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Abstract27

Differentiable Earth system models (ESMs) enable powerful applications such as28

sensitivity analysis, gradient-based calibration, state estimation, boundary flux inver-29

sions, uncertainty quantification, and online machine learning. Reverse-mode automatic30

differentiation (AD) efficiently provides gradients for such tasks, yet models have rarely31

included this capability because of complex, bespoke numerical algorithms. As part of32

the Differentiable programming in Julia for Earth system modeling (DJ4Earth) initia-33

tive, we present enabling features that make general-purpose AD tractable and efficient34

for full-fledged ESM components written in Julia. The approach leverages the AD frame-35

work Enzyme.jl and the compiler transpilation tool Reactant.jl, augmented by sophis-36

ticated checkpointing algorithms. Operating at the Low-Level Virtual Machine (LLVM)37

intermediate representation or Multi-Level Intermediate Representation (MLIR) com-38

piler levels, these frameworks support mutable memory, custom kernels, and compiler39

optimizations before and after differentiation. Julia-specific challenges related to just-40

in-time compilation and garbage collection are handled efficiently. Reactant further en-41

ables automatic performance portability across CPUs, GPUs, and TPUs, facilitating use42

of emerging AI-customized high-performance computing architectures. We demonstrate43

these frameworks on four Julia-based ESM components featuring diverse spatial discretiza-44

tions and numerical algorithms: (i) the rotating-sphere shallow water model ShallowWa-45

ters.jl, (ii) the finite-volume ocean model Oceananigans.jl, (iii) the ice sheet model DJUICE.jl,46

and (iv) the spectral atmospheric model SpeedyWeather.jl. Across these ESM compo-47

nents, our tools compute efficient and correct gradients. These results establish a foun-48

dation for differentiable, high-performance and performance-portable ESMs that can in-49

tegrate neural networks for unresolved processes, trained online, enabling next-generation50

hybrid physics–machine learning ESMs constrained by physical dynamics and observa-51

tions.52

Plain Language Summary53

Earth system models are computer programs that simulate how Earth’s atmosphere,54

ocean, ice, and biosphere interact and evolve. These models consist of millions of lines55

of code and rely on uncertain inputs. To improve accuracy, scientists adjust these in-56

puts to minimize the difference between simulations and observations, measured by a57

“cost function”. Another computer program can efficiently determine how changes in each58

input affect the outcome. This calculation, called the gradient of the cost function, would59

be extremely time-consuming to code manually. Instead, we use an automatic differen-60

tiation (AD) tool called Enzyme, which computes these gradients efficiently and updates61

them automatically whenever the model changes. As computing systems evolve rapidly,62

especially those optimized for artificial intelligence (AI), another tool called Reactant63

enables models to run efficiently across different hardware, from CPUs to GPUs and AI64

accelerators. We demonstrate these methods on four Earth system model components65

written in the modern programming language Julia: a shallow water model, an ocean66

model, an ice sheet model, and an atmospheric model. For each, the code generated via67

AD produces correct gradients of the cost function. This work lays the foundation for68

combining these differentiated models with machine learning to improve model accuracy69

efficiently.70

1 Introduction71

Earth system models (ESMs) provide a comprehensive framework for simulating72

weather, climate, hydrological resources, biogeochemical cycles, and cryospheric changes73

across a range of spatial and temporal scales (e.g., Randall et al. (2019)). These mod-74

els prove useful in quantifying magnitudes and patterns of natural climate variability,75

determining the impact of climate change, and providing likely scenarios of the planet’s76
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future climate to policy makers. ESMs consist of submodels or components represent-77

ing the atmosphere, ocean, cryosphere, and biosphere. These components typically solve78

partial differential equations representing the conservation and constitutive laws for the79

component’s state on a discretized space of the rotating planet. However, ESM compo-80

nents rely on parameterizations for subgrid-scale processes, such as turbulent mixing or81

unresolved mesoscale eddies in the ocean, air-sea fluxes of heat, humidity, momentum,82

or biogeochemical tracers (Christensen & Zanna, 2022). In the atmosphere, parameter-83

izations also represent microphysics such as cloud formation and precipitation, processes84

that cannot be resolved even with higher resolution. Ice sheet models have to prescribe85

basal boundary conditions that cannot be estimated from remote sensing. These param-86

eterizations and poorly constrained boundary conditions are sources of structural and87

parametric uncertainty. Their calibration relies on observational data or high-fidelity sim-88

ulations. In the context of ESMs, parameter calibration or tuning has so far been con-89

ducted in a somewhat ad hoc fashion because of the computational cost and the under-90

lying complexity of the problem (e.g., Hourdin et al. (2016); Balaji et al. (2022)). Ad hoc91

parameter calibration, together with initial condition uncertainty, is prerceived to be the92

primary reason ESM simulations have suffered persistent biases that may obscure pre-93

dictive skill on weather to decadal time scales (Eyring et al., 2019).94

Rigorous methods for model calibration whereby models “learn from data” have95

been underexplored in climate or Earth system modeling (Schneider et al., 2017, 2023).96

They rely either on ensemble methods (i.e., sampling) or gradient-based optimization,97

or a combination thereof. Each of these faces a distinct set of computational challenges.98

While ensemble methods have become the method of choice in various ESM applications,99

they suffer from a number of potential drawbacks: (1) in the context of comprehensive100

ESMs, they have mainly been applied to tackle initial condition uncertainty; (2) they101

suffer from the “curse of dimensionality”: when initial condition and parametric uncer-102

tainty exhibit spatial structure, as is generally the case in geoscience applications, en-103

semble methods become computationally intractable as the ensemble size becomes ex-104

cessively large; (3) many of the ensemble approaches used in ESMs (with the exception105

of rigorous data assimilation, such as Kalman filter or inversion) do not “learn from data”106

for calibration; and (4) structural model uncertainty is dealt with only in an ad hoc man-107

ner via multimodel or stochastic ensemble methods.108

1.1 The Case for Differentiable ESMs109

Some of the shortcomings listed above may be overcome through the use of gradient-110

based optimization, which is the subject of the well-established field of inverse estima-111

tion and control methods (Bryson & Ho, 1975; Tarantola, 2005; Wunsch, 2006). At its112

heart is the use of adjoint models, namely, models that efficiently compute the sensitiv-113

ity of some scalar-valued model-data misfit or quantity of interest to a high-dimensional114

space of uncertain input or control variables, such as initial conditions, boundary con-115

ditions, or model parameters. Optimal input variables are then obtained through iter-116

ative nonlinear gradient-based optimization. The underlying adjoint model is the for-117

mal transpose of the tangent linear model of the (generally nonlinear) parent model. It118

can be obtained by hand-coding, as has been done, for example, in numerical weather119

prediction (Rabier et al., 2000) or regional ocean modeling (Moore et al., 2004), or through120

the use of automatic differentiation (AD) tools. AD computes derivatives by applying121

the chain rule of differentiation to elementary operations (e.g., Griewank & Walther (2008);122

Margossian (2019)). Reverse-mode AD generates the adjoint model (which computes gra-123

dients) rather than the tangent linear model (which computes directional derivatives),124

making gradient-based methods computationally tractable for large-scale applications.125

A key advantage of AD-generated over hand-coded adjoints is the ability to keep the ad-126

joint model up to date with respect to ongoing developments of the parent model. Dif-127

ferentiable programming in the context of optimal estimation and control (or inverse)128
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methods consists of writing the parent model in a way that is amenable to efficient ad-129

joint code generation using AD (Blondel & Roulet, 2024; Sapienza et al., 2025).130

The advent or revival of machine learning (ML) techniques has introduced new strate-131

gies for “learning” subgrid-scale parameterizations and model calibration (Zanna & Bolton,132

2020; Yuval et al., 2021; Espinosa et al., 2022), emulating ESM components (Lam et al.,133

2023; Bi et al., 2023; Perkins et al., 2023; Dheeshjith et al., 2025) and improving fore-134

casting on a broad range of time scales (He et al., 2021). The key computational ingre-135

dient driving many of these ML techniques is backpropagation through neural network136

(NN) architectures, which is conceptually identical to propagating sensitivity informa-137

tion through the use of adjoint operators for physics-based models (Baydin et al., 2018).138

Whereas adjoints efficiently compute the derivative of model-data misfit functions or quan-139

tities of interest with respect to input or control variables, backpropagation efficiently140

computes the derivative of the loss function with respect to NN weights and biases. Both141

are in fact structurally the same and are implemented via reverse-mode AD, but they142

have evolved as different terminologies in the simulation-based science and machine learn-143

ing domains (Griewank, 2012). Differentiable programming is essential in that it enables144

rapid and accurate construction of the backpropagation operator of the NN architecture145

or of the adjoint operator of the physical model using AD (Chizat et al., 2019; Sapienza146

et al., 2025).147

In a hybrid framework, the two differentiable programming applications discussed148

in the preceding paragraph are seamlessly integrated: the physical model’s adjoint and149

the NN’s backpropagation operator. Here, the role of the neural network is typically to150

replace or augment a subgrid-scale parameterization scheme. During the online or full-151

model training, gradients are propagated through the NN via standard backpropagation,152

while the sensitivities of the model’s state variables are computed through the adjoint.153

The high-dimensional input space which necessitates adjoint approaches is now composed154

of (or includes) the space of NN weights. This integrated training strategy ensures that155

the NN learns corrections that remain dynamically consistent with the governing phys-156

ical equations. By contrast, offline training does not use the model adjoint and optimizes157

the NN weights in isolation, producing solutions that may generalize less robustly across158

regimes and conditions.159

Driven by the rise in machine learning applications, several novel AD tools have160

been developed in recent years, including the JAX framework (Bradbury et al., 2018)161

and Enzyme (W. Moses & Churavy, 2020). These systems benefit from compiler opti-162

mizations and offer an easy interface for potential GPU acceleration and integration of163

ML into the ESM.164

Equipping ESM components with AD enables:165

1. Comprehensive parameter calibration through gradient-based optimization (e.g.,166

Stammer (2005); Larour et al. (2014)).167

2. Smoother-based, dynamically and kinematically consistent state estimation (e.g.,168

Wunsch & Heimbach (2007); Badgeley et al. (2025)).169

3. Comprehensive, time-resolved, and spatially resolved boundary flux inversion from170

interior observations (e.g., Kaminski et al. (2013); Liang & Yu (2016)).171

4. More general sensitivity analyses of (usually scalar-valued) quantities of interest172

or model metrics to a range of spatially and temporally resolved input variables173

(e.g., Errico & Vukicevic (1992); Fukumori et al. (2015); Pillar et al. (2016); Kos-174

tov et al. (2021)).175

5. Derivative-based, that is, Hessian-based, uncertainty quantification (e.g., Isaac et176

al. (2015); Kaminski et al. (2018); Loose & Heimbach (2021)).177

6. Combination of adjoint and backpropagation operators in a hybrid approach, whereby178

a neural network is embedded within an ESM component (e.g., Kochkov et al. (2021)).179
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We emphasize that, while the last point is our main motivation for developing differen-180

tiable ESM components that embed ML architectures, such as subgrid-scale surrogate181

models that learn from data to provide better-calibrated simulations, the purpose of this182

work is not (yet) to showcase such a hybrid learning approach. Instead, we here demon-183

strate the feasibility of general-purpose reverse-mode AD on a range of ESM components184

to produce correct and efficient gradients, thus setting the stage for hybrid learning ap-185

proaches as described above.186

1.2 What Makes Development of Differentiable Models Hard187

Whereas some individual components of entire ESMs have been rendered differ-188

entiable (e.g., Marotzke et al. (1999); Heimbach et al. (2002); Stammer et al. (2002); Kamin-189

ski et al. (2013); Morlighem et al. (2021)), no fully differentiable coupled ESM yet ex-190

ists (Gelbrecht et al., 2023; Shen et al., 2023). At its core, the difficulty of whole-model191

differentiation stems from both the significant computational demands of ESMs and the192

need to support differentiable versions of all the complex features in modern program-193

ming languages. ESMs are not written by individuals but are the effort or large teams,194

connecting model components (atmosphere, ocean, land, etc.) that themselves are of-195

ten the product of decade-old legacy software without a coherent programming paradigm196

or differentiability in mind.197

ESMs run on large supercomputers producing data at a rate of gigabytes per sec-198

ond. Data and computation at this scale necessitate that the simulation code be writ-199

ten in a computationally efficient fashion that obscures the mathematical structure that200

the code represents. In practice this means that simulations must be written “in place”201

to minimize memory usage, rely on control flow, ideally leverage just-in-time compila-202

tion (a feature rarely used in current ESMs), and employ numerous custom kernels for203

central processing units (CPUs), graphics processing units (GPUs), or tensor process-204

ing units (TPUs) for execution. All these features break modern and traditional differ-205

entiation tools such as JAX (Bradbury et al., 2018), PyTorch (Paszke et al., 2019), and206

Tapenade (Hascoet & Pascual, 2013).207

Beyond the difficulties presented by the code structure (Hückelheim et al., 2024),208

the structure of the computation presents further challenges to differentiation. Typical209

usage of ESMs involves simulating for millions of time steps, each of which fully over-210

writes the current state of the model. Reverse-mode differentiation of a time-stepping211

loop, however, requires either storage of all previous time steps—asymptotically increas-212

ing the memory requirements of the derivative—or recomputing the current state, either213

of which in its pure form is prohibitive for comprehensive ESMs. Checkpointing balances214

storing and recomputing. It reduces or limits the memory load by storing a subset of the215

gradient computations (Griewank & Walther, 2008). This comes at the cost of increased216

computational load, however, since the states in the intermediate steps need to be re-217

computed. Thus, checkpointing requires a delicate balance between memory efficiency218

and computational speed (Alhashim et al., 2025).219

Another difficulty faced by differentiable ESMs is the chaotic nature of the climate220

system. Pires et al. (1996); Lea et al. (2000); Metz et al. (2021) discuss how such sys-221

tems render gradients computed by AD unstable, resulting in gradient explosion and,222

subsequently, ill-conditioned Jacobians and large eigenvalues. The difference in the timescales223

of the different processes also induces stiffness in the differential equations that may lead224

to errors. Recent work is pointing to ways in which these issues may be alleviated (Kennedy225

et al., 2025).226
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1.3 DJ4Earth227

The Differentiable programming in Julia for Earth system modeling (DJ4Earth)228

initiative is a new framework to enable differentiable Earth system models in Julia. The229

purpose of this paper is to describe a number of algorithmic developments required to230

render an initial set of recently developed Julia-based ESM components differentiable231

for the DJ4Earth framework. Because each of these components uses bespoke numer-232

ical algorithms, general-purpose reverse-mode AD has been the method of choice to gen-233

erate derivative codes. The AD tool used is Enzyme and its Julia-specific binding En-234

zyme.jl (W. Moses & Churavy, 2020; W. S. Moses et al., 2021, 2022). Section 2 describes235

algorithmic developments, notably Reactant.jl, that were essential to handle Julia-specific236

issues and to generate a Multi-Level Intermediate Representations (MLIRs) in order to237

generate robust, efficient, and performance-portable derivative code. Further requirements238

for iterative or time-evolving algorithms were the implementation of checkpointing schemes,239

at both the Julia level and the MLIR level, in order to mitigate storage-related mem-240

ory issues that are ubiquitous in reverse-mode AD.241

These technical developments are showcased in four application case studies rep-242

resenting ESM components that implement a range of numerical algorithms and spatial243

discretization schemes, including finite-volume, finite-element, and spectral schemes. They244

comprise the shallow water model ShallowWaters.jl (Section 3); a full-fledged ocean gen-245

eral circulation model Oceananigans.jl, which forms the ocean component of the Climate246

Modeling Alliance (CliMA) model (Section 4); the ice sheet model DJUICE.jl (Section 5);247

and the atmospheric general circulation model SpeedyWeather.jl with parameterized physics248

(Section 6). A concluding discussion is given in Section 7.249

2 Techniques for Efficient Differentiable Earth System Modeling250

ESMs are large and complex pieces of software that contain many different com-251

ponents and numerical algorithms. Users and developers of ESMs need to be able to ex-252

plore different configurations and model compositions. As an example, the Oceanani-253

gans code (see Section 4) may be used as a high-resolution large eddy simulation model254

or as a global general circulation model. Utilizing a dynamic high-level programming lan-255

guage allows the model configuration to evolve beyond the traditional run-file approach256

to a program as the configuration approach, enabling developers to quickly explore and257

alter model configuration or to provide customization through user functions. The Ju-258

lia programming language is such a high-level dynamic programming language, with a259

host of capabilities that make it particularly attractive for ESM applications. Julia uses260

an LLVM-based just-in-time (JIT) compiler that can natively target common acceler-261

ators, allowing user functions to be inlined into the computational kernels.262

In order to enable whole-model differentiation of ESMs or ESM components, sev-263

eral novel computational algorithms and techniques needed to be developed that take264

advantage of Julia capabilities and overcome some of the challenges created by this flex-265

ibility and extensibility. The following section describes the development of the auto-266

matic differentiation framework Enzyme.jl; the tracing compiler Reactant.jl; and Check-267

pointing.jl, an implementation of checkpointing algorithms. A high-level workflow of how268

these frameworks interact for a modern ESM component (here, an ocean model) is given269

in Fig. 1.270

2.1 Automatic Differentiation: Enzyme.jl271

AD is a technique for computing the mathematical derivatives of computer pro-272

grams (Griewank, 2003). The most important derivative programs are tangent linear mod-273

els, which compute directional derivatives (i.e., the impact of changing one input on all274

outputs), and adjoint models, which compute gradients (i.e., the sensitivity of one out-275
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void simulate_with_bathymetry() {
...

}
void simulate_with_turbulence() {

...
}
void simulate_with_buoyancy() {

...
}
void simulate_with_periodicbc() {

...
}

function simulate(model)
# JIT compile and conditionally
# execute the correct bonudary
halo(model.bc)
...

end
function halo(::PeriodicBoundary)

...
end
function halo(::ConstBoundary)

...
end

function ∇simulate(model)
halo(model.bc)
...
∇halo(model.bc)

end
function ∇halo(::PeriodicBoundary)

...
end
function ∇halo(::ConstBoundary)

...
end

# Generated code for exact problem
# being run, reducing setup and
# enabling novel optimizations.
function opt_∇simulate(model)

opt_halo(model.bc)
...
opt_∇halo(model.bc)

end
function opt_∇halo(::ConstBoundary)

...
end

Julia

Enzyme.gradient

Reactant.@jit

Figure 1: Top Left: C++-style code of prior ocean simulation models, containing many
separate variations of the simulation for each potential specialization. Top Right: Julia-
style ocean model program in which a single simulation is written, with each feature con-
ditionally enabled via just-in-time (JIT) compilation. Bottom Right: Enzyme-generated
derivatives of the simulation code. Bottom Left: Reactant-optimized simulation code in
which the exact problem being run is known and excess code can be removed and addi-
tional optimizations specific to the simulation at hand can be applied.
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put with respect to changes in all inputs). The former are implemented via so-called forward-276

mode AD, whereas the latter via reverse-mode AD, a concept equivalent to backprop-277

agation in machine learning (e.g., Rumelhart et al. (1986); Griewank (2012)). For de-278

tails, we refer to monographs on the subject, such as Griewank & Walther (2008); Nau-279

mann et al. (2015).280

ESMs contain numerous challenges to differentiation stemming from both the nec-281

essary structure of ESM application code and the structure of the computation itself.282

Production-quality ESMs push the limit of what can be efficiently computed on mod-283

ern hardware. They often consume all system memory, requiring the simulation to be284

written in a form that mutates data in place. They require vast amounts of computa-285

tion and are written with custom kernels to efficiently run on modern systems such as286

CPUs, GPUs, and TPUs. Despite these efforts, current-generation ESMs can achieve only287

around 5% peak performance on today’s high-performance computing (HPC) architec-288

tures (e.g., Zhang et al. (2020); see Balaji et al. (2016) for a detailed discussion of ESM289

performance metrics). They are often memory- and compute-bound, and the many dif-290

ferent algorithms operating consecutively with varying large arrays are difficult to op-291

timize collectively without reaching diminishing returns on some of them (Amdahl’s law).292

To support the numerous combinations of model features, ESM code bases feature con-293

trol flow to dynamically enable certain code paths. Modern ESMs increasingly leverage294

JIT compilation to avoid wasting time preparing to use features that are not required295

to execute a particular model. Moreover, ESM application codes are large, leveraging296

nearly all features of the programming language(s) they are written in.297

Most of the work to date on differentiable ESM components has relied on hand-298

coded adjoints. These are essentially a second copy of the simulation code that instead299

computes the derivative. Examples include the tangent linear and adjoint components300

of ECMWF’s weather forecast model (Rabier et al., 2000; Janisková & Lopez, 2013) and301

the Regional Ocean Modeling System (Moore et al. (2004, 2011)). Although this idea302

is simple in principle, in practice it leads to several issues. Given the size and complex-303

ity of ESM code bases, writing a second version of the application is a difficult endeavor304

that is costly in money, personnel, and development time. Moreover, it presents a sig-305

nificant maintenance and correctness burden. Whenever the original simulation (the pri-306

mal calculation) is modified, great care must be taken to update the corresponding deriva-307

tive code base to reflect these changes accurately in the corresponding gradient compu-308

tation. If the inverse or control problem is changed, for example, from a pure state to309

a parameter estimation problem (or a combination thereof), the structure of the deriva-310

tive code may change fundamentally; simply put, for f = a ·x, we have df(x) = a ·dx,311

or df(a) = da·x, or df(a, x) = da·x+a·dx, each of which results in different derivative312

code.313

In parallel, tools to automatically generate the derivatives were developed (Gier-314

ing & Kaminski, 1998). However, these tools were limited in the features of the language315

they support. For example, the AD tools ADIFOR, TAF, or Tapenade took many years316

to extend their capabilities from Fortran77 to Fortran90/95 language features. Mean-317

while, Fortran is continually evolving (e.g., Kedward et al. (2022); Magnin et al. (2023)).318

To analyze existing code to generate derivatives, source-transformation tools must un-319

derstand how to parse and perform semantic analysis from scratch, before they even start320

differentiation. The extraordinary difficulty of this initial analysis task cannot be over-321

stated. For example, the draft ISO C++ Standard published in 2020 (https://isocpp322

.org/files/papers/N4860.pdf) contains 1,841 pages of text, most of which is compre-323

hensible only to programming language experts. Compliant compilers, such as Clang/LLVM,324

are maintained as a collaboration between several large technology companies. Over the325

span of a single month (as of August 2025), the LLVM project had 4,385 active pull re-326

quests from 805 unique programmers, resulting in 1,049,370 lines of code being added327

to over 12,748 files. Consequently, these initial general-purpose tools were extremely lim-328
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Lower Enzyme   .

Optimize

CodeGen

Optimize

Lower Enzyme.   .

Optimize Optimize

Lower CodeGen

Figure 2: Top: The Enzyme compiler pipeline. Programs of a variety of languages are
first compiled to an LLVM and optimized, prior to and after differentiation. Bottom: The
Reactant compiler pipeline. Reactant first lowers into the stablehlo/tensor dialect within
MLIR and performs linear algebra optimizations. Reactant then performs automatic
differentiation with Enzyme on MLIR, before a second round of tensor optimizations.
Finally, Reactant lowers the MLIR for execution by XLA on any number of CPUs, GPUs,
or TPUs.

ited in the features they supported, and codes needed to be adapted accordingly. Struc-329

ture types, pointers, control flow, templates, and more all present difficulties to auto-330

mated tools.331

Modern AD tools, such as JAX, PyTorch, and TensorFlow, define a fixed subset332

of primitives useful for a particular domain, usually machine learning. These domain-333

specific languages (DSLs) tend to support differentiation of nearly all the tensor-specific334

runtime functions within their library, but this support comes with a new constraint:335

all code must be written in said DSL. These tools work well if the DSL closely mirrors336

the operations being performed, such as native convolution or attention layers making337

it easy to perform machine learning. Unfortunately, they are not designed with the prim-338

itives applicable to ESMs, necessitating significant code rewriting. In particular, these339

tools tend to lack support for custom kernels (required for high-performance primal com-340

putations), mutable memory (required for large ESMs), and control flow (required for341

easy switching between different models).342

Instead of writing tools at the frontend level that have to deal with all the com-343

plexity of the input language, Enzyme performs differentiation within the compiler (Fig. 2,344

upper pipeline). This approach enables Enzyme to leverage the existing production com-345

pilers for their host language (here Julia) and needs to support only a smaller fixed set346

of operations. For example, as of August 2025, LLVM contains 68 unique instruction types.347

As a result, Enzyme can differentiate any program in any language with an LLVM-compatible348

compiler. Working directly on programs instead of traces further enables Enzyme to na-349

tively handle control flow, mutation, and custom kernels. Moreover, unlike other tools350
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1 # Compute magnitude in O(N)
2 function mag(x) end
3 function norm(out, x)
4 # res = mag(x) code motion optimization can move outside the loop
5 for i in 1:N
6 out[i] = x[i]/mag(x)
7 end
8 end
1 # LICM, then AD, O(N)
2 function grad_norm(out, d_out,
3 x, d_x)
4 res = mag(x)
5 for i in 1:N
6 out[i] = x[i]/res
7 end
8 d_res = 0.0
9 for i in N:-1:1
10 d_res += -x[i]*x[i]/res * d_out[i]
11 d_x[i] += d_out[i]/res
12 end
13 grad_mag(x, d_x, d_res)
14 end

1 # AD, then LICM O(N^2)
2 function grad_norm(out, d_out,
3 x, d_x)
4 float res = mag(x);
5 for i in 1:N
6 out[i] = in[i]/res
7 end
8 d_res = 0.0
9 for i in N:-1:1
10 d_res = -x[i]*x[i]/res * d_out[i]
11 d_x[i] += d_out[i]/res
12 grad_mag(x, d_x, d_res)
13 end
14 end

Figure 3: Top: An O(N2) function norm that normalizes a vector. Running loop-
invariant code-motion (LICM) (Muchnick, 1997, Sec. 13.2) moves the O(N) call to mag
outside the loop, reducing norm’s runtime to O(N). Left: An O(N) grad_norm resulting
from running LICM before AD. Both mag and its adjoint grad_mag are outside the loop.
Right: An O(N2) grad_norm resulting from running LICM after AD. grad_mag remains
inside the loop as it uses a value computed inside the loop, making LICM illegal.

that must perform differentiation on source code, Enzyme can perform program opti-351

mizations before and after differentiation. Prior work on Enzyme has demonstrated that352

combining program optimization with differentiation (Fig. 3) results in significantly im-353

proved derivative code. In particular, Enzyme has demonstrated a 4.2× geometric mean354

speedup on CPU code when enabling optimization before AD (W. Moses & Churavy,355

2020), orders-of-magnitude speedups on GPU programs (W. S. Moses et al., 2021), and356

optimal program scaling on distributed and task-parallel programs (W. S. Moses et al.,357

2022).358

Applying differentiation in a dynamic language such as Julia, however, presents sev-359

eral core challenges: dynamism, customized algorithms, and automatic memory man-360

agement (garbage collection). For many algorithmic pieces of an ESM optimal adjoints361

are known, and we developed facilities in Enzyme.jl to provide custom differentiation362

rules. To appreciate the issues in the context of rendering ESMs differentiable or extend-363

ing the AD tool capabilities, we briefly outline them in the following.364

2.1.1 Dynamism365

Julia’s execution model poses additional challenges. Julia is a dynamic program-366

ming language utilizing multiple dispatch. This means that at each call site, the target367

method of a function is computed utilizing the concrete types of all arguments. To ex-368

ecute programs faster, Julia compiles methods just before their execution and caches the369

result; during the compilation phase, it uses abstract interpretation to discover the types370

of all variables inside a method from the types of the arguments. A type instability in371

a Julia program is a failure during the compilation process to infer the specific type of372

a variable; this allows Julia to represent uncertainty about variables that will be resolved373

during runtime. Using abstract interpretation, Julia recovers a partially static and par-374
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tially dynamic call graph of a program. Unlike dynamic function calls in statically com-375

piled languages such as C++ or Fortran, Julia defers the resolution of dynamic function376

calls to runtime using its JIT compiler, thus not emitting the corresponding code im-377

mediately. In contrast, Enzyme requires all relevant functions and their LLVM interme-378

diate representation to be available for differentiation. Enzyme.jl works around this by379

first extracting the static subset of the current program and differentiating code within380

this compilation unit. If there are dynamic JIT calls, these will be marked with corre-381

sponding Julia runtime functions such as jl_apply_generic, with function arguments382

that describe the function to be dynamically compiled and executed. Leveraging Enzyme’s383

handler for custom calls, Enzyme.jl defines the derivative of a dynamic function dispatch384

to instead perform a dynamic dispatch to a modified function, which will again call into385

Enzyme to extract and differentiate the target code, and then JIT-compile the result.386

This process will repeat recursively until all the dynamic dispatches that are actually387

required by the program have been executed. Enzyme.jl thus follows the execution model388

of the host language, delaying the compilation of the derivative code until execution ne-389

cessitates it.390

2.1.2 Custom Differentiation Rules391

Sometimes the automatically generated derivative code is far from optimal and not392

the code one wants to run. For example, when differentiating the determinant of a uni-393

tary matrix, the derivative is always zero. Rather than wasting time adding up values394

from the implementation of the determinant which will eventually compute zero, Enzyme395

can simply avoid performing the computation entirely. As another example, one may396

want to change how Enzyme decides to save or recompute certain values to improve per-397

formance (e.g., checkpointing; Section 2.3.2 utilizes custom rules for this purpose).398

Enzyme enables this functionality by providing support for custom differentiation399

rules of any user-defined function. In particular, users should override the method Enzyme.forward400

with a specialization for any function f they want to define a rule for. Whenever Enzyme401

sees a call to f, instead of differentiating it directly, Enzyme will JIT-compile the user-402

provided implementation within Enzyme.forward. When Enzyme is used to differenti-403

ate entire applications, this means that Enzyme will use the user-defined rules when spec-404

ified and automatically generate the corresponding derivative routines for all other code.405

2.1.3 Automated Memory Management (Garbage Collection)406

The Julia runtime maintains control of all allocations performed within the lan-407

guage. This enables users to avoid considering the lifetime of their memory allocations,408

preventing a large class of potential bugs. The decision of when to free memory is made409

by a garbage collector (GC) that tracks all allocations, freeing them when there is prov-410

ably no remaining user of the memory. This presents a new challenge for reverse-mode411

AD. Some data must be preserved from the original forward pass evaluation for use in412

the reverse pass. For example, when differentiating A * B, the corresponding derivative413

of A * dB + dA * B requires both A and B to be available during differentiation. Con-414

sequently, Enzyme needs to extend the lifetime of these values from the forward pass to415

the reverse pass. Enzyme may also generate new differentiation-specific memory. This416

includes storage for dA and dB. Enzyme consequently must inform the GC about any mem-417

ory that it creates or whose lifetime needs to be changed. To do so, it places references418

onto a data tape and generates a descriptor for the data tape that allows the GC to mark419

this subtape.420

2.2 Automatic Device Scheduling and Distribution: Reactant.jl421

The use of a dynamic language such as Julia provides many benefits, including ease422

of development. Dynamic dispatch makes it easy to write flexible code that can be reused423
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but consequently may make it difficult to perform whole-model optimization. A trac-424

ing compiler can partially evaluate the simulation code and overcome the loss of infor-425

mation induced by dynamic dispatch, reducing the amount of code to analyze for au-426

tomatic differentiation and opening opportunities for additional performance optimiza-427

tions.428

As we saw before, optimizing a simulation results in compound performance gains429

for the derivative simulation (Fig. 3). Reactant.jl is a new compiler framework for Ju-430

lia that leverages the MLIR (Lattner et al., 2021) and the Accelerated Linear Algebra431

(XLA) compiler to perform domain-specific optimization. Unlike LLVM, which has a fixed432

instruction set that corresponds to individual scalar integer and floating-point operations,433

one can define operations with arbitrary high-level meaning. For example, Reactant di-434

rectly preserves the high-level tensors and linear algebra operations from Julia within435

a dialect of MLIR, StableHLO, which contains primitive instructions for matrix multi-436

plication, convolution, and more.437

Reactant begins by mapping the corresponding instructions within Julia with high-438

level tensor operations within the StableHLO dialect (Fig. 2, lower pipeline). This map-439

ping involves partially evaluating out any sources of type instability, such as discussed440

above. Reactant then performs a series of linear algebra optimizations on the tensor code.441

For example, if Reactant detects that one intends to compute transpose(x .+ transpose(x)),442

it will instead choose to optimize it as simply x .+ transpose(x). In isolation, these443

linear algebra optimizations have been demonstrated to provide significant speedups to444

tensor programs, including double-digit improvements in ML training (Lücke et al., 2025).445

Subsequently, Enzyme performs differentiation on the program, now on MLIR rather446

than LLVM. Finally, Reactant lowers the program into XLA for execution, which en-447

ables the final program to be run on CPU, GPU, or TPU—including distributed clus-448

ters thereof—without any rewriting required.449

While the need for Reactant in our workflow to differentiate ESMs is primarily to450

remove type instabilities and other performance pitfalls, it comes with a number of ad-451

ditional performance benefits. Scientific codes, such as ESMs, maintain hundreds of hand-452

written kernels, preventing them from using the advanced tensor capabilities of modern453

ML accelerators. Yet the core computations within such kernels are often similar to ML454

workloads. For example, a simple stencil kernel is roughly analogous to a convolution.455

Reactant enables these existing stencil kernels to efficiently leverage the ML-specific hard-456

ware features, such as tensor cores on NVIDIA GPUs or Google TPUs.457

2.3 Automatic Memory Reduction: Checkpointing458

In general, a numerical model is implemented as a function y = f(x), where x are459

the inputs and y are the outputs. For calculating sensitivities, we can apply calculus and460

derive the adjoint model x̄ = f(x, ȳ), where the adjoint x̄ is computed with respect to461

the input x and input adjoint ȳ. When f is applied iteratively over N iterations as yt =462

f(xt), the adjoint model imposes a computational reversal x̄t = ∇f(xt−1, ȳt), where463

x needs to be provided in reverse order of the original forward model f execution. Prac-464

tical applications of ESMs at state-of-the-art resolution of 25 km globally can consist of465

O(106) timesteps (e.g., 100 years at 10-minute time steps), each requiring O(10 GB) (e.g.,466

1,000,000 horizontal grid points, 100 vertical layers, 20 variables including scratch ar-467

rays) making it prohibitively large to hold all time steps simultaneously in memory (Gaik-468

wad et al., 2025). In AD, this data flow reversal is known as the checkpointing problem (Griewank469

& Walther, 2000). It can be described as a mixed-integer programming problem where470

the fastest way of computing the adjoint is determined under constraints such as avail-471

able memory space and the latency to read and write data. Several checkpointing strate-472

gies exist, including square root (periodic) checkpointing (Fig. 4), multilevel checkpoint-473

ing, and binomial checkpointing.474
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

= write checkpoint
= read checkpoint

= state

= forward step
= adjoint step

Figure 4: Square root checkpointing schedule for l = 16 time steps (0-15). The forward
computation stores checkpoints at timesteps 0, 4, 8, and 12. The adjoint computation for
steps 12-15 uses the checkpoint stored at at 12. Then the adjoint computation for steps
8-11 using checkpoint at 8. Then the adjoint computation for steps 4-7 using checkpoint
at 4. Finally, the adjoint computation for steps 0-3 uses checkpoint at 0.

We have made checkpointing transparent to the user and implemented two com-475

plementary strategies: (1) a low-level implementation integrated directly into Enzyme476

and (2) a higher-level approach that leverages the Julia metaprogramming macro fea-477

ture to checkpoint iterative loops (Schanen et al., 2023), provided through a native Ju-478

lia package, Checkpointing.jl.479

2.3.1 Enzyme MLIR Checkpointing480

The low-level scheme is directly integrated into EnzymeMLIR to make checkpoint-481

ing directly embedded into the device codes. Checkpointing in EnzymeMLIR implements482

a form of periodic checkpointing called square root checkpointing (Fig. 4). Here, check-483

points for N time steps are taken at a period of
√
N time steps. The state to be check-484

pointed is determined automatically by Enzyme’s analyses, and the checkpoints are stored485

in memory. This also enables program optimization to occur prior to checkpointing, po-486

tentially reducing the number of variables that must be preserved.487

2.3.2 Checkpointing.jl488

In contrast to the low-level approach described above, Checkpointing.jl is imple-489

mented natively in Julia and has access to all language features. It is split into three ar-490

eas: checkpointing algorithm, storage device (RAM, disk), and rules (ChainRules, En-491

zymeRules). As opposed to the MLIR implementation, we support multiple checkpoint-492

ing algorithms (periodic, revolve, online), and with the rules support we target nearly493

all AD tools in Julia. This accessible implementation was largely made possible through494

Julia’s multiple dispatch and metaprogramming features. This allows us to automati-495

cally and transparently transform loop iterations into differentiated loops.496

3 Application 1: Shallow Water Model in a Rotating System497

The first example used to demonstrate the capabilities of general-purpose AD in498

Julia with Enzyme is a shallow water model for a fluid in a rotating Cartesian coordi-499

nate system on a β-plane (Vallis, 2017), representing the idealized surface circulation of500

the North Atlantic. Contained in the package ShallowWaters.jl (Klöwer et al., 2020, 2022),501
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Figure 5: Derivative of the quantity of interest J (Eq. (3)) with respect to the initial
conditions (a) u(x, y, t0) and (b) v(x, y, t0). In both panels a dashed purple line shows
where derivatives are checked in Fig. 6.

the model solves the conservation equations for momentum and volume502

∂
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∂

∂t
η +

∂
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(uh) +

∂

∂y
(vh) = 0

(1)

for the prognostic variables u = (u, v)T , and η. The former define the x and y com-503

ponents of the velocity vector, and the latter is the sea-surface displacement from rest.504

The right-hand side of the momentum equations represents horizontal pressure gradi-505

ents, surface wind stress F = (Fx, Fy)
T , and the combined effects of turbulent mixing506

and bottom drag denoted by M = (Mx,My)
T . The Coriolis force f is computed with507

a β-plane approximation at a latitude of 45◦N, and gravitational acceleration is set to508

g = 9.81 m/s2.509

Equation (1) is solved on a square domain with sides of length Lx = Ly = 3840 km510

and a single-layer depth of H0 = 500 m at rest. The grid is set at 30 km resolution, cor-511

responding to a discretized domain with 128 x 128 cells. Equation (1) is solved by us-512

ing a fourth-order Runge–Kutta time integration with time step ∆t = 385 s. The cir-513

culation is driven by a sinusoidal wind stress function in the x direction that varies solely514

with latitude y, given by515

Fx(y) =
F0

ρH0

{
cos

(
2π

(
y

Ly
− 1

2

))
+ 2 sin

(
2π

(
y

Ly
− 1

2

))}
(2)

and shown in Fig. 1(b) in the supplemental material. Here the water density is ρ = 1000516

kg/m3, and the forcing strength is F0 = 0.12 Pa. There is no wind forcing in the y di-517

rection (Fy = 0). The time-averaged sea-surface displacement η exposes two gyres, basin-518

wide closed circulations (Fig. 1(a) in the Supporting Information). Experiments are con-519

ducted following a ten-year model spinup.520
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Figure 6: Derivative of J (Eq. (3)), computed with Enzyme reverse-mode AD (blue dots)
versus a finite-difference approximation (yellow crosses). (a) Derivatives with respect to
u(x0 = 22, y, t0), where x0 = 22 corresponds to 600 km. (b) Derivatives with respect to
v(x, y0 = 75, t0), where y0 = 75 corresponds to 2190 km.

3.1 Sensitivity Analysis521

Our first example demonstrating correct and efficient derivative code generation522

with Enzyme is a sensitivity analysis. Our quantity of interest is523

J (u(x, y, t)) =
1

N

∑
x,y

{
u(x, y, tf )

2 + v(x, y, tf )
2
}
, (3)

where tf is the final time step of the integration and N = nx · ny, with nx, ny is the524

number of cells in the x and y directions, respectively. J thus defines a measure of the525

average kinetic energy at the end of the integration window. To compute derivatives of526

J , ShallowWaters is integrated for ten days beyond the ten-year spinup, after which the527

backwards problem is run with Enzyme and Checkpointing for tf − t0 = 10 days (or528

roughly 2,250 time steps). Two sample derivative fields are shown in Fig. 5, represent-529

ing the gradient of J with respect to u and v at initial time t0. Values of these gradi-530

ents were verified by using a finite-difference calculation, results of which are provided531

for specific x- and y-coordinates in Fig. 6. The location of the derivative checks is shown532

via dashed purple lines in Fig. 5; for ∂J /∂u(t0) the x-coordinate is fixed at 600 km, and533

for ∂J /∂v(t0) the y-coordinate is fixed at 2190 km. The gradients computed via reverse-534

mode AD versus a finite-difference approximation show excellent agreement.535

3.2 Data Assimilation536

Another important use of reverse-mode AD is data assimilation, showcased in our537

second example. Here, data assimilation is used to seek improved initial conditions x(x, y, t0)538

by minimizing the loss539

J =

tf∑
t=t1

∑
x,y

{ x̃(x, y, t) − d(x, y, t) }2︸ ︷︷ ︸
Jt

, (4)

where x̃ indicates the predicted model state (a vector of u, v, and η) and d the available540

data. The data d are daily state snapshots at each model point, obtained from a “truth”541
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Figure 7: Data assimilation results shown for the zonal velocity component at the initial
time t0. (a) Perturbation applied to initial zonal velocity; (b) unperturbed initial zonal
velocity, u(x, y, t0); (c) perturbed initial zonal velocity, ũ(x, y, t0); (d) optimized initial
zonal velocity, ũ(x, y, t0,+)

integration. A long wavelength Gaussian perturbation (Fig. 7(a)) of the form542

δu(x, y, t0) =
5∑

m=1

5∑
n=1

{
anm cos(knx) cos(kmy) + bnm cos(knx) sin(kmy)+

cnm sin(knx) cos(kmy) + dnm sin(knx) sin(kny)
}

with wavenumbers kn = πn/L, km = πm/L and random numbers anm, bnm, cnm, dnm ∼543

N (0, 0.1) is applied to the true initial conditions u(x, y, t0), v(x, y, t0) (Fig. 7(b)), result-544

ing in an incorrect predicted model state at time t0 (Fig. 7(c)). The data assimilation545

is run over a 10-day integration, using the L-BFGS algorithm implemented in MadNLP.jl546

(Pacaud et al. (2024), Shin et al. (2021)) for the optimization. The algorithm success-547

fully converges to an optimized initial state ũ(x, y, t0,+) (Fig. 7(d)), which closely re-548

sembles the true initial conditions (Fig. 7(b)). The value of the loss function decreases549

by three orders of magnitude over the first 50 iterations and another order of magnitude550

over the following 150 iterations.551

The optimized initial state greatly improves the accuracy of the model output af-552

ter ten days of integration, seen in Fig. 8. The result of the model beginning from the553

perturbed initial state (Fig. 8(b)) deviates from the truth (Fig. 8(a)) despite being in-554

tegrated for only ten days. With an optimized initial condition, the result of the inte-555

gration (Fig. 8(c)) closely resembles the true final state. The value of the non-accumulated556
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Figure 8: Effect of data assimilation on the evolving model state up to the final time tf
= 10 days. (a) True final zonal velocity component, u(x, y, tf ); (b) predicted final zonal
velocity component, ũ(x, y, tf ) from the perturbed initial condition (Fig. 7(c)); (c) pre-
dicted final zonal velocity component, u(x, y, tf ,+) from the optimized initial condition
(Fig. 7(d)); (d) non-accumulated loss Jt (Eq. (4)) for each day of the integration, com-
puted using the perturbed initial state (blue line) and optimized initial state (yellow line).

loss function Jt (Eq. (4)) remains consistently lower for each day of integration in the557

optimized model (yellow line in Fig. 8(d)) than in the perturbed model (blue line in Fig. 8(d)).558

3.3 Performance559

Figure 9 compares execution time and memory utilization as a function of integra-560

tion length for the adjoint sensitivity analysis without (yellow curves) and with (blue curves)561

checkpointing under the revolve checkpointing scheme. With checkpointing, metrics are562

computed for integrations of up to approximately 22,000 time steps (100 days). With-563

out checkpointing, the simulation can be run only for about 4,500 time steps (20 days)564

before the memory required to store the time-evolving state exceeds the laptop’s avail-565

able system capacity.566

Checkpointing allows one to compute sensitivities for time windows beyond 20 days567

while maintaining a minimal memory footprint (Fig. 9b). The amount of memory al-568

located to store checkpoints typically is configured to be machine dependent and con-569

stant. Here it is configured to be proportional to the square root of the number of time570

steps. In contrast, using Enzyme AD alone requires storing each model state during the571

forward pass, resulting in a drastic increase in memory utilization. Starting at around572

1,000 time steps (around 5 days), the checkpointed reverse-mode AD becomes faster than573

using AD alone (Fig. 9a). The reason is that, beyond that point, more time is spent al-574

locating memory to compute model derivatives than on the derivative computation it-575

self. Despite the fact that ShallowWaters is a relatively simple model, this result demon-576
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Figure 9: Comparison of (a) derivative computation execution time and (b) memory uti-
lization, with and without checkpointing for the sensitivity analysis (Section 3.1).

strates that implementing a checkpointing scheme alongside AD is essential to feasibly577

lay the framework for differentiable ocean models.578

4 Application 2: Ocean General Circulation Model in a Re-entrant Chan-579

nel Configuration580

Our second application features Oceananigans.jl, a Julia-based software package581

for finite-volume simulations of the ocean general circulation, designed to run efficiently582

using CPUs or GPUs (Silvestri et al. (2025); Wagner et al. (2025), hereafter referred to583

as Oceananigans). This package forms the ocean model component of the Climate Mod-584

eling Alliance. For our example, we construct a re-entrant channel configuration of an585

idealized Southern Ocean circulation, similar to the setup in Abernathey et al. (2011).586

We solve the Boussinesq and hydrostatic approximations of the incompressible Navier–587

Stokes equations of a fluid on a rotating sphere, using conservation of momentum588

∂tu+ (v · ∇)u+ f × u = −∇h(p+ gη)−∇ · τ + Fu

0 = −∂zp+ b ,
(5)

conservation of volume589

∇hu+ ∂zw = 0, (6)

as well as conservation of heat and salt. Here u = (u, v) and w are the horizontal and590

vertical components of the three-dimensional velocity field v(x, y, z); τ is the hydrostatic591

kinematic stress tensor; Fu is the external forcing of u; p is kinematic pressure; η is free592

surface displacement (i.e., sea surface height); f is the Coriolis parameter associated with593

rotation; and b = −gρ′/ρ0 is the buoyancy computed from the density ρ = ρ′ + ρ0,594

where ρ0 is a constant reference density, ρ′ is the density perturbation, and g is grav-595

itational acceleration (for details see Silvestri et al. (2025); Wagner et al. (2025)).596

Following Abernathey et al. (2011), our model has dimensions 1000 km × 2000 km597

× 2187 m. It is discretized by using a rectilinear Arakawa C-grid with 80×160 evenly598

spaced horizontal cells at a 12.5 km resolution and 32 vertical levels of varying thicknesses,599

ranging from 10 m at the surface to approximately 214 m at the bottom. We use Oceanani-600

gans’s HydrostaticFreeSurfaceModel on GPU architecture to numerically solve our601

re-entrant channel model. Our setup features periodic boundary conditions in the zonal602

–18–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

(east-west) direction, a sponge layer at the northern boundary, a heat flux that loosely603

approximates observed buoyancy fluxes in the Southern Ocean, and an idealized mid-604

latitude westerly surface zonal wind stress.605

We make some modifications to the Abernathey et al. (2011) configuration. Most606

notably, we add a wall topography with a gap from y = 400 km to y = 1000 km that607

provides effects analogous to the Drake Passage in the real Antarctic Circumpolar Cur-608

rent. We also replace the implicit free surface with a split-explicit free surface and make609

use of a flux-form weighted essentially non-oscillatory method (WENO) for our advec-610

tion schemes. There is no vertical mixing scheme, although the vertical diffusivity is in-611

creased in the top five surface layers (approximately the upper 60 m). Example figures612

of the spun-up state are deferred to Section 2 of the Supporting Information.613

Sensitivity Analysis614

In our re-entrant channel model, the quantity of interest J is the zonal volume trans-615

port across the gap present in the model’s topography that mimics the Drake Passage,616

J (u(x0, y, z, t)) = U(x0, t) =
∑
y,z

u(x0, y, z, t)∆y∆z. (7)

Here the location of the passage is x0 = 500 km, and ∆y∆z is the cross-sectional area617

element in the y−z-plane. To showcase the range of sensitivities that can be computed618

with the adjoint, we seek sensitivities of J with respect to the initial state, surface bound-619

ary conditions, and model parameters.620

Our first investigation concerns the sensitivity of zonal volume transport to wind621

stress, ∇τJ = (∂J /∂τx, ∂J /∂τy). Figure 10a,b depict the sensitivity of J to changes622

in zonal and meridional wind stress 14 days prior to evaluation of J , corresponding to623

a 14-day adjoint integration. Surface wind stress drives large-scale horizontal momen-624

tum input to the ocean through the Ekman layer. This sensitivity helps describe how625

the wind stress drives eastward volume flow through the gap in our topography. Note626

that within Oceananigans, wind stresses are negative-east (zonal) and negative-north (merid-627

ional), so a negative gradient suggests an eastward or northward wind stress in that lo-628

cation increases zonal volume transport.629

Sensitivity values for zonal wind stress τx are highest within the gap and progres-630

sively decrease further away from it, especially to the north and south. This sensitivity631

pattern is explained by the fact that eastward τx upstream of the gap (noting that the632

configuration is periodic) directly accelerates the upper ocean eastward, funneling it through633

the gap and increasing zonal transport. In general, τx gradients have the expected sign634

and magnitude.635

Although our forward model configuration features only an idealized zonal wind636

stress, we may also consider the derivative of J with respect to meridional wind stress637

τy. Again, these gradients follow a reasonably expected pattern when accounting for sign638

conventions. On the west side of the topography they have opposite signs north and south639

of the gap, which reflect how τy controls the pressure difference across the gap via Ek-640

man transport and surface map divergence. Similar, but opposite, sign values are seen641

in the gradients downstream of the gap. They produce weaker gradients in magnitude642

since they are not positioned directly upstream of the gap, although they still exert in-643

fluence due to the periodic boundary conditions. Wind stress sensitivity patterns sim-644

ilar to those computed here have been obtained in MITgcm adjoint simulations with “re-645

alistic” Drake Passage topography (e.g., Fig. 6 of Losch & Heimbach (2007) but used longer646

integrations and opposite sign convention, or Fig. 4 of Kalmikov & Heimbach (2014)).647

Sensitivities of the zonal volume transport across the gap to changes in initial tem-648

perature at two depth levels, z = 15 m and z = 504 m, are depicted in Fig. 11a,b. Re-649
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Figure 10: Sensitivities of zonal volume transport through the topography gap (Eq. (7))
with respect to zonal (a) and meridional (b) wind stress, τx and τy. This was a run
of 8,100 time steps (approximately 14 days). Within Oceananigans, wind stresses are
negative-east (zonal) and negative-north (meridional), so a negative gradient suggests an
eastward or northward momentum flux (out of the atmosphere) in that location increases
zonal volume transport.

lated, full-depth sensitivities are shown in Fig. 12 for a meridional section at the longi-650

tude of the gap (x0 = 550 km, panel a) and for a zonal section at a latitude near the north-651

ern end of the gap (y0 = 1000 km). The dipole pattern that builds near the northern652

end and upstream of the gap is visible in the zonal section and amplified at depth. Sim-653

ilarly, sensitivities are amplified at depth for the meridional section, both south (y <654

500 km) and north (y > 1000 km) of the gap. There are a couple reasonable explana-655

tions: we know that local warming creates a steeper meridional density gradient across656

the gap, which itself creates vertical shear in u via thermal wind (∂u/∂z ∝ ∂ρ/∂y). More-657

over, the density gradient also raises steric height, which changes horizontal pressure gra-658

dients that drive zonal flow. Furthermore, the narrowing at the gap (and presence of to-659

pography) means the same horizontal pressure change creates a larger change in bottom660

pressure and forms stress that affects the momentum balance.661

As a third category of sensitivities besides surface boundary condition and initial662

condition sensitivities, panels (c) and (d) of Fig. 11 showcase sensitivities of J to changes663

in the vertical diffusivity model parameter. Again, a spatially highly non-uniform im-664

pact of changes in vertical mixing on the transport is evident. A similarity in pattern665

between this sensitivity and initial temperature sensitivity is apparent, which, over the666

limited duration of the adjoint calculation is physically sensible. While the initial tem-667

perature sets the background stratification, the diffusivity field contributes to how it evolves.668

Altering the diffusivity which generally acts to even out tracer gradients will alter the669

baroclinic structure of the water column thus contributing to changes in thermal wind670
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Figure 11: Sensitivities of zonal volume transport through the topography gap (Eq. (7))
with respect to initial temperature T (a and b), and vertical temperature diffusivity κT (c
and d) at select depths.

shear and steric height (differentiating over a longer run may reveal new patterns in the671

diffusivity sensitivities). Similarly to the previous application (Fig. 6), finite-difference672

“gradient checks” have been conducted to verify the gradient computed with the adjoint673

for a representative range of elements of the different control variables (not shown).674

Producing the gradients presented in the section required end-to-end differentia-675

tion of Oceananigans using Enzyme and Reactant. This, in turn, involved successful AD676

of a hydrostatic free-surface model featuring WENO momentum and tracer (tempera-677

ture and salinity) advection, linear equations of state for buoyancy, volumetric forcings678

and flux boundary conditions, harmonic and biharmonic Smagorinsky-like turbulence679
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Figure 12: Sensitivities of J with respect to the initial temperature, shown across the full
depth range as cross sections. Gradients are divided by the thickness of their associated
layer. Top is along 550 km in the zonal direction (right of the gap in the ridge topogra-
phy); bottom is along 1000 km in the meridional direction. Sensitivity values are divided
by layer thickness to account for uneven cell thicknesses.

closures, and a periodic domain with masking by an idealized passage. A recurring prob-680

lem with differentiating the Oceananigans code was type instability. Although the com-681

putationally intensive portions of the Oceananigans code base are type stable, the pack-682

age features an extensive array of configuration options stored in nested tuples and other683

type-unstable structures. These configuration options do not impact the package’s com-684

putational performance but do pose problems for Enzyme AD (see Section 2). Use of685

Reactant first produced type-stable model code that could then be successfully differ-686

entiated. Reactant also improved the runtime for CPU-based models by an order of mag-687

nitude, which helped with development, although the runs presented here were computed688

and differentiated by using a GPU backend.689

5 Application 3: Ice Sheet Model690

For our third example we employ the Differentiable JUlia ICE sheet model (DJUICE.jl).691

This model is essentially a carbon copy of the finite-element C++ Ice-Sheet and Sea-692

level System Model (ISSM, Larour et al., 2012). DJUICE follows ISSM’s object-oriented693

structure, which requires a number of mutable structures, and has a large number of dy-694

namic memory allocations. These two aspects make automatic differentiation particu-695

larly challenging. We show that Enzyme is able to differentiate static and transient mod-696

els.697

5.1 Inferring Basal Friction698

First, we explore a standard problem in glaciology that involves inferring basal con-699

ditions, which typically cannot be measured, from surface observations (MacAyeal, 1992;700
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Morlighem et al., 2013). Ice sheet flow is modeled by using the Shelfy Stream Approx-701

imation (MacAyeal, 1989):702

∂
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(
4Hµ
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∂x
+ 2Hµ

∂v
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)
+

∂
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∂v
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)
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(
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)
+

∂
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(
Hµ

∂u

∂y
+Hµ

∂v
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)
= ρgH

∂s

∂y
+ α2Nv,

(8)

where H is the ice thickness, u and v are the two components of the horizontal ice ve-703

locity vector, µ is the nonlinear ice viscosity that follows Glen’s flow law (Glen, 1955),704

s is the ice surface elevation, N is the effective pressure at the base of the ice, and α is705

the unknown friction coefficient. To infer the spatially varying α(x, y), we typically min-706

imize a cost function that measures the misfit between the modeled velocity, u = (u, v),707

and the satellite-derived observed ice velocity, uobs = (uobs, vobs):708

J (α(x, y)) =

∫
Ω

1

2

{(
u− uobs)2 +

(
v − vobs)2 } dΩ, (9)

where Ω is the model domain. Automatic differentiation is used to determine the gra-709

dient of this cost function with respect to the spatial distribution of the basal friction710

coefficient α(x, y), which then feeds a standard gradient descent algorithm to infer an711

optimal field for α(x, y).712

We apply this approach to Pine Island Glacier in West Antarctica. Our model has713

18, 227 elements on a two-dimensional unstructured mesh, with element sizes varying from714

1 km to 20 km. We adopt the model configuration of Seroussi et al. (2014). The initial715

ice geometry is taken from BedMachine Antarctica (Morlighem et al., 2011) and the ob-716

served ice velocity from Rignot et al. (2011).717

For comparison, we run an identical experiment with ISSM. Figure 13 compares718

the sensitivity ∂J
∂α obtained with ISSM and DJUICE, along with their difference. The719

root mean square difference between the two sensitivity fields is 7.87×10−5. Notably,720

we used a relatively loose tolerance for the nonlinear solver, 0.01 for the relative resid-721

ual, to achieve faster solves. Even under this setting the two packages agree to O(10−3).722

723

Figure 13: Sensitivity map ∂J
∂α (m5/2s−5/2) of the squared misfit between simulated and

observed ice velocities, J (α(x, y)), to changes in the basal friction coefficient α(x, y), for
Pine Island Glacier computed by using ISSM (left), DJUICE (middle), and their differ-
ence (right).

5.2 Sensitivity Mapping for a Transient Model724

In addition to computing sensitivities of model-data misfit functions used for gradient-725

based optimization (preceding section), automatic differentiation can be used to map sen-726

sitivities of a wide range of quantities of interest. For example, Morlighem et al. (2021)727
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used ISSM and STREAMICE to map the sensitivity of Pine Island Glacier’s future vol-728

ume above floatation to basal friction and basal melt under the floating ice shelf. We ap-729

ply the same experiment but with DJUICE instead of ISSM. The model mesh has 23,767730

elements. We solve for the Shallow Shelf Approximation, and the geometry evolves in731

time based on the conservation of mass. We use a similar depth-dependent parameter-732

ization for basal melt:733

ṁ (x, y) = m (x, y) +


0 if z ≥ 0,

− 1

10
z if 0 > z > −500,

50 if z ≤ −500,

(10)

where z is the base elevation of the ice. Following Morlighem et al. (2021), we are in-734

terested in quantifying the spatial sensitivity of the volume above flotation (V ) to per-735

turbations in basal melting. For example, the Gâteaux derivative of V , DV (m), with736

respect to ocean melting, m, is737

∀δm ∈ H1 (Ω) ⟨DV (m) , δm⟩ = lim
ϵ→0

V (m+ ϵ δm)− V (m)

ϵ
, (11)

where δm indicates a perturbation in m, ⟨· , ·⟩ is the inner product, and H1 (Ω) denotes738

the space of square-integrable functions whose first derivatives are also square integrable739

on the model domain, Ω.740

Enzyme computes the gradient of J = V with respect to m at each vertex of the741

mesh, and we recover DV (m) on the H1 (Ω) space by multiplying this output by the mass742

matrix inverse. This procedure avoids mesh-dependency sensitivities, as described in Morlighem743

et al. (2021).744

Instead of running the model for 20 years, we perform only 5 time iterations (half-745

year) given the computational cost of the model. The sensitivity maps on the ice shelf746

are shown in Fig. 14. The root mean square difference between the two sensitivity fields747

is 2.7368×103. Notably, we used the same loose tolerance, 0.01, for the relative resid-748

ual in the nonlinear solver, as the experiment in Section 5.1.749

750

Figure 14: Sensitivity map DV (m) of the volume above flotation, V (m(x, y)), to changes
in the melting perturbation m(x, y) for the Amundsen Sea Embayment computed by us-
ing ISSM (left), DJUICE (middle), and their difference (right), in the unit of m3/(m3/s).

6 Application 4: Atmospheric General Circulation Model751

For our fourth technical example we analyze the general circulation of the atmo-752

sphere as simulated by SpeedyWeather.jl (Klöwer et al., 2024). To adapt it to usage with753

Enzyme.jl, we had to implement only minor changes. Type stability has been a central754
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programming paradigm of SpeedyWeather from the start, but Enzyme also requires this755

for performance-irrelevant code where we were less consistent. Then we slightly revised756

our state variable and scratch memory handling. The experiment shown here uses En-757

zyme.jl in combination with Checkpointing.jl.758

As a spectral atmospheric model, SpeedyWeather.jl uses spherical harmonics in com-759

bination with a grid, discretizing the so-called primitive equations, which are widely used760

in numerical weather prediction, on the sphere. Each time step performs numerous spher-761

ical harmonic transforms to transfer variables between the gridpoint and spectral space.762

We use a horizontal resolution of T31 (spherical harmonics up to degree and order 31)763

combined with an octahedral Gaussian grid of 96 latitudes, corresponding to a 3.75◦ res-764

olution at the equator (about 400 km globally) and eight vertical layers. The time step765

is 40 min using a semi-implicit filtered leapfrog scheme. The prognostic variables P are766

the relative vorticity ζ = ∇× u and divergence D = ∇ · u of the horizontal wind vec-767

tor u, the logarithm of surface pressure ln ps, temperature T , and specific humidity q,768

each discretized in spectral space horizontally and in sigma coordinates (fraction of sur-769

face pressure) vertically. The primitive equations are770

∂ζ

∂t
= ∇× (Pu + (f + ζ)u⊥ −W (u)−RdTv∇ ln ps)

∂D
∂t

= ∇ · (Pu + (f + ζ)u⊥ −W (u)−RdTv∇ ln ps)−∇2

(
1

2
(u2 + v2) + Φ

)
∂ ln ps
∂t

= − 1

ps
∇ ·

∫ ps

0

u dp

∂T

∂t
= PT −∇ · (uT ) + TD −W (T ) +

Rd

cp
Tv

D ln p

Dt

∂q

∂t
= Pq −∇ · (uq) + qD −W (q),

(12)

with Coriolis parameter f , dry gas constant Rd, virtual temperature Tv, geopotential Φ,771

heat capacity cp, and vertical advection operator W . Many atmospheric processes are772

summarized in Pu (drag in the planetary boundary layer) and PT,Pq (e.g., radiation,773

convection, large-scale condensation, surface fluxes with land and ocean). SpeedyWeather’s774

primitive equation model is coupled to a simple thermodynamic model of the ocean (a775

so-called slab ocean model), a thermodynamic sea-ice model, and a 2-layer land surface776

bucket model.777

Sensitivity Analysis778

We demonstrate the differentiability of SpeedyWeather by conducting a sensitiv-779

ity analysis of the temperature J = Tf of the lowest atmospheric layer at a grid point780

in Denmark (55◦ N, 11◦ E) over a short integration of the model. We compute deriva-781

tives ∂Tf

∂P0
of the final temperature Tf after 6 hours and 2 days of integration with respect782

to the initial conditions of the prognostic variables P0 = {ζ0, ln ps0, T0}. For the sake783

of brevity we show only a few selected variables and layers in Fig. 15. As expected, the784

sensitivities decrease with distance from the selected grid point (locality principle in clas-785

sical physics). They are more localized for the short 6-hour integration (Fig. 15 a-d) and786

spread during the course of the longer 2-day integration (Fig. 15 e-h). The vorticity and787

surface pressure of the 2-day integration, in particular, exhibit a sensitivity pattern that788

is consistent with the underlying westerly wind over the Atlantic causing an eastward789

transport (see arrows in Fig. 15).790
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791

Figure 15: Sensitivities of the temperature of the lowest atmospheric layer in (55◦ N, 11◦
E) over Denmark, marked with a cross, with respect to the initial conditions of a 6-hour
(a–d) and 2-day (e–h) integration of the SpeedyWeather.jl global atmospheric model. Ar-
rows depict the wind vector field of the respective layer of the initial condition. Layer 8
corresponds to σ = 0.9375 (near-surface) and layer 5 to σ = 0.5625 (mid-troposphere),
where σ is a fraction of surface pressure used as vertical coordinate.
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7 Discussion792

We have successfully differentiated four ESM components written in the Julia pro-793

gramming language. These models implement a range of spatial discretization methods,794

including finite-volume, finite-element, and spectral schemes, and bespoke numerical al-795

gorithms.796

At the heart of this work is the use of the general-purpose AD tool Enzyme and797

its reverse mode. Other approaches exist for achieving differentiable models. Specifically798

within Julia, the SciML package (Rackauckas et al., 2020) is based on composable al-799

gorithms and solvers that make the availability of differentiable models notionally more800

straightforward. However, high-end and highly performant ESMs typically rely on highly801

customized algorithms that do not easily fit within such frameworks. Similar issues arise802

in the context of other customized programming languages such as JAX. A main mo-803

tivation for exploring the general-purpose AD route within Julia was the already exist-804

ing ESM components, in particular Oceananigans.jl and ClimaOcean.jl (Ramadhan et805

al., 2020; Silvestri et al., 2025; Wagner et al., 2025) that are being developed as part of806

CliMA (Yatunin et al., 2025), as well as the flexible, light-weight atmospheric general807

circulation model (GCM) SpeedyWeather.jl (Klöwer et al., 2024). A new ice sheet model.808

DJUICE.jl, was rewritten from an existing C++ code to complement the Julia-based ESM809

components. None of this software was written for Enzyme, and only relatively small810

changes had to be implemented to use Enzyme successfully. This contrasts with mod-811

els written in JAX, such as the ocean model Veros (Häfner et al., 2021) and the atmo-812

spheric model NeuralGCM (Kochkov et al., 2024), which often demand more extensive813

adaption. Nevertheless, achieving full end-to-end differentiation with Enzyme required814

several important extensions and tool developments, available and reusable now. These815

efforts focused on key features of the Julia programming language, including JIT com-816

pilation, dynamic dispatch, and memory management via garbage collection.817

Two major aspects that favored the choice of the emerging AD tool Enzyme over818

existing tools such as Zygote.jl were the requirement to efficiently handle mutable ar-819

rays, which are ubiquitous in time-stepping ESM components, and Enzyme’s performance820

characteristics. A major novelty of Enzyme over existing AD tools is that it acts at the821

LLVM compiler’s intermediate representation level, thus enabling code optimization both822

before and after algorithmic differentiation takes place. This has shown to deliver more823

efficient derivative calculations compared with other AD tools.824

The ESM components also necessitated work to integrate reverse-mode checkpoint-825

ing algorithms. This was achieved in two ways: (i) integration of Checkpointing.jl (Scha-826

nen et al., 2023) within Enzyme and (ii) development of checkpointing algorithms at the827

MLIR level. The latter was required for workflows that use Reactant in combination with828

Enzyme (see Application 2 showcased in Section 4).829

The value of the tight collaboration between Earth system model developers and830

computer scientists cannot be overestimated in driving significant improvements and mat-831

uration of the capabilities of software transformation tools featured here, Enzyme and832

Reactant, that were critical to the work. In particular, both of these software packages833

aim to consume and rewrite generic programs for either differentiation or improved per-834

formance/portability, respectively. Rewriting general code is a major task, especially in835

the context of comprehensive ESMs, and likely to fail if attempted all at once. Instead,836

both software projects adopted an incremental approach: they began with a limited set837

of features, ensured full support for these, and gradually expanded the feature set un-838

til all functionalities required by the various ESM components were covered. Co-developing839

the scientific simulation features alongside the Enzyme and Reactant software tools that840

support them was key to the success of all projects. Arguably, such tight collaborations841

are easier to achieve in smaller communities like those around the Julia programming842

language.843
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In terms of applications, we worked through a hierarchy of ESM components, at844

each step creating minimal reproducible examples (MREs) to unblock AD tool limita-845

tions that were encountered at the time. A first application (not presented here) used846

a simple three-box model of the ocean’s thermohaline circulation inspired by Stommel (Stom-847

mel, 1961; Tziperman & Ioannou, 2002). This work motivated the initial development848

of Checkpointing.jl (Schanen et al., 2023) and drove the support for handling Julia’s dy-849

namic dispatch within Enzyme.850

Moving up in terms of model complexity, we subjected a shallow water model for851

a fluid on the rotating beta plane to Enzyme and checkpointing to investigate scalabil-852

ity and performance aspects (Section 3). The work on the shallow water model helped853

identify bottlenecks in the early Enzyme versions through the provision of MREs that854

provided rapid tool fixes. In this way, it also supported the differentiation of the com-855

prehensive finite-volume, vertical height-coordinate ocean general circulation model Oceanani-856

gans, which we conducted in parallel with the shallow water model work.857

The power of the Reactant tool was exposed in the work on Oceananigans, our sec-858

ond application. The Reactant pipeline offers reduction in code complexity through a859

tracing approach along with automated performance portability across different HPC860

hardware (in our case using CPUs and GPUs). The Multi-Level Intermediate Represen-861

tation created by this tool provides more stable code that Enzyme can transform robustly862

and efficiently. An added benefit of investing in the Reactant pipeline is the ability to863

lower both the parent and the Enzyme-differentiated code to the XLA compiler, which864

provides code optimization for high-performance execution across different compute hard-865

ware including CPUs, GPUs, TPUs, and emerging ML accelerators. Given the rapid ML-866

driven hardware development, this work offers the prospect of automated performance867

portability across a range of emerging HPC platforms that will become available for ESM868

simulations in both research and industry, particularly within the ML-driven sector.869

Our third application, DJUICE, relies heavily on mutable arrays and mutable struc-870

tures, which make other AD tools such as Zygote.jl and Diffractor.jl, which do not sup-871

port mutation, impractical for this application. Mutation is essential for large climate872

models, since reallocating memory at every update would quickly exhaust resources and873

hinder GPU acceleration. Significant developments were required for Enzyme.jl to sup-874

port mutation. Another important development necessary to differentiate DJUICE was875

to properly handle the differentiation of the backslash operator. DJUICE uses implicit876

solvers and requires solving large linear systems. One remaining point of development877

is to support sparse arrays. Currently Enzyme.jl supports only standard arrays, likely878

limiting the performance of the adjoint. We are working on adding support for SparseArray.jl879

in order to further improve the performance of the code, as the left-hand side of the lin-880

ear systems (i.e., the stiffness matrices) are highly sparse. A related study by Utkin et881

al. (2025) used Enzyme.jl to generate the adjoint of a simple glacier model based on a882

depth-averaged shallow ice approximation to simulate Alpine mountain valley glaciers,883

further demonstrating the versatility of the AD tool.884

The developments of Enzyme.jl and Checkpointing.jl that enabled differentiabil-885

ity of the shallow water, ocean, and ice sheet models described above subsequently fa-886

cilitated their application to the spectral atmospheric general circulation model Speedy-887

Weather. Similarly to the other showcased models, SpeedyWeather’s computations rely888

heavily on mutating data structures. Adapting it to the usage with other AD tools would889

therefore have been prohibitively impractical. Adapting it to Enzyme.jl, on the other hand,890

required fairly minor revisions: ensuring type stability throughout the model, slightly891

restructuring how variables are handled during time stepping, and defining two differ-892

entiation rules for the transforms used. The sensitivity analysis shown here is just the893

first step demonstrating successful gradient calculation via reverse-mode AD.894
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The availability of differentiable ESM components offers a range of exciting oppor-895

tunities for advancing data-constrained, data-driven, and mixed modeling approaches.896

A main incentive of this development has been the recognition of the conceptual and al-897

gorithmic similarity between adjoint-based inverse methods and backpropagation-based898

neural network learning. Combining these two approaches enables the embedding of NN899

architectures within physics-based models where the goal is to faithfully represent con-900

servation laws but to learn empirical subgrid-scale parameterization schemes. This holds901

for climate applications, in particular, which rely on long integration that requires sta-902

ble schemes, and where property conservation plays an essential role to detect small resid-903

uals in the climate change signal within the noise of natural variability. Differentiable904

ESMs offer the prospect of better utilizing “training data” through gradient-based op-905

timization, whether derived from observations of the climate system, associated clima-906

tologies, or high-fidelity data from higher-resolution or more complex simulations. This907

approach has been referred to as “online learning,” “full-model learning,” or “a poste-908

riori learning” in the recent literature and has been investigated in a number of ideal-909

ized quasi-geostrophic simulations (e.g., Frezat et al. (2022); Maddison (2024); Yan et910

al. (2025)). Our work represents a breakthrough in that it makes these approaches fea-911

sible for a range of high-end ESMs. To date, only one study has demonstrated this ap-912

proach with NeuralGCM, a spectral model using similar numerics to SpeedyWeather but913

written in JAX (Kochkov et al., 2024). The ability to conduct such approaches efficiently914

on AI-customized compute hardware (GPUs, TPUs) further unleashes the potential of915

seamless integration of physics-based and ML algorithms for ESM learning. We hope this916

work encourages wider adoption of such methods in the modeling community, leading917

to a greater use of observations for constraining and more rigorously calibrating ESMs.918

Open Research Section919

The frameworks used in this work are Enzyme.jl, Reactant.jl, and Checkpointing.jl.920

These were applied to four ESM components: ShallowWater.jl, Oceananigans.jl, DJUICE.JL,921

and SpeedyWeather.jl. Because of the different provenances of these software packages,922

we are making them available as sub-modules through a central GitHub repository at923

https://github.com/DJ4Earth/differentiable-esm-components-2025. Scripts to924

reproduce the simulations and figures are contained in the sub-modules for each appli-925

cation. All software packages are open-source.926
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