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ABSTRACT
Optimizing compilers for task-level parallelism are still in
their infancy. This work explores a compiler front end that
translates OpenMP tasking semantics to Tapir, an exten-
sion to LLVM IR that represents fork-join parallelism. This
enables analyses and optimizations that were previously in-
accessible to OpenMP codes, as well as the ability to target
additional runtimes at code generation. Using a Cilk runtime
back end, we compare results to existing OpenMP imple-
mentations. Initial performance results for the Barcelona
OpenMP task suite show performance improvements over
existing implementations.
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1 INTRODUCTION
When writing task-parallel programs today, there is a large
selection of potential programming models and implemen-
tations to consider. Unfortunately, despite having some sig-
nificant overlaps in semantics, parallel programming mod-
els such as OpenMP [20], Cilk [3], Kokkos [6], HPX [11],
Charm++ [12], Qthreads [25], pthreads[19], MPI [8], Chapel [4],
UPC [7], OpenCL [24], and OpenACC [26], among others,
have limited ability to interoperate either at the level of
compile-time analysis or at run-time execution. Moreover,
many of these programming models are implemented as run-
time libraries with only primitive compiler support. As a
consequence, most are not able to take advantage of poten-
tial compiler analysis and optimization capabilities. While
there has been some recent work on specializing compilers
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to reason about parallel programming libraries [17], frag-
mentation among models presents a significant challenge for
compiler writers who must choose a single model, or mul-
tiple intermediate forms, for analysis and optimization. An
ideal solution would be a common representation of parallel
semantics and constructs.

Compilers implement the majority of their analyses and op-
timizations on intermediate representations (IRs) that allow
such transformations to be written once with relative ease
and applied to a variety of source front-end languages such
as C or C++. Historically, the IR of mainstream compilers
such as LLVM [15] or GCC’s Gimple [16] haven’t supported
parallel constructs. As a consequence, compilers using these
IRs haven’t had the ability to reason about parallelism. The
recent work of Schardl et al. has shown that the LLVM IR
can be extended to represent fork-join parallelism without
requiring a major rewrite [23]. They did so by extending the
LLVM instruction set with three instructions capable of rep-
resenting fork-join parallelism. To benchmark performance
and test accuracy they wrote a front end which translated
programs written with Cilk, a parallel programming model
for C/C++, into their Tapir IR. They also implemented a
back end to lower Tapir programs to vanilla LLVM IR with
embedded Cilk runtime calls. They suggested that a simi-
lar approach could be taken with OpenMP and other such
frameworks.

In this work we put that suggestion to the test, implement-
ing OpenMP tasks by compiling them to Tapir instructions.
This allows us to both analyze and optimize OpenMP pro-
grams as well as compile programs written in OpenMP to
use other runtimes. For this paper our prototype implemen-
tation uses the Cilk runtime as a back end, and we run our
prototype implementation on the Barcelona OpenMP task
suite [5]. We discuss the kinds of optimizations this enables
and how the work can be extended to include other parallel
constructs and semantics in OpenMP. We also discuss the
possibility of extending this work to other programming mod-
els, which would help to alleviate some of the problems with
fragmentation previously discussed.

The contributions of this work include:

∙ A prototype front end that transforms OpenMP task
constructs to Tapir IR;
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∙ Benchmarks of the implementation using a Cilk run-
time back end, showing performance improvements
over existing OpenMP implementations; and

∙ An initial investigation into the reasons for these per-
formance improvements.

Our hope is to move the community towards further conversa-
tions on a shared IR that can be used for many programming
models. The work presented here only represents a small
step in that direction and there is still a herculean amount
of design and implementation details to be considered. We
argue that the benefits vastly outweigh the costs and we hope
to see future work explore additional possibilities.

The remainder of the paper is organized as follows. In Sec-
tion 2 we give background and motivation for the presented
work. Following that, we describe Tapir in Section 3, and
OpenMP tasking in Section 4. We then discuss the imple-
mentation, and how we compile OpenMP task constructs to
Tapir IR in Section 5. In Section 6 we describe the evalua-
tion setup, including which implementations we compare to
and how. We discuss the results of evaluation in Section 7,
including possible explanations for discrepancies. We discuss
the implications of the results and the significance of this
work in a large context in Section 8. Finally, we cover some
of the many ways the work could be extended in Section 9,
and conclude in Section 11.

2 BACKGROUND
Internal representations are a crucial part of modern compiler
design and implementation. By representing code in a generic,
hardware-agnostic format, they allow both multiple frontends
and backends to all take advantage of a common/shared series
of compiler analyses and optimizations.

LLVM has gained traction in the broad community for its
simplicity, relative ease of both experimentation and modifica-
tions, and extensibility [15]. Historically, LLVM has only had
sequential semantics: there is no explicit notion of concurrent
or parallel processes. This has resulted in existing compilers
treating parallel constructs as thin wrappers for calls into
run-time systems. These calls are infeasible for the compiler
to reason about because of the complexity and flexibility
of the runtimes being called, and the challenge of reason-
ing about the corresponding semantics in a uniform fashion.
The addition of parallel constructs was recently explored
by Schardl et al. By adding three first-class instructions to
LLVM, Tapir enables analyses and optimizations of parallel
constructs. We briefly describe the key aspects of Tapir in
Section 3.

Arguably the most common parallel programming model
for on-node parallelism in HPC, OpenMP has grown from
being a method for implementing parallel loops into a large
and complex specification for parallelism. This paper focuses
on a relatively recent addition to the OpenMP specification:
the task and taskwait constructs. A detailed description of
these constructs is presented in Section 4 and a more complete
description can be found in the OpenMP specification [20].

2.1 Fragmentation
In this section we further discuss a significant challenge in
HPC: fragmentation of parallel programming models. There
are many ways to write parallel programs [2–4, 6–8, 20, 25].
From libraries, to language extensions, to standalone lan-
guages, to combinations of these, the fragmentation of par-
allel programming models is a problem that is only getting
worse. This means that when writing tooling, optimizations,
or analyses, one must choose which models to target as well
as understand points of contention and interoperability be-
tween them. A common difficulty among all of these is that
reasoning about parallel programs is hard and compilers can
potentially help reduce this burden. This is exactly analo-
gous to the problem LLVM solves: compiler optimizations are
hard, so sharing them is valuable. Tapir is a demonstration
that the LLVM approach to compilation of serial code can
be effectively extended to help reason about parallel code.

With fragmentation comes questions of compatibility or
composability of different programming models. To illustrate
this, consider the example of a program using a library that
uses OpenMP to implement parallelism internally. If this
program uses a different programming model for parallelism,
e.g. Cilk, there is currently no good solution for ensuring that
the two different back ends will cooperate with management
of hardware resources.

Addressing these concerns is a major motivation for our
use of Tapir. By standardizing an IR, in addition to easing
the development of optimizations, one avoids duplicating
work across different implementations. It also enables the
possibility of multiple programming models coexisting peace-
fully. We will return to this consideration later in Section 9
when discussing future work.

3 TAPIR
Tapir is an extension to LLVM seeking to resolve issues in
optimizing parallel code. Prior to the introduction of Tapir,
compilers would represent parallel programs by directly trans-
lating their syntax to opaque runtime calls. This allowed com-
pilers to support parallel programs but meant that traditional
optimizations such as code motion or common-subexpression
elimination weren’t able to reason about parallel programs.
This often led to parallel programs running significantly
slower than expected. In the Tapir project the authors show
that it is possible to represent and optimize fork-join parallel
programs with relatively minimal modifications to the com-
piler, namely the introduction of three instructions designed
to interface well with an existing compiler.

3.1 Compilation without Tapir
Consider the first code segment defined in Figure 1, a simple
OpenMP program which performs divide-and-conquer search.
However, as written, there is a simple optimization that can
be performed, that the value (low+high)/2 may be computed
once before either parallel task, thereby avoiding redundant
computations. For the serial version of this program opti-
mizations like this are performed automatically. However,



OpenMPIR LLVM in HPC’17, November 2017, Denver Colorado, USA

a

01 void search(int low, int high) {
02 if (low == high) search_base(low);
03 else {
04 #pragma omp task
05 search(low, (low+high)/2);
06 #pragma omp task
07 search((low+high)/2 + 1, high);
08 #pragma omp taskwait
09 }
10 }

b

11 void search(int low, int high) {
12 if (low == high) search_base(low);
13 else {
14 int mid = (low+high)/2;
15 #pragma omp task
16 search(low, mid);
17 #pragma omp task
18 search(mid + 1, high);
19 #pragma omp taskwait
20 }
21 }

Figure 1: Example of common-subexpression elimination on
an OpenMP program. a The function search, which uses par-
allel divide-and-conquer to apply the function search_base
to every integer in the closed interval [low, high]. b An op-
timized version of search, where the common subexpression
(low+high)/2 of the original version is computed only once
and stored in the variable mid in the optimized version.

without the use of Tapir, these sorts of optimizations are not
run on parallel programs.

If one were to compile this program using the traditional
technique of lowering #pragma directives into runtime calls,
one would find a program similar to Figure 2. The OpenMP
pragmas are effectively treated as syntactic sugar for runtime
calls because LLVM has no concise way to represent such
parallel constructs. Importantly, these runtime calls tend to
obfuscate the program, making it infeasible to analyze and/or
optimize parallel code.

3.2 Tapir Internals
Tapir is a compelling solution to this problem because it
allows existing analysis and optimizations to work on paral-
lel programs without significant modifications. To properly
describe Tapir requires a brief introduction to key aspects of
LLVM. LLVM represents expression/evaluation order through
a control-flow graph (CFG) of blocks that contain sequences
of instructions. Blocks always end with terminator instruc-
tions that define the edges of the control flow graph. For
example, Figure 3 shows a simple function and its corre-
sponding LLVM code.

To represent parallelism Tapir introduces the detach, reattach,
and sync instructions. The detach statement is syntactically
similar to a conditional branch in that it is a terminator
instruction with two blocks. However, unlike the conditional

22 void task_1(int* clos) {
23 search(*clos[0], (*clos[0] + *clos[1])/2);
24 }
25

26 void task_2(int* clos) {
27 search(*clos[0], (*clos[0] + *clos[1])/2);
28 }
29

30 void search(int low, int high) {
31 if (low == high) search_base(low);
32 else {
33 int* closure_1[] = {&low, &high};
34 omp_run_task(task_1, closure_1);
35 int* closure_2[] = {&low, &high};
36 omp_run_task(task_2, closure_2);
37 omp_taskwait();
38 }
39 }

Figure 2: Simplified compilation of the unoptimized search
code from Figure 1. a The parallel tasks are moved into their
own functions and accompanying closures. These functions are
then passed to OpenMP runtime calls. This obfuscates the
program, making it infeasible for an optimizer to reason about
what is happening.

branch which denotes a choice between successors, the detach
instruction denotes that its two successors may run in parallel.
Semantically, the first successor of a detach instruction is
referred to as the detached block and represents a task that
can, but is not required to, run in parallel with the continua-
tion block, or the second successor to the detach statement.
The detach is analogous to a fork in most fork-join models.

The end of a task created by a detach instruction must
end with a reattach instruction to the corresponding contin-
uation block. The reattach instruction is used to denote the
end of a parallel task. Finally, one may use the sync instruc-
tion to wait for any outstanding tasks created by detach
instructions within the current function to complete. The
sync instruction is analogous to a join in most fork-join
frameworks.

4 OPENMP TASKS
Initially, the cross-vendor OpenMP [20] shared memory pro-
gramming model focused on the execution of data parallelism
by a cooperating team of threads, e.g., dividing the iterations
of a loop among the threads. Version 3.0 of the OpenMP API
specification introduced support for lightweight asynchronous
tasks, designated by the application developer and scheduled
onto the team of threads by the OpenMP runtime implemen-
tation. The task construct applied to a structured block of
code creates an explicit task, and the taskwait construct
waits for completion of all tasks generated by the current
task.

Recursive task creation and synchronization using the
constructs result in an implicit directed acyclic graph (DAG)
that allows both reasoning about and visualization of the
program execution. Figure 4 shows some example code, a view



LLVM in HPC’17, November 2017, Denver Colorado, USA G. Stelle et al.

a b

40 int f(int x) {
41 int y = 10;
42 if (x == 0) {
43 y = 12;
44 }
45 return y;
46 }

47 define i32 @f(i32 %x) {
48 entry:
49 %y = alloca i32, align 4
50 store i32 10, i32* %y, align 4
51 %cmp = icmp eq i32 %x, 0
52 br i1 %cmp, label %if.then, label %if.end
53

54 if.then:
55 store i32 12, i32* %y, align 4
56 br label %if.end
57

58 if.end:
59 %1 = load i32, i32* %y, align 4
60 ret i32 %1
61 }

Figure 3: Example code snippet and the corresponding LLVM code. This code segment contains three blocks: entry, if.then,
and if.end. The conditional statement is implemented in LLVM by the conditional branch at the end of the entry block.

of the task DAG, and a simplified execution schedule mapping
the tasks to a team of two threads. In the example, the 𝑛th
Fibonacci number is calculated by recursively generating
tasks to calculate the (𝑛 − 1)th and (𝑛 − 2)th Fibonacci
numbers. The taskwait ensures that the child tasks have
completed before their answers are combined to yield the
final result.

The initial design of the OpenMP task model established a
basic framework for asynchronous task parallel execution in
OpenMP programs [1]. Subsequent versions of the OpenMP
specification, up to the current version 4.5, have added new
features to the tasking model. The depend clause codifies
data dependences among tasks, indicating that a data loca-
tion is an input or output of a task. The runtime system
ensures that a task is not scheduled until its input dependen-
cies are fulfilled. The taskloop construct combines groups
of independent loop iterations into explicit tasks, enabling
composition of concurrent loop execution and independent
explicit tasks within the same OpenMP parallel region. The
taskgroup construct waits on not only all child tasks, but
all descendent tasks, providing a deep synchronization. The
taskwait construct allows the application to indicate a point
at which the implementation may suspend the current task
to work on other tasks, as may be desired for long-running
tasks that generate many others. The task concept was also
leveraged to provide asynchronous offload of data and com-
putation to accelerators by applying the nowait clause to
device constructs such as the target construct to generate
an asynchronous target task.

Several clauses for the task construct aim to optimize
execution of tasks but can be safely ignored by an implemen-
tation that chooses to do so. The mergeable clause allows the
implementation to omit creation of a new data environment
for a descendent of a task marked with the final clause. The
priority clause assigns an integer priority to the task and
recommends the prioritization of tasks with higher priority
values. The untied clause allows a task to be migrated be-
tween threads after suspension, which enables practical use

of work-first scheduling (suspending the parent task in favor
of executing each child task immediately on the thread where
it is generated).

5 IMPLEMENTATION
Tapir is implemented as an extension to the LLVM instruc-
tion set. Clang is a C family compiler that has support for
OpenMP extensions and targets LLVM [14]. The existing
Clang OpenMP implementation maps OpenMP constructs
directly to OpenMP runtime library calls by wrapping a C
statement in a CapturedStmt. This replaces a C statement
with a function call into the OpenMP runtime library, along
with a machine generated function whose body contains that
statement.

For this work we replaced a subset of the OpenMP imple-
mentation to generate Tapir IR instead of vanilla LLVM IR
with OpenMP runtime calls. Specifically, we replace the two
primary task and taskwait pragmas for task parallelism.
By re-using code from Schardl et al. for code generation
of Cilk constructs, we were able to easily generate Tapir
code for these OpenMP pragmas. The ease with which this
was completed is a testament to the quality of the Tapir
implementation.

While we did implement the codegen for the task and
taskwait constructs, it’s worth noting that even for these
pragmas the implementation is incomplete. Currently, any
clauses modifying the behavior of the pragmas is ignored.
Probably the most common semantics this will change is for
the semantics of variables, e.g. shared vs. private. Surpris-
ingly, this had little effect on the correctness of the entire
Barcelona OpenMP task suite. Indeed, it is likely that fixing
this problem would marginally increase performance by re-
ducing the number of memory copies for variables declared
private in OpenMP code. The fact that behavior wasn’t
changed significantly is worth revisiting, and we do so in
Section 8.

The work represented in this paper is only front-end imple-
mentation, which means we use the only existing back end
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62 int fib(int n)
63 { // A
64 if (n < 2)
65 return n;
66 else
67 {
68 int x, y;
69 #pragma omp task
70 x = fib(n-1); // B
71 #pragma omp task
72 y = fib(n-2); // C
73 #pragma omp taskwait
74 return (x+y); // D
75 }
76 }

A

B C

D

Time 𝑡0 𝑡1 𝑡2
Thread 0 A B D
Thread 1 C

Figure 4: Code, task graph, and schedule of a simple brute force recursive Fibonacci number calculation on two threads.

for Tapir. The existing back end generates code that calls the
Cilk runtime libcilkrts. This has implications for adher-
ing to the OpenMP specification. For example, environment
variables such as OMP_NUM_THREADS are ignored and replaced
by CILK_NWORKERS. We discuss some of these issues following
and return to address others in the discussion of future work.

There are other issues that had to be overcome to run
full OpenMP programs using Tapir. Generally, in addition
the task and taskwait pragmas, a program must contain
pragmas to initialize OpenMP. A standard pattern for build-
ing task-parallel OpenMP programs is to insert a parallel
pragma to start the necessary hardware threads, followed
immediately by a single pragma to have only one thread
continue on the specified statement. Then the other threads
will get work from spawned tasks instead of implicitly execut-
ing the same code in a data parallel manner. For the purpose
of this work we took the shortcut of replacing these pragmas
with no-ops. This worked well for all examples except for one
in which after the parallel and single pragmas the top level
task was called with an unnecessary task pragma. Because
the wait was implicit and unhandled by our implementation,
the simple fix was to remove the task pragma. This was
the only change required to the source code. Our temporary
no-op shortcut, of course, doesn’t follow the OpenMP speci-
fication, and should be addressed by future work. Section 9
discusses how the implementation can be improved.

All code used for the implementation is available at
https://github.com/lanl/openmpir-clang. The version used
for this paper is tagged LLVM17.

5.1 Example
To better understand how the OpenMP to Tapir compiler
works, we turn to the parallel fragment of the fib example
from Section 4. In Figure 5 we show the input OpenMP code
and the Tapir code that is generated.

Upon entering the else branch, the code immediately de-
taches the basic block corresponding to the call to fib(n-1),
labeled det.achd. The continuation for the first call also
immediately detaches the basic block corresponding to the

call of fib(n-2). Finally, the continuation for the second call
immediately calls sync. This is a nice example of code that
will be optimized by Tapir. The LLVM code shown in Fig-
ure 5 is not optimized. With optimizations turned on, Tapir
will replace a detach of a function call followed immediately
by sync with a simple function call, resulting in faster code.

6 EVALUATION
To evaluate the use of Tapir we compared performance on the
Barcelona OpenMP Task Suite to several existing OpenMP
implementations. The suite is a set of tests intended to test
performance of OpenMP implementations using both irregu-
lar and regular tasking.1 The following list provides abridged
descriptions of each benchmark taken verbatim from the test
suite distribution [5].

∙ Alignment aligns all protein sequences from an input
file against every other sequence using the Myers and
Miller algorithm. The alignments are scored and the
best score for each pair is provided as a result. The
scoring method is a full dynamic programming algo-
rithm. It uses a weight matrix to score mismatches,
and assigns penalties for opening and extending gaps.
The output is the best score for each pair of them.

∙ FFT computes the one-dimensional Fast Fourier Trans-
form of a vector of 𝑛 complex values using the Cooley-
Tukey algorithm. This is a divide and conquer algo-
rithm that recursively breaks down a Discrete Fourier
Transform (DFT) into many smaller DFT’s. In each of
the divisions multiple tasks are generated.

∙ Fibonacci computes the 𝑛th Fibonacci number using
a recursive parallelization. While not representative
of an efficient Fibonacci computation it is still useful
because it is a simple test case of a deep tree composed
of very fine grain tasks.

∙ Floorplan kernel computes the optimal floorplan dis-
tribution of a number of cells. The algorithm gets an

1Since original publication, an unbalanced tree search benchmark
has been added to the benchmark suite. Unfortunately, due to time
constraints, we weren’t able get results for this additional benchmark.
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77 #pragma omp task
78 x = fib(n-1);
79 #pragma omp task
80 y = fib(n-2);
81 #pragma omp taskwait

82 if.end:
83 detach label %det.achd, label %det.cont
84

85 det.achd:
86 %2 = load i32, i32* %n.addr, align 4
87 %sub = sub nsw i32 %2, 1
88 %call = call i32 @fib(i32 %sub)
89 store i32 %call, i32* %x, align 4
90 reattach label %det.cont
91

92 det.cont:
93 detach label %det.achd1, label %det.cont4
94

95 det.achd1:
96 %3 = load i32, i32* %n.addr, align 4
97 %sub2 = sub nsw i32 %3, 2
98 %call3 = call i32 @fib(i32 %sub2)
99 store i32 %call3, i32* %y, align 4

100 reattach label %det.cont4
101

102 det.cont4:
103 sync label %sync.continue

Figure 5: Transformation from OpenMP task constructs to Tapir.

input file with cells’ descriptions and it returns the
minimum area size which includes all cells. This min-
imum area is found through a recursive branch and
bound search. We hierarchically generate tasks for each
branch of the solution space. The state of the algorithm
needs to be copied into each newly created task so they
can proceed. This implies that additional synchroniza-
tions have been introduced in the code to maintain the
parent state alive.

∙ Health simulates the Columbian Health Care System.
It uses multilevel lists where each element in the struc-
ture represents a village with a list of potential patients
and one hospital. The hospital has several double-linked
lists representing the possible status of a patient inside
it (waiting, in assessment, in treatment or waiting for
reallocation). At each time step all patients are simu-
lated according with several probabilities (of getting
sick, needing a convalescence treatment, or being real-
located to an upper level hospital). A task is created
for each village being simulated. Once the lower levels
have been simulated synchronization occurs.

∙ NQueens computes all solutions of the n-queens prob-
lem, whose objective is to find a placement for 𝑛 queens
on an 𝑛 × 𝑛 chessboard such that none of the queens
attack any other. It uses a backtracking search algo-
rithm with pruning. A task is created for each step of
the solution.

∙ Sort sorts a random permutation of 𝑛 32-bit num-
bers with a fast parallel sorting variation of the ordi-
nary mergesort. First, it divides an array of elements
in two halves, sorting each half recursively, and then

merging the sorted halves with a parallel divide-and-
conquer method rather than the conventional serial
merge. Tasks are used for each split and merge. When
the array is too small, a serial quicksort is used to
increase the task granularity. To avoid the overhead
of quicksort, an insertion sort is used for very small
arrays (below a threshold of 20 elements).

∙ SparseLU computes an LU matrix factorization over
sparse matrices. A first level matrix is composed by
pointers to small submatrices that may not be allocated.
Due to the sparseness of the matrix, a lot of imbalance
exists. Matrix size and submatrix size can be set at
execution time. While a dynamic schedule can reduce
the imbalance, a solution with tasks parallelism seems
to obtain better results. In each of the sparseLU phases,
a task is created for each block of the matrix that is
not empty.

∙ Strassen uses hierarchical decomposition of a matrix
for multiplication of large dense matrices. Decomposi-
tion is done by dividing each dimension of the matrix
into two sections of equal size. For each decomposition
a task is created.

There are two classes of input sizes for the benchmarks.
Some, like Floorplan, require input files. For each of these
we chose the largest provided. For the benchmarks with a
parameter to adjust the size of the input, we attempted to
choose a parameter size so that the fastest implementation
ran on the order of seconds. The one exception was for
Fibonacci. Because, as discussed further below, the Intel
implementation required a large stack size, we stopped at 42.
The exact inputs used are:

∙ Alignment: -f prot.100.aa
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∙ FFT: -n 335544320
∙ Fibonacci: -n 42
∙ Floorplan: -f input.20
∙ Health: -f large.input
∙ NQueens: -n 15
∙ Sort -n 335544320
∙ SparseLU: -n 100 -m 100
∙ Strassen: -n 8192

The Intel compiler required increasing the stack size for
Fibonacci and FFT. The implementation seemed to use sig-
nificantly more stack space than the others, requiring setting
OMP_STACKSIZE to 256M for computing the 42nd Fibonacci
number. FFT ran fine with an increase to 16M. Clang required
a similar increase in OMP_STACKSIZE for SparseLU, needing
to be increased to 64M to avoid stack overflows. GCC and the
Tapir implementation required no such modifications.

For other implementations, we compare to GCC 7.1, Clang
4.0.1, and Intel 17.0.0. The machine used is a two socket Intel
Xeon E5-2683 v3 machine with 132GB of memory running
Linux 4.11.4. Each Xeon has 16 cores running at 2.1GHz,
with 20M of L3 cache. All benchmarks were run using all
64 hyper-threads. 32-thread tests were run as a sanity check
and showed qualitatively similar results. It’s worth noting
that each of the other implementations comes with its own
runtime. In this sense, performance is a function of both the
compiler and any optimizations it is able to perform, and the
runtime. Understanding the interaction of these two parts
is non-trivial as we will see when discussing results. Each
compiler was run with the flags -O3 -fopenmp. Our compiler
was also run with -ftapir to enable Tapir instructions to be
lowered to a parallel runtime (in this case, the default Cilk
runtime).

As mentioned in the Section 5, the gaps in the implemen-
tation changed program behavior in a couple of cases. In the
case of FFT, we were forced to remove an unnecessary task
pragma, as the current implementation doesn’t insert the
implicit barrier at the end of a parallel region. This was a
one line fix in the benchmark, and would be fixed properly
by handling the parallel and single pragmas correctly in
our implementation.

The second change in program behavior due to our incom-
plete implementation was caused by the lack of the critical
and atomic pragmas used in the Floorplan benchmark. The
critical pragma ensures that only one thread can execute a
particular statement at a time. This should be fixable in the
implementation by adding a simple code-localized synchro-
nization generation in the IR. Similarly, the atomic pragma
can be addressed by retaining a pointer to the shared stack
variable, much like existing OpenMP implementations. It is
worth noting that this behavior was non-deterministic, and
that roughly half of the time Floorplan still returned correct
results. As we will see, this makes for an interesting trade-off
given the witnessed performance increase.

We set a time-out of 10 minutes, as at least one implemen-
tation was always finishing within 10 seconds so anything run-
ning more than 60 times slower becomes irrelevant. Because

of time constraints correctness checks were not performed on
every run so it is possible that some non-determinism was
missed.

Each variant was run 10 times, with the height of the
bars representing the mean and the error bars representing
standard deviation. In cases where there was timeout or
segmentation fault no time is reported and the run is marked
as faulty.

7 RESULTS
In this section we discuss the results of running our evaluation
on our implementation, and how its performance compared
to the existing implementations listed in Section 6. Figures 6
and 7 give simple visualizations of performance. Each graph
represents a single benchmark from the previously enumer-
ated Barcelona benchmarks, and each bar represents one of
the implementations.

As mentioned earlier regarding Floorplan our implementa-
tion returned correct results nondeterministically because of
not having an implementation of the OpenMP critical and
atomic pragmas. While ICC and Clang finished in roughly
1-2 seconds, the Tapir implementation was finished in 0.02
seconds and computed the correct result roughly half of the
time. This raises interesting questions on the cost/benefit
relation of the missing OpenMP pragmas.

GCC was the only culprit for timeouts. Recall that the
timeout was set at 10 minutes, so any timeout means GCC
was running at least approximately 60 times slower than the
fastest implementation. For example, on the FFT benchmark,
while our Tapir implementation was running in under 5 sec-
onds, the GCC implementation was timing out at 600 seconds,
so was at least 100 times slower. GCC results are omitted
from graphs for the three timeout cases, FFT, Fibonacci, and
NQueens.

Putting failures aside, performance for our implementation
is quite strong, generally outperforming or matching the
best of existing implementations. For benchmarks where
the overhead-to-work ratio is high is where the Tapir + Cilk
implementation shows significant benefit. For example, for the
Fibonacci benchmark, our implementation runs significantly
faster than any of the others. NQueens and FFT show similar
behavior but to lesser degrees. In contrast, benchmarks that
have a lower overhead to work ratio unsurprisingly differ less
in performance.

7.1 Profiling
In this section we investigate why performance varies in the
ways it does. While we have yet to identify every discrepancy
in performance, we hope to get some ideas for why the
performance of our implementation is generally better and
where each of the implementations is spending the bulk of
the execution time. Our primary tool for this task is profiling,
acknowledging that many kinds information are difficult to
infer from profiling, such as sources of contention, reasons
for memory locality, etc.
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Figure 6: Barcelona OpenMP Task Suite results
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Figure 7: Barcelona OpenMP Task Suite results (continued)

It is worth noting again that the scope of the work that
this paper reports is only the front end. All performance
gains attributable to the existing Tapir back end and Cilk
runtime represent prior work. We can separate reasons for
performance discrepancies into a few categories:

∙ Front-end code generation;
∙ IR Optimizations; and
∙ Runtime efficiency.

While we would like to distinguish between these, it is difficult
to do so with only profiling information. A more thorough
investigation would require deep knowledge of each of the
front ends and runtimes. We hypothesize that much of the
disparity present in these results is more a function of runtime
implementation differences. As justification for this hypothe-
sis, consider the Fibonacci benchmark. There are no memory
accesses to the heap, and the code leaves little room for op-
timization (algorithmic rewrites aside), so it is effectively

a benchmark of how fast a runtime can execute fork-join
parallelism.

There are two cases we examine using the profiler. The
first is the case when there is a large difference in run times
between implementations. For these our hypothesis is that
the slower implementations are for some reason spending
more time in the runtime. As mentioned, it is difficult to
understand exactly why an implementation is spending more
time in the runtime without further investigation, but it
is a useful sanity check nonetheless. For this case, we turn
to the Fibonacci benchmark. We get roughly the following
breakdowns of work-to-overhead ratio according to the Linux
perf tool.

∙ tapir: 30% runtime overhead, 50% work, 20% other
∙ clang: 85% runtime overhead, 5% work, 10% other
∙ icc: 85% runtime overhead, 5% work, 10% other
∙ gcc: 100% runtime overhead, 0% work, 0% other
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This supports our hypothesis that much of the slowdown
incurred is overhead in the runtime. For Tapir the overhead
is relatively small given the size of the work chunks, for clang
and icc it is significantly larger, and for gcc it is overwhelm-
ing. clang and icc have effectively the same runtime, so the
fact that their overheads are similar is unsurprising.

For the cases where performance is close between the im-
plementations, such as sparselu, we expect run times to be
dominated by actual task workloads. This expectation is con-
firmed by investigating performance counters for sparselu
where every implementation spends roughly 90% of its time
in the task bodies.

Another way we can discriminate the cause of performance
discrepency is by disabling Tapir optimizations. This allows
us to directly measure the effect that Tapir optimizations are
having on runtime. For fibonacci, for example, disabling
optimizations results in a roughly 2x performance loss. This
is likely due to Tapir inlining the second task call and mov-
ing some memory operations into registers. This is strong
evidence that Tapir optimizations are an important factor in
the performance of compiled task-parallel code. Again, note
that this compounds with runtime performance differences
to give the measured performance reported in Section 7.

8 DISCUSSION
In this section we discuss the relevance of the results and
in the context of the literature. As discussed in Section 1,
there have been many programming models for implementing
parallel programs. While this paper does not take a stance
on which one should be used, it does accept that OpenMP is
currently/potentially the most widely used model that has
a notion of tasks. The goal of this work is to show that a
single intermediate representation can be used to implement
multiple programming paradigms with good performance.
Schardl et al. showed that Tapir works well as an IR target
for Cilk and surmised that it could be an effective IR for a
large subset of OpenMP. This work has taken the first step
in that direction.

One interesting aspect of this work is that it compiles a
language extension intended for one runtime (OpenMP) to
use another (Cilk). While in many ways this is a weakness of
this work, it does open the possibility of utilizing this in a
more general way to address many significant challenges such
as performance portability. Having a parallel-aware IR en-
ables the possibility of multiple high-level parallel languages
and multiple parallel runtime targets in the same way that
LLVM does for serial code. While the OpenMP specification’s
requirement to have access to runtime routines complicates
things, for many programming models it seems at least con-
ceivable to map them onto multiple different runtimes. This
opens the possibility of mixing programming models at com-
pile time by targeting the same runtime. For example, if both
OpenMP and Cilk targeted Tapir instructions, one could
have a large application where some parts were written using
Cilk, while others used OpenMP, and the result would not
suffer the incompatibility problems often seen today.

The surprising fact that program behavior wasn’t changed
significantly is worth discussing. We surmise that it is likely
due to the semantics of variables borrowed from the Cilk
codegen and their relation to the OpenMP specification of
semantics. In particular, OpenMP specifies a relaxed memory
model for shared variables in which writes by one thread need
only be visible at to other threads at explicit or implicit
flushes. This results in the Cilk implementation of only writ-
ing to a shared variable at the end of a parallel section being a
valid implementation of OpenMP’s specification. In contrast,
existing OpenMP implementations sometimes write shared
variables to memory on every write access. This is a potential
for performance discrepancy because of differing implemen-
tation behavior. There is of course the fact that technically,
by copying the value of variables back to the surrounding
context even for private variables, one isn’t following the
specification. We surmise that in practice this hasn’t had an
effect because private variables are often used for inputs to
calculations that are not accessed after the tasks complete, or
for performance rather than their semantic properties. Also,
firstprivate is the default data-sharing attribute for tasks.

9 FUTURE WORK
One of the important questions in this work is whether the
Tapir instructions can be used to implement the full OpenMP
semantics. Runtime calls aside, implementing the full seman-
tics of OpenMP pragmas would be a significant undertaking.

For two examples, consider the problematic atomic and
critical pragmas from the Floorplan benchmark. The
atomic pragma would likely not be too difficult to translate
from existing OpenMP codegen: one would need to simply
maintain and then modify the contents of the original stack
pointer to the shared variable. The critical section would
likely be a little more difficult. Still, it should be possible to
modify existing OpenMP code to block on that section.

Still, whether or not it’s possible to implement these extra
features is a separate question from whether or not it’s useful.
If implementing extra features require using special synchro-
nization primitives, or calls into runtimes, or any other tool
other than the Tapir instructions, then the compiler cannot
reason about code using those features, and many of the ad-
vantages we’ve discussed, e.g., backend compatibility, generic
optimization, etc., become moot, Features like the OpenMP
atomic pragma don’t require any changes to control flow,
and therefore are likely to work well with Tapir analyses and
optimizations. On the other hand, features like OpenMP’s
critical section do require changes to control flow that seem
challenging to map onto Tapir’s instructions. Furthermore,
even if it is possible to implement features using the Tapir
instructions, it may require such radical entangling of the
code that even if analysis is technically possible it becomes
infeasible.

An obvious first step towards better OpenMP coverage,
other than the features listed above, is handling OpenMP
parallel for loops. These are similar enough to cilk_for
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loops in semantics that this also should be a relatively painless
next step to adapt from the existing Cilk implementation.

While OpenMP and Cilk have similar fork-join style seman-
tics that Tapir implements naturally, many allow a more flexi-
ble mechanism for synchronization, namely futures [4, 11, 25].
The primary difference between the fork-join parallelism rep-
resented by Tapir and these approaches is that child tasks can
outlive their parents. Representing this class of parallelism
in Tapir represents a significant challenge for future work.

One interesting area for future work would be combin-
ing Tapir with work on reasoning about locality in LLVM.
For example, Hayashi et al. use address spaces in LLVM to
reason about memory locality in partitioned global address
space (PGAS) systems [9]. By combining reasoning about
code concurrency and locality, one could potentially apply
optimizations to better schedule and co-locate code and data.

10 RELATED WORK
There has been significant work on internal representations
for parallel programs. These can be roughly broken into four
categories.

First, compilers can attach metadata to an existing IR. For
example, LLVM has a parallel loop metadata construct [22].
This has the benefit of being flexible and requiring minimal
work, but historically can be lost during optimizations, and
any code movement can break the semantics. The flexibility
of this approach can also be viewed as a negative, as it can
compromise what can otherwise be a simple, well defined
semantics for the IR.

A second approach is to use intrinsic functions to define
parallel tasks [18]. This, like the metadata approach, has the
advantage of being flexible and relatively easy to implement,
but at the cost of being less well defined. There has recently
been proposals to standardize intrinsics extensions for LLVM
to represent parallelism, but we would caution that a large,
flexible set of intrinsics being added to an already only-
partially defined [27] language could make reasoning about
parallel programs, even in an IR setting, infeasible.

A third approach is to have a separate instruction set for
parallelism. This is the approach taken by projects like HPIR
[28], SPIRE [13], and INSPIRE [10]. This approach has the
downside of being unable to re-use existing optimization and
analysis infrastructure of an existing IR.

Finally, the last approach, and that taken by Tapir, is
to implement parallel instructions as an extension of an
existing IR. This allows for integration into existing analyses
and optimizations. In the case of Tapir, this allows one to
leverage years of development into program analysis and
optimization, extending only where necessary.

While there is general agreement that there needs to be IR
support for parallelism in parallel programs, there isn’t con-
sensus on which of these approaches is best. Approaches that
are easier at first, such as metadata or intrinsic approaches,
are similarly easy to extend but can become unwieldy. There
is a reason that it’s difficult to add instructions to LLVM: any
added IR construct needs to be considered in many locations.

From debugging by printing out IR, to case analysis for differ-
ent control flow constructs, having a proper set of instructions
to denote parallelism has numerous advantages. Additionally,
any hope of having a formal semantics for an IR depends on
a simple, concise set of parallelism constructs, something that
metadata and intrinsics approaches can promptly defeat.

A related approach to composing programming models is
to keep the same code generation approach, but replace calls
into built-in runtimes with calls into a shared runtime. This
is the approach taken by Lithe, where Pan et al. compose
programs using both GNU OpenMP and Intel TBB [21].
This approach succeeds in composing different programming
models at run-time, but doesn’t enable the static analyses
that are enabled by Tapir.

11 CONCLUSION
We have shown that Tapir is an excellent IR target for
OpenMP tasks. While not all of the semantics are covered,
we have a path forward for many of them. We have shown
that compiling to Tapir instructions allows for a straightfor-
ward compilation of OpenMP tasking programs to use the
Cilk runtime system. We’ve also shown that this combination
leads to better performance than existing OpenMP tasking
implementations on the Barcelona OpenMP Tasking bench-
mark suite. Moving forward, we hope efforts like this one
help to reduce the fragmentation of parallel runtimes, as well
as make it easier to write optimization for parallel programs.
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