2005; Wunsch, 2006). At its
heart is the use of adjoint models, namely, models that efficiently compute the sensitiv-
ity of some scalar-valued model-data misfit or quantity of interest to a high-dimensional
space of uncertain input or control variables, such as initial conditions, boundary con-
ditions, or model parameters. Optimal input variables are then obtained through iter-
ative nonlinear gradient-based optimization. The underlying adjoint model is the for-
mal transpose of the tangent linear model of the (generally nonlinear) parent model. It
can be obtained by hand-coding, as has been done, for example, in numerical weather
prediction (Rabier et al., 2000) or regional ocean modeling (Moore et al., 2004), or through
the use of automatic differentiation (AD) tools. AD computes derivatives by applying
the chain rule of differentiation to elementary operations (e.g., Griewank & Walther (2008);
Margossian (2019)). Reverse-mode AD generates the adjoint model (which computes gra-
dients) rather than the tangent linear model (which computes directional derivatives),
making gradient-based methods computationally tractable for large-scale applications.
A key advantage of AD-generated over hand-coded adjoints is the ability to keep the ad-
joint model up to date with respect to ongoing developments of the parent model. Dif-
ferentiable programming in the context of optimal estimation and control (or inverse)

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

methods consists of writing the parent model in a way that is amenable to efficient ad-
joint code generation using AD (Blondel & Roulet, 2024; Sapienza et al., 2025).

The advent or revival of machine learning (ML) techniques has introduced new strate-
gies for “learning” subgrid-scale parameterizations and model calibration (Zanna & Bolton,
2020; Yuval et al., 2021; Espinosa et al., 2022), emulating ESM components (Lam et al.,
2023; Bi et al., 2023; Perkins et al., 2023; Dheeshjith et al., 2025) and improving fore-
casting on a broad range of time scales (He et al., 2021). The key computational ingre-
dient driving many of these ML techniques is backpropagation through neural network
(NN) architectures, which is conceptually identical to propagating sensitivity informa-
tion through the use of adjoint operators for physics-based models (Baydin et al., 2018).
Whereas adjoints efficiently compute the derivative of model-data misfit functions or quan-
tities of interest with respect to input or control variables, backpropagation efficiently
computes the derivative of the loss function with respect to NN weights and biases. Both
are in fact structurally the same and are implemented via reverse-mode AD, but they
have evolved as different terminologies in the simulation-based science and machine learn-
ing domains (Griewank, 2012). Differentiable programming is essential in that it enables
rapid and accurate construction of the backpropagation operator of the NN architecture
or of the adjoint operator of the physical model using AD (Chizat et al., 2019; Sapienza
et al., 2025).

In a hybrid framework, the two differentiable programming applications discussed
in the preceding paragraph are seamlessly integrated: the physical model’s adjoint and
the NN’s backpropagation operator. Here, the role of the neural network is typically to
replace or augment a subgrid-scale parameterization scheme. During the online or full-
model training, gradients are propagated through the NN via standard backpropagation,
while the sensitivities of the model’s state variables are computed through the adjoint.
The high-dimensional input space which necessitates adjoint approaches is now composed
of (or includes) the space of NN weights. This integrated training strategy ensures that
the NN learns corrections that remain dynamically consistent with the governing phys-
ical equations. By contrast, offline training does not use the model adjoint and optimizes
the NN weights in isolation, producing solutions that may generalize less robustly across
regimes and conditions.

Driven by the rise in machine learning applications, several novel AD tools have
been developed in recent years, including the JAX framework (Bradbury et al., 2018)
and Enzyme (W. Moses & Churavy, 2020). These systems benefit from compiler opti-
mizations and offer an easy interface for potential GPU acceleration and integration of
ML into the ESM.

Equipping ESM components with AD enables:

1. Comprehensive parameter calibration through gradient-based optimization (e.g.,
Stammer (2005); Larour et al. (2014)).

2. Smoother-based, dynamically and kinematically consistent state estimation (e.g.,
Wunsch & Heimbach (2007); Badgeley et al. (2025)).

3. Comprehensive, time-resolved, and spatially resolved boundary flux inversion from
interior observations (e.g., Kaminski et al. (2013); Liang & Yu (2016)).

4. More general sensitivity analyses of (usually scalar-valued) quantities of interest
or model metrics to a range of spatially and temporally resolved input variables
(e.g., Errico & Vukicevic (1992); Fukumori et al. (2015); Pillar et al. (2016); Kos-
tov et al. (2021)).

5. Derivative-based, that is, Hessian-based, uncertainty quantification (e.g., Isaac et
al. (2015); Kaminski et al. (2018); Loose & Heimbach (2021)).

6. Combination of adjoint and backpropagation operators in a hybrid approach, whereby
a neural network is embedded within an ESM component (e.g., Kochkov et al. (2021)).

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

We emphasize that, while the last point is our main motivation for developing differen-
tiable ESM components that embed ML architectures, such as subgrid-scale surrogate
models that learn from data to provide better-calibrated simulations, the purpose of this
work is not (yet) to showcase such a hybrid learning approach. Instead, we here demon-
strate the feasibility of general-purpose reverse-mode AD on a range of ESM components
to produce correct and efficient gradients, thus setting the stage for hybrid learning ap-
proaches as described above.

1.2 What Makes Development of Differentiable Models Hard

Whereas some individual components of entire ESMs have been rendered differ-
entiable (e.g., Marotzke et al. (1999); Heimbach et al. (2002); Stammer et al. (2002); Kamin-
ski et al. (2013); Morlighem et al. (2021)), no fully differentiable coupled ESM yet ex-
ists (Gelbrecht et al., 2023; Shen et al., 2023). At its core, the difficulty of whole-model
differentiation stems from both the significant computational demands of ESMs and the
need to support differentiable versions of all the complex features in modern program-
ming languages. ESMs are not written by individuals but are the effort or large teams,
connecting model components (atmosphere, ocean, land, etc.) that themselves are of-
ten the product of decade-old legacy software without a coherent programming paradigm
or differentiability in mind.

ESMs run on large supercomputers producing data at a rate of gigabytes per sec-
ond. Data and computation at this scale necessitate that the simulation code be writ-
ten in a computationally efficient fashion that obscures the mathematical structure that
the code represents. In practice this means that simulations must be written “in place”
to minimize memory usage, rely on control flow, ideally leverage just-in-time compila-
tion (a feature rarely used in current ESMs), and employ numerous custom kernels for
central processing units (CPUs), graphics processing units (GPUs), or tensor process-
ing units (TPUs) for execution. All these features break modern and traditional differ-
entiation tools such as JAX (Bradbury et al., 2018), PyTorch (Paszke et al., 2019), and
Tapenade (Hascoet & Pascual, 2013).

Beyond the difficulties presented by the code structure (Hiickelheim et al., 2024),
the structure of the computation presents further challenges to differentiation. Typical
usage of ESMs involves simulating for millions of time steps, each of which fully over-
writes the current state of the model. Reverse-mode differentiation of a time-stepping
loop, however, requires either storage of all previous time steps—asymptotically increas-
ing the memory requirements of the derivative—or recomputing the current state, either
of which in its pure form is prohibitive for comprehensive ESMs. Checkpointing balances
storing and recomputing. It reduces or limits the memory load by storing a subset of the
gradient computations (Griewank & Walther, 2008). This comes at the cost of increased
computational load, however, since the states in the intermediate steps need to be re-
computed. Thus, checkpointing requires a delicate balance between memory efficiency
and computational speed (Alhashim et al., 2025).

Another difficulty faced by differentiable ESMs is the chaotic nature of the climate
system. Pires et al. (1996); Lea et al. (2000); Metz et al. (2021) discuss how such sys-
tems render gradients computed by AD unstable, resulting in gradient explosion and,
subsequently, ill-conditioned Jacobians and large eigenvalues. The difference in the timescales
of the different processes also induces stiffness in the differential equations that may lead
to errors. Recent work is pointing to ways in which these issues may be alleviated (Kennedy
et al., 2025).

227 1.3 DJ4Earth

208 The Differentiable programming in Julia for Earth system modeling (DJ4Earth)

229 initiative is a new framework to enable differentiable Earth system models in Julia. The
230 purpose of this paper is to describe a number of algorithmic developments required to

231 render an initial set of recently developed Julia-based ESM components differentiable

232 for the DJ4Earth framework. Because each of these components uses bespoke numer-

233 ical algorithms, general-purpose reverse-mode AD has been the method of choice to gen-
234 erate derivative codes. The AD tool used is Enzyme and its Julia-specific binding En-

235 zyme.jl (W. Moses & Churavy, 2020; W. S. Moses et al., 2021, 2022). Section 2 describes
236 algorithmic developments, notably Reactant.jl, that were essential to handle Julia-specific
237 issues and to generate a Multi-Level Intermediate Representations (MLIRs) in order to

238 generate robust, efficient, and performance-portable derivative code. Further requirements
239 for iterative or time-evolving algorithms were the implementation of checkpointing schemes,
240 at both the Julia level and the MLIR level, in order to mitigate storage-related mem-

201 ory issues that are ubiquitous in reverse-mode AD.

242 These technical developments are showcased in four application case studies rep-

243 resenting ESM components that implement a range of numerical algorithms and spatial

244 discretization schemes, including finite-volume, finite-element, and spectral schemes. They
25 comprise the shallow water model ShallowWaters.jl (Section 3); a full-fledged ocean gen-
26 eral circulation model Oceananigans.jl, which forms the ocean component of the Climate
247 Modeling Alliance (CliMA) model (Section 4); the ice sheet model DJUICE.jl (Section 5);
248 and the atmospheric general circulation model SpeedyWeather.jl with parameterized physics
249 (Section 6). A concluding discussion is given in Section 7.

250 2 Techniques for Efficient Differentiable Earth System Modeling

251 ESMs are large and complex pieces of software that contain many different com-

252 ponents and numerical algorithms. Users and developers of ESMs need to be able to ex-
253 plore different configurations and model compositions. As an example, the Oceanani-

254 gans code (see Section 4) may be used as a high-resolution large eddy simulation model
255 or as a global general circulation model. Utilizing a dynamic high-level programming lan-
256 guage allows the model configuration to evolve beyond the traditional run-file approach
257 to a program as the configuration approach, enabling developers to quickly explore and
258 alter model configuration or to provide customization through user functions. The Ju-

259 lia programming language is such a high-level dynamic programming language, with a

260 host of capabilities that make it particularly attractive for ESM applications. Julia uses
261 an LLVM-based just-in-time (JIT) compiler that can natively target common acceler-

262 ators, allowing user functions to be inlined into the computational kernels.

263 In order to enable whole-model differentiation of ESMs or ESM components, sev-
264 eral novel computational algorithms and techniques needed to be developed that take

265 advantage of Julia capabilities and overcome some of the challenges created by this flex-
266 ibility and extensibility. The following section describes the development of the auto-

267 matic differentiation framework Enzyme.jl; the tracing compiler Reactant.jl; and Check-
268 pointing.jl, an implementation of checkpointing algorithms. A high-level workflow of how
260 these frameworks interact for a modern ESM component (here, an ocean model) is given

270 in Fig. 1.

on 2.1 Automatic Differentiation: Enzyme.jl

o7 AD is a technique for computing the mathematical derivatives of computer pro-

273 grams (Griewank, 2003). The most important derivative programs are tangent linear mod-
o7 els, which compute directional derivatives (i.e., the impact of changing one input on all

275 outputs), and adjoint models, which compute gradients (i.e., the sensitivity of one out-

void simulate_with_bathymetry() {

void simulate_with_turbulence() {
void

simulate_with_buoyancy() {

void simulate_with_periodicbc() {

Generated code for ezact problem

being run, reducing setup and

enabling novel optimizations.

function opt_Vsimulate(model)
opt_halo(model.bc)

opt_Vhalo(model.bc)
end

function opt_Vhalo(::ConstBoundary)

end

Figure 1: Top Left: C++-style code of prior ocean simulation models, containing many

Julia

function simulate(model)
JIT compile and conditionally
execute the correct bonudary
halo(model.bc)

end

function halo(::PeriodicBoundary)

end

function halo(::ConstBoundary)

end

Enzyme.gradient

—

Reactant.@jit

function Vsimulate(model)
halo(model.bc)

Vhalo (model.bc)
end

function Vhalo(::PeriodicBoundary)

end

function Vhalo(::ConstBoundary)

end

separate variations of the simulation for each potential specialization. Top Right: Julia-
style ocean model program in which a single simulation is written, with each feature con-
ditionally enabled via just-in-time (JIT) compilation. Bottom Right: Enzyme-generated
derivatives of the simulation code. Bottom Left: Reactant-optimized simulation code in
which the exact problem being run is known and excess code can be removed and addi-
tional optimizations specific to the simulation at hand can be applied.

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

2908

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

put with respect to changes in all inputs). The former are implemented via so-called forward-

mode AD, whereas the latter via reverse-mode AD, a concept equivalent to backprop-
agation in machine learning (e.g., Rumelhart et al. (1986); Griewank (2012)). For de-
tails, we refer to monographs on the subject, such as Griewank & Walther (2008); Nau-
mann et al. (2015).

ESMs contain numerous challenges to differentiation stemming from both the nec-
essary structure of ESM application code and the structure of the computation itself.
Production-quality ESMs push the limit of what can be efficiently computed on mod-
ern hardware. They often consume all system memory, requiring the simulation to be
written in a form that mutates data in place. They require vast amounts of computa-
tion and are written with custom kernels to efficiently run on modern systems such as
CPUs, GPUs, and TPUs. Despite these efforts, current-generation ESMs can achieve only
around 5% peak performance on today’s high-performance computing (HPC) architec-
tures (e.g., Zhang et al. (2020); see Balaji et al. (2016) for a detailed discussion of ESM
performance metrics). They are often memory- and compute-bound, and the many dif-
ferent algorithms operating consecutively with varying large arrays are difficult to op-
timize collectively without reaching diminishing returns on some of them (Amdahl’s law).
To support the numerous combinations of model features, ESM code bases feature con-
trol flow to dynamically enable certain code paths. Modern ESMs increasingly leverage
JIT compilation to avoid wasting time preparing to use features that are not required
to execute a particular model. Moreover, ESM application codes are large, leveraging
nearly all features of the programming language(s) they are written in.

Most of the work to date on differentiable ESM components has relied on hand-
coded adjoints. These are essentially a second copy of the simulation code that instead
computes the derivative. Examples include the tangent linear and adjoint components
of ECMWE’s weather forecast model (Rabier et al., 2000; Janiskovd & Lopez, 2013) and
the Regional Ocean Modeling System (Moore et al. (2004, 2011)). Although this idea
is simple in principle, in practice it leads to several issues. Given the size and complex-
ity of ESM code bases, writing a second version of the application is a difficult endeavor
that is costly in money, personnel, and development time. Moreover, it presents a sig-
nificant maintenance and correctness burden. Whenever the original simulation (the pri-
mal calculation) is modified, great care must be taken to update the corresponding deriva-
tive code base to reflect these changes accurately in the corresponding gradient compu-
tation. If the inverse or control problem is changed, for example, from a pure state to
a parameter estimation problem (or a combination thereof), the structure of the deriva-
tive code may change fundamentally; simply put, for f = a-z, we have df (z) = a-dx,
or df (a) = da-z, or df (a,z) = da-z+a-dz, each of which results in different derivative
code.

In parallel, tools to automatically generate the derivatives were developed (Gier-
ing & Kaminski, 1998). However, these tools were limited in the features of the language
they support. For example, the AD tools ADIFOR, TAF, or Tapenade took many years
to extend their capabilities from Fortran77 to Fortran90/95 language features. Mean-
while, Fortran is continually evolving (e.g., Kedward et al. (2022); Magnin et al. (2023)).
To analyze existing code to generate derivatives, source-transformation tools must un-
derstand how to parse and perform semantic analysis from scratch, before they even start
differentiation. The extraordinary difficulty of this initial analysis task cannot be over-
stated. For example, the draft ISO C++ Standard published in 2020 (https://isocpp
.org/files/papers/N4860.pdf) contains 1,841 pages of text, most of which is compre-
hensible only to programming language experts. Compliant compilers, such as Clang/LLVM,
are maintained as a collaboration between several large technology companies. Over the
span of a single month (as of August 2025), the LLVM project had 4,385 active pull re-
quests from 805 unique programmers, resulting in 1,049,370 lines of code being added
to over 12,748 files. Consequently, these initial general-purpose tools were extremely lim-

https://isocpp.org/files/papers/N4860.pdf
https://isocpp.org/files/papers/N4860.pdf
https://isocpp.org/files/papers/N4860.pdf

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

Optimize Optimize

- @

ulia
® Lower]_}Vﬁ Enzyme % L‘i;/{;[CodeGen
N

o

Optimize Optimize

juli.ﬁ Lower g @ Lower g CodeGen v
T

Figure 2: Top: The Enzyme compiler pipeline. Programs of a variety of languages are
first compiled to an LLVM and optimized, prior to and after differentiation. Bottom: The
Reactant compiler pipeline. Reactant first lowers into the stablehlo/tensor dialect within
MLIR and performs linear algebra optimizations. Reactant then performs automatic
differentiation with Enzyme on MLIR, before a second round of tensor optimizations.
Finally, Reactant lowers the MLIR for execution by XLA on any number of CPUs, GPUs,
or TPUs.

ited in the features they supported, and codes needed to be adapted accordingly. Struc-
ture types, pointers, control flow, templates, and more all present difficulties to auto-
mated tools.

Modern AD tools, such as JAX, PyTorch, and TensorFlow, define a fixed subset
of primitives useful for a particular domain, usually machine learning. These domain-
specific languages (DSLs) tend to support differentiation of nearly all the tensor-specific
runtime functions within their library, but this support comes with a new constraint:
all code must be written in said DSL. These tools work well if the DSL closely mirrors
the operations being performed, such as native convolution or attention layers making
it easy to perform machine learning. Unfortunately, they are not designed with the prim-
itives applicable to ESMs, necessitating significant code rewriting. In particular, these
tools tend to lack support for custom kernels (required for high-performance primal com-
putations), mutable memory (required for large ESMs), and control flow (required for
easy switching between different models).

Instead of writing tools at the frontend level that have to deal with all the com-
plexity of the input language, Enzyme performs differentiation within the compiler (Fig. 2,
upper pipeline). This approach enables Enzyme to leverage the existing production com-
pilers for their host language (here Julia) and needs to support only a smaller fixed set
of operations. For example, as of August 2025, LLVM contains 68 unique instruction types.

As a result, Enzyme can differentiate any program in any language with an LLVM-compatible

compiler. Working directly on programs instead of traces further enables Enzyme to na-
tively handle control flow, mutation, and custom kernels. Moreover, unlike other tools

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

1 # Compute magnitude in O(N)

2 function mag(x) end
3 function norm(out, x)
4 # res = mag(x) code motion optimization can move outside the loop

5 for i in 1:N
6 out[i] = x[i]/mag(x)

7 end
s end

1 # LICM, then AD, O(N) 1 # AD, then LICM O(N*2)

2 function grad_norm(out, d_out, 2 function grad_norm(out, d_out,
3 X, d_x) 3 X, d_x)
4 res = mag(x) 4 float res = mag(x);

5 for i in 1:N 5 for i in 1:N

6 out[i] = x[il/res 6 out[i] = in[il/res

7 end 7 end

8 d_res = 0.0 8 d_res = 0.0

9 for i in N:-1:1 9 for i in N:-1:1

10 d_res += -x[i]*x[i]/res * d_out[i] 10 d_res = -x[iJ*x[i]/res * d_out[i]
11 d_x[i] += d_out[i]/res 11 d_x[i] += d_out[i]/res
12 end 12 grad_mag(x, d_x, d_res)
13 grad_mag(x, d_x, d_res) 13 end

14 end 14 end

Figure 3: Top: An O(N?) function norm that normalizes a vector. Running loop-
invariant code-motion (LICM) (Muchnick, 1997, Sec. 13.2) moves the O(N) call to mag
outside the loop, reducing norm’s runtime to O(N). Left: An O(N) grad_norm resulting
from running LICM before AD. Both mag and its adjoint grad_mag are outside the loop.
Right: An O(N?) grad_nornm resulting from running LICM after AD. grad_mag remains
inside the loop as it uses a value computed inside the loop, making LICM illegal.

that must perform differentiation on source code, Enzyme can perform program opti-
mizations before and after differentiation. Prior work on Enzyme has demonstrated that
combining program optimization with differentiation (Fig. 3) results in significantly im-
proved derivative code. In particular, Enzyme has demonstrated a 4.2x geometric mean
speedup on CPU code when enabling optimization before AD (W. Moses & Churavy,
2020), orders-of-magnitude speedups on GPU programs (W. S. Moses et al., 2021), and
optimal program scaling on distributed and task-parallel programs (W. S. Moses et al.,
2022).

Applying differentiation in a dynamic language such as Julia, however, presents sev-
eral core challenges: dynamism, customized algorithms, and automatic memory man-
agement (garbage collection). For many algorithmic pieces of an ESM optimal adjoints
are known, and we developed facilities in Enzyme.jl to provide custom differentiation
rules. To appreciate the issues in the context of rendering ESMs differentiable or extend-
ing the AD tool capabilities, we briefly outline them in the following.

2.1.1 Dynamism

Julia’s execution model poses additional challenges. Julia is a dynamic program-
ming language utilizing multiple dispatch. This means that at each call site, the target
method of a function is computed utilizing the concrete types of all arguments. To ex-
ecute programs faster, Julia compiles methods just before their execution and caches the
result; during the compilation phase, it uses abstract interpretation to discover the types
of all variables inside a method from the types of the arguments. A type instability in
a Julia program is a failure during the compilation process to infer the specific type of
a variable; this allows Julia to represent uncertainty about variables that will be resolved
during runtime. Using abstract interpretation, Julia recovers a partially static and par-

—10—

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

406

422

423

tially dynamic call graph of a program. Unlike dynamic function calls in statically com-
piled languages such as C4++ or Fortran, Julia defers the resolution of dynamic function
calls to runtime using its JIT compiler, thus not emitting the corresponding code im-
mediately. In contrast, Enzyme requires all relevant functions and their LLVM interme-
diate representation to be available for differentiation. Enzyme.jl works around this by
first extracting the static subset of the current program and differentiating code within
this compilation unit. If there are dynamic JIT calls, these will be marked with corre-
sponding Julia runtime functions such as j1_apply_generic, with function arguments
that describe the function to be dynamically compiled and executed. Leveraging Enzyme’s
handler for custom calls, Enzyme.jl defines the derivative of a dynamic function dispatch
to instead perform a dynamic dispatch to a modified function, which will again call into
Enzyme to extract and differentiate the target code, and then JIT-compile the result.
This process will repeat recursively until all the dynamic dispatches that are actually
required by the program have been executed. Enzyme.jl thus follows the execution model
of the host language, delaying the compilation of the derivative code until execution ne-
cessitates it.

2.1.2 Custom Differentiation Rules

Sometimes the automatically generated derivative code is far from optimal and not
the code one wants to run. For example, when differentiating the determinant of a uni-
tary matrix, the derivative is always zero. Rather than wasting time adding up values
from the implementation of the determinant which will eventually compute zero, Enzyme
can simply avoid performing the computation entirely. As another example, one may
want to change how Enzyme decides to save or recompute certain values to improve per-
formance (e.g., checkpointing; Section 2.3.2 utilizes custom rules for this purpose).

Enzyme enables this functionality by providing support for custom differentiation

rules of any user-defined function. In particular, users should override the method Enzyme . forward

with a specialization for any function £ they want to define a rule for. Whenever Enzyme
sees a call to £, instead of differentiating it directly, Enzyme will JIT-compile the user-
provided implementation within Enzyme.forward. When Enzyme is used to differenti-
ate entire applications, this means that Enzyme will use the user-defined rules when spec-
ified and automatically generate the corresponding derivative routines for all other code.

2.1.3 Automated Memory Management (Garbage Collection)

The Julia runtime maintains control of all allocations performed within the lan-
guage. This enables users to avoid considering the lifetime of their memory allocations,
preventing a large class of potential bugs. The decision of when to free memory is made
by a garbage collector (GC) that tracks all allocations, freeing them when there is prov-
ably no remaining user of the memory. This presents a new challenge for reverse-mode
AD. Some data must be preserved from the original forward pass evaluation for use in
the reverse pass. For example, when differentiating A * B, the corresponding derivative
of A ¥ dB + dA * B requires both A and B to be available during differentiation. Con-
sequently, Enzyme needs to extend the lifetime of these values from the forward pass to
the reverse pass. Enzyme may also generate new differentiation-specific memory. This
includes storage for dA and dB. Enzyme consequently must inform the GC about any mem-
ory that it creates or whose lifetime needs to be changed. To do so, it places references
onto a data tape and generates a descriptor for the data tape that allows the GC to mark
this subtape.

2.2 Automatic Device Scheduling and Distribution: Reactant.jl

The use of a dynamic language such as Julia provides many benefits, including ease
of development. Dynamic dispatch makes it easy to write flexible code that can be reused

—11—

424

425

426

427

429

430

432

433

434

435

436

437

438

439

440

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

but consequently may make it difficult to perform whole-model optimization. A trac-
ing compiler can partially evaluate the simulation code and overcome the loss of infor-
mation induced by dynamic dispatch, reducing the amount of code to analyze for au-
tomatic differentiation and opening opportunities for additional performance optimiza-
tions.

As we saw before, optimizing a simulation results in compound performance gains
for the derivative simulation (Fig. 3). Reactant.jl is a new compiler framework for Ju-
lia that leverages the MLIR (Lattner et al., 2021) and the Accelerated Linear Algebra
(XLA) compiler to perform domain-specific optimization. Unlike LLVM, which has a fixed
instruction set that corresponds to individual scalar integer and floating-point operations,
one can define operations with arbitrary high-level meaning. For example, Reactant di-
rectly preserves the high-level tensors and linear algebra operations from Julia within
a dialect of MLIR, StableHLO, which contains primitive instructions for matrix multi-
plication, convolution, and more.

Reactant begins by mapping the corresponding instructions within Julia with high-
level tensor operations within the StableHLO dialect (Fig. 2, lower pipeline). This map-
ping involves partially evaluating out any sources of type instability, such as discussed
above. Reactant then performs a series of linear algebra optimizations on the tensor code.

For example, if Reactant detects that one intends to compute transpose(x .+ transpose(x)),

it will instead choose to optimize it as simply x .+ transpose(x). In isolation, these
linear algebra optimizations have been demonstrated to provide significant speedups to
tensor programs, including double-digit improvements in ML training (Liicke et al., 2025).
Subsequently, Enzyme performs differentiation on the program, now on MLIR rather
than LLVM. Finally, Reactant lowers the program into XLA for execution, which en-
ables the final program to be run on CPU, GPU, or TPU—including distributed clus-
ters thereof—without any rewriting required.

While the need for Reactant in our workflow to differentiate ESMs is primarily to
remove type instabilities and other performance pitfalls, it comes with a number of ad-
ditional performance benefits. Scientific codes, such as ESMs, maintain hundreds of hand-
written kernels, preventing them from using the advanced tensor capabilities of modern
ML accelerators. Yet the core computations within such kernels are often similar to ML
workloads. For example, a simple stencil kernel is roughly analogous to a convolution.
Reactant enables these existing stencil kernels to efficiently leverage the ML-specific hard-
ware features, such as tensor cores on NVIDIA GPUs or Google TPUs.

2.3 Automatic Memory Reduction: Checkpointing

In general, a numerical model is implemented as a function y = f(x), where z are
the inputs and y are the outputs. For calculating sensitivities, we can apply calculus and
derive the adjoint model Z = f(z, §), where the adjoint & is computed with respect to
the input x and input adjoint §. When f is applied iteratively over N iterations as y; =
f(x¢), the adjoint model imposes a computational reversal z; = V f(z;—1,9:), where
x needs to be provided in reverse order of the original forward model f execution. Prac-
tical applications of ESMs at state-of-the-art resolution of 25 km globally can consist of
0(10°%) timesteps (e.g., 100 years at 10-minute time steps), each requiring O(10 GB) (e.g.,
1,000,000 horizontal grid points, 100 vertical layers, 20 variables including scratch ar-
rays) making it prohibitively large to hold all time steps simultaneously in memory (Gaik-

wad et al., 2025). In AD, this data flow reversal is known as the checkpointing problem (Griewank

& Walther, 2000). It can be described as a mixed-integer programming problem where
the fastest way of computing the adjoint is determined under constraints such as avail-
able memory space and the latency to read and write data. Several checkpointing strate-
gies exist, including square root (periodic) checkpointing (Fig. 4), multilevel checkpoint-
ing, and binomial checkpointing.

—12—

480

481

482

483

484

485

486

487

489

490

492

493

494

495

497

499

500

501

—a—eo—o—>
ceed
—a—o—o—>
ceeed
'_'_'_'_)'3 ® = write checkpoint
oLrorenene e = read checkpoint
*———o——o—>
P P S 3 o = state

o Ro= forward step
o—)t‘: adjoint step
o0

Figure 4: Square root checkpointing schedule for I = 16 time steps (0-15). The forward
computation stores checkpoints at timesteps 0, 4, 8, and 12. The adjoint computation for
steps 12-15 uses the checkpoint stored at at 12. Then the adjoint computation for steps
8-11 using checkpoint at 8. Then the adjoint computation for steps 4-7 using checkpoint
at 4. Finally, the adjoint computation for steps 0-3 uses checkpoint at 0.

We have made checkpointing transparent to the user and implemented two com-
plementary strategies: (1) a low-level implementation integrated directly into Enzyme
and (2) a higher-level approach that leverages the Julia metaprogramming macro fea-
ture to checkpoint iterative loops (Schanen et al., 2023), provided through a native Ju-
lia package, Checkpointing.jl.

2.3.1 Enzyme MLIR Checkpointing

The low-level scheme is directly integrated into EnzymeMLIR to make checkpoint-
ing directly embedded into the device codes. Checkpointing in EnzymeMLIR implements
a form of periodic checkpointing called square root checkpointing (Fig. 4). Here, check-
points for N time steps are taken at a period of v/N time steps. The state to be check-
pointed is determined automatically by Enzyme’s analyses, and the checkpoints are stored
in memory. This also enables program optimization to occur prior to checkpointing, po-
tentially reducing the number of variables that must be preserved.

2.3.2 Checkpointing.jl

In contrast to the low-level approach described above, Checkpointing.jl is imple-
mented natively in Julia and has access to all language features. It is split into three ar-
eas: checkpointing algorithm, storage device (RAM, disk), and rules (ChainRules, En-
zymeRules). As opposed to the MLIR implementation, we support multiple checkpoint-
ing algorithms (periodic, revolve, online), and with the rules support we target nearly
all AD tools in Julia. This accessible implementation was largely made possible through
Julia’s multiple dispatch and metaprogramming features. This allows us to automati-
cally and transparently transform loop iterations into differentiated loops.

3 Application 1: Shallow Water Model in a Rotating System

The first example used to demonstrate the capabilities of general-purpose AD in
Julia with Enzyme is a shallow water model for a fluid in a rotating Cartesian coordi-
nate system on a f-plane (Vallis, 2017), representing the idealized surface circulation of
the North Atlantic. Contained in the package ShallowWaters.jl (Klower et al., 2020, 2022),

—13—

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

@) 0J/u(t,) (b) 07 /ult,)

i
! 5.0x10-8 5.0x10-¢
30001 | 3000 1 ’ "
-
— el B K 8 T
£ 2000+ 0 E 2000-'I r’ ' 0
10001 1000
_5.0x10-8 _5.0x10-8
0 = ' 0 ' . :
0 1000 2000 3000 0 1000 2000 3000
km km

Figure 5: Derivative of the quantity of interest J (Eq. (3)) with respect to the initial
conditions (a) u(x,y,to) and (b) v(z,y,to). In both panels a dashed purple line shows
where derivatives are checked in Fig. 6.

the model solves the conservation equations for momentum and volume

0 0 0 0

Ut u—utvou— fo=—g—n+ M, +F,

ottt T gy T = gt Me

0 0 0 0

av—&—u%v—l—va—yv—kfu: —ga—yn+My+Fy (1)
0 0 0
8tn+8m(u)+ay(v)=0

for the prognostic variables u = (u,v)?, and 1. The former define the 2 and y com-

ponents of the velocity vector, and the latter is the sea-surface displacement from rest.
The right-hand side of the momentum equations represents horizontal pressure gradi-

ents, surface wind stress F = (F, F}))T, and the combined effects of turbulent mixing

and bottom drag denoted by M = (M, M,)T. The Coriolis force f is computed with

a [-plane approximation at a latitude of 45°N, and gravitational acceleration is set to
g =9.81 m/s?.

Equation (1) is solved on a square domain with sides of length L, = L, = 3840 km
and a single-layer depth of Hy = 500 m at rest. The grid is set at 30 km resolution, cor-
responding to a discretized domain with 128 x 128 cells. Equation (1) is solved by us-
ing a fourth-order Runge-Kutta time integration with time step At = 385 s. The cir-
culation is driven by a sinusoidal wind stress function in the x direction that varies solely
with latitude y, given by

- ffoe (o) e (D))

and shown in Fig. 1(b) in the supplemental material. Here the water density is p = 1000
kg/m3, and the forcing strength is Fy = 0.12 Pa. There is no wind forcing in the y di-
rection (Fy = 0). The time-averaged sea-surface displacement 1 exposes two gyres, basin-
wide closed circulations (Fig. 1(a) in the Supporting Information). Experiments are con-
ducted following a ten-year model spinup.

—14—

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

(a)

2.0x10-84| e Enzyme derivative
1.0x10-8 Finite difference approximation

04

0T/ 0u(ty,22,y)

-1.0x108 4
0 1000 2000 3000 4000
y (km)
(b)
:,:j 2.0x10-8 4 * Enzyme derivative
; Finite difference approximation
E 04
=
>
-2.0x10"8 T T T — T
0 1000 2000 3000 4000
x (km)

Figure 6: Derivative of J (Eq. (3)), computed with Enzyme reverse-mode AD (blue dots)
versus a finite-difference approximation (yellow crosses). (a) Derivatives with respect to
u(zg = 22,y,t9), where xg = 22 corresponds to 600 km. (b) Derivatives with respect to
v(z,yo = 75,tp), where yo = 75 corresponds to 2190 km.

3.1 Sensitivity Analysis

Our first example demonstrating correct and efficient derivative code generation
with Enzyme is a sensitivity analysis. Our quantity of interest is

Tty 1)) = 5 3 {ulw .10 + v, 1)} 3)

where tf is the final time step of the integration and N = n, - ny, with n,, n, is the
number of cells in the x and y directions, respectively. J thus defines a measure of the
average kinetic energy at the end of the integration window. To compute derivatives of
J, ShallowWaters is integrated for ten days beyond the ten-year spinup, after which the
backwards problem is run with Enzyme and Checkpointing for ¢ — ¢t; = 10 days (or
roughly 2,250 time steps). Two sample derivative fields are shown in Fig. 5, represent-
ing the gradient of 7 with respect to v and v at initial time ¢3. Values of these gradi-
ents were verified by using a finite-difference calculation, results of which are provided
for specific z- and y-coordinates in Fig. 6. The location of the derivative checks is shown
via dashed purple lines in Fig. 5; for 0.7 /du(to) the z-coordinate is fixed at 600 km, and
for 0 /Ov(to) the y-coordinate is fixed at 2190 km. The gradients computed via reverse-
mode AD versus a finite-difference approximation show excellent agreement.

3.2 Data Assimilation

Another important use of reverse-mode AD is data assimilation, showcased in our
second example. Here, data assimilation is used to seek improved initial conditions x(x,y, to)
by minimizing the loss

J = Z Z {i(l‘,y,t) - d(I,y,t) }27 (4)

t=t; x,y

Tt

where X indicates the predicted model state (a vector of u, v, and) and d the available
data. The data d are daily state snapshots at each model point, obtained from a “truth”

—15—

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

(a) Initial perturbation
3000
£ 2000
X~
1000
0 T .'I T
0 1000 2000 3000
km
(c) ﬁ(g&y,tu)
-
3000
-
£ 2000
X~ - s
-
1000
0 T T
0 1000 2000 3000

km

(b)

u(‘Tﬁy*tU)

3000 A

£ 2000 -
<

111

1000 A

0
0

(d)

T T T
1000 2000 3000
km

@(z,y,ty, +)

3000 A

£ 2000 -
<

")

1000 A

0

0

T T T
1000 2000 3000
km

Figure 7: Data assimilation results shown for the zonal velocity component at the initial
time tg. (a) Perturbation applied to initial zonal velocity; (b) unperturbed initial zonal
velocity, u(z,y,to); (c) perturbed initial zonal velocity, @(z,y,to); (d) optimized initial
zonal velocity, @(z,y, to, +)

integration. A long wavelength Gaussian perturbation (Fig. 7(a)) of the form

5
du(z,y,ty) = Z Z {anm cos(kpx) cos(kmy) + bnm cos(knx) sin(kny) +

m=1n=1

Cnm Sin(kn) €08(kmy) + dny, sin(k,z) sin(k,y) }

with wavenumbers k, = mn/L, k,, = 7m/L and random numbers anm, bnm, Cnm, dnm ~
N(0,0.1) is applied to the true initial conditions u(z,y, o), v(z,y,to) (Fig. 7(b)), result-
ing in an incorrect predicted model state at time to (Fig. 7(c)). The data assimilation

is run over a 10-day integration, using the L-BFGS algorithm implemented in MadNLP.jl
(Pacaud et al. (2024), Shin et al. (2021)) for the optimization. The algorithm success-
fully converges to an optimized initial state @(x,y,to,+) (Fig. 7(d)), which closely re-
sembles the true initial conditions (Fig. 7(b)). The value of the loss function decreases
by three orders of magnitude over the first 50 iterations and another order of magnitude

over the following 150 iterations.

The optimized initial state greatly improves the accuracy of the model output af-
ter ten days of integration, seen in Fig. 8. The result of the model beginning from the
perturbed initial state (Fig. 8(b)) deviates from the truth (Fig. 8(a)) despite being in-
tegrated for only ten days. With an optimized initial condition, the result of the inte-
gration (Fig. 8(c)) closely resembles the true final state. The value of the non-accumulated

—16—

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

(a) u(@,y,ty) (b) (.t

—
- 1.0 o i i 1.0
30001 W - - 3000 1% % ' ’
Y - 05 -!v 05
- -
= . - £ X ' . £
1000 - , -05 1000 1% -. ‘ 08
-1.0 -1.0
o 3 ; 3 0 e —
0 1000 2000 3000 0 1000 2000 3000
km km
(c) a(a,y,t, +) gd)
- 10°°
oo o
. 1.0
3000 -
. ‘ 05 1025
2000 | 0o & = ~e- With perturbed initial conditions
= ._ v E = With optimized initial conditions
L]
1000 , 05 10
-
-1.0
0 T T T T T T T T
0 1000 2000 3000 2 4 6 8 10
km Days

Figure 8: Effect of data assimilation on the evolving model state up to the final time ¢y
= 10 days. (a) True final zonal velocity component, u(z,y,t¢); (b) predicted final zonal
velocity component, @(x,y,ts) from the perturbed initial condition (Fig. 7(c)); (c) pre-
dicted final zonal velocity component, u(z,y,ts, +) from the optimized initial condition
(Fig. 7(d)); (d) non-accumulated loss J; (Eq. (4)) for each day of the integration, com-
puted using the perturbed initial state (blue line) and optimized initial state (yellow line).

loss function J; (Eq. (4)) remains consistently lower for each day of integration in the

optimized model (yellow line in Fig. 8(d)) than in the perturbed model (blue line in Fig. 8(d)).

3.3 Performance

Figure 9 compares execution time and memory utilization as a function of integra-

tion length for the adjoint sensitivity analysis without (yellow curves) and with (blue curves)

checkpointing under the revolve checkpointing scheme. With checkpointing, metrics are
computed for integrations of up to approximately 22,000 time steps (100 days). With-
out checkpointing, the simulation can be run only for about 4,500 time steps (20 days)
before the memory required to store the time-evolving state exceeds the laptop’s avail-
able system capacity.

Checkpointing allows one to compute sensitivities for time windows beyond 20 days
while maintaining a minimal memory footprint (Fig. 9b). The amount of memory al-
located to store checkpoints typically is configured to be machine dependent and con-
stant. Here it is configured to be proportional to the square root of the number of time
steps. In contrast, using Enzyme AD alone requires storing each model state during the
forward pass, resulting in a drastic increase in memory utilization. Starting at around
1,000 time steps (around 5 days), the checkpointed reverse-mode AD becomes faster than
using AD alone (Fig. 9a). The reason is that, beyond that point, more time is spent al-
locating memory to compute model derivatives than on the derivative computation it-
self. Despite the fact that ShallowWaters is a relatively simple model, this result demon-

—17—

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

(a) (b)

1025_ 104.5_

104.0 4
102.0 4

1035 4

10390 /
1 01.0 4
—o— With checkpointing 10254 / —o— With checkpointing

Without checkpointing Without checkpointing

101.5 4

Execution time (s)
Memory Utilization (MiB)

10‘2.5 10‘30 10‘3.5 10‘4v0 10‘2.5 10‘10 1635 10‘4.0
Timesteps Timesteps

Figure 9: Comparison of (a) derivative computation execution time and (b) memory uti-
lization, with and without checkpointing for the sensitivity analysis (Section 3.1).

strates that implementing a checkpointing scheme alongside AD is essential to feasibly
lay the framework for differentiable ocean models.

4 Application 2: Ocean General Circulation Model in a Re-entrant Chan-
nel Configuration

Our second application features Oceananigans.jl, a Julia-based software package
for finite-volume simulations of the ocean general circulation, designed to run efficiently
using CPUs or GPUs (Silvestri et al. (2025); Wagner et al. (2025), hereafter referred to
as Oceananigans). This package forms the ocean model component of the Climate Mod-
eling Alliance. For our example, we construct a re-entrant channel configuration of an
idealized Southern Ocean circulation, similar to the setup in Abernathey et al. (2011).

We solve the Boussinesq and hydrostatic approximations of the incompressible Navier—
Stokes equations of a fluid on a rotating sphere, using conservation of momentum

du+ (v-Viu+fxu= -Vp(p+gn) -V -7+ Fy

5
O:_azp+b7 ()

conservation of volume

th + 8zw = 0; (6)

as well as conservation of heat and salt. Here u = (u,v) and w are the horizontal and
vertical components of the three-dimensional velocity field v(x,y, z); 7 is the hydrostatic
kinematic stress tensor; F,, is the external forcing of u; p is kinematic pressure; 7 is free
surface displacement (i.e., sea surface height); f is the Coriolis parameter associated with
rotation; and b = —gp’/p is the buoyancy computed from the density p = p’ + po,
where pg is a constant reference density, p’ is the density perturbation, and g is grav-
itational acceleration (for details see Silvestri et al. (2025); Wagner et al. (2025)).

Following Abernathey et al. (2011), our model has dimensions 1000 km x 2000 km
x 2187 m. It is discretized by using a rectilinear Arakawa C-grid with 80x160 evenly
spaced horizontal cells at a 12.5 km resolution and 32 vertical levels of varying thicknesses,
ranging from 10 m at the surface to approximately 214 m at the bottom. We use Oceanani-
gans’s HydrostaticFreeSurfaceModel on GPU architecture to numerically solve our
re-entrant channel model. Our setup features periodic boundary conditions in the zonal

—18—

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

626

627

628

629

630

631

632

634

635

636

637

639

640

641

642

644

645

646

647

648

649

(east-west) direction, a sponge layer at the northern boundary, a heat flux that loosely
approximates observed buoyancy fluxes in the Southern Ocean, and an idealized mid-
latitude westerly surface zonal wind stress.

We make some modifications to the Abernathey et al. (2011) configuration. Most
notably, we add a wall topography with a gap from y = 400 km to y = 1000 km that
provides effects analogous to the Drake Passage in the real Antarctic Circumpolar Cur-
rent. We also replace the implicit free surface with a split-explicit free surface and make
use of a flux-form weighted essentially non-oscillatory method (WENO) for our advec-
tion schemes. There is no vertical mixing scheme, although the vertical diffusivity is in-
creased in the top five surface layers (approximately the upper 60 m). Example figures
of the spun-up state are deferred to Section 2 of the Supporting Information.

Sensitivity Analysis

In our re-entrant channel model, the quantity of interest J is the zonal volume trans-
port across the gap present in the model’s topography that mimics the Drake Passage,

j(u(.%o,y,Z,t)) = U(‘TOat) - Zu(fﬂo,y,Z,t) AyAZ (7)

Y,z

Here the location of the passage is g = 500 km, and Ay Az is the cross-sectional area
element in the y—z-plane. To showcase the range of sensitivities that can be computed
with the adjoint, we seek sensitivities of J with respect to the initial state, surface bound-
ary conditions, and model parameters.

Our first investigation concerns the sensitivity of zonal volume transport to wind
stress, V. J = (0T /O07s, 8]/8@). Figure 10a,b depict the sensitivity of J to changes
in zonal and meridional wind stress 14 days prior to evaluation of J, corresponding to
a 14-day adjoint integration. Surface wind stress drives large-scale horizontal momen-
tum input to the ocean through the Ekman layer. This sensitivity helps describe how
the wind stress drives eastward volume flow through the gap in our topography. Note
that within Oceananigans, wind stresses are negative-east (zonal) and negative-north (merid-
ional), so a negative gradient suggests an eastward or northward wind stress in that lo-
cation increases zonal volume transport.

Sensitivity values for zonal wind stress 7, are highest within the gap and progres-
sively decrease further away from it, especially to the north and south. This sensitivity
pattern is explained by the fact that eastward 7, upstream of the gap (noting that the
configuration is periodic) directly accelerates the upper ocean eastward, funneling it through
the gap and increasing zonal transport. In general, 7, gradients have the expected sign
and magnitude.

Although our forward model configuration features only an idealized zonal wind
stress, we may also consider the derivative of J with respect to meridional wind stress
Ty. Again, these gradients follow a reasonably expected pattern when accounting for sign
conventions. On the west side of the topography they have opposite signs north and south
of the gap, which reflect how 7, controls the pressure difference across the gap via Ek-
man transport and surface map divergence. Similar, but opposite, sign values are seen
in the gradients downstream of the gap. They produce weaker gradients in magnitude
since they are not positioned directly upstream of the gap, although they still exert in-
fluence due to the periodic boundary conditions. Wind stress sensitivity patterns sim-
ilar to those computed here have been obtained in MITgem adjoint simulations with “re-
alistic” Drake Passage topography (e.g., Fig. 6 of Losch & Heimbach (2007) but used longer
integrations and opposite sign convention, or Fig. 4 of Kalmikov & Heimbach (2014)).

Sensitivities of the zonal volume transport across the gap to changes in initial tem-
perature at two depth levels, z = 15 m and z = 504 m, are depicted in Fig. 11a,b. Re-

—19—

650

651

652

653

654

655

656

657

658

660

661

663

664

665

666

667

668

669

670

(a) 3J/AT«(X, y) (b) 3J/ATY(X, ¥)
2000- 2000-
250 250
1500~ 1500-
=2 1000- o £ 1000- - o E
> > >
(] (2]
500- 500-
I
-250 r-250
0 0
0 500 1000 0 500 1000

Figure 10: Sensitivities of zonal volume transport through the topography gap (Eq. (7))
with respect to zonal (a) and meridional (b) wind stress, 7, and 7,,. This was a run

of 8,100 time steps (approximately 14 days). Within Oceananigans, wind stresses are
negative-east (zonal) and negative-north (meridional), so a negative gradient suggests an
eastward or northward momentum flux (out of the atmosphere) in that location increases
zonal volume transport.

lated, full-depth sensitivities are shown in Fig. 12 for a meridional section at the longi-
tude of the gap (xo = 550 km, panel a) and for a zonal section at a latitude near the north-
ern end of the gap (yo = 1000 km). The dipole pattern that builds near the northern

end and upstream of the gap is visible in the zonal section and amplified at depth. Sim-
ilarly, sensitivities are amplified at depth for the meridional section, both south (y <

500 km) and north (y > 1000 km) of the gap. There are a couple reasonable explana-
tions: we know that local warming creates a steeper meridional density gradient across
the gap, which itself creates vertical shear in u via thermal wind (Ju/0z x 9p/9y). More-
over, the density gradient also raises steric height, which changes horizontal pressure gra-
dients that drive zonal flow. Furthermore, the narrowing at the gap (and presence of to-
pography) means the same horizontal pressure change creates a larger change in bottom
pressure and forms stress that affects the momentum balance.

As a third category of sensitivities besides surface boundary condition and initial
condition sensitivities, panels (¢) and (d) of Fig. 11 showcase sensitivities of J to changes
in the vertical diffusivity model parameter. Again, a spatially highly non-uniform im-
pact of changes in vertical mixing on the transport is evident. A similarity in pattern
between this sensitivity and initial temperature sensitivity is apparent, which, over the
limited duration of the adjoint calculation is physically sensible. While the initial tem-
perature sets the background stratification, the diffusivity field contributes to how it evolves.
Altering the diffusivity which generally acts to even out tracer gradients will alter the
baroclinic structure of the water column thus contributing to changes in thermal wind

—20—

671

672

673

674

675

677

678

679

(a) 3J/AT(x, y, 15m) (b) 3J/dT(x, y, 504m) v
0. 5

2000- 2000-
0.00005 I
1500- 1500- l
€ 1 e
< 1000~ - 0.00000 = 1000- £0.0000
= s 3 - 3

500- i 500-
= ,
-0.00005
0 0 —
| | ! | | . f-0.0005
0 500 1000 0 500 1000
(c) oJ/ok:(x, y, 15m) (d) 9J/ok:(x, y, 504m)
H0.005
2000- 2000-
0.025
1500~ 1500-
7 7
T & &
= 1000- - 0000 E 1000- (ro.ooo E
> > >
n (%]
500- 500-

-0.025

| 1 | | | | --0.005
0 500 1000 0 500 1000
x (km) x (km)

Figure 11: Sensitivities of zonal volume transport through the topography gap (Eq. (7))
with respect to initial temperature T (a and b), and vertical temperature diffusivity xr (c
and d) at select depths.

shear and steric height (differentiating over a longer run may reveal new patterns in the
diffusivity sensitivities). Similarly to the previous application (Fig. 6), finite-difference
“gradient checks” have been conducted to verify the gradient computed with the adjoint
for a representative range of elements of the different control variables (not shown).

Producing the gradients presented in the section required end-to-end differentia-
tion of Oceananigans using Enzyme and Reactant. This, in turn, involved successful AD
of a hydrostatic free-surface model featuring WENO momentum and tracer (tempera-
ture and salinity) advection, linear equations of state for buoyancy, volumetric forcings
and flux boundary conditions, harmonic and biharmonic Smagorinsky-like turbulence

21—

(a) 9J/AT(x=550km, y, z)

E-10
=
-20- i . .
0 500 1000
X (km)
(b) 3J/3T(x, y=1000km, z)
0.0-
05
E-10
-
15 .
_

0 500
x (km)

1500

2000

1000

3.0x10-5

-3.0x10-5

3.0x10-*

-3.0x10°5

Sv/°C

Sv/°C

Figure 12: Sensitivities of J with respect to the initial temperature, shown across the full
depth range as cross sections. Gradients are divided by the thickness of their associated
layer. Top is along 550 km in the zonal direction (right of the gap in the ridge topogra-
phy); bottom is along 1000 km in the meridional direction. Sensitivity values are divided

680

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

by layer thickness to account for uneven cell thicknesses.

closures, and a periodic domain with masking by an idealized passage. A recurring prob-

lem with differentiating the Oceananigans code was type instability. Although the com-

putationally intensive portions of the Oceananigans code base are type stable, the pack-
age features an extensive array of configuration options stored in nested tuples and other
type-unstable structures. These configuration options do not impact the package’s com-

putational performance but do pose problems for Enzyme AD (see Section 2). Use of
Reactant first produced type-stable model code that could then be successfully differ-
entiated. Reactant also improved the runtime for CPU-based models by an order of mag-
nitude, which helped with development, although the runs presented here were computed

and differentiated by using a GPU backend.

5 Application 3: Ice Sheet Model

For our third example we employ the Differentiable JUlia ICE sheet model (DJUICE. j1).

This model is essentially a carbon copy of the finite-element C++ Ice-Sheet and Sea-

level System Model (ISSM, Larour et al., 2012). DJUICE follows ISSM’s object-oriented
structure, which requires a number of mutable structures, and has a large number of dy-

namic memory allocations. These two aspects make automatic differentiation particu-

larly challenging. We show that Enzyme is able to differentiate static and transient mod-

els.

5.1 Inferring Basal Friction

First, we explore a standard problem in glaciology that involves inferring basal con
ditions, which typically cannot be measured, from surface observations (MacAyeal, 1992;

—292—

701

702

703

704

705

706

707

708

709

710

712

713

715

716

77

718

719

720

722

723

724

725

726

727

Morlighem et al., 2013). Ice sheet flow is modeled by using the Shelfy Stream Approx-
imation (MacAyeal, 1989):

0 ou Ov 0 ou Ov 0s
— (4Hp— +2Hu— — (Hpu— + Hu——) = pgH =~ + >N
Ox (Hoz * M8y> + Y (May + u@x) PIE B ot
(8)
0 ov Ou 0 ou ov 0Os
— (4Hp— +2Hpu— — | Hp— +Hpu—) = pgH — N
Ay < u8y+ N8x> R < 'u(?y+ u8x> P9 8y+a v

where H is the ice thickness, u and v are the two components of the horizontal ice ve-
locity vector, u is the nonlinear ice viscosity that follows Glen’s flow law (Glen, 1955),

s is the ice surface elevation, IV is the effective pressure at the base of the ice, and « is
the unknown friction coefficient. To infer the spatially varying a(z,y), we typically min-
imize a cost function that measures the misfit between the modeled velocity, u = (u, v),
and the satellite-derived observed ice velocity, u®® = (u°", y°Ps):

I (a(z,y)) =/ %{(u—u"bs)2 + (v—v°b3)2}dﬂ,

Q

(9)

where is the model domain. Automatic differentiation is used to determine the gra-
dient of this cost function with respect to the spatial distribution of the basal friction
coefficient a(zx,y), which then feeds a standard gradient descent algorithm to infer an
optimal field for a(x,y).

We apply this approach to Pine Island Glacier in West Antarctica. Our model has
18,227 elements on a two-dimensional unstructured mesh, with element sizes varying from
1 km to 20 km. We adopt the model configuration of Seroussi et al. (2014). The initial
ice geometry is taken from BedMachine Antarctica (Morlighem et al., 2011) and the ob-
served ice velocity from Rignot et al. (2011).

For comparison, we run an identical experiment with ISSM. Figure 13 compares
the sensitivity ?TZ obtained with ISSM and DJUICE, along with their difference. The
root mean square difference between the two sensitivity fields is 7.87x107°. Notably,
we used a relatively loose tolerance for the nonlinear solver, 0.01 for the relative resid-
ual, to achieve faster solves. Even under this setting the two packages agree to O(1073).

4

%10° ISSM Sensitivity %10° DJUICE Sensitivity %10° ISSM - DJUICE ><110'

0.01

ym
B o

o

&

17 16
x(m)

-1.5

1.4
%108

0.005

o

o1 {-0.005

y (m)

o

o

&

1

4
-7 -16 -15 -14

x (m) %108

-1

Figure 13: Sensitivity map g—‘g (m®/2575/2) of the squared misfit between simulated and
observed ice velocities, J(a(x,y)), to changes in the basal friction coefficient «a(z,y), for
Pine Island Glacier computed by using ISSM (left), DJUICE (middle), and their differ-

ence (right).

5.2 Sensitivity Mapping for a Transient Model

In addition to computing sensitivities of model-data misfit functions used for gradient-
based optimization (preceding section), automatic differentiation can be used to map sen-
sitivities of a wide range of quantities of interest. For example, Morlighem et al. (2021)

—23—

728

729

730

731

733

734

735

737

738

739

740

742

743

745

746

747

748

749

750

752

753

754

used ISSM and STREAMICE to map the sensitivity of Pine Island Glacier’s future vol-
ume above floatation to basal friction and basal melt under the floating ice shelf. We ap-
ply the same experiment but with DJUICE instead of ISSM. The model mesh has 23,767
elements. We solve for the Shallow Shelf Approximation, and the geometry evolves in
time based on the conservation of mass. We use a similar depth-dependent parameter-
ization for basal melt:

0 if 2 >0,

. 1
m(z,y) =m(z,y) + —1g7 if0>z> 500, (10)

50 it z < —500,

where z is the base elevation of the ice. Following Morlighem et al. (2021), we are in-
terested in quantifying the spatial sensitivity of the volume above flotation (V') to per-
turbations in basal melting. For example, the Gateaux derivative of V, DV (m), with
respect to ocean melting, m, is

5m) —
vom € ML () (DV (), dm) = lim Vim+edm)=V(m) (11)
e— €
where dm indicates a perturbation in m, (-, -) is the inner product, and H! (£2) denotes
the space of square-integrable functions whose first derivatives are also square integrable

on the model domain, €.

Enzyme computes the gradient of J = V with respect to m at each vertex of the
mesh, and we recover DV (m) on the H! (2) space by multiplying this output by the mass
matrix inverse. This procedure avoids mesh-dependency sensitivities, as described in Morlighem
et al. (2021).

Instead of running the model for 20 years, we perform only 5 time iterations (half-
year) given the computational cost of the model. The sensitivity maps on the ice shelf
are shown in Fig. 14. The root mean square difference between the two sensitivity fields
is 2.7368x103. Notably, we used the same loose tolerance, 0.01, for the relative resid-
ual in the nonlinear solver, as the experiment in Section 5.1.

«10° ISSM Sensitivity x1105 «10° DJUICE Sensitivity x1105 «10° ISSM - DJUICE x21g“
-3 -3 -3
4 y,l 0.8 ? yq 0.8 2 IS “ 2
35 35/ 350 4 s
0.6 0.6 15
-4 -4 -4)
45 \j‘}, 04 45} \“}, 04 45} L 1
5 3 0.2 5t A 0.2 5t v\ 05
— _ o falin _ F
Ess 0 Ess 0 Ess) ! 0
> Py > . > &
-6 0.2 6/ ik 0.2 -6 o 05
6.5 04 65/ 04 6.5 <, 4
-7 -7t -7 !
-0.6 -0.6 . -1.5
75 75) 75)
0.8 0.8 C - 2
-8 -8+ -8 4
- - =1 -1 L . =1 -1 - = -2.5
18 17 16 15 18 17 16 15 18 17 16 -15
x (m) x10° x (m) x10° x (m) x10°

Figure 14: Sensitivity map DV (m) of the volume above flotation, V(m(z,y)), to changes
in the melting perturbation m(z,y) for the Amundsen Sea Embayment computed by us-
ing ISSM (left), DJUICE (middle), and their difference (right), in the unit of m3/(m?/s).

6 Application 4: Atmospheric General Circulation Model

For our fourth technical example we analyze the general circulation of the atmo-
sphere as simulated by SpeedyWeather.jl (Klower et al., 2024). To adapt it to usage with
Enzyme.jl, we had to implement only minor changes. Type stability has been a central

—24—

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

776

777

778

779

780

781

783

784

785

786

787

788

789

790

programming paradigm of SpeedyWeather from the start, but Enzyme also requires this
for performance-irrelevant code where we were less consistent. Then we slightly revised
our state variable and scratch memory handling. The experiment shown here uses En-
zyme.jl in combination with Checkpointing.jl.

As a spectral atmospheric model, Speedy Weather.jl uses spherical harmonics in com-
bination with a grid, discretizing the so-called primitive equations, which are widely used
in numerical weather prediction, on the sphere. Each time step performs numerous spher-
ical harmonic transforms to transfer variables between the gridpoint and spectral space.
We use a horizontal resolution of T31 (spherical harmonics up to degree and order 31)
combined with an octahedral Gaussian grid of 96 latitudes, corresponding to a 3.75° res-
olution at the equator (about 400 km globally) and eight vertical layers. The time step
is 40 min using a semi-implicit filtered leapfrog scheme. The prognostic variables P are
the relative vorticity (= V x u and divergence D = V - u of the horizontal wind vec-
tor u, the logarithm of surface pressure In pg, temperature 7', and specific humidity g,
each discretized in spectral space horizontally and in sigma coordinates (fraction of sur-
face pressure) vertically. The primitive equations are

)
O VX (Pt (f+ Ous W)~ R,V np,)
oD 1
o =V (Pa+ (f + Our — W(u) — RyT,VInp,) — V> <2(u2 +v%) + @)
Olnp,
_ 1 12
En V / udp (12)
or _ @ Dlnp
E PT uT) +TD W() e TU 7Dt
dq
En =Py~ V- (ug) +¢D - Wi(q),

with Coriolis parameter f, dry gas constant Ry, virtual temperature 7,,, geopotential ®,
heat capacity c,, and vertical advection operator W. Many atmospheric processes are
summarized in P, (drag in the planetary boundary layer) and Pr, Pq (e.g., radiation,
convection, large-scale condensation, surface fluxes with land and ocean). SpeedyWeather’s
primitive equation model is coupled to a simple thermodynamic model of the ocean (a
so-called slab ocean model), a thermodynamic sea-ice model, and a 2-layer land surface
bucket model.

Sensitivity Analysis

We demonstrate the differentiability of SpeedyWeather by conducting a sensitiv-
ity analysis of the temperature J = T of the lowest atmospheric layer at a grid point
in Der}mark (55° N, 11° E) over a short integration of the model. We compute deriva-
tives g? of the final temperature 7 after 6 hours and 2 days of integration with respect
to the initial conditions of the prognostic variables Py = {(o, Inpsq, To}. For the sake
of brevity we show only a few selected variables and layers in Fig. 15. As expected, the
sensitivities decrease with distance from the selected grid point (locality principle in clas-
sical physics). They are more localized for the short 6-hour integration (Fig. 15 a-d) and
spread during the course of the longer 2-day integration (Fig. 15 e-h). The vorticity and
surface pressure of the 2-day integration, in particular, exhibit a sensitivity pattern that
is consistent with the underlying westerly wind over the Atlantic causing an eastward
transport (see arrows in Fig. 15).

—25—

791

Tenlperature Lgyer 8; 6hm Vorllcuy Layer 8;6h

e S S
.sg,fi?wff{ al

P

<
{/ \ﬁ;\ ‘w;ﬁ:—\
W Ae
pNE 2
r\\ - - V/
—— ~

a7, aT,

—%f [Ks) Tm;au (K /I Pd]
Temperature Layer 8; 2d Vorticity Layer 8; 2d

S = @y <=l ==

aT aT,
aT: [Y: (K]

Vorllcuy Layer 5;2d Surface Pressure 2d

=T, SR pe (.

aT;
e Onp,

[K/InPa]

Figure 15: Sensitivities of the temperature of the lowest atmospheric layer in (55° N, 11°
E) over Denmark, marked with a cross, with respect to the initial conditions of a 6-hour
(a—d) and 2-day (e-h) integration of the SpeedyWeather.jl global atmospheric model. Ar-
rows depict the wind vector field of the respective layer of the initial condition. Layer 8
corresponds to o = 0.9375 (near-surface) and layer 5 to 0 = 0.5625 (mid-troposphere),
where o is a fraction of surface pressure used as vertical coordinate.

,26,

792 7 Discussion

793 We have successfully differentiated four ESM components written in the Julia pro-
704 gramming language. These models implement a range of spatial discretization methods,
705 including finite-volume, finite-element, and spectral schemes, and bespoke numerical al-
796 gorithms.

707 At the heart of this work is the use of the general-purpose AD tool Enzyme and

798 its reverse mode. Other approaches exist for achieving differentiable models. Specifically
799 within Julia, the SciML package (Rackauckas et al., 2020) is based on composable al-

800 gorithms and solvers that make the availability of differentiable models notionally more
801 straightforward. However, high-end and highly performant ESMs typically rely on highly
802 customized algorithms that do not easily fit within such frameworks. Similar issues arise
803 in the context of other customized programming languages such as JAX. A main mo-

804 tivation for exploring the general-purpose AD route within Julia was the already exist-
805 ing ESM components, in particular Oceananigans.jl and ClimaQOcean.jl (Ramadhan et

806 al., 2020; Silvestri et al., 2025; Wagner et al., 2025) that are being developed as part of

807 CliMA (Yatunin et al., 2025), as well as the flexible, light-weight atmospheric general

808 circulation model (GCM) SpeedyWeather.jl (Klower et al., 2024). A new ice sheet model.
809 DJUICE.jl, was rewritten from an existing C++ code to complement the Julia-based ESM

810 components. None of this software was written for Enzyme, and only relatively small

811 changes had to be implemented to use Enzyme successfully. This contrasts with mod-

812 els written in JAX, such as the ocean model Veros (Héfner et al., 2021) and the atmo-

813 spheric model NeuralGCM (Kochkov et al., 2024), which often demand more extensive

814 adaption. Nevertheless, achieving full end-to-end differentiation with Enzyme required

815 several important extensions and tool developments, available and reusable now. These
816 efforts focused on key features of the Julia programming language, including JIT com-

817 pilation, dynamic dispatch, and memory management via garbage collection.

818 Two major aspects that favored the choice of the emerging AD tool Enzyme over

819 existing tools such as Zygote.jl were the requirement to efficiently handle mutable ar-

820 rays, which are ubiquitous in time-stepping ESM components, and Enzyme’s performance
821 characteristics. A major novelty of Enzyme over existing AD tools is that it acts at the
822 LLVM compiler’s intermediate representation level, thus enabling code optimization both
823 before and after algorithmic differentiation takes place. This has shown to deliver more
824 efficient derivative calculations compared with other AD tools.

825 The ESM components also necessitated work to integrate reverse-mode checkpoint-
826 ing algorithms. This was achieved in two ways: (i) integration of Checkpointing.jl (Scha-
827 nen et al., 2023) within Enzyme and (ii) development of checkpointing algorithms at the
828 MLIR level. The latter was required for workflows that use Reactant in combination with
820 Enzyme (see Application 2 showcased in Section 4).

830 The value of the tight collaboration between Earth system model developers and

831 computer scientists cannot be overestimated in driving significant improvements and mat-
832 uration of the capabilities of software transformation tools featured here, Enzyme and

833 Reactant, that were critical to the work. In particular, both of these software packages

834 aim to consume and rewrite generic programs for either differentiation or improved per-
835 formance/portability, respectively. Rewriting general code is a major task, especially in
836 the context of comprehensive ESMs, and likely to fail if attempted all at once. Instead,
837 both software projects adopted an incremental approach: they began with a limited set
838 of features, ensured full support for these, and gradually expanded the feature set un-

839 til all functionalities required by the various ESM components were covered. Co-developing
840 the scientific simulation features alongside the Enzyme and Reactant software tools that
8a1 support them was key to the success of all projects. Arguably, such tight collaborations
842 are easier to achieve in smaller communities like those around the Julia programming

843 language.

27—

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

In terms of applications, we worked through a hierarchy of ESM components, at
each step creating minimal reproducible examples (MREs) to unblock AD tool limita-
tions that were encountered at the time. A first application (not presented here) used
a simple three-box model of the ocean’s thermohaline circulation inspired by Stommel (Stom-
mel, 1961; Tziperman & Ioannou, 2002). This work motivated the initial development
of Checkpointing.jl (Schanen et al., 2023) and drove the support for handling Julia’s dy-
namic dispatch within Enzyme.

Moving up in terms of model complexity, we subjected a shallow water model for
a fluid on the rotating beta plane to Enzyme and checkpointing to investigate scalabil-
ity and performance aspects (Section 3). The work on the shallow water model helped
identify bottlenecks in the early Enzyme versions through the provision of MREs that
provided rapid tool fixes. In this way, it also supported the differentiation of the com-
prehensive finite-volume, vertical height-coordinate ocean general circulation model Oceanani-
gans, which we conducted in parallel with the shallow water model work.

The power of the Reactant tool was exposed in the work on Oceananigans, our sec-
ond application. The Reactant pipeline offers reduction in code complexity through a
tracing approach along with automated performance portability across different HPC
hardware (in our case using CPUs and GPUs). The Multi-Level Intermediate Represen-
tation created by this tool provides more stable code that Enzyme can transform robustly
and efficiently. An added benefit of investing in the Reactant pipeline is the ability to
lower both the parent and the Enzyme-differentiated code to the XLA compiler, which
provides code optimization for high-performance execution across different compute hard-
ware including CPUs, GPUs, TPUs, and emerging ML accelerators. Given the rapid ML-
driven hardware development, this work offers the prospect of automated performance
portability across a range of emerging HPC platforms that will become available for ESM
simulations in both research and industry, particularly within the ML-driven sector.

Our third application, DJUICE, relies heavily on mutable arrays and mutable struc-
tures, which make other AD tools such as Zygote.jl and Diffractor.jl, which do not sup-
port mutation, impractical for this application. Mutation is essential for large climate
models, since reallocating memory at every update would quickly exhaust resources and
hinder GPU acceleration. Significant developments were required for Enzyme.jl to sup-
port mutation. Another important development necessary to differentiate DJUICE was
to properly handle the differentiation of the backslash operator. DJUICE uses implicit
solvers and requires solving large linear systems. One remaining point of development
is to support sparse arrays. Currently Enzyme.jl supports only standard arrays, likely
limiting the performance of the adjoint. We are working on adding support for SparseArray.jl
in order to further improve the performance of the code, as the left-hand side of the lin-
ear systems (i.e., the stiffness matrices) are highly sparse. A related study by Utkin et
al. (2025) used Enzyme.jl to generate the adjoint of a simple glacier model based on a
depth-averaged shallow ice approximation to simulate Alpine mountain valley glaciers,
further demonstrating the versatility of the AD tool.

The developments of Enzyme.jl and Checkpointing.jl that enabled differentiabil-
ity of the shallow water, ocean, and ice sheet models described above subsequently fa-
cilitated their application to the spectral atmospheric general circulation model Speedy-
Weather. Similarly to the other showcased models, Speedy Weather’s computations rely
heavily on mutating data structures. Adapting it to the usage with other AD tools would
therefore have been prohibitively impractical. Adapting it to Enzyme.jl, on the other hand,
required fairly minor revisions: ensuring type stability throughout the model, slightly
restructuring how variables are handled during time stepping, and defining two differ-
entiation rules for the transforms used. The sensitivity analysis shown here is just the
first step demonstrating successful gradient calculation via reverse-mode AD.

—28—

805 The availability of differentiable ESM components offers a range of exciting oppor-

896 tunities for advancing data-constrained, data-driven, and mixed modeling approaches.

897 A main incentive of this development has been the recognition of the conceptual and al-
898 gorithmic similarity between adjoint-based inverse methods and backpropagation-based
899 neural network learning. Combining these two approaches enables the embedding of NN
900 architectures within physics-based models where the goal is to faithfully represent con-
901 servation laws but to learn empirical subgrid-scale parameterization schemes. This holds
902 for climate applications, in particular, which rely on long integration that requires sta-
903 ble schemes, and where property conservation plays an essential role to detect small resid-
904 uals in the climate change signal within the noise of natural variability. Differentiable

905 ESMs offer the prospect of better utilizing “training data” through gradient-based op-
906 timization, whether derived from observations of the climate system, associated clima-
907 tologies, or high-fidelity data from higher-resolution or more complex simulations. This
908 approach has been referred to as “online learning,” “full-model learning,” or “a poste-

909 riori learning” in the recent literature and has been investigated in a number of ideal-

010 ized quasi-geostrophic simulations (e.g., Frezat et al. (2022); Maddison (2024); Yan et

o11 al. (2025)). Our work represents a breakthrough in that it makes these approaches fea-
012 sible for a range of high-end ESMs. To date, only one study has demonstrated this ap-

013 proach with Neural GCM, a spectral model using similar numerics to Speedy Weather but
014 written in JAX (Kochkov et al., 2024). The ability to conduct such approaches efficiently
015 on Al-customized compute hardware (GPUs, TPUs) further unleashes the potential of

016 seamless integration of physics-based and ML algorithms for ESM learning. We hope this

017 work encourages wider adoption of such methods in the modeling community, leading

018 to a greater use of observations for constraining and more rigorously calibrating ESMs.

019 Open Research Section

920 The frameworks used in this work are Enzyme.jl, Reactant.jl, and Checkpointing.jl.
01 These were applied to four ESM components: ShallowWater.jl, Oceananigans.jl, DJUICE.JL,
02 and SpeedyWeather.jl. Because of the different provenances of these software packages,

023 we are making them available as sub-modules through a central GitHub repository at

024 https://github.com/DJ4Earth/differentiable-esm-components-2025. Scripts to

025 reproduce the simulations and figures are contained in the sub-modules for each appli-

926 cation. All software packages are open-source.

027 Conflict of Interest declaration

028 The authors declare there are no conflicts of interest for this manuscript.

920 Acknowledgments

930 This work was supported by NSF CSSI grants #2103942, 2147601, 2103791, 2104068,
031 and 2103804 (Collaborative Research: Frameworks: Convergence of Bayesian inverse meth-
032 ods and scientific machine learning in Earth system models through universal differen-

033 tiable programming). Additional support was provided by the Applied Mathematics ac-

034 tivity within the U.S. Department of Energy, Office of Science, Office of Advanced Sci-

035 entific Computing Research Applied Mathematics under Contract No. DE-AC02-06CH11357.
036 MG acknowledges funding from the Volkswagen Foundation. MK acknowledges fund-

037 ing from the Natural Environment Research Council under grant number UKRI191.

038 References

030 Abernathey, R., Marshall, J., & Ferreira, D. (2011). The dependence of Southern
040 Ocean meridional overturning on wind stress. Journal of Physical Oceanography,

—29—

https://github.com/DJ4Earth/differentiable-esm-components-2025

9

=

1

942

943

944

945

946

948

949

950

951

952

953

954

955

956

957

958

959

960

962

963

964

965

966

967

989

990

991

992

993

994

41(12), 2261-2278.

Alhashim, M. G., Hausknecht, K., & Brenner, M. P. (2025). Control of flow behav-
ior in complex fluids using automatic differentiation. Proceedings of the National
Academy of Sciences, 122(8), €2403644122.

Badgeley, J. A., Morlighem, M., & Seroussi, H. (2025). Increased sea-level contri-
bution from northwestern Greenland for models that reproduce observations. Pro-
ceedings of the National Academy of Sciences, 122(25), €2411904122. doi: 10.1073/
pnas.2411904122

Balaji, V., Couvreux, F., Deshayes, J., Gautrais, J., Hourdin, F., & Rio, C. (2022).
Are general circulation models obsolete? Proceedings of the National Academy of
Sciences, 119(47), €2202075119. doi: 10.1073/pnas.2202075119

Balaji, V., Maisonnave, E., Zadeh, N., Lawrence, B. N., Biercamp, J., Fladrich, U.,

.. Wright, G. (2016). CPMIP: measurements of real computational performance of
Earth system models in CMIP6. Geoscientific Model Development, 10(1), 19-34.
doi: 10.5194/gmd-10-19-2017

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2018). Auto-
matic differentiation in machine learning: a survey. Journal of Machine Learning
Research, 18, 1-43. Retrieved from http://jmlr.org/papers/v18/17-468.html

Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., & Tian, Q. (2023, July). Accurate
medium-range global weather forecasting with 3D neural networks. Nature,
619(7970), 533-538. Retrieved 2024-03-12, from https://www.nature.com/
articles/s41586-023-06185-3 (Publisher: Nature Publishing Group) doi:
10.1038/s41586-023-06185-3

Blondel, M., & Roulet, V. (2024). The Elements of Differentiable Programming.
arXiv. Retrieved from https://doi.org/10.48550/arXiv.2403.14606 doi: 10
.48550/arxiv.2403.14606

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., ...
others (2018). JAX: composable transformations of Python+ NumPy programs.
http://github.com/google /jazx.

Bryson, A. E., & Ho, Y.-C. (1975). Applied optimal control: optimization, estimation
and control. Taylor and Francis.

Chizat, L., Oyallon, E., & Bach, F. (2019). On lazy training in differentiable pro-
gramming. Advances in neural information processing systems, 32.

Christensen, H., & Zanna, L. (2022). Parametrization in Weather and Climate Mod-
els. Ozford Research Encyclopedia of Climate Science. doi: 10.1093/acrefore/
9780190228620.013.826

Dheeshjith, S., Subel, A., Adcroft, A., Busecke, J., Fernandez-Granda, C., Gupta,

S., & Zanna, L. (2025). Samudra: An Al global ocean emulator for climate.
Geophysical Research Letters, 52(10), e2024GL114318.

Errico, R. M., & Vukicevic, T. (1992). Sensitivity analysis using an adjoint of
the PSU-NCAR mesoseale model. Monthly Weather Review, 120(8), 1644
1660. Retrieved from http://journals.ametsoc.org/doi/abs/10.1175/
1520-0493%,281992%29120%3C16447%,3ASAUAAD%3E2.0.C0%3B2 doi: 10.1175/
1520-0493(1992)120< 1644:sauaao>2.0.co;2

Espinosa, Z. 1., Sheshadri, A., Cain, G. R., Gerber, E. P., & DallaSanta, K. J.

(2022). Machine learning gravity wave parameterization generalizes to capture
the QBO and response to increased CO2. Geophysical Research Letters, 49(8),
€2022GL098174.

Eyring, V., Cox, P. M., Flato, G. M., Gleckler, P. J., Abramowitz, G., Cald-
well, P., ... Williamson, M. S. (2019). Taking climate model evaluation to
the next level. Nature Climate Change, 9(2), 102 — 110. Retrieved from
https://www.nature.com/articles/s415658-018-0355-y doi: 10.1038/

$41558-018-0355-y
Frezat, H., Sommer, J. L., Fablet, R., Balarac, G., & Lguensat, R. (2022). A posteri-

—30—

http://jmlr.org/papers/v18/17-468.html
https://www.nature.com/articles/s41586-023-06185-3
https://www.nature.com/articles/s41586-023-06185-3
https://www.nature.com/articles/s41586-023-06185-3
https://doi.org/10.48550/arXiv.2403.14606
http://journals.ametsoc.org/doi/abs/10.1175/1520-0493%281992%29120%3C1644%3ASAUAAO%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0493%281992%29120%3C1644%3ASAUAAO%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0493%281992%29120%3C1644%3ASAUAAO%3E2.0.CO%3B2
https://www.nature.com/articles/s41558-018-0355-y

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

ori learning for quasi-geostrophic turbulence parametrization. Journal of Advances
in Modeling Earth Systems, 14(11). doi: 10.1029/2022ms003124

Fukumori, 1., Wang, O., Llovel, W., Fenty, 1., & Forget, G. (2015). A near-uniform
fluctuation of ocean bottom pressure and sea level across the deep ocean basins of
the Arctic Ocean and the Nordic Seas. Progress in Oceanography, 134(C), 152
172. Retrieved from http://dx.doi.org/10.1016/j.pocean.2015.01.013 doi:
10.1016/j.pocean.2015.01.013

Gaikwad, S. S., Narayanan, S. H. K., Hascoét, L., Campin, J.-M., Pillar, H.,
Nguyen, A., .. Heimbach, P. (2025). MITgem-AD v2: Open source tangent
linear and adjoint modeling framework for the oceans and atmosphere enabled
by the automatic differentiation tool Tapenade. Future Generation Computer
Systems, 163, 107512. doi: https://doi.org/10.1016/j.future.2024.107512

Gelbrecht, M., White, A., Bathiany, S., & Boers, N. (2023). Differentiable program-
ming for Earth system modeling. Geoscientific Model Development, 16(11), 3123—
3135. doi: 10.5194/gmd-16-3123-2023

Giering, R., & Kaminski, T. (1998). Recipes for adjoint code construction. ACM
Transactions on Mathematical Software (TOMS), 24(4), 437-474. Retrieved from
https://doi.org/10.1145/293686.293695 doi: 10.1145/293686.293695

Glen, J. W. (1955). The creep of polycrystalline ice. Proc. R. Soc. A, 228(1175),
519-538.

Griewank, A. (2003). A mathematical view of automatic differentiation. Acta
Numerica, 12, 321-398. Retrieved from https://www.cambridge.org/core/
product/identifier/S0962492902000132/type/journal_article doi:

10.1017/s0962492902000132

Griewank, A. (2012). Who invented the reverse mode of differentiation? Documenta
Math., 389-400.

Griewank, A., & Walther, A. (2000, March). Algorithm 799: Revolve: An implemen-
tation of checkpointing for the reverse or adjoint mode of computational differenti-
ation. ACM Trans. Math. Softw., 26(1), 19-45. doi: 10.1145/347837.347846

Griewank, A., & Walther, A. (2008). Ewvaluating derivatives: principles and tech-
niques of algorithmic differentiation. Society for Industrial and Applied Mathe-
matics (STAM). Retrieved from https://doi.org/10.1137/1.9780898717761
doi: 10.1137/1.9780898717761

Hascoet, L., & Pascual, V. (2013). The Tapenade automatic differentiation tool:
principles, model, and specification. ACM Transactions on Mathematical Software
(TOMS), 39(3), 1-43.

He, S., Li, X., DelSole, T., Ravikumar, P., & Banerjee, A. (2021). Sub-seasonal cli-
mate forecasting via machine learning: Challenges, analysis, and advances. In Pro-
ceedings of the aaai conference on artificial intelligence (Vol. 35, pp. 169-177).

Heimbach, P., Hill, C., & Giering, R. (2002). Automatic Generation of Efficient Ad-
joint Code for a Parallel Navier-Stokes Solver. In (Vol. 2330, pp. 1019 — 1028). Re-
trieved from http://link.springer.com/10.1007/3-540-46080-2_107 doi: 10
.1007/3-540-46080-2__107

Hourdin, F., Mauritsen, T., Gettelman, A., Golaz, J.-C., Balaji, V., Duan, Q., ...
Williamson, D. (2016). The art and science of climate model tuning. Bul-
letin of the American Meteorological Society, 98(3), 589-602. Retrieved from
http://journals.ametsoc.org/doi/10.1175/BAMS-D-15-00135.1 doi:
10.1175/bams-d-15-00135.1

Héfner, D., Nuterman, R., & Jochum, M. (2021). Fast, cheap, and turbulent—global
ocean modeling with GPU acceleration in Python. Journal of Advances in Model-
ing Earth Systems, 13(12). doi: 10.1029/2021ms002717

Hiickelheim, J., Menon, H., Moses, W., Christianson, B., Hovland, P., & Hascoét, L.
(2024). A taxonomy of automatic differentiation pitfalls. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery. doi: 10.1002/widm.1555

—31—

http://dx.doi.org/10.1016/j.pocean.2015.01.013
https://doi.org/10.1145/293686.293695
https://www.cambridge.org/core/product/identifier/S0962492902000132/type/journal_article
https://www.cambridge.org/core/product/identifier/S0962492902000132/type/journal_article
https://www.cambridge.org/core/product/identifier/S0962492902000132/type/journal_article
https://doi.org/10.1137/1.9780898717761
http://link.springer.com/10.1007/3-540-46080-2_107
http://journals.ametsoc.org/doi/10.1175/BAMS-D-15-00135.1

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Isaac, T., Petra, N., Stadler, G., & Ghattas, O. (2015). Scalable and efficient
algorithms for the propagation of uncertainty from data through inference to pre-
diction for large-scale problems, with application to flow of the Antarctic ice sheet.
Journal of Computational Physics, 296(C), 348-368. Retrieved from http://
dx.doi.org/10.1016/j.jcp.2015.04.047 doi: 10.1016/j.jcp.2015.04.047

Janiskovd, M., & Lopez, P. (2013). Data assimilation for atmospheric, oceanic and
hydrologic applications (Vol. II). Data Assimilation for Atmospheric, Oceanic and
Hydrologic Applications (Vol. II), 251-286. doi: 10.1007/978-3-642-35088-7_11

Kalmikov, A. G., & Heimbach, P. (2014). A Hessian-Based Method for Uncertainty
Quantification in Global Ocean State Estimation. SIAM Journal on Scientific
Computing, 36(5), S267 — S295. Retrieved from http://epubs.siam.org/doi/
abs/10.1137/130925311 doi: 10.1137/130925311

Kaminski, T., Kauker, F., Pedersen, L. T., Vofibeck, M., Haak, H., Niederdrenk,

L., .. Grabak, O. (2018). Arctic Mission Benefit Analysis: impact of sea
ice thickness, freeboard, and snow depth products on sea ice forecast per-
formance. The Cryosphere, 12(8), 2569-2594. Retrieved from https://
www.the-cryosphere.net/12/2569/2018/ doi: 10.5194/tc-12-2569-2018

Kaminski, T., Knorr, W., Schiirmann, G., Scholze, M., Rayner, P. J., Zaehle, S., ...
Ziehn, T. (2013). The BETHY/JSBACH Carbon Cycle Data Assimilation Sys-
tem: experiences and challenges. Journal of Geophysical Research: Biogeosciences,
118(4), 1414-1426. doi: 10.1002/jgrg.20118

Kedward, L. J., Aradi, B., Certik, O., Curcic, M., Ehlert, S., Engel, P., .. Vanden-
plas, J. (2022). The state of Fortran. Computing in Science & Engineering,
24(2), 63-72. doi: 10.1109/mcse.2022.3159862

Kennedy, P. D., Banerjee, A., Kohl, A., & Stammer, D. (2025). Long-window tan-
dem variational data assimilation methods for chaotic climate models tested with
the Lorenz 63 system. Nonlinear Processes in Geophysics, 32(3), 353-365.

Kléwer, M., Diiben, P. D., & Palmer, T. N. (2020, August). Number formats, er-
ror mitigation, and scope for 16-bit arithmetics in weather and climate modeling
analyzed with a shallow water model. Journal of Advances in Modeling Earth
Systems, 12(10), €2020MS002246. doi: 10.1029/2020MS002246

Klower, M., Hatfield, S., Croci, M., Diiben, P. D., & Palmer, T. N. (2022). Fluid
simulations accelerated with 16 bits: Approaching 4x speedup on A64FX by
squeezing ShallowWaters.jl into Float16. Journal of Advances in Modeling Farth
Systems, 14(2), €2021MS002684.

Kléwer, M., Gelbrecht, M., Hotta, D., Willmert, J., Silvestri, S., Wagner, G. L., ...
Hill, C. (2024). SpeedyWeather.jl: Reinventing atmospheric general circulation
models towards interactivity and extensibility. Journal of Open Source Software,
9(98), 6323. Retrieved from https://doi.org/10.21105/joss.06323 doi:
10.21105/joss.06323

Kochkov, D., Smith, J. A.; Alieva, A., Wang, Q., Brenner, M. P., & Hoyer, S.

(2021). Machine learning-accelerated computational fluid dynamics. Proceed-
ings of the National Academy of Sciences, 118(21), €2101784118.

Kochkov, D., Yuval, J., Langmore, 1., Norgaard, P., Smith, J., Mooers, G., ... Hoyer,
S. (2024). Neural general circulation models for weather and climate. Nature,
1-7. Retrieved from https://doi.org/10.1038/s41586-024-07744-y doi:
10.1038/s41586-024-07744-y

Kostov, Y., Johnson, H. L., Marshall, D. P., Heimbach, P., Forget, G., Holliday,

N. P., .. Smith, T. (2021). Distinct sources of interannual subtropical and
subpolar Atlantic overturning variability. Nature Geoscience, 14(7), 491-495.
Retrieved from http://dx.doi.org/10.1038/s41561-021-00759-4 doi:
10.1038/s41561-021-00759-4

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M.,

Alet, F., .. Battaglia, P. (2023, December). Learning skillful medium-range

—32—

http://dx.doi.org/10.1016/j.jcp.2015.04.047
http://dx.doi.org/10.1016/j.jcp.2015.04.047
http://dx.doi.org/10.1016/j.jcp.2015.04.047
http://epubs.siam.org/doi/abs/10.1137/130925311
http://epubs.siam.org/doi/abs/10.1137/130925311
http://epubs.siam.org/doi/abs/10.1137/130925311
https://www.the-cryosphere.net/12/2569/2018/
https://www.the-cryosphere.net/12/2569/2018/
https://www.the-cryosphere.net/12/2569/2018/
https://doi.org/10.21105/joss.06323
https://doi.org/10.1038/s41586-024-07744-y
http://dx.doi.org/10.1038/s41561-021-00759-4

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

global weather forecasting. Science. Retrieved 2024-03-05, from https://

www.science.org/doi/10.1126/science.adi2336 (Publisher: American As-
sociation for the Advancement of Science) doi: 10.1126/science.adi2336
Larour, E., Seroussi, H., Morlighem, M., & Rignot, E. (2012, Mar). Conti-

nental scale, high order, high spatial resolution, ice sheet modeling using the
Ice Sheet System Model (ISSM). J. Geophys. Res., 117(F01022), 1-20. doi:
10.1029/2011JF002140

Larour, E., Utke, J., Csatho, B., Schenk, A., Seroussi, H., Morlighem, M., ... Khazen-
dar, A. (2014). Inferred basal friction and surface mass balance of the Northeast
Greenland Ice Stream using data assimilation of ICESat (Ice Cloud and land El-
evation Satellite) surface altimetry and ISSM (Ice Sheet System Model). The
Cryosphere, 8(6), 2335-2351. Retrieved from http://www.the-cryosphere.net/
8/2335/2014/ doi: 10.5194/tc-8-2335-2014

Lattner, C., Amini, M., Bondhugula, U., Cohen, A., Davis, A., Pienaar, J., .. Zi-
nenko, O. (2021). Mlir: Scaling compiler infrastructure for domain specific
computation. In 2021 ieee/acm international symposium on code generation and
optimization (cgo) (pp. 2-14).

Lea, D. J., Allen, M. W., & Haine, T. W. N. (2000). Sensitivity analysis of the cli-
mate of a chaotic system. Tellus A, 52(5), 523-532. doi: 10.1034/j.1600-0870.2000
.01137.x

Liang, X., & Yu, L. (2016). Variations of the global net air—sea heat flux during the
“Hiatus” Period (2001-10). Journal of Climate, 29(10), 3647-3660. Retrieved from
http://journals.ametsoc.org/doi/10.1175/JCLI-D-15-0626.1 doi: 10.1175/
jeli-d-15-0626.1

Loose, N., & Heimbach, P. (2021). Leveraging uncertainty quantification to design
ocean climate observing systems. Journal of Advances in Modeling Farth Systems,
13(4), €2020MS002386.

Losch, M., & Heimbach, P. (2007). Adjoint Sensitivity of an Ocean General Circula-
tion Model to Bottom Topography. Journal of Physical Oceanography, 37(2), 377-
393. doi: 10.1175/jpo3017.1

Liicke, M. P., Zinenko, O., Moses, W. S., Steuwer, M., & Cohen, A. (2025). The
MLIR transform dialect: Your compiler is more powerful than you think. In Pro-
ceedings of the 23rd acm/ieee international symposium on code generation and
optimization (pp. 241-254).

MacAyeal, D. R. (1989, APR 10). Large-scale ice flow over a viscous basal sediment:
Theory and application to Ice Stream B, Antarctica. J. Geophys. Res., 94(B4),
4071-4087.

MacAyeal, D. R. (1992, JAN 10). The basal stress distribution of Ice Stream E,
Antarctica, Inferred by control methods. J. Geophys. Res., 97(B1), 595-603.

Maddison, J. R. (2024). Ouline learning in idealized ocean gyres. arXiv. doi: 10
.48550/arxiv.2412.06393

Magnin, Alves, Arnoud, Markus, & Marzino, E. (2023). Fortran... et puis quoi en-
core ? Bulletin 1024(22), 143-161. doi: 10.48556/sif.1024.22.143

Margossian, C. C. (2019). A review of automatic differentiation and its efficient im-
plementation. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Dis-
covery, 9(4), 1 — 19. Retrieved from https://doi.org/10.1002/widm.1305 doi:
10.1002/widm.1305

Marotzke, J., Giering, R., Zhang, K. Q., Stammer, D., Hill, C., & Lee, T. (1999).
Construction of the adjoint MIT ocean general circulation model and applica-
tion to Atlantic heat transport sensitivity. Journal of Geophysical Research:
Oceans, 104(C12), 29529-29547. Retrieved from https://doi.org/10.1029/
1999JC900236 doi: 10.1029/1999jc900236

Metz, L., Freeman, C. D., Schoenholz, S. S., & Kachman, T. (2021). Gradients are
not all you need. arXiv preprint arXiv:2111.058035.

—33—

https://www.science.org/doi/10.1126/science.adi2336
https://www.science.org/doi/10.1126/science.adi2336
https://www.science.org/doi/10.1126/science.adi2336
http://www.the-cryosphere.net/8/2335/2014/
http://www.the-cryosphere.net/8/2335/2014/
http://www.the-cryosphere.net/8/2335/2014/
http://journals.ametsoc.org/doi/10.1175/JCLI-D-15-0626.1
https://doi.org/10.1002/widm.1305
https://doi.org/10.1029/1999JC900236
https://doi.org/10.1029/1999JC900236
https://doi.org/10.1029/1999JC900236

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

Moore, A. M., Arango, H. G., Broquet, G., Powell, B. S., Weaver, A. T., & Zavala-
Garay, J. (2011). The Regional Ocean Modeling System (ROMS) 4-dimensional
variational data assimilation systems: Part I - System overview and formulation.
Progress in Oceanography, 91(1), 34 — 49. Retrieved from http://dx.doi.org/
10.1016/j.pocean.2011.05.004 doi: 10.1016/j.pocean.2011.05.004

Moore, A. M., Arango, H. G., Lorenzo, E. D., Cornuelle, B. D.; Miller, A. J., & Neil-
son, D. J. (2004). A comprehensive ocean prediction and analysis system based
on the tangent linear and adjoint of a regional ocean model. Ocean Modelling,
7(1-2), 227-258. Retrieved from http://linkinghub.elsevier.com/retrieve/
pii/S146350030300057X doi: 10.1016/j.0cemod.2003.11.001

Morlighem, M., Goldberg, D., Dias dos Santos, T., Lee, J., & Sagebaum, M. (2021).
Mapping the sensitivity of the Amundsen Sea Embayment to changes in ex-
ternal forcings using automatic differentiation. Geophys. Res. Lelt., 48(23),
€2021GL095440. Retrieved from https://agupubs.onlinelibrary.wiley.com/
doi/abs/10.1029/2021GL095440 doi: 10.1029,/2021GL095440

Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Ben Dhia, H., & Aubry,

D. (2011). A mass conservation approach for mapping glacier ice thick-
ness. Geophysical Research Letters, 38(19). Retrieved from https://
agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011GL048659 doi:

https://doi.org/10.1029/2011GL048659

Morlighem, M., Seroussi, H., Larour, E., & Rignot, E. (2013, SEP). Inversion of
basal friction in Antarctica using exact and incomplete adjoints of a higher-order
model. J. Geophys. Res., 118(3), 1746-1753. doi: 10.1002/jgrf.20125

Moses, W., & Churavy, V. (2020). Instead of rewriting foreign code for machine
learning, automatically synthesize fast gradients. Advances in Neural Information
Processing Systems, 33, 12472-12485.

Moses, W. S., Churavy, V., Paehler, L., Hiickelheim, J., Narayanan, S. H. K., Scha-
nen, M., & Doerfert, J. (2021). Reverse-mode automatic differentiation and
optimization of GPU kernels via Enzyme. In Proceedings of the international
conference for high performance computing, networking, storage and analysis (pp.
1-16).

Moses, W. S., Hari Krishna Narayanan, S., Paehler, L., Churavy, J., Valenti-
nand Hiickelheim, Schanen, M., Doerfert, J., & Hovland, P. (2022). Scalable
automatic differentiation of multiple parallel paradigms through compiler aug-
mentation. In SC ’22: Proceedings of the international conference for high per-
formance computing, networking, storage and analysis. New York, NY, USA:
Association for Computing Machinery.

Muchnick, S. S. (1997). Advanced compiler design and implementation. Morgan
Kaufmann.

Naumann, U., Lotz, J., Leppkes, K., & Towara, M. (2015). Algorithmic differ-

entiation of numerical methods. ACM Transactions on Mathematical Software
(TOMS), 41(4), 1-21. doi: 10.1145/2700820

Pacaud, F., Shin, S., Montoison, A., Schanen, M., & Anitescu, M. (2024).
Condensed-space methods for nonlinear programming on GPUs. arXiv preprint

arXiv:2405.14236.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., .. others
(2019). Pytorch: An imperative style, high-performance deep learning library.
Advances in Neural Information Processing Systems, 32.

Perkins, W. A., Brenowitz, N. D., Bretherton, C. S., & Nugent, J. M. (2023). Emu-
lation of cloud microphysics in a climate model. Authorea Preprints.

Pillar, H. R., Heimbach, P., Johnson, H. L., & Marshall, D. P. (2016). Dynamical
attribution of recent variability in Atlantic overturning. Journal of Climate, 29(9),
3339-3352. Retrieved from http://journals.ametsoc.org/doi/10.1175/JCLI-D
-15-0727.1 doi: 10.1175/jcli-d-15-0727.1

—34—

http://dx.doi.org/10.1016/j.pocean.2011.05.004
http://dx.doi.org/10.1016/j.pocean.2011.05.004
http://dx.doi.org/10.1016/j.pocean.2011.05.004
http://linkinghub.elsevier.com/retrieve/pii/S146350030300057X
http://linkinghub.elsevier.com/retrieve/pii/S146350030300057X
http://linkinghub.elsevier.com/retrieve/pii/S146350030300057X
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021GL095440
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021GL095440
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021GL095440
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011GL048659
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011GL048659
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011GL048659
http://journals.ametsoc.org/doi/10.1175/JCLI-D-15-0727.1
http://journals.ametsoc.org/doi/10.1175/JCLI-D-15-0727.1
http://journals.ametsoc.org/doi/10.1175/JCLI-D-15-0727.1

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

Pires, C., Vautard, R., & Talagrand, O. (1996). On extending the limits of vari-
ational assimilation in nonlinear chaotic systems. Tellus A, 48(1), 96-121. Re-
trieved from http://tellusa.net/index.php/tellusa/article/view/11634
doi: 10.3402/tellusa.v48i1.11634

Rabier, F., Jarvinen, H., Klinker, E., Mahfouf, J. F., & Simmons, A. (2000).
The ECMWF operational implementation of four-dimensional variational as-
similation. I: Experimental results with simplified physics. Quarterly Jour-
nal of the Royal Meteorological Society, 126(564), 1143-1170. Retrieved from
https://doi.org/10.1002/qj.49712656415 doi: 10.1002/qj.49712656415

Rackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov, K., Supekar, R., .. Edel-
man, A. (2020). Universal differential equations for scientific machine learning.
arXiv, 1 — 45. Retrieved from https://arxiv.org/abs/2001.04385v3 doi:
10.48550/arxiv.2001.04385

Ramadhan, A., Wagner, G., Hill, C., Campin, J.-M., Churavy, V., Besard, T.,

... Marshall, J. (2020). Oceananigans.jl: Fast and friendly geophysical fluid
dynamics on GPUs. Journal of Open Source Software, 5(53), 2018. Re-
trieved from https://joss.theoj.org/papers/10.21105/joss.02018 doi:
10.21105/joss.02018

Randall, D. A., Bitz, C. M., Danabasoglu, G., Denning, A. S., Gent, P. R., Get-
telman, A., .. Thuburn, J. (2019). 100 years of Earth system model de-
velopment. Meteorological Monographs, 59, 12.1-12.66. Retrieved from
http://journals.ametsoc.org/doi/10.1175/AMSMONOGRAPHS-D-18-0018.1
doi: 10.1175/amsmonographs-d-18-0018.1

Rignot, E., Mouginot, J., & Scheuchl, B. (2011). Ice flow of the Antarctic ice sheet.
Science, 333(6048), 1427-1430. Retrieved from https://www.science.org/doi/
abs/10.1126/science.1208336 doi: 10.1126/science.1208336

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations
by back-propagating errors. Nature, 323(6088), 533-536. Retrieved from https://
doi.org/10.1038/323533a0 doi: 10.1038/323533a0

Sapienza, F., Bolibar, J., Schéifer, F., Groenke, B., Pal, A., Boussange, V., .. Rack-
auckas, C. (2025). Differentiable programming for differential equations: A
review. SIAM Review, in press. Retrieved from https://doi.org/10.48550/
arXiv.2406.09699 doi: 10.48550/arxiv.2406.09699

Schanen, M., Narayanan, S. H. K., Williamson, S., Churavy, V., Moses, W. S., &
Paehler, L. (2023). Transparent checkpointing for automatic differentiation of
program loops through expression transformations. In Computational science -
iccs 2023: 23rd international conference, prague, czech republic, july 3-5, 2023,
proceedings, part @i (pp. 483-497). Berlin, Heidelberg: Springer-Verlag. doi:
10.1007/978-3-031-36024-4\ 37

Schneider, T., Behera, S., Boccaletti, G., Deser, C., Emanuel, K., Ferrari, R..,

.. Yamagata, T. (2023). Harnessing Al and computing to advance climate
modelling and prediction. Nature Climate Change, 13(9), 887-889. doi:
10.1038/s41558-023-01769-3

Schneider, T., Lan, S., Stuart, A., & Teixeira, J. (2017). Earth system modeling 2.0:
A Dblueprint for models that learn from observations and targeted high-resolution
simulations. Geophysical Research Letters, 44(24), 12,396-12,417. Retrieved from
http://doi.wiley.com/10.1002/2017GL076101 doi: 10.1002/2017gl076101

Seroussi, H., Morlighem, M., Rignot, E., Mouginot, J., Larour, E., Schodlok, M., &
Khazendar, A. (2014). Sensitivity of the dynamics of Pine Island Glacier, West
Antarctica, to climate forcing for the next 50 years. The Cryosphere, 8(5), 1699—
1710. Retrieved from https://tc.copernicus.org/articles/8/1699/2014/
doi: 10.5194/tc-8-1699-2014

Shen, C., Appling, A. P., Gentine, P., Bandai, T., Gupta, H., Tartakovsky, A., ..
Lawson, K. (2023). Differentiable modelling to unify machine learning and phys-

—35—

http://tellusa.net/index.php/tellusa/article/view/11634
https://doi.org/10.1002/qj.49712656415
https://arxiv.org/abs/2001.04385v3
https://joss.theoj.org/papers/10.21105/joss.02018
http://journals.ametsoc.org/doi/10.1175/AMSMONOGRAPHS-D-18-0018.1
https://www.science.org/doi/abs/10.1126/science.1208336
https://www.science.org/doi/abs/10.1126/science.1208336
https://www.science.org/doi/abs/10.1126/science.1208336
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.48550/arXiv.2406.09699
https://doi.org/10.48550/arXiv.2406.09699
https://doi.org/10.48550/arXiv.2406.09699
http://doi.wiley.com/10.1002/2017GL076101
https://tc.copernicus.org/articles/8/1699/2014/

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

ical models for geosciences. Nature Reviews Earth € Environment, 1-16. doi:
10.1038/s43017-023-00450-9

Shin, S., Coffrin, C., Sundar, K., & Zavala, V. M. (2021). Graph-based model-
ing and decomposition of energy infrastructures. IFAC-PapersOnLine, 54(3), 693—
698.

Silvestri, S., Wagner, G. L., Constantinou, N. C., Hill, C. N., Campin, J., Souza,

A. N., .. Ferrari, R. (2025). A GPU-based ocean dynamical core for routine
mesoscale-resolving climate simulations. Journal of Advances in Modeling Farth
Systems, 17(4). doi: 10.1029/2024ms004465

Stammer, D. (2005). Adjusting internal model errors through ocean state es-
timation. Journal of Physical Oceanography, 35(6), 1143-1153. Retrieved
from http://journals.ametsoc.org/doi/abs/10.1175/JP02733.1 doi:
10.1175/jpo2733.1

Stammer, D., Wunsch, C., Giering, R., Eckert, C., Heimbach, P., Marotzke, J., ..
Marshall, J. (2002). Global ocean circulation during 1992-1997, estimated from
ocean observations and a general circulation model. Journal of Geophysical Re-
search: Oceans, 107(C9), 1-1-1-27. Retrieved from http://doi.wiley.com/
10.1029/2001JC000888 doi: 10.1029,/2001jc000888

Stommel, H. (1961). Thermohaline convection with two stable regimes of flow. Tel-
lus, 13(2), 224-230. Retrieved from http://doi.org/10.1111/j.2153-3490.1961
.tb00079.x doi: 10.1111/;.2153-3490.1961.tb00079.x

Tarantola, A. (2005). Inverse problem theory and methods for model parameter esti-
mation. STAM.

Tziperman, E., & Ioannou, P. J. (2002). Transient growth and optimal ex-
citation of thermohaline variability. Journal of Physical Oceanography,
32(12), 3427-3435. Retrieved from http://journals.ametsoc.org/doi/
abs/10.1175/1520-0485(2002) 032%3C3427 : TGAOEQ%,3E2.0.C0%3B2 doi:
10.1175/1520-0485(2002)032< 3427:tgaoeo>2.0.co;2

Utkin, 1., Chen, Y., Réss, L., & Werder, M. A. (2025). Snapshot and time-
dependent inversions of basal sliding using automatic generation of adjoint
code on graphics processing units. Journal of Glaciology, 71, €72. doi:
10.1017/j0g.2025.40

Vallis, G. K. (2017). Atmospheric and oceanic fluid dynamics: Fundamentals and
large-scale circulation (2nd ed.). Cambridge: Cambridge University Press. doi: 10
.1017/9781107588417

Wagner, G. L., Silvestri, S., Constantinou, N. C., Ramadhan, A., Campin, J.-M.,
Hill, C., ... Ferrari, R. (2025). High-level, high-resolution ocean modeling at all
scales with Oceananigans. Retrieved from https://arxiv.org/abs/2502.14148

Wunsch, C. (2006). Discrete inverse and state estimation problems. Cambridge
University Press. Retrieved from https://doi.org/10.1017/CB09780511535949
doi: 10.1017/CB09780511535949

Wunsch, C., & Heimbach, P. (2007). Practical global oceanic state estimation.
Physica D: Nonlinear Phenomena, 230(1-2), 197-208. Retrieved from https://
doi.org/10.1016/j.physd.2006.09.040 doi: 10.1016/j.physd.2006.09.040

Yan, F. E., Frezat, H., Sommer, J. L., Mak, J., & Otness, K. (2025). Adjoint-based
online learning of two-layer quasi-geostrophic baroclinic turbulence. Journal of Ad-
vances in Modeling Earth Systems, 17(7). doi: 10.1029/2024ms004857

Yatunin, D., Byrne, S., Kawczynski, C., Kandala, S., Bozzola, G., Sridhar, A.,

... Schneider, T. (2025). The Climate Modeling Alliance Atmosphere Dy-
namical Core: Concepts, Numerics, and Scaling. ESS Open Archive. doi:
10.22541 /essoar.173940262.23304403 /v1

Yuval, J., O’Gorman, P. A., & Hill, C. N. (2021). Use of neural networks for stable,
accurate and physically consistent parameterization of subgrid atmospheric pro-
cesses with good performance at reduced precision. Geophysical Research Letters,

—36—

http://journals.ametsoc.org/doi/abs/10.1175/JPO2733.1
http://doi.wiley.com/10.1029/2001JC000888
http://doi.wiley.com/10.1029/2001JC000888
http://doi.wiley.com/10.1029/2001JC000888
http://doi.org/10.1111/j.2153-3490.1961.tb00079.x
http://doi.org/10.1111/j.2153-3490.1961.tb00079.x
http://doi.org/10.1111/j.2153-3490.1961.tb00079.x
http://journals.ametsoc.org/doi/abs/10.1175/1520-0485(2002)032%3C3427:TGAOEO%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0485(2002)032%3C3427:TGAOEO%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0485(2002)032%3C3427:TGAOEO%3E2.0.CO%3B2
https://arxiv.org/abs/2502.14148
https://doi.org/10.1017/CBO9780511535949
https://doi.org/10.1016/j.physd.2006.09.040
https://doi.org/10.1016/j.physd.2006.09.040
https://doi.org/10.1016/j.physd.2006.09.040

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

48(6), €2020GL091363.

Zanna, L., & Bolton, T. (2020). Data-driven equation discovery
of ocean mesoscale closures. Geophysical Research Letters, 47(17),
€2020GL088376. Retrieved 2020-08-28, from https://agupubs
.onlinelibrary.wiley.com/doi/abs/10.1029/2020GL088376 (_eprint:

https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029 /2020GL088376) doi:
10.1029/2020GL088376

Zhang, S., Fu, H., Wu, L., Li, Y., Wang, H., Zeng, Y., .. Guo, Y. (2020). Optimizing
high-resolution Community Earth System Model on a heterogeneous many-core
supercomputing platform. Geoscientific Model Development, 13(10), 4809-4829.
doi: 10.5194/gmd-13-4809-2020

—37—

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020GL088376
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020GL088376
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020GL088376

