
Enabling Transformers to Understand Low-Level
Programs

Zifan (Carl) Guo
MIT PRIMES

carlguo@mit.edu

William S. Moses
MIT CSAIL

wmoses@mit.edu

Abstract—Unlike prior approaches to machine learning, Trans-
former models can first be trained on a large corpus of unlabeled
data with a generic objective and then on a smaller task-specific
dataset. This versatility has led to both larger models and
datasets. Consequently, Transformers have led to breakthroughs
in the field of natural language processing. Generic program
optimization presently operates on low-level programs such as
LLVM. Unlike the high-level languages (e.g. C, Python, Java),
which have seen initial success in machine-learning analyses,
lower-level languages tend to be more verbose and repetitive
to precisely specify program behavior, provide more details
about microarchitecture, and derive properties necessary for
optimization, all of which makes it difficult for machine learning.

In this work, we apply transfer learning to low-level (LLVM)
programs and study how low-level programs can be made more
amenable to Transformer models through various techniques,
including preprocessing, infix/prefix operators, and information
deduplication. We evaluate the effectiveness of these techniques
through a series of ablation studies on the task of translating C
to both unoptimized (-O0) and optimized (-O1) LLVM IR. On
the AnghaBench dataset, our model achieves a 49.57% verbatim
match and BLEU score of 87.68 against Clang -O0 and 38.73%
verbatim match and BLEU score of 77.03 against Clang -O1.

Index Terms—machine learning, NLP, compilers, LLVM, ma-
chine translation

I. INTRODUCTION

In recent years, natural language processing has experienced
a variety of breakthroughs due to the emergence of the Trans-
former machine learning model [49], pretraining objectives
[11, 28, 52], and the usage of an increasing amount of data
and parameters [4]. Researchers have also started applying
Transformers to other logic tasks like solving math problems
[9, 26] and a variety of tasks on programming languages
such as machine translation [40], bug detection [12], and code
generation [29]. Recently, Codex [7] was trained on a large
corpus of public GitHub repositories and powers the Github
Copilot application for AI programs autocompletion 1.

While Transformer models have found success in learning
high-level programs, interpreting low-level programs requires
additional thought. While high-level programs contain many
English-based keywords to simplify the process of writing
code, traditional compilers first transform programs into un-
ambiguous low-level representations that contain sufficient
information to enable optimization and analysis passes. As
a result, low-level programs tend to be more verbose and

1https://github.com/features/copilot

less readable, but more robust and precise than high-level lan-
guages. As demonstrated in Fig. 1, the LLVM representation
of simple C++ code contains roughly twice the number of
tokens. By simply assuming that altering any token would
cause the program not to compile, this additional verbosity
provides more locations that a language model could produce
an erroroneous token and conseuquently emit a program that
cannot be compiled. This additional verbosity, however, allows
low-level programs to specify more program semantics than
high-level programs. As an example, in Fig. 1, the compiler
can add attributes like nocapture and readonly to the
parameters of printf(), specifying that the arguments to
the function are not captured or written to, respectively.
While this information could have been deduced from the
high-level program itself, it was implicit in the definition of
printf(), rather than explicitly marked in the program.
Similarly, whereas the function calls to printf inside the
Derived and Base class constructors are implied within
C++, on the LLVM level printf is called explicitly.

These additional properties available in low-level programs
are essential for optimization. Consider the code snippet in
Fig. 2 that normalizes a vector, with the explicit program
properties written on the high-level code for ease. The loop
invariant code motion (LICM) [33] optimization pass can
reduce the runtime of the norm function from Θ(n2) to Θ(n)
by moving the call to mag out of the loop so that mag can be
computed once and reused for every iteration. In Fig. 2, the
LICM optimization is only legal if mag is marked readonly
and the two pointers are marked restrict, meaning that
the memory locations in and out do not overlap. These
semantics are required since otherwise either the call to mag or
the store to out would be able to overwrite in, potentially re-
sulting in a different value for the magnitude on each iteration.
These properties tend not to be explicitly specified in high-
level programs, whereas low-level representations like LLVM
have the ability to represent these semantics but also include
analysis passes to derive these properties automatically.

While Transformers have historically only been trained on
high-level programs, an open question remains regarding their
effectiveness on low-level languages. Since low-level lan-
guages like LLVM are where most optimizations and analyses
are applied, successfully applying Transformers on low-level
programs can open the door for automatic general-program
optimization. This paper aims to answer the question of how

mailto:carlguo@mit.edu
mailto:wmoses@mit.edu

#include <stdio.h>
class Base { public:
Base() {

printf("Called Base()");
} };
class Derived : public Base {
public:
Derived() {
printf("Called Derived()");

}
int square(int x) {
return x * x;

} };
int f(int x) {
return Derived().square(x);

}

@.str = private constant [17 x i8] c"Called Derived()\00"
@.str.1 = private constant [14 x i8] c"Called Base()\00"

define i32 @_Z1fi(i32 %0) {
%2 = call i32 (i8*, ...) @printf(i8* nonnull dereferenceable(1)

getelementptr inbounds ([14 x i8], [14 x i8]* @.str.1, i64 0, i64 0))
%3 = call i32 (i8*, ...) @printf(i8* nonnull dereferenceable(1)

getelementptr inbounds ([17 x i8], [17 x i8]* @.str, i64 0, i64 0))
%4 = mul nsw i32 %0, %0
ret i32 %4

}

declare i32 @printf(i8* nocapture readonly, ...)

Fig. 1: A sample C program (left) and its corresponding LLVM IR (right). The LLVM IR is more verbose but explicitly writes
out function calls and attributes that are hidden on the high level.

__attributes__((const));
double mag(int n, const double *A);
void norm(int n, double *restrict out,

const double *restrict in) {
for(int i = 0; i < n; i++)

out[i] = in[i] / mag(n, in);
}

void norm(int n, double *restrict out,
const double *restrict in) {

double precomputed = mag(n, in);
for(int i = 0; i < n; i++)

out[i] = in[i] / precomputed;
}

Fig. 2: The left shows an unoptimized program to normalize a vector that runs in Θ(n2) time. The right shows an optimized
version of the same program that runs in Θ(n) time after performing the loop invariant code motion (LICM) [33] optimization.

effective such models are presently on low-level programs
and what techniques can be applied to make analyzing low-
level programs more effective. To answer this question, we
apply Transformer models on LLVM IR, a common compiler
intermediate representation used for optimization and code
generation in various languages, including C, C++, Julia, Rust,
Swift, Fortran, etc. Specifically, we preprocess and train a
Transformer model on LLVM IR by applying best-practice
techniques leveraged on high-level programming languages, as
well as novel techniques specific to LLVM and low-level pro-
grams. To evaluate the overall effectiveness of the model, we
focus on a case study of training a replacement for a traditional
C compiler, i.e., training a model to translate C functions into
unoptimized and optimized LLVM IR. Specifically, we have
the following contributions:

• We implement a preprocessing pipeline for low-level
programs like LLVM IR for training Transformer models.

• We describe several techniques for improving the per-
formance of transformer models on low-level code, with
ablation studies of their efficiency.

• We demonstrate end-to-end translation between C and
both unoptimized (-O0) LLVM IR and optimized (-O1)
LLVM IR via a Transformer model.

II. RELATED WORK

A. Unsupervised Language Models

Transformer models [49] and subsequent extensions like
BERT [11] enable training on a large corpus of unlabeled
data and then fine-tuning on task-specific labeled data. Cross-
lingual Language Pretraining Model (XLM) [24] further al-
lows training of multiple languages in one model, establishes

fine-tuning objectives like back-translation [25], and adds byte-
pair encoding (BPE) [43] to the preprocessing process, which
splits words into sub-words to condense an open-vocabulary
task into a fixed vocabulary task [25]. Recent work [4, 38]
shows that pretraining with more data from different languages
and more model parameters can reach better results on down-
stream tasks after fine-tuning.

B. Unsupervised Language Models on Programs

Researchers have applied Transformers to high-level pro-
gramming languages. Kanade et al. [22] and Feng et al. [13]
transfer the BERT model to capture the semantic similarity
between natural and programming languages and show that
pretraining on code is effective. Researchers have also ex-
perimented with different implementations of the traditionally
successful language model T5 [38] on code [8, 36, 50].

TransCoder [40] is an unsupervised model that translates be-
tween C++, Java, and Python, based on open-sourced GitHub
monolingual source code data accessed through Google Big-
Query2. Roziere et al. [42] update TransCoder with parallel
training data by taking a pretrained model to generate pre-
dicted translation and leveraging an automated unit-test tool to
filter out invalid predictions. Ahmed and Devanbu [2] highlight
that the same code in multiple programming languages could
preserve identifiers and naming patterns well, serving as
anchor points for training and amplifying performance.

The literature on code-specific machine learning is ac-
tively growing. Recent work explores code-specific pretrain-
ing objectives like de-obfuscation of variable names [41]

2https://console.cloud.google.com/marketplace/details/github/github-repos

and contrastive code representation [20]; code-specific bench-
mark datasets like CodeNet [37], CodeSearchNet [19], and
CodeXGLUE [29]; and evaluation metrics like CodeBLEU
[39] and APPS [17]. Recent Transformer research includes
generating unit tests [48], AlphaCode [27], a Transformer
model that solves competitive programming questions, and
Codex [7], which provides accurate suggestions to complete
functions based on docstrings. Tufano et al. [47] and Drain
et al. [12] use Transformers to fix bugs by translating buggy
programs to correct ones.

C. Automatic Compiler Optimization

There has been a plethora of work in the field of machine
learning-assisted optimization. Whereas our work aims to
explore how effectively Transformers can be used to entirely
substitute for a compiler’s code generation and optimization
phases in their entirety, most pieces of prior work focus
on applying machine learning to specific components of the
compilation or optimization pipeline and tend to rely on
supervised learning.

Several previous supervised learning-based approaches ex-
tract program features, such as static source code [14], perfor-
mance counters, [6] or control flow graphs (CFG) [35]. There
have also been reinforcement learning and deep learning tools
for feature extraction, such as building cost models [1, 32] or
estimating throughputs [31].

Both optimization selection and phase-ordering have also
been explored through genetic algorithms [23, 46] and rein-
forcement learning [18, 30]. MLGO [53] updates traditional
LLVM heuristics for inlining-for-size and register-allocation
through reinforcement learning models. Jayatilaka et al. [21]
automatically determine whether one should use the -O1,
-O2, or -O3 optimization pass sequences.

Super-optimization, or optimizing programs without consid-
ering specific optimization passes, involves finding a seman-
tically equivalent but more optimized version of any given
program. While doing so relies on brute force search, recent
developments show promising results of super-optimization
with reinforcement learning [5, 44] and seq2seq Transformer
models [45].

Like this work, Armengol-Estapé and O’Boyle [3] aim to
explore how effectively Transformers can replace traditional
compilers. Unlike this work, Armengol-Estapé and O’Boyle
[3] focuses on platform-specific x86 code-generation, whereas
we target LLVM IR–a slightly higher-level program represen-
tation where many existing optimizations are performed.

III. BASE MODEL

To translate C to unoptimized LLVM IR, we build off
of TransCoder [40]: a sequence-to-sequence (seq2seq) Trans-
former model with attention that consists of an encoder and
decoder3. The TransCoder model follows the three principles
first set out by XLM [24] for cross-lingual natural lan-
guage translation: initialization, language modeling, and back-
translation. We use the first two steps but adopt a machine

3https://github.com/facebookresearch/TransCoder

translation objective rather than back translation, pretraining
with the MLM objective on all the C and LLVM data and
training with denoising auto-encoding and machine translation
objectives only on the standalone, static function.

A. Preprocessing

To process into the ML pipeline, we use separate tokenizers
for C and LLVM IR similar to Roziere et al. [40] because
different languages may use the same keywords to convey
drastically different semantics. For example, ”;” indicates the
end of one line in C but indicates the start of a comment in
LLVM IR. Facebook researchers originally implemented the C
tokenizer using a Python binding of Clang but later switched
to Tree-sitter4 in their newly updated CodeGen GitHub repos-
itory5. The two tokenizers function slightly differently, but
both accomplish the desired task properly. For example, when
parsing the #define directive, Clang generates two tokens,
and define, whereas Tree-sitter keeps it as one token.
We use the Clang C tokenizer because of the similarity of
its internal logic to that of the LLVM IR tokenizer. Using
PyBind116 we exposed the LLVM lexer (LLLexer) to
Python, which we use as our tokenizer7. The LLVM tokenizer
provides the type and string representation of each token,
allowing us to parse the relevant information. Using fastBPE8,
we then learn BPE codes on the concatenation of these tokens
and split them into subword units.

B. Training Objectives

Lample et al. [25] demonstrate the importance of pretrain-
ing in unsupervised machine translation by mapping similar
sequences with similar meanings, regardless of the languages.
Roziere et al. [40] identify that the cross-lingual nature of
the pretraining model comes from the number of common
tokens (anchor points), such as shared keywords like define,
variable names, and digits. We believe that the task of trans-
lating from C to LLVM inherently presents a worse cross-
lingual representation than a translation between two high-
level languages because of the higher syntactical and structural
differences between C and LLVM. In an analogue to NLP,
an English-French model would have more ”cross-linguality”
than an English-Chinese model because of the similar alphabet
[40] and sentence structure. We show that enough anchor
points exist to consider the C-LLVM model as cross-lingual,
but unexplored specifics still exist to form a conclusion with
higher certainty. For the specific pretraining objective, we use
the masked language model (MLM) objective [11] following
Roziere et al. [40]. Namely, it takes in a text sequence at each
iteration, masks out some tokens, and asks the model to predict
the missing tokens based on their context.

While the encoder matches the architecture of the pre-
trained XLM model, the decoder needs extra parameters on

4https://tree-sitter.github.io/tree-sitter/
5https://github.com/facebookresearch/CodeGen
6https://github.com/pybind/pybind11
7https://github.com/wsmoses/llvm-tokenizer
8https://github.com/glample/fastBPE

the source attentions, randomly initialized following Lample
and Conneau [24]. As the decoder has never been trained to
decode a sequence before, the model trains the encoder and
decoder with the Denoising Auto-Encoding (DAE) objective,
which asks the model to predict the sequence of tokens based
on a corrupted version with additional noise, first established
in Lample et al. [25]. The noise randomly masks, removes and
shuffles tokens in the input sequences. Applying this noise to
the training process makes the encoder more robust, improving
its results on the machine translation objective [40].

With the pretraining MLM and denoising auto-encoding
objectives, the model has a general sense of the two languages.
While raining on these two tasks alone allows the model
to translate some programs, its accuracy is limited by the
low number of common anchor points between the LLVM
and C. Therefore, to boost the model’s performance, we use
machine translation as a fine-tuning task. In particular, we use
a language-parallel data corpus of C and LLVM IR programs.

TransCoder [40] and XLM [24] are trained on the back-
translation objective, which considers the loss between the
original program in C and a program in C after translat-
ing to LLVM IR and back. However, TransCoder-ST [42]
identifies that back-translation creates more noise, and the
machine translation objective that considers the loss between
the original program and the directly translated program is
preferred to produce better results. As a result, back-translation
is a compromise that should only be used in the absence of a
dataset with many equivalent programs in different languages.
In the case of translating from C to LLVM IR, we can easily
access a parallel dataset since one can directly generate LLVM
IR by compiling C programs. As a result, we choose to fine-
tune with a machine translation task.

We train machine translation and denoising auto-encoding
in parallel until they converge.

IV. IMPROVING THE MODEL

We introduce several optimizations for improving the ef-
fectiveness of the model’s ability to understand and generate
LLVM IR from C.

a) Code Expansion & Cleaning: We perform several
preprocessing steps on top of the baseline. We first clean
up the C code before compiling to generate LLVM IR with
clang -E, which expands preprocessing directives such

as pasting the definition of imported libraries, compile-time
constants, and more. Such expansion is necessary for our
preprocessing pipeline to run properly.

We also remove specific LLVM tokens that do not signifi-
cantly change the semantics of the program, thereby reducing
the amount of information that the model needs to learn and
thus enabling better training. We remove the data layout, target
hardware architecture, alignments, global attribute groups, and
metadata. Finally, we remove comments.

b) Redundancy Elimination: In some statements like
load, store, or getelementptr, the data type appears
twice, once as itself and again as a pointer. In this case, as

%4 = load i32**, i32*** %2

%4 = load i32** %2

Fig. 3: A load statement (top) in LLVM and the same
statement after removing redundant type information (bottom).

%struct.TYPE_8__ = type { i32, i32, i64 }
...
%21 = alloca %struct.TYPE_8__, i64 %19

%struct.TYPE_8__ = type { i32, i32, i64 }
...
%21 = alloca { i32, i32, i64 }, i64 %19

Fig. 4: The definition and use of a struct type before (top) and
after inlining the type definition.

shown in Fig. 3, we remove one of the two appearances and
construct a detokenizer to restore the second occurrence.

c) Global Name Inlining: As we want to eventually
compile the generated programs but only train on individual
functions rather than entire files, some information is lost and
cannot be recovered. While names and types of externally-
visible global variables or function declarations are immedi-
ately available from their use, the definition of any struct
or class is permanently lost and would hinder the program’s
compilation. To remedy this problem, we inline the references
of non-recursive struct’s, as shown in Fig. 4.

While this process adds complexity to the model, it allows
one to compile the generated functions later. The performance
impact of this change is discussed in Section V.

d) String Name Inlining: Similar to struct types, for
each string constant, LLVM IR automatically generates a
global variable with names such as @.str.1 or @.str.2.
Like other private global variables, the actual content of the
string is lost when we only extract functions. One way of
resolving this issue is to similarly inline the definition of the
string at the location of its use. In the case of constant strings,
however, we chose to leave the variable as a length-specific
placeholder, which can be filled in with a valid value after
translation and prior to execution.

e) Type Prefixing: The bitcode representation of LLVM
types is difficult for the model to learn. In particular, arrays
and structs in LLVM IR (see Fig. 5) require the Transformer
to consider the scope of the array and where the [] ends.
Building off of the work of Griffith and Kalita [15], which
shows improvements of Transformer models in solving arith-
metic problems specified in prefix notation instead of the
conventional infix notation, we similarly decide to rewrite
such structure definitions to be “prefix”-like. Specifically, we
remove the structures of [] or {} and write out the types
in prefix notation, as shown in Fig. 5. Furthermore, we
remove the commas inside the data structures because they
are unnecessary for de-tokenization. By recording the length
of the struct, the detokenizer can faithfully restore them to
evaluate the model’s performance.

[3 x i32] [i32 1, i32 2, i32 3]
{ [4 x i8], i32, { i8, i32 }}

ARR 3 3 x i32 ARR 6 i32 1 i32 2 i32 3
STRUCT 5 ARR 3 4 x i8 i32 STRUCT 2 i8 i32

Fig. 5: An LLVM IR array and struct definition in infix
notation (top) and prefix notation (bottom).

V. EXPERIMENT

A. Training Details

Like TransCoder [40], we train our model with a trans-
former of 6 layers, 8 attention heads, with a single encoder
and a single decoder for both high-level and low-level pro-
gramming languages. We use batches of around 3500 tokens
and GELU [16] as our activation function. We add in a 10%
dropout rate and a 10% attention dropout rate. We optimize
the model with the Adam optimizer and a learning rate of
10−4. Experiments were trained on a single GeForce RTX
3090 GPU (notably fewer than the 32 V100 GPUs in the
original Transcoder paper).

B. Training Data

We train our model on multiple datasets: CSmith [51] (a
randomized test-case generation tool for C programs); Project
CodeNet [37] (a collection of solutions submitted by the public
to competitive programming websites); and AnghaBench [10]
(a benchmark of more than 1 million compilable C functions
constructed from crawling C files on GitHub).

In selecting a good training dataset, we need to simulta-
neously ensure that the dataset is large enough to saturate
the model and that the C programs can be compiled and
thus generate LLVM IR. While CSmith meets both thresholds,
we saw poor results primarily due to its randomness and the
lack of proximity to human written code.9 While CodeNet
programs all successfully compiled and there were many
submissions, they all tended to respond to the same question.
As a result, the dataset lacks diversity—leading to overfitting
and poor results. The AnghaBench dataset not only has a larger
amount of data but all programs are cleaned and compilable by
applying type-inference to reconstruct the missing definitions
(e.g. declarations of auxiliary functions, types, etc.). Moreover,
having only one extracted function in each file eases training,
and our model finds the most success in this dataset.

C. Evaluation

We evaluate our results on four metrics:
• Training Accuracy describes how well the model per-

forms on the machine translation objective in the fine-
tuning phase with the training data.

• Reference Match denotes what percentage of programs
from a test dataset matches the ground truth verbatim
when run through our model.

9Additionally, CSmith functions are quite long, whereas current machine
learning models perform better on shorter sequences.

• BLEU [34] score is a common metric for natural lan-
guage translation that evaluates the quality of the text
of predicted translation by comparing its similarity with
their referenced ground truth.10

• Compilation accuracy counts the number of programs
whose translation was successfully compiled. This metric
can only be applied to datasets whose lost information
(see global variables in Section IV) can be recovered.
As prior research on high-level programs determined that
functional correctness is the best evaluation metric for
machine learning models [7, 40, 42], compilation success
is an apt proxy without the corresponding inputs to run
all the programs on.

TransCoder has to rely on back-translation, evaluating a
BLEU score between the original C code and predicted C
code after translating twice. However, back-translation may
render BLEU score uninformative as the model can translate
into illegal or unintelligible LLVM IR but translate back to
proper C. Since we can easily generate parallel matching
data for C and LLVM IR using the baseline Clang compiler,
our model’s direct machine translation makes the evaluation
of BLEU score more informative. Despite BLEU’s ease of
use, it is possible to generate programs that do not appear
to be human or even compiler-generated but have a high
BLEU score. As such, training to maximize a BLEU score
may downplay the importance of learning language-specific
syntactic and semantic features, which are especially critical
for interpreting code.

Recent work like CodeBLEU [29, 39] offers a new evalua-
tion metric that updates BLEU to be code-specific, taking an
additional AST (Abstract Syntax Tree) and a dataflow graph
comparison into consideration to evaluate the code’s structure.
However, CodeBLEU requires language-by-language specific
implementation and lacks portability. As CodeBLEU aims
to serve the community of machine learning on high-level
programs, it is yet to be implemented to evaluating low-level
programs like LLVM IR. Building a metric to evaluate low-
level programs is of interest to future work.

D. Results

The results are reported in two tables. We report the results
on the AnghaBench test set, with ablation studies with various
preprocessing optimizations, in Table I. In the column labeled
Original, we show the results after training the model on the
original, unmodified dataset on which we only perform the
standard clang -E preprocessing to rid the preprocessing di-
rectives. Despite yielding a high training accuracy of 99.03%,
the model does not generalize well to unseen testing data,
resulting in the lowest reference match accuracy (13.33%)
and BLEU score (69.21). This low performance is likely due
to the number of uninformative tokens that overwhelm the
number of informative tokens. The Cleaned column illustrates

10The BLEU score performs evaluation by taking the geometric mean of
multiple modified n-gram (unigram, bigram, trigram, and 4-gram) precision
scores, with 0 representing completely different values and 100 as the same
values. We take the average BLEU score on relevant inputs.

TABLE I: Results of unsupervised machine translation on the AnghaBench test set. We enable various preprocessing
optimizations described in Section IV. We train on the unmodified dataset (Original), with syntactic cleaning (Cleaned), with
prefix notation (Prefix), with a restoration of global variables (Prefix & Global), and while targeting of optimized LLVM (-O1).

AnghaBench Original Cleaned Prefix Prefix & Global -O1
Training Acc. 99.03 97.84 99.60 99.36 97.87
Reference Match 13.33 21.15 49.57 38.61 38.73
BLEU 69.21 72.48 87.68 82.55 77.03
Compilation Acc. 14.97 N/A N/A 43.07 N/A

TABLE II: Results of unsupervised machine translation on
the Csmith and CodeNet datasets. The models trained on
these datasets are subpar to the AnghaBench dataset primarily
due their size and unnatural inputs.

Csmith CodeNet
Testing Accuracy 90.73 93.66
Reference Match N/A 5.76
BLEU 43.39 51.01

mysig_t mysignal (int sig , mysig_t act) {
return (signal (sig , act)) ;

}

define dso_local i32 @mysignal (i32 %0 , i32 %1) #0 {
%3 = alloca i32
%4 = alloca i32
store i32 %0 , i32 * %3
store i32 %1 , i32 * %4
%5 = load i32 , i32 * %3
%6 = load i32 , i32 * %4
%7 = call i32 @signal (i32 %5 , i32 %6)
ret i32 %7

}

Fig. 6: Example of LLVM IR prediction with our Trans-
former model. The top is the original source code in C, and
the bottom is the expected LLVM IR (for which a precise
match is generated by the model).

the training result after we deduplicate information, which
performs slightly better than the original dataset. We report in
the Prefix column the training result after deduplication and
converting data representation to prefix notation. Removing the
additional brackets, commas, and additional context needed
to parse LLVM types significantly improves performance but
ignores definitions of global variables. Global struct defini-
tions are permanently lost on the function level, preventing us
from detokenizing and subsequently compiling the programs
for evaluation.

The Prefix & Global column reports the model’s results
on the AnghaBench dataset after converting data structures
in infix notation to prefix notation and writing out global
variables and structs as their respective declarations and def-
initions. While expanding globals ensures detokenization and
compilation can occur, it adds complications to the program,
making it harder for the model to understand. This rationale
is demonstrated in the data, with slightly worse results than
Prefix alone. The -O1 column shows the result of training
on LLVM IR optimized with -O1 flag and serves as an initial
study of the possibility of language models understanding both
optimized and unoptimized low-level programs, demonstrating

promising results. An example of machine-learned translation
from C to unoptimized LLVM IR (trained on AnghaBench) is
shown in Fig. 6.

The results of training on Csmith and CodeNet data are
shown in Table II. We observe that the Transformer model per-
forms better on the AnghaBench dataset than on Csmith [51]
and CodeNet [37], giving better reference matches and BLEU
scores as the AnghaBench dataset is more expansive than
both Csmith and CodeNet, and a better proxy for humanly
written code than Csmith. While a model trained on CodeNet
data is moderately successful, it also contains internal biases
and cannot generalize well to the LLVM IR language due to
containing many similar programs.

VI. CONCLUSION & FUTURE WORK

In this paper, following successful efforts of applying Trans-
former models to both natural and high-level programming
languages, we explore the effectiveness of the Transformer
model on low-level programs. Specifically, we explore the
effectiveness of transformers on LLVM IR, the typical com-
piler intermediate language used for optimizations by several
programming languages. Specifically, we perform a case study
exploring how effectively a transformer can act as a replace-
ment for the code generation and optimization pipelines of
a traditional C compiler by automatically translating C to
(unoptimized & optimized) LLVM. While the results would
certainly not encourage anyone to immediately replace their
existing compilation framework with a neural network, they
are nevertheless promising. Specifically, they demonstrate that,
unlike the existing ML-based optimization approaches that
rely on injecting machine learning to specific heuristics within
a broader compilation pipeline, whole-program analysis and
optimization with machine learning will have a future as the
models, techniques, and datasets mature. Moreover, we also
demonstrate how existing Transformer models can be better
applied to low-level programs through the use of LLVM-
specific preprocessing optimizations.

There are several avenues for potential future work. For
example, in fine-tuning the Transformer model structure for
low-level programs, further study could explore training a
monolingual model solely on LLVM IR, de-compiling LLVM
IR to humanly readable C, and preprocessing LLVM IR for
Transformers without applying BPE [43] as the vocabulary of
LLVM IR is already limited.

ACKNOWLEDGMENT

The authors would like to thank Susan Tan (Princeton),
Yebin Chon (Princeton), and Johannes Doerfert (ANL) for
thoughtful discussions on using machine learning within
LLVM, including representations of LLVM IR, decompilation
from LLVM-IR to C, the real-world application of the de-
obfuscation objective [41] pre-train objective, and its imple-
mentation in the C language. The authors would like to thank
Srini Devadas and Slava Gerovitch, whose tireless efforts
running the MIT PRIMES program enabled this research.
Finally, the authors would like to thank Lindsey Lohwater and
Rob Bauer for supporting Zifan Guo’s participation in the MIT
PRIMES research program.

This research was supported in part by the MIT PRIMES
program under grant number 6946149. William S. Moses was
supported in part by a DOE Computational Sciences Graduate
Fellowship DE-SC0019323. This research was supported in
part by Los Alamos National Laboratories Grant 531711.
Research was sponsored by the United States Air Force
Research Laboratory and the United States Air Force Artificial
Intelligence Accelerator and was accomplished under Cooper-
ative Agreement Number FA8750-19-2-1000. The views and
conclusions contained in this document are those of the authors
and should not be interpreted as representing the official
policies, either expressed or implied, of the United States
Air Force or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein.

REFERENCES

[1] Andrew Adams, Karima Ma, Luke Anderson, Riyadh
Baghdadi, Tzu-Mao Li, Michaël Gharbi, Benoit Steiner,
Steven Johnson, Kayvon Fatahalian, Frédo Durand, et al.
Learning to optimize halide with tree search and random
programs. ACM Transactions on Graphics (TOG), 38(4):
1–12, 2019.

[2] Toufique Ahmed and Premkumar Devanbu. Multilin-
gual training for software engineering. arXiv preprint
arXiv:2112.02043, 2021.

[3] Jordi Armengol-Estapé and Michael FP O’Boyle. Learn-
ing c to x86 translation: An experiment in neural com-
pilation. arXiv preprint arXiv:2108.07639, 2021.

[4] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

[5] Rudy Bunel, Alban Desmaison, M Pawan Kumar,
Philip HS Torr, and Pushmeet Kohli. Learning to su-
peroptimize programs. arXiv preprint arXiv:1611.01787,
2016.

[6] John Cavazos, Grigori Fursin, Felix Agakov, Edwin
Bonilla, Michael F.P. O’Boyle, and Olivier Temam.
Rapidly selecting good compiler optimizations using per-
formance counters. In International Symposium on Code

Generation and Optimization (CGO’07), pages 185–197,
2007. doi: 10.1109/CGO.2007.32.

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri
Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374, 2021.

[8] Colin B Clement, Dawn Drain, Jonathan Timcheck,
Alexey Svyatkovskiy, and Neel Sundaresan. Pymt5:
multi-mode translation of natural language and
python code with transformers. arXiv preprint
arXiv:2010.03150, 2020.

[9] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Ja-
cob Hilton, Reiichiro Nakano, Christopher Hesse, and
John Schulman. Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168, 2021.

[10] Anderson Faustino da Silva, Bruno Conde Kind,
José Wesley de Souza Magalhães, Jerônimo Nunes
Rocha, Breno Campos Ferreira Guimaraes, and Fernando
Magno Quinão Pereira. Anghabench: A suite with one
million compilable c benchmarks for code-size reduction.
In 2021 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pages 378–390.
IEEE, 2021.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding, 2018.

[12] Dawn Drain, Chen Wu, Alexey Svyatkovskiy, and Neel
Sundaresan. Generating bug-fixes using pretrained trans-
formers. In Proceedings of the 5th ACM SIGPLAN In-
ternational Symposium on Machine Programming, pages
1–8, 2021.

[13] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan,
Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-
trained model for programming and natural languages,
2020.

[14] Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon,
Zbigniew Chamski, Olivier Temam, Mircea Namolaru,
Elad Yom-Tov, Bilha Mendelson, Ayal Zaks, Eric Cour-
tois, et al. Milepost gcc: Machine learning enabled
self-tuning compiler. International journal of parallel
programming, 39(3):296–327, 2011.

[15] Kaden Griffith and Jugal Kalita. Solving arithmetic word
problems automatically using transformer and unambigu-
ous representations. In 2019 International Conference on
Computational Science and Computational Intelligence
(CSCI), pages 526–532. IEEE, 2019.

[16] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus), 2020.

[17] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas
Mazeika, Akul Arora, Ethan Guo, Collin Burns, Samir
Puranik, Horace He, Dawn Song, et al. Measuring
coding challenge competence with apps. arXiv preprint
arXiv:2105.09938, 2021.

[18] Qijing Huang, Ameer Haj-Ali, William Moses, John

Xiang, Ion Stoica, Krste Asanovic, and John Wawrzynek.
Autophase: Juggling hls phase orderings in random
forests with deep reinforcement learning, 2020.

[19] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. Codesearchnet chal-
lenge: Evaluating the state of semantic code search. arXiv
preprint arXiv:1909.09436, 2019.

[20] Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel,
Joseph E Gonzalez, and Ion Stoica. Contrastive code rep-
resentation learning. arXiv preprint arXiv:2007.04973,
2020.

[21] Tarindu Jayatilaka, Hideto Ueno, Giorgis Georgakoudis,
EunJung Park, and Johannes Doerfert. Towards Compile-
Time-Reducing Compiler Optimization Selection via Ma-
chine Learning. Association for Computing Machinery,
New York, NY, USA, 2021. ISBN 9781450384414. URL
https://doi.org/10.1145/3458744.3473355.

[22] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan,
and Kensen Shi. Learning and evaluating contextual
embedding of source code. In Proceedings of the 37th
International Conference on Machine Learning, ICML
2020, 12-18 July 2020, Proceedings of Machine Learning
Research. PMLR, 2020.

[23] Sameer Kulkarni and John Cavazos. Mitigating the com-
piler optimization phase-ordering problem using machine
learning. SIGPLAN Not., 47(10):147–162, October 2012.
ISSN 0362-1340. doi: 10.1145/2398857.2384628. URL
https://doi.org/10.1145/2398857.2384628.

[24] Guillaume Lample and Alexis Conneau. Cross-lingual
language model pretraining, 2019.

[25] Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic
Denoyer, and Marc’Aurelio Ranzato. Phrase-based &
neural unsupervised machine translation. In Proceedings
of the 2018 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2018.

[26] Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh, Am-
brose Slone, Cem Anil, Imanol Schlag, Theo Gutman-
Solo, et al. Solving quantitative reasoning problems
with language models. arXiv preprint arXiv:2206.14858,
2022.

[27] Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago, et al.
Competition-level code generation with alphacode. arXiv
preprint arXiv:2203.07814, 2022.

[28] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly
optimized bert pretraining approach, 2019. URL https:
//arxiv.org/abs/1907.11692.

[29] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement, Dawn
Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A ma-
chine learning benchmark dataset for code understanding
and generation. arXiv preprint arXiv:2102.04664, 2021.

[30] Rahim Mammadli, Ali Jannesari, and Felix Wolf. Static
neural compiler optimization via deep reinforcement
learning, 2020. URL https://arxiv.org/abs/2008.08951.

[31] Charith Mendis, Alex Renda, Saman Amarasinghe, and
Michael Carbin. Ithemal: Accurate, portable and fast
basic block throughput estimation using deep neural net-
works. In International Conference on machine learning,
pages 4505–4515. PMLR, 2019.

[32] Massinissa Merouani, Mohamed-Hicham Leghettas,
Riyadh Baghdadi, Taha Arbaoui, and Karima Benatchba.
A Deep Learning Based Cost Model for Automatic Code
Optimization in Tiramisu. PhD thesis, 10 2020.

[33] Steven S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1998. ISBN 1558603204.

[34] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. Bleu: A method for automatic evalua-
tion of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, ACL ’02, page 311–318, USA, 2002.
Association for Computational Linguistics. doi: 10.
3115/1073083.1073135. URL https://doi.org/10.3115/
1073083.1073135.

[35] Eunjung Park, John Cavazos, and Marco A. Alvarez.
Using graph-based program characterization for predic-
tive modeling. In Proceedings of the Tenth Interna-
tional Symposium on Code Generation and Optimiza-
tion, CGO ’12, page 196–206, New York, NY, USA,
2012. Association for Computing Machinery. ISBN
9781450312066. doi: 10.1145/2259016.2259042. URL
https://doi.org/10.1145/2259016.2259042.

[36] Long Phan, Hieu Tran, Daniel Le, Hieu Nguyen, James
Anibal, Alec Peltekian, and Yanfang Ye. Cotext: Multi-
task learning with code-text transformer. arXiv preprint
arXiv:2105.08645, 2021.

[37] Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang,
Giacomo Domeniconi, Vladmir Zolotov, Julian Dolby,
Jie Chen, Mihir Choudhury, Lindsey Decker, et al.
Project codenet: A large-scale ai for code dataset for
learning a diversity of coding tasks. arXiv preprint
arXiv:2105.12655, 2021.

[38] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J Liu. Exploring the limits of transfer
learning with a unified text-to-text transformer. arXiv
preprint arXiv:1910.10683, 2019.

[39] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie
Liu, Duyu Tang, Neel Sundaresan, Ming Zhou, Ambro-
sio Blanco, and Shuai Ma. Codebleu: a method for
automatic evaluation of code synthesis. arXiv preprint
arXiv:2009.10297, 2020.

[40] Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanus-
sot, and Guillaume Lample. Unsupervised translation of
programming languages. Advances in Neural Information
Processing Systems, 33, 2020.

[41] Baptiste Roziere, Marie-Anne Lachaux, Marc Szafraniec,

https://doi.org/10.1145/3458744.3473355
https://doi.org/10.1145/2398857.2384628
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2008.08951
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1145/2259016.2259042

and Guillaume Lample. Dobf: A deobfuscation pre-
training objective for programming languages, 2021.

[42] Baptiste Roziere, Jie M Zhang, Francois Charton, Mark
Harman, Gabriel Synnaeve, and Guillaume Lample.
Leveraging automated unit tests for unsupervised code
translation. arXiv preprint arXiv:2110.06773, 2021.

[43] Rico Sennrich, Barry Haddow, and Alexandra Birch.
Neural machine translation of rare words with subword
units. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pages 1715–1725, Berlin, Germany,
August 2016. Association for Computational Linguistics.
doi: 10.18653/v1/P16-1162. URL https://www.aclweb.
org/anthology/P16-1162.

[44] Hui Shi, Yang Zhang, Xinyun Chen, Yuandong Tian,
and Jishen Zhao. Deep symbolic superoptimization
without human knowledge. In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=r1egIyBFPS.

[45] Alex Shypula, Pengcheng Yin, Jeremy Lacomis,
Claire Le Goues, Edward Schwartz, and Graham Neubig.
Learning to superoptimize real-world programs. arXiv
preprint arXiv:2109.13498, 2021.

[46] Douglas Simon, John Cavazos, Christian Wimmer, and
Sameer Kulkarni. Automatic construction of inlining
heuristics using machine learning. In Proceedings of
the 2013 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), CGO ’13, page
1–12, USA, 2013. IEEE Computer Society. ISBN
9781467355247. doi: 10.1109/CGO.2013.6495004. URL
https://doi.org/10.1109/CGO.2013.6495004.

[47] Michele Tufano, Cody Watson, Gabriele Bavota, Massi-
miliano Di Penta, Martin White, and Denys Poshyvanyk.
An empirical study on learning bug-fixing patches in the
wild via neural machine translation. ACM Transactions
on Software Engineering and Methodology (TOSEM), 28
(4):1–29, 2019.

[48] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy,
Shao Kun Deng, and Neel Sundaresan. Unit test case
generation with transformers and focal context. arXiv
preprint arXiv:2009.05617, 2020.

[49] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need, 2017.

[50] Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. Codet5: Identifier-aware unified pre-trained
encoder-decoder models for code understanding and gen-
eration. arXiv preprint arXiv:2109.00859, 2021.

[51] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr.
Finding and understanding bugs in c compilers. SIG-
PLAN Not., 46(6):283–294, June 2011. ISSN 0362-1340.
doi: 10.1145/1993316.1993532. URL https://doi.org/10.
1145/1993316.1993532.

[52] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. Xl-
net: Generalized autoregressive pretraining for lan-

guage understanding. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper/2019/
file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf.

[53] Hang Zhu, Varun Gupta, Satyajeet Singh Ahuja, Yuan-
dong Tian, Ying Zhang, and Xin Jin. Network planning
with deep reinforcement learning. In Proceedings of the
2021 ACM SIGCOMM 2021 Conference, pages 258–271,
2021.

https://www.aclweb.org/anthology/P16-1162
https://www.aclweb.org/anthology/P16-1162
https://openreview.net/forum?id=r1egIyBFPS
https://openreview.net/forum?id=r1egIyBFPS
https://doi.org/10.1109/CGO.2013.6495004
https://doi.org/10.1145/1993316.1993532
https://doi.org/10.1145/1993316.1993532
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf

	Introduction
	Related Work
	Unsupervised Language Models
	Unsupervised Language Models on Programs
	Automatic Compiler Optimization

	Base Model
	Preprocessing
	Training Objectives

	Improving the Model
	Experiment
	Training Details
	Training Data
	Evaluation
	Results

	Conclusion & Future Work

