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Abstract—Derivatives are key to numerous science, engineer-
ing, and machine learning applications. While existing tools
generate derivatives of programs in a single language, modern
parallel applications combine a set of frameworks and languages
to leverage available performance and function in an evolving
hardware landscape.

We propose a scheme for differentiating arbitrary DAG-
based parallelism that preserves scalability and efficiency, imple-
mented into the LLVM-based Enzyme automatic differentiation
framework. By integrating with a full-fledged compiler backend,
Enzyme can differentiate numerous parallel frameworks and
directly control code generation. Combined with its ability to
differentiate any LLVM-based language, this flexibility permits
Enzyme to leverage the compiler tool chain for parallel and
differentiation-specific optimizations.

We differentiate nine distinct versions of the LULESH and
miniBUDE applications, written in different programming lan-
guages (C++, Julia) and parallel frameworks (OpenMP, MPI,
RAJA, Julia tasks, MPI.jl), demonstrating similar scalability to
the original program. On benchmarks with 64 threads or nodes,
we find a differentiation overhead of 3.4 − 6.8× on C++ and
5.4− 12.5× on Julia.

Index Terms—automatic differentiation, MPI, OpenMP, Tasks,
compiler, LLVM, hybrid parallelization, parallel, distributed,
C++, RAJA, Julia, Enzyme

I. INTRODUCTION

Derivatives are at the core of many modern applications in
science and engineering, such as machine learning [1], gradient-
based optimization [2], [3], inverse problems [4], and computer
graphics [5]. Automatic differentiation (AD) is a method
for the automatic generation of derivatives of mathematical
functions implemented in computer programs. AD is able to
compute derivatives accurately to machine precision, unlike
finite difference approaches.

Parallel computation, using a variety of frameworks, has
become the de facto standard for large-scale computing and
machine learning applications. This commonly involves using
parallel dialects and frameworks such as the Message Passing
Interface (MPI) [6] to provide distributed parallelism, or
OpenMP [7] and Julia tasks [8] for shared-memory parallelism,
as well as higher-level frameworks such as RAJA [9].

In addition to being difficult to create any derivatives of
parallel programs, it is desirable to preserve the original
program’s parallelism for the accumulation of derivatives. This
is not always straightforward, particularly in the so-called
reverse-mode AD or the closely related back-propagation [10]–
[15], which will be briefly explained in Section III.

This paper demonstrates how using a common low-level
compiler infrastructure to synthesize adjoints of parallel codes
enables differentiation across a wide variety of parallel models
and source languages. To this end, we extend the Enzyme au-
tomatic differentiation framework [16], which already supports
synthesizing adjoints of GPU kernels [17] to arbitrary parallel
frameworks representable as a directed acyclic graph (DAG) of
dependencies. To showcase the generality of our approach, we
differentiate MPI (distributed parallelism), OpenMP (multicore
parallelism), Julia Tasks (multicore parallelism within a JIT),
and describe how additional frameworks can be supported by
simply marking the parallelism.

By enabling support for the underlying programming models
within the compiler, we are able to differentiate any parallel
framework built on top of them such as RAJA (running
atop OpenMP and MPI) and MPI.jl (Julia bindings for
MPI). Moreover, we demonstrate that differentiating low-level
parallelism concepts such as shared and thread-local memory
automatically yields support for higher-level primitives such
as reductions or firstprivate variables. Finally, we showcase
how jointly supporting these parallelism models in one tool
naturally enables differentiation of hybrid parallel programs,
and that deep integration of AD into the compiler enables
performance optimizations usually only available in domain-
specific/functional programming languages. Overall, our paper
makes the following contributions:
• An extension to the theory of reverse-mode differentiation of

single-static-assignment (SSA) intermediate representations
to handle parallel execution of instructions, and thus differ-
entiation of parallel languages and constructs that lower to
such a representation.

• A demonstration of how implementing this model within the
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Fig. 1: The compiler lowers the various parallel programming languages (left) into a common representation (center). Some
constructs such as Julia tasks and OpenMP worksharing loops may result in an almost identical representation. The automatic
differentiation rules in Enzyme can be written for the intermediate representation, greatly simplifying the generation of
reverse-mode derivatives (right) for the input languages and constructs, and further enabling compiler-optimizations.

Enzyme AD engine enables end-to-end, automated reverse-
mode differentiation of parallel constructs (OpenMP, MPI,
RAJA, Julia Tasks, etc) written in an LLVM-compatible
language (C/C++, Julia, Fortran, Swift, Rust, Python, etc).

• Experimental results for codes from the LULESH [18]
benchmark suite written in C++/OpenMP, C++/MPI,
C++/MPI+OpenMP, C++/RAJA, and Julia/MPI.jl and par-
allel variants of the miniBUDE mini-app [19] written in
C++/OpenMP and Julia/Tasks.

II. RELATED WORK

AD tools including TAF [20] and Tapenade [21] have offered
differing levels of support for OpenMP. Both tools perform
source-to-source transformation, have to express the gradient
of OpenMP/MPI programs using valid OpenMP/MPI, and have
to hence implement rules for many different OpenMP clauses.
By working on LLVM IR, we avoid having to explicitly handle
e.g. firstprivate/lastprivate variables, which are expressed in
LLVM IR using standard assignment instructions at appropriate
locations. Moreover, embedding within the compiler enables
Enzyme to differentiate after (parallel) optimization, including
the ability to hoist parallel code out of loops and providing
better aliasing information. Special treatment of MPI reversal
was implemented in adjoint MPI libraries [22], integrated
into various AD tools such as CoDiPack [23], [24], ADOL-
C [25], Tapenade [26], TAF [27] and dco [28], and used in
applications such as the computational fluid dynamics (CFD)
solvers SU2 [29], OpenFOAM [30] and STAMPS [31], and the
NASA Ice Sheet System Model [32]. The published solutions
for MPI require modifications to the original code, including
the use of special MPI function signatures. Adjoint MPI library
extensions are developed separately from the AD tools used for
the remaining program, and can interfere with certain program
analyses like activity analysis [33]. Instead, Enzyme covers
MPI in a transparent and seamless manner without manual
intervention.

Reverse-mode differentiation of parallel read access to shared
memory may result in concurrent increment access and thus
require special treatment to avoid data races. Enzyme uses
atomic updates whenever the analysis can not otherwise
guarantee safe access. For the special case of stencil loops,
PerforAD [34] instead provide a Python-based DSL that uses
loop transformations to avoid concurrent increments during
the reverse sweep. The functional programming language
Futhark [35] differentiates high-level parallel routines and the
authors discuss the use of generalized histograms, while other
work considers generalized reductions [36] for the same task.
Enzyme [16], [17] previously introduced support for race-
free GPU-parallel programs (CUDA, ROCm) with support
for different memory types, and block-level synchronization,
as well as relevant AD and GPU-specific optimizations. This
paper extends the work in [17] to differentiate any DAG-based
parallel framework in a single tool, and alongside novel generic
parallel optimizations.

III. AD BACKGROUND

Differentiation of programs is performed by augmenting each
individual instruction with auxiliary instructions to compute its
partial derivative, and augmenting each individual variable
with an auxiliary variable to hold derivative values. The
derivatives are accumulated following the chain rule of calculus
to obtain the derivatives of the overall program. The order in
which individual derivatives are accumulated does not change
the overall result, but does affect the run time and memory
consumption.

Many tools implement AD capabilities using a variety of
strategies and supporting input languages including C [37],
[38], C++ [23], [39]–[41], Fortran [26], Julia [42], [43], or
MATLAB [44], while machine learning frameworks such as
TensorFlow [45], PyTorch [46], JAX [47], and DEX [48]
support AD natively.



Two strategies are common: The forward mode accumulates
derivatives in the order of the original computation, and
is efficient for programs with few differentiable inputs and
an arbitrary number of differentiable outputs. In contrast,
the reverse or adjoint mode and the closely related back
propagation are efficient for programs with an arbitrary number
of differentiable inputs and few differentiable outputs. This
is a common situation in machine learning, engineering and
science, where functions with millions of input parameters are
commonly optimized subject to a scalar loss function.

Reverse mode accumulates derivatives in the inverse order
of the original computation, requiring data flow reversal and
special handling for overwritten values that must be preserved
or recomputed for the derivative computation of nonlinear
instructions. One common approach is to trace the computation
at run time using operator-overloading. Another approach is
to use source-rewriting before compilation, which significantly
reduces the performance overhead of differentiation, at the cost
of more complex tool development. The Enzyme approach is
closely related to source-rewriting, but has unique advantages
due to its deep integration into the LLVM compiler. We refer
to [16], [17] and [49], [50] for detailed discussions of Enzyme
and AD, respectively.

IV. DIFFERENTIATION MODEL

Enzyme uses reverse mode AD by default, and the remaining
discussion will be exclusively about this mode. We will refer to
an instruction and its auxiliary derivative instruction as primal
and adjoint, and we will refer to auxiliary variables as shadow.
We will identify the shadow of the output of an instruction I
with shadow(I), which represents the derivative of I. Within
Enzyme, taking the derivative of an instruction I involves four
steps:
1) Load and zero shadow(I).
2) Compute the partial derivative of I w.r.t. its inputs.
3) Multiply the result of (2) with the shadow retrieved in (1).
4) Increment the shadow of I’s input with the result of (3).
Evaluating the adjoint of all instructions in reverse order ensures
that when evaluating the adjoint of I, shadow(I) contains the
total derivative, or sum of all partial derivatives from its uses.
This holds because the adjoints for all uses of I, which add the
corresponding partial derivatives to shadow(I), occur before
the adjoint of I when run in reverse order since all uses of I
must occur after I when run forward.

A. Differentiating parallel tasks

Instructions within fork-join parallel programs do not have a
defined order in which they are run. Instead, instructions form
a directed acyclic graph (DAG) of permissible orderings. A
node in the DAG with multiple children represents a spawn,
and a node with multiple successors represents a sync. Reverse
mode AD of such a program requires reversal of that DAG. The
above differentiation model has to be extended for this situation.
Since I must still dominate all the uses of I in the original
(primal) program, all adjoints of the uses are guaranteed to
have been executed prior to the adjoint of I. The adjoint of
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Fig. 2: Illustration of Correctness for Parallel AD: The control
and data flow is reversed, hence inverting the data- and control
flow. In the forward pass (left) the control flow goes from spawn
to sync. In the reverse-mode derivative (right), the locations
of spawn and sync are reversed.

those uses, however, may occur in parallel. When operating on
a parallel program, Enzyme will perform an atomic addition
or reduction when incrementing the shadow of an instruction
that is not thread-local. This ensures that the total derivative is
available and the computation is correct.

Differentiation of a parallel for loop and spawn/sync pair
can now be shown to correctly implement the reversal of the
DAG. The sync in the primal is transformed into spawn in the
adjoint, and a spawn in the primal is transformed into a sync.
A parallel for loop spawns off several tasks in parallel that are
subsequently synchronized. Differentiating a parallel for loop
results in a parallel for loop of adjoints at the corresponding
location in the reversed DAG. This is equivalent to the sync
of the primal parallel for being transformed into a spawn of all
tasks constituting the loop. See Figure 2 for an illustration. For
a thorough example and proof of how to differentiate parallel
control flow in the specific context of a GPU-style barrier
in Enzyme (as opposed to any general parallelism, described
here), see [17].

B. Differentiating message passing

MPI’s model can be thought of as an implicit parallel for
loop across the entire program, with distinct address spaces,
focusing on explicit data management as opposed to execution
management. MPI communication routines do not expose
the implicit parallel for construct but instead expose only
explicit data management using function calls with inputs and
outputs. MPI’s nonblocking communication (e.g., MPI_Isend,
MPI_Irecv, MPI_Wait) can be treated as parallel task constructs,
where MPI_Isend and MPI_Irecv dispatch a task synchronized



at the corresponding MPI_Wait.1 Differentiation of MPI in this
fashion is quite efficient and results in twice the number of
MPI calls, for both the primal and derivative values (which
may be able to be fused during optimization), and at most
thrice the amount of MPI-related memory (the original buffer
to send/receive, the derivative buffer to send/receive, and
potentially a temporary buffer for derivative accumulation).

C. Caching of intermediate results

The adjoints of instructions often require the arguments of
the original value. For example, when computing the adjoint of
x2, one needs to preserve the original value of x to compute the
adjoint 2x. If the instruction that computed x cannot be rerun
and the value is not otherwise available in the reverse pass, the
value needs to be cached. Using a minimum-cut recompute vs
cache analysis [17], Enzyme determines a minimal set of values
that must be preserved in order to satisfy the dependencies
of the reverse pass. Enzyme allocates caches in one of three
ways:

1) Allocate a stack variable if that variable is guaranteed to
be alive for the entire duration of the differentiation

2) Allocate an array prior to the loop and store the value in a
slot indexed by the loop variable if the value is computed
within a loop with known size

3) Dynamically reallocate an array within the loop if the
loop does not have a known size

V. COMPILER-INTEGRATED DIFFERENTIATION

In contrast to existing differentiation approaches, Enzyme
performs differentiation inside of the compiler. This enables
Enzyme to access and modify the program at a variety of
stages during the compilation pipeline. Deeply integrating AD
within the entire compiler stack provides Enzyme with a large
amount of flexibility. For example, Enzyme can run additional
optimizations both prior to and after differentiation, identify
source-line information from metadata, rewrite and modify
library calls, and even run a JIT compiler. In addition to
enabling new optimization opportunities, these capabilities
thereby allow Enzyme to handle a wide array of parallel
constructs in a robust and concise manner by writing a few
core routines that can be generally applied to parallel methods.

Enabling support for parallelism within our extension to
Enzyme requires three steps:

1) Identifying a runtime call or construct which enables
parallelism. This enables Enzyme to produce parallel-safe
derivative accumulation.

2) Telling Enzyme how to call the parallel runtime call, which
it will call with an automatically generated derivative of
the body of that construct.

3) Marking any information which is required to compute
the derivative of the parallel construct as needing to be
preserved by Enzyme’s caching infrastructure.

1 Depending on MPI implementation, and parameters this may only specify
that the task on the current node has completed (e.g. the MPI_Isend) and not
necessarily that the corresponding task on the partner node has completed (e.g.
the MPI_Irecv).

Given all this, Enzyme empowers the user to differentiate
parallel constructs without rewriting their original code.

A. Identifying Parallel Constructs

The easiest way for Enzyme to identify a parallel construct is
by identifying a corresponding runtime call. Enzyme provides
several utilities for recognizing function calls that match a
certain pattern. For example, when compiling with Clang
(the C/C++ compiler frontend for LLVM), Flang (the Fortran
compiler for LLVM), or MLIR (a higher level intermediate
representation), a program with OpenMP parallelism will call
the __kmpc_fork_call function to run a given closure on all
threads (see Figure 3). When writing programs with MPI for
parallelism, the LLVM IR will contain calls to functions like
MPI_Isend, MPI_Irecv, and MPI_Wait which asynchronously
send data to another process, receive data from another process,
and wait for a given operation to finish, respectively. Identifying
the parallel constructs from Julia is somewhat more difficult
because some of its parallel runtime calls do not have a
unique ABI and instead create just-in-time compiled functions.
Instead of identifying these calls from the (potentially inlined)
assembly structure of the function, Enzyme can explicitly mark
a source-level Julia method (such as Base.threads_for) as
matching a parallel pattern (e.g. a call to task creation). In
particular, the ability to leverage the compiler to mark arbitrary
functions enables Enzyme to be invariant to the randomized
names generated by Julia’s JIT. This not only permits Enzyme
to recognize the individual task creation mechanisms, but
alternatively can be used to identify an entire parallel for-
loop construct directly, instead of the underlying tasks which
implement it.

B. Differentiating Parallel Constructs

Now that Enzyme can identify a program’s parallelism,
Enzyme must be taught how to call these parallel constructs
in order to fill in the derivative information. Some parallel
constructs, such as OpenMP, or Julia Tasks take a function
closure. Differentiating functions which call a closure requires
telling Enzyme to differentiate the closure body and potentially
wrapping the auto-generated derivative of the closure to match
the expected ABI and calling convention. See Figure 4 for
an example of Enzyme-generated derivative closures for the
OpenMP program in Figure 3. Finally, one needs to tell Enzyme
the corresponding adjoint of the function, just like any other
functions or LLVM instructions. As an example, differentiating
MPI_ISend results in a MPI_Wait and differentiating a Julia
spawn task (Base.enq_work) in a corresponding Julia task wait
(Base.wait).

C. Data caching

The final step to enable differentiation is to inform Enzyme
about any information which must be preserved to compute
the adjoint of a parallel construct. As an example, consider an
OpenMP worksharing loop construct (#pragma omp parallel
for which divides an iteration space of arbitrary size to be
run efficiently on the available system threads. The bounds



void square(double* data) {
#pragma omp parallel
{

int tid = threadid();
data[tid] = data[tid] * data[tid];

}
}

void outlined(double*& data) {
int tid = threadid();
data[tid] = data[tid] * data[tid];

}
void square(double* out, int start, end end) {

__kmpc_fork(outlined, out, start, end);
}

Fig. 3: Left: An OpenMP function which squares an element of an array on each thread. Right: The compiler lowers this
construct to a closure outlined of the body and a call to the __kmpc_fork runtime call which runs the closure on each thread.

void ∇square(float* data, float* d_data) {
// Allocate an array to cache all the values of data[i]
// from the reverse pass, so the original value can be
// used to compute the reverse pass.
float* cache = new float[numthreads()];
// Run the forward pass on every thread.
__kmpc_fork(aug_outlined, data, d_data, cache);
// Run the reverse pass on every thread.
__kmpc_fork(rev_outlined, data, d_data, cache);
// Free the cache
delete[] cache;

}

// Bodies automatically generated by Enzyme when
// informed about the closure.
void aug_outlined(float*& data, float*& d_data, float*& cache) {
int tid = threadid();
cache[tid] = data[tid];
data[tid] = data[tid] * data[tid];

}
void rev_outlined(float*& data, float*& d_data, float*& cache) {

int tid = threadid();
d_data[tid] *= 2 * cache[tid];

}

Fig. 4: Left: Gradient of square (ref. Figure 3). This calls the OpenMP parallel runtime call twice, once for the forward pass,
and once for the reverse pass. Right: The forward and reverse passes of the outlined OpenMP parallel body.

int send(double* data, double* d_data, int dst) {
// The original and shadow requests.
MPI_Request req, d_req;

// The forward pass of Isend, which also stores what
// type of instruction (and its buffer) for use in a
// reverse wait.
MPI_Isend(data, MPI_REAL, dst, req);
d_req = {ISend, d_data, ... };
... // Code for corresponding Irecv
MPI_Wait(&req);

// Derivative of MPI_Wait:
// If the origin task was an Isend, perform Irecv
if (d_req.type == ISend)
MPI_Irecv(...);

... // Derivate code for corresponding Irecv
// Derivative of MPI_Isend
MPI_Wait(...)

}

Fig. 5: An asynchronous MPI send request and its correspond-
ing derivative. Since the derivative of the wait must know what
type of instruction it synchronized in order to spawn of its
corresponding adjoint in the reverse, the request type is stored
in the shadow request in the forward pass. A full MPI program
would also need to call an analagous recv and derivative on
the destination node.

of the loop must be preserved for the adjoint construct to
execute a corresponding worksharing loop across the same
number of iterations. Caching data for a MPI_Wait, however
is more difficult. The derivative of a wait on task t is to
spawn the corresponding derivative task shadow(t). However,
MPI has multiple types of tasks (send, receive) which may be
synchronized by the same MPI_Wait. This can be resolved
through the use of shadow variables. We can define the
shadow variable of the original request to store what task was
being waited upon. Therefore when computing the adjoint
of MPI_Wait in the reverse pass, Enzyme can look inside
the shadow request to identify whether it should create an

MPI_Isend or MPI_Irecv. This is demonstrated in Figure 5.

D. General Applicability

Existing tools to differentiate parallel programs must under-
stand every parallel construct in the language they are designed
to differentiate. In contrast, by operating in the compiler, we
can choose to instead differentiate parallel programs with
many constructs (e.g. private memory, reductions) after they
have been lowered into simpler operations (e.g. load and
store operations). This enables Enzyme to differentiate these
constructs without any explicit support being required, as
Enzyme already knows how to differentiate memory operations.
Similarly, higher level parallel languages such as RAJA, which
internally implement parallelism using lower level frameworks
(e.g. OpenMP) do not need any explicit support to be handled,
since we can choose to differentiate after it has been lowered to
OpenMP. This flexibility extends across languages. Adding the
corresponding handler for an MPI call in Enzyme differentiates
MPI code regardless of whether it was written directly in
C++, or using the MPI.jl [51] wrapper inside Julia. Of course,
this does not mean that differentiation needs to be applied at
the lowest level, but that differentiating a single lower level
construct enables differentiation of several higher-level routines
and languages. For example, even though Enzyme differentiates
Julia tasks, which are used to implement a “parallel for” in
Julia, we still also provide an explicit derivative for the Julia
“parallel for” for performance. In contrast, differentiating certain
memory constructs (like private memory), or any code able to
be optimized may be faster when differentiated at a lower-level
since reducing the work of the original code can make an
outsized impact in the reverse program [16], [17].

E. Optimization and Differentiation

Running optimizations prior to differentiation was found to
provide a significant speedup in the original Enzyme paper [16].



This effect occurs for two primary reasons. First, the additional
optimizations result in simplified code which has improved
analysis properties (e.g. aliasing, readonly, etc). Secondly, the
additional optimizations reduce the work done by the function
being differentiated, which in turn, enables the corresponding
generated derivative to perform less work in both the forward
and backwards passes. The need to optimize parallel programs
has been well studied in a variety of works such as Tapir
applying optimizations for Cilk [52] and OpenMPOpt [53].
This need is accentuated in the context of differentiation where
improving aliasing properties can enable Enzyme to avoid
unnecessarily caching variables for use in the reverse pass. For
example, without optimization an OpenMP closure function
captures all of the surrounding variables by value, and can
potentially alias any memory. Moreover, applying parallel
optimization after differentiation may also help. For example,
such an optimization may be able to merge the two parallel
fork calls made in Figure 4. We evaluate the impact of running
OpenMPOpt in the context of differentiation in Section VII.

VI. OTHER PARALLEL CONSTRUCTS

This section gives an overview of how supporting parallel
control flow (parallel for, task create/wait) and memory can
enable support for other common parallel constructs.

A. Memory

1) Local vs Shared Memory: Enzyme is designed to have
common caching and adjoint increment routines that can be
used to implement the adjoint of any instruction of a function
call with relative ease. Introducing a new parallel model does
not require a modification to the caching infrastructure besides
informing Enzyme about what calls are parallel.

The common adjoint increment routine begins by performing
analysis to detect whether the shadow memory location being
modified is thread- (or node-) local. This analysis builds of alias
analysis to deduce if any allocation, or more specifically, offset
into memory, could be used on another thread. As an example,
an allocation defined within a thread which is not captured must
be thread-local. If the memory location is thread-local, Enzyme
performs an efficient serial load, add, and store. If this cannot
be proven, Enzyme will next attempt to prove that the given
memory location is the same for all threads within a parallel
for loop (for all containing parallel loops). If this is the case,
Enzyme will look in its catalog of reductions to see whether a
reduction implementation for that style of thread exists; if so,
Enzyme then will use it to sum the contribution for all threads.
If none of these situations apply, Enzyme will perform an
atomic add. Besides optionally registering a new reduction, a
parallel framework designer adding Enzyme support can inform
Enzyme that a given location is thread-local. It is legal to fall
back and mark every location as being shared among threads
(resulting in many atomics/reductions), but doing so may not
be desirable for performance. Enzyme provides several helper
methods for marking thread-local properties. The shadow of
function-local registers and allocations can be marked as thread-
local (this is the case for OpenMP, MPI, and CUDA but not

for pthreads, Julia tasks, or Cilk tasks). Enzyme supports a
differentiation configuration which assumes that the generated
derivative function will itself be called in parallel and that
any derivative memory location passed as an argument may be
accumulated in parallel. While we found these options sufficient
for OpenMP and MPI, additional thread-local settings can be
implemented (and thus made available to any parallel model
that chooses to apply them).

2) Private Memory: OpenMP and other parallel frameworks
have a variety of different memory clauses. For example,
OpenMP private (and its cousins firstprivate / lastprivate)
specifies that a variable has a separate copy per thread (with
first private initializing the thread-local value to the value
outside the loop and the lastprivate specifying that after the
loop completes, the final iteration’s thread-local value should
be copied to the variable outside the loop). These constructs
are already lowered to allocations and stores (as required) at
the semantically correct location. Therefore, no additional work
is required to handle these.

Consider the program at the top left of Figure 6. Since the
variable in is marked firstprivate, a thread-local copy of in
will be created, initialized to the argument, as is made explicit
on the bottom left of Figure 6 with in_local. When executed,
the first iteration handled by each thread will set out[i] to in,
whereas all other iterations will set out[i] to zero.

Differentiating this with Enzyme will produce the code to
the right in Figure 6. In the reverse pass, the reverse for
loop will set the derivative of in_local to zero at the start
of an iteration (adjoint of in_local = 0), then increment the
derivative of in_local by the derivative of out[i] (adjoint
of out[i] = in_local). This approach simplifies to merely
setting the derivative of in_local to the derivative of the last
iteration when run in reverse, or equivalently the first iteration
when run in the original program. Since the primal code set
the first iteration of each thread equal to in, the correct adjoint
is indeed the sum of the derivatives of all the indices that were
set to in. This case would be especially challenging for any
source-to-source AD transformation tool since OpenMP has no
“for” construct that will subdivide the loop and then reverse
the order of each per-thread chunk. In contrast, not only is
this possible to do on the LLVM level with Enzyme, but is
automatically handled by handling the parallel and memory
primitives alone.

3) Reductions: Proper handling of private and shared mem-
ory allows Enzyme to handle higher-level parallel constructs
built on top of memory, regardless of implementation. For
example, the C++ version of LULESH implements a custom
reduction, shown in Figure 72. In contrast, RAJA provides
a custom reduction operation/template for later use. Both
reduction styles are automatically handled by Enzyme.

2Depending on the size and parallel overhead, it may be more efficient to
implement parallel min as a divide-and-conquer. The example in Figure 7
is used by LULESH, and the divide-and-conquer style version is also to be
handled by Enzyme.



void fp(double* out, double in) {
#pragma omp parallel for firstprivate(in)
for (int i=0; i<N; i++) {
out[i] = in;
in = 0;

}
}

void fp(double* out, double in) {
#pragma omp parallel
{
double in_local = in;
#pragma omp for
for (int i=0; i<N; i++) {
out[i] = in_local;
in_local = 0;

}
}

}

double ∇fp(double* out, double* d_out, double in) {
double d_in = 0;
#pragma omp parallel for firstprivate(in)
for (int i = 0; i < N; i++) {

out[i] = in;
in = 0;

}
// Run the reverse pass
__omp_parallel(rev_outlined, out, d_out, in, d_in);
return d_in;

}
void rev_outlined(int tid, double*& out, double*& d_out,

double& in, double& d_in) {
double d_in_local = 0;
int lb = 0, ub = N;
__omp_for_loop(tid, &lb, &ub);
for (int i=ub-1; i>=0; i--) {

d_in_local = 0; // adjoint of in_local = 0
d_in_local += d_out[i]; // adjoint of out[i] = in_local
d_out[i] = 0;

}
// Enzyme will fall back to atomic if not proven thread local.
atomic { d_in += d_in_local; }

}

Fig. 6: Top Left: An OpenMP function that uses firstprivate memory to set the first iteration handled by each thread to in, the
remainder to 0. Bottom Left: An explicit version of the code on the top left, with firstprivate being replaced with an equivalent
thread-local in_local. Right: C code representing the gradient generated by Enzyme.

double min_per_thread[num_threads()];
#pragma omp parallel
{
double min_value = 0;
#pragma omp for
for(int i = 0; i < N; i++)

min_value = min(data[i], min_value);
min_per_thread[omp_get_thread_num()] = min_value;

}
double final_val = 0;
for(int i = 1; i < omp_get_num_threads(); i++)
final_val = min(final_val, min_per_thread[i]);

Fig. 7: A manual user-written min reduction, as simplified
from its use from the CalcCourantConstraintForElems and
CalcHydroConstraintForElems functions in LULESH. While
this could be rewritten to use higher-level reduction routines
which can be handled by both Enzyme and other tools,
differentiating it “as-is” requires correct handling of a variety
of OpenMP constructs.

B. Concurrent Caching

Instructions and allocations computed within a parallel region
create thread-local values or registers. Special care must be
taken to ensure that the same values created within each thread
are available and mapped to the corresponding thread in the
reverse pass. Enzyme caches such values by preallocating
memory for each thread and storing each value at an index
corresponding to the current thread ID. If the same threads used
for the forward-pass are also available at the corresponding
time in the reverse pass (this includes Julia threads, the LLVM
OpenMP runtime3), the corresponding reverse computation will
access the corresponding caches indexed by their thread ID.

3This is stronger than the current OpenMP specification. However, as
Enzyme exists within LLVM, this can be assumed. If the LLVM OpenMP
runtime is changed to no longer have this property, Enzyme can check the
LLVM version it was built against and select a different cache mapping.

If a different number or set of threads may be available, the
parallel framework must inform Enzyme how to remap the
threads.

Caches of values computed within a worksharing parallel
for loop which does not specify how the loop’s iterations map
to threads, however, can be stored in a location indexed by the
iteration of the for loop. This approach provides flexibility in
how iterations are distributed among threads and even permits
a different mapping of threads to iterations in the reverse pass.

C. High-Level Language Constructs

1) Foreign Library Calls: Unlike statically compiled lan-
guages (e.g., Fortran, C++, Rust, Swift) that call into libraries
such as MPI by linking to the appropriate symbol, just-in-
time compiled languages must dynamically load the symbol at
runtime for use. This requirement presents additional challenges
for Enzyme because the compiler will not be able to recognize
a call to MPI_Send, since all it will see is a call to a specific
integer address. We remedy this within Enzyme.jl (Julia’s
bindings for Enzyme) by performing an additional processing
step on the LLVM IR of the function to be differentiated
by Enzyme. In that pass, Enzyme.jl will look for calls to an
integer address and identify the name of the function being
called by looking through Julia’s symbol table. This then allows
Enzyme to identify the function being called and generate the
corresponding derivative code.4

2) Garbage Collection: Support for special garbage col-
lection (GC) intrinsics must also be handled within Enzyme
in order to differentiate parallel code that uses a library
such as MPI.jl. Allocation of garbage-collected variables is
straightforward and is handled by registering the garbage
collection allocation function to Enzyme’s allocation handler.

4This process is done for all foreign library calls and thus remedies similar
issues that may occur when calling other foreign libraries.



Julia contains special macros GC.preserve which specify that
a given variable must be preserved within the given scope,
even if there are no uses known by Julia. This macro is
necessary when making foreign function calls, which may
not appear to Julia as a use of the memory. The macro
is lowered into the function call gc_preserve_begin and
gc_preserve_end runtime calls, which takes a list of variables
to be preserved.In addition to preserving the original variables
as specified, Enzyme must modify the call to also preserve the
shadow of any variable being preserved, since they may also be
modified in a way not known to Julia. Enzyme will also add a
corresponding GC preservation in the reverse pass. This informs
Julia’s garbage collector to similarly preserve variables when
computing the adjoint of that region. For example, if a memcpy
had its arguments marked for preservation in the original code,
the derivative of the memcpy (containing stores and loads to
the shadow) would now also have its arguments marked for
preservation. There may be instances when preservation is not
needed, but this overly conservative approach is still correct
and may be further optimized later.

D. Non-determinism

Non-determinism in parallel programs can arise from un-
defined behavior in the program. As an example in a parallel
program one can create a write-race where several threads
write distinct values to a single memory location at the same
time. In Enzyme, like in other serial and parallel AD tools,
differentiating a program with undefined behavior may result in
a gradient calculation with undefined behavior. Take a primal
function which reads from undefined memory, this will result in
a gradient function which reads from a corresponding location
of undefined shadow (derivative) memory.

A further source of non-determinism is that it is possible to
have a program with an undefined parallel execution order
that yields a deterministic result (through synchronization,
reductions, atomics, or simply distinct memory locations per
thread). In the case of synchronization, the reversal of the
dependency DAG described in Section IV-A and derivative
accumulation described in Section VI-A enable correct handling
deterministic, but racy programs. In the context of a barrier or
locked/atomic region in the forward pass, this will result in a
program semantically equivalent to another barrier or atomic
region in the reverse pass. For the locked/atomic region, the
now serialized parallel tasks must be executed in the reverse
order, which is performed by caching the actual execution order.
For atomic instructions this is simpler as atomic instructions
within LLVM return the previous value of memory – which is
precisely what would require caching. Some simpler atomic
instructions like add do neither require caching the execution
order, nor an additional value.

VII. EVALUATION

To illustrate the composability of Enzyme’s differentiation
of parallel frameworks, we apply it to several distinct parallel
variations of LULESH [54], [55], and miniBUDE [19]. In these
results, forward denotes the time it takes to run the original

program and gradient denotes the time it takes to both run the
original program and compute the derivative of all the inputs,
and overhead denotes the ratio of the gradient runtime to the
forward runtime.

LULESH is a 5000-line hydrodynamics proxy application
developed by Lawrence Livermore National Laboratory5. As an
unstructured explicit shock hydrodynamics solver, it emulates
the behavior of complex solvers by splitting the computational
domain into volumetric elements on an unstructured mesh,
hence mimicking the complex data movement characteristics of
unstructured data structures. We designed our evaluation to test
how effectively a single low-level implementation of parallelism
within an automatic differentiation tool can enable a diverse
set of parallelism models. We evaluate LULESH variations
that use MPI, OpenMP, hybrid MPI+OpenMP, MPI.jl, and the
RAJA portable parallel programming framework, written in C++
and Julia. To compare our performance against the automatic
differentiation performance to the CoDiPack-differentiated
LULESH of Hück et al. [56].

Mini-BUDE is a 200-line mini-app. developed by the Univer-
sity of Bristol emulating the main computational kernels of the
heavily compute-bound molecular docking engine BUDE [57].
BUDE predicts the binding energy of two molecules using
molecular mechanics, in order to evaluate the ability of test
molecules to bind with a target molecule. Each potential pose
of the molecules needs to be evaluated for its free energy,
hence resulting in hundreds of thousands pose-evaluations for
each molecule. Our evaluation on miniBUDE was designed to
validate our automatic differentiation performance claims on
LULESH on a second, distinct application, as well as testing
Enzyme’s ability to automatically differentiate Julia’s shared-
memory parallelism. We evaluate an OpenMP version in C++,
and a Julia-version utilizing tasks.

A. Benchmark Implementation Details

a) C++: The C++ code is based on the official 2.0 release
of LULESH6. We modified the code by creating a second
shadow domain to store the derivative result and added an
option to switch between primal and derivative computation.
The only other change made was to pass member functions to
the communication subroutines at compile time rather than as
an array. This is not required for differentiation or correctness,
and member functions are passed as an array in the RAJA
version. For the OpenMP-version of miniBUDE7 we created
a shadow domain for the computational kernel and added an
option to switch betweeen primal and derivative computation.

b) RAJA: The RAJA code is based off LULESH 2.0
from the official RAJA benchmark repository8. We added
a second domain to store derivatives and added a flag to
enable differentiation. The only changes we made were to
use a standard allocator, rather than the custom allocator
in the repository, and to free memory at the end of each

5https://asc.llnl.gov/codes/proxy-apps/lulesh
6https://github.com/LLNL/LULESH
7https://github.com/UoB-HPC/miniBUDE
8https://github.com/LLNL/RAJAProxies
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iteration (calling std::vector::shrink_to_fit in addition to
the std::vector::clear). The RAJA version was seemingly
identical to the vanilla C++ version with the exception of using
C++ std::vector instead of bare pointers, RAJA looping
constructs instead of regular serial or OpenMP parallel for
loops, and the runtime member function passing.

c) Julia: Since no official or unofficial version of
LULESH exists in Julia, we built a new version from scratch
based on the official C++ version, and LLNL’s unverified
FORTRAN version of LULESH 1.0. We elected to port
LULESH’s MPI communication to Julia through the use of
MPI.jl [51]. While the code attempts to remain faithful to
the official C++ code, some differences include the use of
garbage-collected arrays and minor changes to better match
standard Julia design paradigms. The code’s correctness was
verified against LULESH’s correctness checks of [18]. For
the Julia-version of miniBUDE we created a shadow domain
for the computational kernel, no-inlined the core kernel, and
added the option to switch between the primal and derivative

computation for evaluation purposes.
d) CoDiPack: CoDiPack [23] is an existing operator

overloading automatic differentiation tool for C++ with an
extension to differentiate through MPI code. We use a version
of LULESH modified by the CoDiPack authors [56] which
rewrites variables and communication within the application to
use CoDiPack-specific variants. We use CoDiPack LULESH
as a performance baseline for existing state-of-the art tools.
Like Enzyme, we use CoDiPack in reverse-mode for the tests.

e) Setup: Experiments were run on an AWS c6i.metal
instance with hyper-threading and Turbo Boost disabled,
running Ubuntu 20.04 running on a dual-socket Intel Xeon
Platinum 8375C CPU at 2.9 GHz with 32 cores each and
256 GB RAM.

All C++ codes are compiled using LLVM 14, and the Julia
codes use Julia version 1.7.1. C++ MPI-codes are run with
OpenMPI 4.0.3, and Julia’s MPI code is run with MPICH
4.0.1. Experiments with OpenMP were benchmarked with
LLVM 14’s OpenMP implementation. We measured the time
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The block size used for LULESH was 96 and the default number of poses was used for BUDE.

taken to execute the forward and differentiated versions of
LULESH, and miniBUDE using different types of parallelism.
For LULESH MPI strong scaling we report runtimes from 10
consecutive iterations from one run. For LULESH C++ and
RAJA, MPI weak scaling, thread scaling, and MPI task and
thread strong scaling we report times for 100 iterations. All
remaining runs of LULESH experiments use 10 iterations.
For the C++ and Julia versions of miniBUDE, we report
times for the default number of iterations (100 and 8 iterations
respectively). We studied the parallel scaling of the forward
and differentiated code with increasing MPI rank and OpenMP
thread counts.

B. Gradient verification

For realistic applications it is rarely feasible to perform tests
for all relevant input values, nor is it generally feasible to
compute the entire gradient or Jacobian matrix for applications
with many active inputs or outputs using both the forward and
reverse mode. It is therefore common practice to limit tests to
certain inputs, and in the case of AD, to further limit tests to
certain projections of the Jacobian matrix that can be efficiently
computed with multiple approaches for comparison.

In order to verify the gradients computed by Enzyme, we
selected a projection that can be efficiently computed using
the reverse mode, while also being easy to approximate using
finite differences. Using reverse mode, this projection can be
computed by initializing all shadow variables to 1, and summing
the computed shadow variables. When using finite differences,
the same projection can be computed by perturbing all input
variables at once by the same small value and summing the
resulting derivatives of all output variables as approximated

by the corresponding finite difference formula (we use central
differences for the perturbations and derivative approximations).
Both projections should yield the same scalar value, up to
round-off and truncation errors. We note that this is similar to
the “fast mode” gradient check [58] implemented in PyTorch.

VIII. RESULTS

For each of the benchmarks (LULESH, miniBUDE), and
parallel frameworks (OpenMP, MPI, OpenMP+MPI, RAJA,
Julia Threads, MPI.jl) we evaluated the scalability of the
original code, Enzyme-generated derivatives, and baseline
CoDiPack-generated derivatives, if available.

LULESH requires the number of MPI ranks to be a perfect
cube, MPI scaling tests hence ran on 1, 8, 27, and 64 ranks.
The strong scaling of the benchmarks is shown in Figure 8
(middle row). Here, we plot the speedup (time to run on one
rank divided by time to run on N ranks) as the total amount of
work is fixed while the number of ranks is increased. We find
the scaling behavior of the derivative computation to be better
than that of the primal in the C++, RAJA and CoDiPack cases.
It matches the primal for the Julia implementation. It can be
observed that the speedup of all cases reduces after 27 ranks,
because of non-uniform memory access (NUMA). Each socket
on the AWS instance can support 32 threads, beyond which
threads must access non-local memory resulting in increased
memory latency and consequently reduced speedup.

In both strong and weak scaling experiments, all versions of
MPI-based LULESH differentiated with Enzyme (C++, Julia,
RAJA), the differentiated code scales similarly to that of the
original function. For the C++ and RAJA tests the decreased
weak scaling of both the original LULESH benchmark and
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its derivatives can be explained by NUMA effects that occur
when one needs to access data on more than one socket. We
attribute the performance difference between LULESH.jl, and
other LULESH implementations to the used MPI versions.

As the CoDiPack code is a modification of the C++ LULESH
codebase with CoDiPack primitives, we can roughly compare
the run times of Enzyme on the C++ LULESH against
CoDiPack LULESH. While the CoDiPack gradient appears
to scale better than Enzyme, this is because CoDiPack has
a large gradient overhead (additional instructions required to
compute the derivative of a single instruction in the reverse
pass) for serial instructions unrelated to MPI. This causes
the overall gradient overhead (considering all MPI and serial
instructions) for CoDiPack to be quite high at 1 rank (see
Figure 8 (top row)). The scaling tests perform fewer serial
instructions per rank at higher node, causing the total overhead
to be composed of fewer serial instructions in proportion to
an MPI call. As a result, CoDiPack’s apparently improved
scalability is an artifact of the higher serial differentiation
overhead being called proportionally fewer times, rather than
scalability of its MPI differentiation.

We also evaluated strong scaling performance of the OpenMP
C++ and RAJA versions of LULESH in Figure 9 (top
row) (CoDiPack cannot differentiate OpenMP LULESH, and
LULESH.jl does not use threads). To evaluate the effectiveness
of parallel optimization we ran versions of the OpenMP

LULESH with and without OpenMPOpt enabled. We extended
the OpenMPOpt in LLVM 14 to also handle hoisting loads
out of parallel regions. We again find that the scaling behavior
of the derivative matches that of the original function.

We find that LULESH OpenMP has a relatively flat gradient
overhead. The overhead drops when OpenMPOpt is enabled due
largely to the fact that OpenMPOpt moves a pointer indirection
out of a loop, improving alias analysis and allowing Enzyme
to avoid caching as much data.

We evaluated the strong scaling performance of the OpenMP
C++, OpenMPOpt C++, and Julia Task versions of miniBUDE
(OpenMPOpt does not apply to Julia tasks). With regular
OpenMP, the gradient overhead worsens as threads increase
but does not grow with OpenMPOpt. This is again due to
parallel load hoisting moving data outside a loop, which in
this test enables Enzyme to avoid having to cache any data
at all, electing instead to recompute temporaries. There is a
slight decrease in scalability for the gradient at 32 threads due
to using both sockets at that point and needing to update
data from both CPU’s. Notably, the gradient continues to
scale on multiple sockets after the initial performance loss.
miniBUDE.jl’s overhead is higher, but again scales well. The
higher overhead is because Julia arrays have an extra level
of pointer indirection that causes alias analysis to conclude
that several values need be cached. The amount of data being
cached is still moderate due to Enzyme’s ability to rematerialize
temporary allocations.

The weak scaling performance of the OpenMP C++ and
RAJA versions of LULESH can be found in Figure 10.
We again find that scaling of the LULESH OpenMP and
OpenMPOpt gradient matches that of the primal. The C++
OpenMPOpt displays anomalous behavior because OpenMPOpt
did not optimize for a single thread as effectively. Finally,
Figure 11 shows the scaling behavior of LULESH using both
MPI task and OpenMP thread parallelism.

Overall, for all types of parallelism, the differentiated code
scales similarly to the forward code. Since Enzyme can cache
data without contention or a shared data structure, only gradient
accumulation may add contention to the program. The use of
analyses which detect what pointers and registers are thread



local and thus can be accumulated serially helps preserve the
parallel scaling properties.

IX. CONCLUSION

We have introduced a composable and generic LLVM-based
mechanism to differentiate a variety of parallel programming
models. In addition to simplifying the ability to handle high-
level parallelism constructs, this marks the first time that an
automatic differentiation tool can handle multiple parallelism
models and multiple languages with a single implementation.
We showcase the potential of this approach on the proxy apps
LULESH, and miniBUDE, demonstrating Enzyme’s practical
use in real-world scientific simulation codes with nontrivial
parallelization patterns. The overhead of the differentiated code
is well inside the expected runtime of overheads of other
state-of-the-art differentiation tools, is even comparable to the
overhead of sequential programs [59], and observes the same
scaling behavior of the differentiated code when compared
with the original code. At the same time Enzyme does not
require its users to utilize custom Adjoint-MPI libraries, and
rewrite their application, making its AD of parallel programs
much more accessible for users.
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