
38

The Next 700 Accelerated Layers: From Mathematical

Expressions of Network Computation Graphs to Accelerated

GPU Kernels, Automatically

NICOLAS VASILACHE, Facebook AI Research, NY, USA

OLEKSANDR ZINENKO, Inria and ENS, France

THEODOROS THEODORIDIS, ETH Zürich, Switzerland

PRIYA GOYAL, Facebook AI Research, NY, USA

ZACHARY DEVITO, Facebook AI Research, CA, USA

WILLIAM S. MOSES, MIT CSAIL, MA, USA

SVEN VERDOOLAEGE, Polly Labs & Facebook AI Research, Belgium

ANDREW ADAMS, Facebook AI Research, CA, USA

ALBERT COHEN, Inria, ENS and Facebook AI Research, France

Deep learning frameworks automate the deployment, distribution, synchronization, memory allocation, and

hardware acceleration of models represented as graphs of computational operators. These operators wrap

high-performance libraries such as cuDNN or NNPACK. When the computation does not match any prede-

fined library call, custom operators must be implemented, often at high engineering cost and performance

penalty, limiting the pace of innovation. To address this productivity gap, we propose and evaluate: (1) a

domain-specific language with a tensor notation close to the mathematics of deep learning; (2) a Just-In-

Time optimizing compiler based on the polyhedral framework; (3) carefully coordinated linear optimization

and evolutionary algorithms to synthesize high-performance CUDA kernels; (4) the transparent integration

of our flow into PyTorch and Caffe2, providing the fully automatic synthesis of high-performance GPU ker-

nels from simple tensor algebra. The performance is comparable to, and often exceeds the performance of,

highly tuned libraries.

CCS Concepts: • Software and its engineering → Compilers;

Additional Key Words and Phrases: Deep learning layers, polyhedral compilation, GPU acceleration

N. Vasilache, O. Zinenko, and A. Cohen are with Google AI at the time of publication.

S. Verdoolaege is with Cerebras at the time of publication.

A. Adams is with Adobe at the time of publication.

This work was partly supported by a grant from Facebook to ETH Zürich and by the European Commission through the

MNEMOSENE project ID 780215. It would not have been possible without the long-term committment of ARM funding

much of the development of isl over the past four years in the context of the Polly Labs initiative of ARM and Inria in

collaboration with ETH Zürich.

Authors’ addresses: N. Vasilache, Facebook AI Research, New York City, NY, USA; email: nicolas.vasilache@gmail.com;

O. Zinenko, Inria and ENS, Paris, France; email: oleksandr.zinenko@inria.fr; T. Theodoridis, ETH Zürich, Zürich, Switzer-

land; email: theodort@student.ethz.ch; P. Goyal, Facebook AI Research, New York City, NY, USA; email: prigoyal@fb.com;

Z. DeVito, Facebook AI Research, Menlo Park, CA, USA; email: zdevito@fb.com; W. S. Moses, MIT CSAIL, Cam-

bridge, MA, USA; email: wmoses@mit.edu; S. Verdoolaege, Polly Labs & Facebook AI Research, Leuven, Belgium; email:

skimo@kotnet.org; A. Adams, Facebook AI Research, Menlo Park, CA, USA; email: andrew.b.adams@gmail.com ; A. Cohen,

Inria, ENS and Facebook AI Research, Paris, France; email: albert.cohen@inria.fr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1544-3566/2019/10-ART38

https://doi.org/10.1145/3355606

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 38. Publication date: October 2019.

mailto:permissions@acm.org
https://doi.org/10.1145/3355606


38:2 N. Vasilache et al.

ACM Reference format:

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary Devito, William S.

Moses, Sven Verdoolaege, Andrew Adams, and Albert Cohen. 2019. The Next 700 Accelerated Layers: From

Mathematical Expressions of Network Computation Graphs to Accelerated GPU Kernels, Automatically. ACM

Trans. Archit. Code Optim. 16, 4, Article 38 (October 2019), 26 pages.

https://doi.org/10.1145/3355606

1 INTRODUCTION

Deep neural networks trained with back-propagation learning [41] are a method of choice to solve
complex problems with sufficient data. Popular graph computation engines [1, 16, 19, 48, 61] offer
high-level abstractions for optimizing and executing deep neural networks expressed as graphs of
tensor operations. These frameworks make transparent use of heterogeneous computing systems,
leveraging highly optimized routines for individual operators. While these operators are sufficient
for many applications, they fall short in a number of instances. Developing a novel type of layer
or network architecture incurs high engineering cost or performance penalty. Even if a new layer
may be expressed in terms of existing library primitives, performance is often far from peak for
two reasons: missed optimizations across operators; and no tuning for its specific size, shape, and
data flow [65]. Our work aims at addressing this productivity gap.1

In parallel to the software problem, a hardware race has begun, fueled by the needs for energy-
efficient computing. With Google’s TPU [34] and Microsoft’s Brainwave project [44] on the bleed-
ing edge, many large tech companies are pursuing their own hardware. At Google I/O 2018, Turing-
award recipient John Hennessy called for fully rethinking our hardware, compilers, and language
support for domain-specific properties [31], citing orders of magnitude speedup opportunities and
power constraints caused by the advent of dark silicon [21].

With the increasing problem complexity and hardware limitations, growing the size of manually
optimized libraries will not scale to future demands. To address these challenges, we present a
novel domain-specific flow capable of generating highly optimized kernels for tensor expressions.
It leverages optimizations across operators and takes into account the size and shape of data.
The polyhedral framework of compilation emerged as a natural candidate to design a versatile
optimization flow satisfying the needs of the domain and target hardware. It has demonstrated
strong results in domain-specific optimization [5, 9, 20, 46], expert-driven meta-programming [6,
15, 26], embedding of third-party library code [40], and automatic generation of efficient code for
heterogeneous targets [5, 7, 43, 51, 70, 77]. We attempt to take the best of both worlds, defining
a domain-specific language rich enough to capture full sub-graphs of modern Machine Learning
(ML) models while enabling aggressive compilation competitive to native libraries. In doing so, we
may temporarily sacrifice some of the performance of über-optimized large matrix multiplications
(e.g., compared to the recent Diesel polyhedral compiler [20]) while providing full automation
and ML framework integration. Note that there is no fundamental difficulty in combining both
approaches, recognizing and linking external library kernels when appropriate, as illustrated in
Section 3.7.

Our contributions are the following:

(1) the Tensor Comprehensions (TC) Domain-Specific Language (DSL) with a tensor notation
close to the mathematics of deep learning, with an emphasis on improving productivity
while maintaining a direct lowering path to the intermediate representation of a paral-
lelizing compiler for GPU acceleration;

1The “700 layers” is a reference to a seminal paper on programming languages by P. J. Landin: “The next 700 programming

languages.” Communications of the ACM, 9(3):157–166, 1966.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 38. Publication date: October 2019.

https://doi.org/10.1145/3355606


The Next 700 Accelerated Layers 38:3

(2) an intermediate representation and Just-in-Time optimizing compiler based on the poly-
hedral framework, enabling complex program transformations and levels of automation
unmatched by any other compiler for the acceleration of computational sub-graphs of
neural networks;

(3) coordinated optimization algorithms with integrated functional correctness, profitabil-
ity modeling, domain and target specialization; we propose a layered approach, relying
on integer linear programming and other polyhedral algorithms to address the core pro-
gram optimization and synthesis challenges, while resorting to evolutionary algorithms
as a higher level of control, to select high-level strategies and fine-tune transformation
parameters;

(4) the transparent integration of our flow into PyTorch [48] and Caffe2 [29], providing the
fully automatic synthesis of high-performance GPU kernels from simple tensor algebra.

The TC flow is also portable to other ML frameworks with a few lines of code. While our initial
implementation focuses on Nvidia GPUs, the core technology applies to other types of accelerators
with shared or partitioned memory [43, 51, 70, 76]; these include vector and SIMD accelerators and
also the generation of computational patterns suitable for ASICs with systolic designs and efficient
storage management involving non-volatile memory technologies.

2 TENSOR COMPREHENSIONS

Tensor Comprehensions (TC) are an algorithmic notation for computing on multi-dimensional
arrays. It borrows from the Einstein notation, a.k.a. summation convention: (1) index variables are
defined implicitly, and their range is inferred from what they index; (2) indices that only appear
on the right-hand side of a statement are assumed to be reduction dimensions; (3) the evaluation
order of points in the iteration space does not affect the output.

A tensor comprehension function (or tensor comprehension for short) defines output tensors from
pointwise and reduction operations over input tensors. These operations are defined declaratively
as a sequence of pointwise equations or reductions, called tensor comprehension statements (or
statements for short).

Let us consider matrix-vector product as a simple example of a tensor comprehension with two
statements:

This defines the function mvwith A and x as input tensors and C as an output. The shapes of A and
X are of size (M,K ) and (K ), respectively. The shape of C is inferred automatically. The statements
introduce two indices “i” and “k.” Variables not defined in the function signature implicitly become
indices. Their range is inferred based on how they are used in indexing (see Section 3.1); here, we
will discover i ∈ [0,M ) and k ∈ [0,K ). Because k only appears on the right-hand side, stores into
C will reduce over k with the reduction operator +.

Intuitively, a tensor comprehension may be thought of as the body of a loop whose control flow
is inferred from context. The equivalent C-style pseudo-code is:

Importantly, the nesting order (i then k) is arbitrary: The semantics of a tensor comprehension
is always invariant to loop permutation.2 TC allows in-place updates while preserving a functional

2Nested reductions over multiple variables are supported as long as they involve a single reduction operator, as commuta-

tion does not hold across reduction operators, e.g., min(max(f (.))) � max(min(f (.))).

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 38. Publication date: October 2019.



38:4 N. Vasilache et al.

semantics that is atomic on full tensors: RHS expressions are read in full before assigning any ele-

ment on the LHS. This specification is important in case the LHS tensor also occurs in the RHS [24]:
The compiler is responsible for checking the causality of in-place updates on element-wise depen-
dences, currently allowing only pointwise updates. Also, to enable in-place updates across TC
functions, outputs of a TC statement can also be used as inputs.

We provide a short-cut for an initializing reduction, where the result is initialized to the opera-
tor’s neutral element before reduction by appending “!” to the operator, e.g., “+=!” instead of “+=”.
A one-line definition of the matrix-vector product mv is given below; and common ML kernels
can be written in just a few lines, such as the sgemm function from BLAS:

Expressing general tensor contractions is equally easy. A fully connected layer followed by a
rectified linear unit takes the form of a transposed matrix multiplication initialized to a broadcast
bias term and followed by pointwise clamping (applying the built-in scalar function fmaxf with 0):

The where annotation informs the inference algorithm of the intended index variable ranges
when they cannot be unambiguously inferred. In this case, “b” indexes only “out” whose size also

needs to be inferred. Unlike tensor kernel libraries with predefined layout conventions, notice
that TC lets the user control data layout through the order of tensor indexing dimensions. Here,
we chose to reuse the out tensor across all comprehensions, indicating the absence of temporary
storage.

Similarly, the where clause serves to indicate ranges of kh and kw in the max pooling layer, which
would otherwise be under-constrained:

A 2-D convolution is also simple. Its reduction is initialized to 0 (note the use of +=!) with
reduction dimensions kh, kw:

Subscript expressions can be any affine function of iterators, or subscript-of-subscript expres-
sions (a tensor element indexing another), and combinations thereof. The latter capture data-
dependent accesses such as a gather operation:

TC algorithmic notation differs from today’s prominent frameworks where most operators are
defined as black-box functions. The design of TC makes it easy to experiment with small layer
variations while preserving a concise, in-place expression. Thus, a strided convolution is easily
created as a tweak on convolution, e.g., strided by 2 along h and 3 along w is:

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 38. Publication date: October 2019.



The Next 700 Accelerated Layers 38:5

Fig. 1. Simplified EBNF syntax for core TC. Parentheses denote inline alternatives, brackets denote optional

clauses, and angle brackets contain textual descriptions used for simplicity.

Figure 1 shows the grammar of the Tensor Comprehension language in EBNF notation.

2.1 Data Layout

TC makes data layout explicit and easy to reason about. It supports generalized tensor transposi-
tions (i.e., applying an n-D permutation matrix where n > 2), and data tiling can be achieved by
reshaping tensors and adjusting the index expressions. Range inference and checking guarantees
such reshaping will always be consistent throughout the statements of a tensor comprehension.
For instance,NCHW convolution operates on an explicit input, declared as float I(N, C, H, W), with
the layout matching the expected row-major semantics.

In addition, the TC compiler may transparently apply layout transformations, e.g., when map-
ping tensor tiles to GPU shared memory.

2.2 Automatic Differentiation

TC does not natively deal with automatic differentiation, but we aim to add TC support to an
existing differentiation tool in the future. DSLs like PlaidML [49] already demonstrated this.

However, backward passes can readily be implemented in TC as a few lines of code. Here is the
backward pass of matrix multiplication:

3 TENSOR COMPREHENSIONS WORKFLOW

The Tensor Comprehensions workflow consists of several stages, progressively lowering the level
of abstraction (Figure 2). Given a TC with specialized tensor sizes and strides,3 we lower it to a para-
metric Halide-IR expression, which is further lowered to a polyhedral representation where most
transformations are applied. The output of the polyhedral flow is CUDA code that can be further

3Our toolchain supports parametric specifications, yet we have found early specialization to be beneficial in driving prof-

itability decisions during polyhedral scheduling.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 38. Publication date: October 2019.



38:6 N. Vasilache et al.

Fig. 2. The JIT compilation flow lowers TC to Halide-IR, then to Polyhedral-IR, followed by optimization,

code generation, and execution.

JIT-compiled with NVRTC and executed. Complementing this flow, an autotuner and serializable
compilation engine interacts with scheduling and mapping strategies to search the optimization
space.

Much of TC’s versatility and effectiveness resides in its embedding of a polyhedral compiler as
the main optimization engine. The polyhedral framework is an algebraic representation of “suf-
ficiently regular” program parts, covering arithmetic expressions on arrays surrounded by static
control flow [23]. It has been a cornerstone of loop optimization in the past three decades [3, 8,
14, 22, 32, 70] and is integrated into production compilers [13, 30, 43, 62]. Despite its deceiving
apparent simplicity, it covers a large class of computationally intensive kernels. It is parametric on
loop bounds and array sizes and captures more transformations of the control and data flow than
domain-specific representations such as Halide [55] or TVM [17]. The use of the polyhedral model
by TC is derived from that of PPCG [70], and this section only provides a general overview. Our
transformation engine is composed of the following specially adapted or algorithmically novel
components:

(1) range inference and lowering from high-level TC abstraction to the polyhedral represen-
tation;

(2) core affine scheduling adapted from isl that automatically optimizes for (outer) loop par-
allelism and locality, tuned towards folding a complete TC function into a single GPU
kernel;

(3) the schedule is further tiled to facilitate the mapping and temporal reuse on the deep
parallelism and memory hierarchy of GPUs [72];

(4) mapping to GPUs borrows from PPCG [70] with extensions to support the more complex
and imperfectly nested control structures of ML kernels;

(5) memory promotion deals with explicit data transfers to and from shared and private
memory.

This work demonstrates that the polyhedral framework is particularly well suited for deep neural

networks, featuring large and deeply nested loops with long dependence chains and non-uniform or

all-to-all patterns—arising from fully connected layers and tensor contractions, and transpositions.

These features push the optimization problem into a different heuristic space than Halide’s for image

processing, and a wider space than linear algebra alone.

3.1 Range Inference

TC loops are implicit and output tensor sizes are inferred from index ranges, which themselves
may also be inferred. Our algorithm infers the largest rectangular ranges that avoid out-of-bounds
reads on inputs. A where clause allows for disambiguation if multiple such ranges exist.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 38. Publication date: October 2019.



The Next 700 Accelerated Layers 38:7

Consider the conv2d kernel on page four. The sizes of the input tensors, in and weight, are
known from the function signature. The algorithm needs to infer the ranges of the iterators and
the size of the output tensor out. The iterators b, op, kh, and kw appear only once on the RHS and
their ranges are therefore [0, B), [0, OP), [0, KH), [0, KW) so they index the input tensors maximally.
The iterator ip appears twice, but indexes the dimension of the same size, so its range is [0, IP).
Had it been indexing dimensions of different sizes, its range would have been the intersection of
all size-imposed ranges. Once the ranges of kh and kw are known, it is possible to infer those of h
and w: We require h + kh ≤ H and w + kw ≤ W, which leads to the maximal ranges of [0, H − KH) and
[0, W − KW), respectively. Finally, the size of out can be inferred given the ranges of the iterators
that index it, yielding float(B, OP, H − KW, W − KW). The user of TC is able to inspect the symbolic
sizes inferred for the output tensors using a command-line flag.

Consider now a typical stencil operation A(i)+= B(i + k) ∗ K(k): There are multiple ways to
maximize the ranges of i and k. To disambiguate without annotations, range inference proceeds
in rounds. It maintains a set of index variables whose ranges are not yet resolved. Initially, it
contains all variables not in any where clause. Each step considers argument expressions that
contain a single unresolved variable and constructs a Boolean condition stating the accesses are
within bounds. Using Halide [55] mechanisms, range inference computes the maximal range that
satisfies this condition given the already known ranges of other variables. If different ranges are
computed for the same variable, they are then intersected. For the stencil above, in the first round,
we ignore the expression B(i + k), because it contains multiple unresolved variables. We use K(k)
to deduce a range for k. In the second round, B(i + k) contains a single unresolved variable, and
we use the already-inferred range of k to deduce a maximal range for i.

3.2 Lowering to the Polyhedral Representation

The role of lowering is to bridge the impedance mismatch between the logical layout of high-
level tensor operations (dimension ordering) and the data format the polyhedral code generator
expects (C-style row-major arrays). It ensures the absence of aliasing and performs range inference
for output tensors. Based on range inference, TC differs from NumPy-style implicit “broadcast”
semantics (non-trivial tensor dimensionality extension) adopted by XLA, PyTorch, and MXNet.

Our representation derives from schedule trees [71], implemented in the isl library [68], and uses
a set of node types. Each TC-statement corresponds to multiple runtime statement instances—one
for every valuation of the index variables. The root domain node defines the set of statement in-
stances to be executed. Due to the nature of the TC-language, the constraints on the index variables
are always affine, resulting in an exact representation of the set of operations. A band node defines
a partial execution order through one or multiple piecewise affine functions defined over iteration
domains. The name refers to the notion of a permutable schedule band, a tuple of one-dimensional
schedule functions that can be freely interchanged while preserving the semantics of the program.
A filter node partitions the iteration space, binding its sub-tree to a subset of the iteration domain.
It can be arranged into set or sequence nodes depending on whether or not the order of execution
must be serialized. Context nodes provide additional information on the parameters, e.g., tensor
extents or GPU grid/block sizes. Finally, extension nodes introduce auxiliary computations that are
not part of the original iteration domain, which is useful for, e.g., introducing data-copy statements.

A canonical schedule tree for a TC is defined by an outer sequence node, followed by filter nodes
for each TC statement. Inside each filtered branch, band nodes define an identity schedule with as
many one-dimensional schedule functions as loop iterators for the statement. The implicit loops
form a permutable band as per TC semantics.

In addition to the schedule tree, our representation includes tensor access functions that map the
index variables to the subscripts of tensors they access. These subscripts are not necessarily affine,

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 38. Publication date: October 2019.



38:8 N. Vasilache et al.

Fig. 3. Optimization steps for sgemm.

in which case over-approximations are used [11]: A non-affine access is assumed to potentially
access all values along the given dimension. After the polyhedral representation is constructed,
dependence analysis can be used to ensure the absence of out-of-bounds accesses [53].

Additional lowering steps include forward substitution of convolution expressions (storage/
computation trade-off), padding, mirroring, and clipping. The process is analogous to Halide’s [55].

Example. Figure 3(a) shows the canonical schedule tree for unions of relations where tuples of
iterators are guarded with syntactic identifiers [53]4 for the sgemm TC defined on page 4. One
recognizes a 2-D nest from the initialization statement followed by a 3-D nest for the update state-
ment. The schedule can be either parametric in input sizes or have extra context information on
the tensor sizes. In cases where band nodes do not define an injective schedule, the statement
instances are scheduled following the lexicographical order of their domain coordinates.

3.3 Tunable Polyhedral Scheduling

Program transformation in the polyhedral model involves defining a different schedule, which cor-
responds to a different (partial or total) order of traversing the iteration domain. The instances of all
statements are scheduled completely automatically [14] using one of several scheduling strategies
with which we extended the isl scheduler [72].

The isl scheduler iteratively solves integer linear programming problems to compute piece-wise
affine functions that form new schedule band nodes. Internally, it operates on a data dependence
graph where nodes correspond to statements and edges express dependences between them. It in-
troduces the affine clustering technique that is based on computing the schedule bands separately
for individual strongly connected components of the dependence graph and then clustering these
components iteratively and scheduling them with respect to each other. Clustering not only de-
creases the size of the linear problems the scheduler has to solve, but also serves as a basis for isl’s
loop fusion heuristic.

4We use the named relation notation of iscc [69]. The declaration of parameters (N , M, K ) → {. . . } is omitted hereinafter

for brevity.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 38. Publication date: October 2019.



The Next 700 Accelerated Layers 38:9

We extended isl to provide finer-grained control over the scheduling process. For affine trans-
formations, the user can set additional scheduling options. For clustering, the user can supply a
decision function for pairwise dependence graph component combination, after this combination
was demonstrated to be valid by the scheduler. These configuration points serve as a basis for both
fixed scheduling choices made by TC and scheduling strategies. In particular, TC tells the scheduler
to produce schedules with only non-negative coefficients and without any skewing. Clustering
decisions allow TC to control the conventional minimum and maximum fusion targets, and ad-
ditionally, maximum fusion that preserves at least three nested parallel loops (to be mapped to
CUDA blocks and threads). With the scheduling strategies, one may optionally enable point band
rescheduling (i.e., scheduling the inner dimensions after tiling). In particular, two fusion strategies
can be specified, one for the global schedule and one for the point band. If these fusion strate-
gies are different, then the point band (along with all its descendants) is rescheduled after tiling,
preserving only the outer tile band of the original schedule. Scheduling strategies can be selected
through the autotuning process. In all cases, we enforce that a single GPU kernel is generated.

Example. Observing that the C tensor in sgemm (see page four) is reused between two nests, the
scheduler constructs the tree in Figure 3(b) to leverage access locality and improve performance.
This tree features an outer band node with i and j loops that became common to both statements,
which corresponds to loop fusion. The sequence node ensures that instances of S are executed
before respective instances of T enabling proper initialization. The second band is only applicable
to T and corresponds to the innermost (reduction) loop k.

Overall, the tuning process is greatly simplified compared to Halide and TVM. Relying on a
heavy-duty, well-understood analytical optimization framework based on integer linear program-
ming, TC exposes a small, dedicated search space of high-level strategies and block-size parame-
ters. Beyond guaranteeing the validity of the transformation, dependences can be used to explore
parallelization opportunities (independent instances can be executed in parallel), to improve data
access locality (dependent instances executed close in time) or to automate vectorization [14, 50,
66, 72, 77].

3.4 Imperfectly Nested Loop Tiling

Let us first describe the general setting for loop tiling on schedule trees, before developing the
TC-specific specialization and extensions.

Tiling Permutable Bands. Pluto has been very successful at decoupling the actual implementation
of loop tiling from the preparation of an affine schedule exposing permutable loops amenable to
tiling [14]. This design allows exploring locality and parallelization tradeoffs without bloating
the schedule representation with complex quasi-affine forms capturing the precise distribution of
iterations into tile and point loops. Schedule trees ease the implementation of such a decoupled
design, capturing tiling as the conversion of a permutable schedule band into a chain of two bands,
with the outer band containing tile loops and the inner band containing point loops with fixed trip
count. This can be seen as a conventional strip-mine and sink transformation.

In addition to conventional loop tiling, the schedule tree representation allows tiling imperfectly
nested loops. The technique is based on the following observation: If a loop does not carry depen-
dences, it can be sunk below any other loop. In valid schedules, all dependences are carried (or
satisfied) by some loop, along which they feature a positive distance. A dependence is only vio-
lated if it has a negative distance along some loop before it is carried by another loop [35]. Parallel
loops do not carry dependences by definition and therefore do not affect dependence satisfaction or
violation. Therefore, imperfectly nested tiling may be implemented by first tiling bands in isolation
and then sinking parallel point loops in the tree. During this process, the point band is replicated in

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 38. Publication date: October 2019.



38:10 N. Vasilache et al.

each sub-tree below a sequence (or set) node and its schedule is restricted to only map the relevant
points in the iteration domain. Such an extension is particularly helpful in Pluto, where bands of
permutable loops are rediscovered through a post-pass traversal of the affine schedule.

Parallelism and Locality Trade-offs. TC applies two tiling schemes with complementary purposes.
The first one takes place immediately after affine scheduling. It aims at exposing a sufficient

number of parallel dimensions, some of which amenable to memory coalescing, and some bet-
ter suited to block-level parallelism. It also aims at exploiting data locality within thread blocks
(through shared memory) and individual threads (through register reuse). This tiling scheme is in-
fluenced by the strong emphasis on loop fusion in the affine scheduling heuristic (to enforce that
the generated code runs as a single GPU kernel). In this context, conventional loop nest tiling—
considering a single band at a time—appears to be sufficient. This is the hypothesis we make in
this article.5

The second tiling scheme takes place in the block and thread mapping algorithm, which is the
topic of the next sub-section.

Example. Figure 3(c) shows the schedule tree for the fused and tiled sgemm. It purposely has two
imperfectly nested bands. Dependence analysis shows that loops i and j are parallel. Therefore,
we can tile them and sink the point loops below the band of the reduction k loop, resulting in the
schedule tree in Figure 3(d). Innermost nested bands with point loops can be joined together into
a single band after checking for permutability. As indicated earlier, TC implements the fusion and
tiling scheme of Figure 3(c) but not the sunk, imperfect scheme of Figure 3(d).

3.5 Mapping to Blocks and Threads

A schedule tree can also be used to represent the mapping to an accelerator, in particular a GPU
with multiple blocks and threads. This operation is performed by associating certain schedule band
members, and the corresponding loops, to thread or block indices. The polyhedral code generator
then omits the loops, if possible, and rewrites the index expressions accordingly. Building on PPCG,
our mapping approach is decoupled from tiling for data locality: Grid and block sizes are specified
independently from tile sizes and are exposed as tunable parameters. Due to the semantics of blocks
and threads, only parallel loops that belong to a permutable schedule band can be mapped. If point
loops are mapped to threads, the ratio between tile sizes and block sizes controls the number of
iterations executed by each thread. Note that tile sizes smaller than the block sizes lead to some
threads not performing any computation.

Contrary to PPCG, which may generate multiple kernels for a given input program, our mapping
approach handles imperfectly nested loops in a way that generates a single kernel as expected by
ML frameworks. We require the schedule tree to have at least an outermost band with outer parallel
dimensions. The parallel dimensions of the (single) outermost band are mapped to GPU blocks. In
each schedule tree branch, the innermost permutable band, typically consisting of point loops, is
mapped to GPU threads with the following restrictions: The number of mapped dimensions must
be equal across branches, and on each branch, there must be exactly one band mapped to threads.
The mapping is performed bottom-up, first attempting to map the leaf bands to threads, before
moving to a parent band only if none of the children could be mapped to threads.

Thread mapping can be extended to imperfectly nested loops, following the same principle as
imperfect loop tiling. Within a given thread block, one may sink parallel point loops so multi-
ple bands in a sequence (or set) may be equalized in depth and mapped together. However, TC
currently does not perform any such sinking.

5The TC implementation supporting our experiments does not implement imperfect loop tiling after affine scheduling.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 38. Publication date: October 2019.



The Next 700 Accelerated Layers 38:11

Example. Our mapping strategy produces the schedule tree in Figure 3(e). We introduced a con-
text node in the schedule tree to indicate the effective sizes of the parameters as well as the grid
and block sizes (denoted as bx ,by and tx , ty , respectively, standing for the values eventually taken
by blockIdx.x, blockIdx.x and threadIdx.x, threadIdx.y). This insertion is performed just in
time, when the effective tensor sizes are known. Also notice the filter nodes referring to the bx ,
by , tx , and ty parameters: these nodes express the mapping to the GPU.

3.6 Memory Promotion

We are interested in promoting parts of tensors into shared or private GPU memory. While the
promotion decision is taken by a heuristic and the corresponding imperative code is generated at a
later stage, schedule trees offer a convenient interface for attaching memory-related information.
Memory promotion is based on the notion of an array tile, a form of data tiling for software-
controlled local memories. It is a constant-size potentially strided block in the array that covers all
elements accessed by within a given (schedule) tile. We build upon and extend PPCG’s support for
memory promotion [70, 72] and expose the promotion to shared and private memory as Boolean
options for the autotuner.

Promotion of Indirectly Accessed Arrays. Memory promotion is also applicable to indirectly ac-
cessed arrays. These frequently occur when modeling variable length data through embedding

layers such as word embeddings in natural language processing. This is particularly important
in the case of latency-bound benchmarks where there is little computational or additional data
processing work to hide global memory latency. Indirect arrays used to be promoted in the initial
TC implementation based on PPCG. When implementing parallel reductions, working towards
the first released version of TC, we realized that parallelizing reductions was sufficient to deliver
comparable or higher speedups in our word-embedding benchmarks. For this reason, indirect array
promotion was dropped from the publicly available version of TC. We still report on the design, for
it remains interesting to describe how the polyhedral TC flow may optimize non-affine data flow.

Without loss of generality, consider the access O[l + Idx[i][j]][k]. We refer to O as the outer
array and to Idx as the index array. In case of nested indirections, outer/index pairs are processed
iteratively from innermost to outermost. While the values taken by the first index expression of
the outer array are unknown statically, we can still cache them locally as shared_O[l][i][j][k]=
O[l + Idx[i][j]][k]. Because some values can be duplicated, indirect promotion is only possible if
both the outer and the index arrays are only read, since writing to them could result in different
values that cannot be trivially merged. In general, we require the index array to have an array tile,
i.e., only a fixed-sized block of it is accessed. When computing the array tile for the outer array,
we ignore the indirect parts of the subscript (affine parts are treated as usual). We then introduce
as many additional index expressions in the promoted outer array as are associated to the index
array. Extents of the array along these new dimensions correspond exactly to the array tile sizes
of the index array. Hence, an element of the promoted array contains a copy of the global array
element that would be accessed with the given index array. Indirect subscripts are only used when
copying from global memory, while all other accesses are rewritten through code generation. In
presence of multiple indirect index expressions that share sub-expressions and have equal tile sizes
along the corresponding dimensions, it is sufficient to introduce a single index expression in the
promoted array for all identical sub-expressions.

Promotion Heuristics. Directly accessed arrays are promoted to shared memory if there exists an
array tile of fixed size, if individual elements are accessed more than once, and if at least one of the
accesses does not feature memory coalescing. The latter is visible from the access relation with
the schedule applied to the domain: The last access dimension should be aligned with the schedule
dimension mapped to x threads.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 38. Publication date: October 2019.



38:12 N. Vasilache et al.

For indirect arrays, the coalescing requirement may be dropped because of the presence of ad-
ditional long memory dependences that these cases entail. The total amount of shared memory
being fixed, one may follow a simple greedy heuristic, refusing promotion if the required amount
of shared memory would outgrow the available resources.

3.7 Matching Library Calls

While TC aims at generating code for any computational kernel expressible in the DSL, if (part of)
a kernel happens to match a pattern that is heavily optimized by some library, then it may as well
be handled by that library. In particular, and as a proof of concept, TC looks for opportunities for
letting CUB handle specific forms of reductions [57]. It is currently restricted to single-dimensional
addition reductions.

A reduction is represented in TC by a binary relation between updated tensor elements and the
statement instances that perform the corresponding updates.6 Right before the mapping to threads,
each permutable band with a sufficient number of parallel members is checked for reductions. In
particular, the band should have at least one non-parallel member and the number of parallel
members plus one (corresponding to the non-parallel member) should be greater than or equal
to the number of dimensions that will be mapped to threads. If the band schedules instances of
exactly one reduction statement and if the instances of any other statement scheduled by the band
can be moved before or after the reduction instances, taking into account the active dependence
at (the top of) the band, then the remaining band (involving only reduction statement instances)
will be considered for replacement by a library call during thread mapping.

When a band marked for replacement is considered during thread mapping, full/partial tile sep-
aration is applied—using the block size tuning parameter—since only the full tiles can be handled
directly by CUB. Furthermore, the condition separating full tiles from partial tiles should be simple
enough, as otherwise the cost of determining when to invoke CUB would outweigh any possible
benefit obtained from the invocation. If the condition is too complicated, the separation is dis-
carded and the band is treated in the same way as bands that were not marked for replacement.
Otherwise, the collection of full tiles is tiled along the parallel dimensions, since a single scalar
variable is used to hold the result of the reduction mapped to CUB. Synchronization and a special
marking is then inserted around the point band of this tiling, which is later used during code gen-
eration to replace each full tile by a call to CUB. Finally, since CUB uses some shared memory, its
consumption is taken into account during the downstream memory promotion step.

3.8 Autotuning and Caching

While the polyhedral core of TC is capable of optimizing and generating code for any TC function,
it is well known that the state-of-the-art linear optimization heuristics are not sufficient to account
for all performance anomalies and interactions with downstream program transformations [39,
77]. Different kernels need different, target-specific optimization trade-offs. We thus complement
our flow by an autotuner that varies the options of the polyhedral JIT compiler marked as tunable

in the previous section. These options can be stored and reused for similar operations/kernels
(similar shapes, target architecture), since autotuning may require significantly more time than
compilation.

The tuning session is defined by a list of parameters to tune and their admissible values, initial
values, and the search strategy. We currently implement a genetic search strategy [27]. It runs
for multiple steps, each one evaluating multiple candidate values. Each candidate is assigned a
fitness value inversely proportional to its runtime. The pool is updated on each generation by

6This description is based on commit TC commit 8cfdd5764, which is slightly ahead of the commit used in the experiments,

but is easier to explain.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 38. Publication date: October 2019.



The Next 700 Accelerated Layers 38:13

Fig. 4. Multithreaded autotuning pipeline for kernels.

cross-breeding three candidates, chosen from the pool at random, with fitter candidates having
a higher chance of being chosen, such that each candidate’s value is inherited from one of its
parents. A subsequent mutation phase can change the candidate’s values at random with some low
probability. Much of the autotuning effort resides in tile size selection, for which no linear objective
functions exist in polyhedral compilers. Genetic approaches have been used successfully to explore
such spaces, performing better than random search due to the strong coupling of optimization
decisions—including tile sizes bound by the limits of the memory hierarchy—[18, 50].

Autotuning evaluates hundreds to thousands of versions for each kernel. We devise a generic
multi-threaded, multi-GPU autotuner. It maintains a queue of candidates to compile with the poly-
hedral flow and a queue of compiled kernels ready to be profiled on the GPU (see Figure 4). Candi-
dates or kernels are picked up by available worker threads and compiled or profiled concurrently.
Profiling results are accumulated in the tuning database and used for setting up successive search
steps.

Each generated version is “warmed up” by a few executions before being profiled. Without any
performance guarantees, autotuning needs to quickly prune poor candidates. Because CUDA ker-
nels cannot be stopped once launched, we rely on the following pruning heuristics to decrease the
autotuning time by an order of magnitude. (1) Parameter specialization allows the exact number
of active threads and blocks to be computed beforehand. Kernels with fewer threads than some
configurable threshold (e.g., 256) are not launched. (2) If during the first run, a kernel is more than
100× slower than the best version so far, or it is 5× slower after warmup, it is pruned immediately.

While autotuning time may become significant, compilation and autotuning time is not a fun-
damental limit to TC’s applicability. In training scenarios, a significant amount of time is spent on
computing the same kernel repeatedly over different data during the (stochastic) gradient descent.
In inference scenarios, the network is optimized ahead of time. As a result, although TC operates
as a JIT compiler, it only marginally hits the typical compilation/run-time trade-offs of JIT compil-
ers. Autotuning time may become an issue in specific training scenarios where hyper-parameters
would need to be frequently updated, but in such a case one may leverage TC’s intrinsic handling
of dynamic shapes and generate a single version of each operator or fused operators to handle all
hyper-parameter configurations.

4 INTEGRATION WITH ML FRAMEWORKS

TC is designed to optimize individual layers or small subgraphs of an ML model. The entire model
is not only computationally expensive, but often leads to most transformations being hindered
by a large number of data dependences. Furthermore, ML frameworks perform work distribution
and placement at the model level, treating a layer as a unit of work; extremely large layers could
interfere with the framework operation.

Unlike XLA or Glow, TC supports completely custom layers. In TC, layer fusion is merely
pasting the code that constitutes the layers into a single function, or inlining TC functions at
the AST level. Unlike Halide and TVM, the polyhedral backbone of TC includes instance-wise
dependence analysis, capturing dependences and tensor access relations at the level of individual
loop iterations and tensor elements. This allows TC to fuse operations without introducing

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 38. Publication date: October 2019.



38:14 N. Vasilache et al.

Fig. 5. Example of embedded usage in C++/ATen (top) and PyTorch (bottom).

redundant computation, and to combine fusion with enabling transformations such as shifting
(for convolutions) or scaling (for pooling layers). TC’s polyhedral representation also enables it
to automatically infer sizes, and to discover parallelism and locality-parallelism trade-offs beyond
a predefined collection of map/reduce/scan combinators.

Let us now describe the transparent integration into a ML framework, from a user perspective.
Until now, such levels of integration had only been demonstrated on operator graph compilers such
as XLA [28] and Glow [58], starting from a lower level of abstraction than TC, and missing the
genericity and high reusability of a polyhedral framework as well as feedback-directed autotuning.

We opted for an “in process” implementation, streamlining the interaction with computation
graph engines and ML applications built on top of them, a unique feature for a fully automated
scheduling and mapping flow. TC is integrated into any ML framework as follows: We provide
a thin API that translates the specific tensor object model to our own (see Figure 5). Operator
definitions are overridden to generate TC rather than the framework’s backend implementation,
as well as provide users the ability to write their own TC. A single TC may correspond to a DAG
of operators in the ML framework. The tensor comprehensions are then JIT-compiled as shown
in Figure 2. DAG partitioning, matching, and rewriting (like, e.g., TensorRT [47]) is currently not
part of the flow, although this would make an interesting future combination, with feedback from
the compiler.

5 PERFORMANCE RESULTS

We evaluate our framework on two systems: (1) Nvidia Pascal nodes with 2 socket, 14 core Intel(R)
Xeon(R) CPU E5-2680 v4 @ 2.40GHz, with two Quadro P100-12GB; and (2) Nvidia Volta nodes with
2 socket, 20 core Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz, with eight Tesla V100-SXM2-16GB.
Both systems use CUDA 9.0 and cuDNN 7.0.

We report results for nine TC functions ranging from a simple matrix multiplication kernel to
a full WaveNet cell [64]. The individual benchmarks are described below: Figure 6 and Figure 7
show the complete source code. The matrix multiplication and convolution kernels were selected
for their dominance of the training and inference time of the most classical networks [4, 75]. The
other kernels bring interesting computation patterns to enable expressiveness and performance
comparisons in more diverse network architectures.

These results are all based on TC commit, 2e1a0dc54850 available at
https://github.com/nicolasvasilache/TensorComprehensions.
Running the autotuner for 25 generations of 100 candidates, the (parallel) autotuning process

takes up to 1h on the longest running kernels, and 6h in total.7

The relative performance of kernels automatically generated with TC compared to Caffe2
is shown in Figure 8 and Figure 9.8 Caffe2 provides a very strong baseline by wrapping tuned

7Classical strategies exist to accelerate autotuning, such as predictive modeling and search space pruning [2], but this was

not the focus of this article.
8We compile Caffe2 and PyTorch from source (commit 6223bfdb1d32) and integrate it in the TC testing flow for proper

benchmarking.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 38. Publication date: October 2019.

https://github.com/nicolasvasilache/TensorComprehensions


The Next 700 Accelerated Layers 38:15

Fig. 6. TC Benchmarks used in the experiments. Evaluated sizes are available in Table 1.

implementations, which originate from either hand-tuned libraries or other high-performance
code generators.9 We chose to compare against Caffe2 rather than against other optimization flows

due to expressivity and automation limitations: XLA or Glow do not support custom layers, and
Halide or TVM lack range inference and automatic parallelism discovery, which significantly
complicates the expression of new layers such as KRU and WaveNet. The common set of compa-
rable layers would be limited to matrix multiplications and convolutions, while one of the main
contributions of TC is to enable exploration of new unconventional layers before super-optimized

implementations are available.
In addition, Figure 10 brings together the performance of TC-compiled kernels on both GPU sys-

tems, normalized to Caffe2 on P100. This consolidated graph conveys three classes of information
in a common context: (1) speedup of Caffe2 V100 over Caffe2 P100 to illustrate the out-of-the-box
benefits (or lack thereof) of a faster GPU; (2) speedup of TC over Caffe2 on P100 (main comparison);

9A recent unification effort [59] made Caffe2 the backend for PyTorch 1.0.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 38. Publication date: October 2019.



38:16 N. Vasilache et al.

Fig. 7. Source of one full WaveNet cell.

Fig. 8. Speedup of TC-generated kernels over Caffe2 hand-tuned kernels on Quadro P100-12GB.

Fig. 9. Speedup of TC-generated kernels over Caffe2 hand-tuned kernels on Tesla V100-SXM2-16GB.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 38. Publication date: October 2019.



The Next 700 Accelerated Layers 38:17

Fig. 10. Relative performance: baseline is Caffe2 performance on a P100 GPU.

and (3) speedup of TC V100 over Caffe2 P100. The last choice may seem surprising, but presented in
the context of the other two, allows for relative comparisons: the height of the Caffe2 V100 and TC
V100 captures the raw speedups of TC on V100. We aim at compactly illustrating that TC provides

a path to performance portability, improving on state-of-the-art frameworks and library primitives.
Table 1 provides absolute runtime running TC and Caffe2; all values are reported in μs .

TMM: Transposed Matrix-Multiplication. On matrix multiplications of shapes and sizes relevant
to deep learning workloads (i.e., small 128 × 32 × 256, medium 128 × 1,024 × 1,024 and large
128 × 4,096 × 16,384), TC does not perform competitively, except in the low-latency small case.
This is due to: (1) the lack of a target-specific register blocking optimization, making kernels bound
by shared memory bandwidth that is an order of magnitude slower than register bandwidth;
(2) the lack of target-specific, basic-block level optimizations including careful register allocation
and instruction scheduling. Matrix multiplication is the most tuned computation kernel in history:
The missing optimizations are all well known and may be found in use cases and open-source
implementations such like CUTLASS [36]. Alternatively, polyhedral compilation has been shown
to match or outperform cuBLAS, provided sufficient target- and operator-specific information
has been captured in the optimization heuristic and code generator [20]. While our scientific
focus was on covering a wide range of layers with TC, a production release would need to embed
such operator-specific strategies as well. One strategy would be to follow the classification and
heuristic steering of Kong et al. [39]. Also, TC does not replace all layers: It only acts as a custom
operation in a graph; one may use TC concurrently with numerical libraries as well as custom
implementations provided through TVM.

Group Convolution. Group convolution is expressible with two lines of TC. We report compar-
isons for sizes relevant to the ResNext model [75]. Despite not using either register optimiza-
tions, Fourier or Winograd domain convolutions, TC produces faster kernels than the cuDNN
ones, with running times between 250μs and 750μs. To check how TC fares w.r.t. recent advances
in optimizing group convolutions, we performed an additional comparison with the PyTorch
nightly package py36_cuda9.0.176_cudnn7.1.2_1 with torch.backends.cudnn.benchmark=True.
TC speedups range from −2% to 8×. We also observe PyTorch performance on V100 to be worse
than on P100, while TC achieves performance portability.

Group Normalization. Group Normalization was recently proposed as a way to overcome limi-
tations of Batch Normalization at smaller batch sizes and increase parallelism [74]. In TC, group
normalization is a five-line function. TC performance is roughly 30% better than the hand-tuned
Caffe2 implementation. Whereas Caffe2 uses four handwritten CUDA kernels, we chose to write
the TC version as two separately compiled TC functions for better reuse and overall performance.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 38. Publication date: October 2019.



38:18 N. Vasilache et al.

Table 1. Absolute Run Time in μs

Pascal Volta

1LUT p0 p50 p90 p0 p50 p90

B = 128,D = 64,E1 = 107,L1 = 50
TC 13 14 14 15 16 17

Caffe2 85 91 95 56 58 63

2LUT p0 p50 p90 p0 p50 p90

B = 128,D = 64,E1,E2 = 107,L1,L2 = 50
TC 52 54 57 35 35 37

Caffe2 132 136 144 115 117 124

MLP1 p0 p50 p90 p0 p50 p90

B = 128,M = 2000,N = 128
TC 68 69 71 57 58 59

Caffe2 87 89 91 116 118 123

MLP3 p0 p50 p90 p0 p50 p90

B = 128,N = 128,O = 64, P = 32,Q = 2
TC 18 19 19 20 20 21

Caffe2 157 159 169 144 146 164

tbmm p0 p50 p90 p0 p50 p90

B = 500,K = 26,M = 72,N = 26
TC 52 53 54 42 43 43

Caffe2 94 102 103 76 77 78

Group Convolution p0 p50 p90 p0 p50 p90

C, F = 4,G,N = 32,H = 56,KH ,KW = 3, TC 696 701 704 435 440 443

W = 56 Caffe2 1,590 1,609 1,621 879 888 896

C, F = 8,G,N = 32,H = 28,KH ,KW = 3, TC 574 576 578 269 270 272

W = 28 Caffe2 640 653 692 613 650 660

C, F = 16,G,N = 32,H = 14,KH ,KW = 3, TC 265 272 276 274 284 287

W = 14 Caffe2 440 474 510 377 383 397

C, F = 32,G,N = 32,H = 7,KH ,KW = 3, TC 463 481 491 259 260 264

W = 7 Caffe2 456 461 469 367 388 394

Group Normalization p0 p50 p90 p0 p50 p90

C = 512,G = 32,H = 12,N = 4,W = 12
TC 22 23 24 32 33 35

Caffe2 37 38 40 33 34 35

C = 512,G = 32,H = 48,N = 32,W = 48
TC 1,285 1,290 1,294 593 597 601

Caffe2 1,814 1,819 1,823 865 869 871

tmm p0 p50 p90 p0 p50 p90

K = 32,M = 128,N = 256
TC 15 15 15 15 16 17

Caffe2 18 19 20 31 31 32

K = 1,024,M = 128,N = 1,024
TC 318 334 344 181 189 192

Caffe2 55 58 64 89 90 91

K = 4,096,M = 128,N = 16,384
TC 17,168 17,209 17,270 7,937 8,004 8,096

Caffe2 2,254 2,388 2,590 1,360 1,378 1,419

We also experimented with writing a single fused TC but performance degraded. This is mostly due
to kernels requiring substantially different grid configurations, which makes their fusion unprof-
itable. A larger, graph-level compiler that decides on TC function granularity, informed by the TC
mapper and the autotuner, is necessary to automate this decision process but is left for future work.

Production Model. The kernels 1LUT, 2LUT, MLP1, and MLP3 are the backbone of a low-latency pro-
duction model used at scale in a large company and correspond to (1) reductions over a large lookup
table embedding (10M rows); (2) fused reduction over two large lookup table embeddings (10M
rows); (3) small size Multi-Layer Perceptron (fully connected, bias, ReLU); and (4) very small size,

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 38. Publication date: October 2019.



The Next 700 Accelerated Layers 38:19

three consecutive Multi-Layer Perceptrons. Despite LUT sizes, this model is essentially latency-
bound. Existing libraries are often not tuned for low-latency regimes and tend to perform poorly.

On these examples, the need for reuse and instruction-level parallelism is dwarfed by the need to
quickly load data from the memory into registers. TC is able to adapt to the problem size, leveraging
reduction parallelism to hide memory latency. This results in large speedups over Caffe2 with
cuBLAS 9.0.

Transposed Batch MatMul. This kernel is meant as a case study to characterize performance
benefits and losses in the current flow, compared with reference libraries. For the sizes relevant to
Factorization Machines [56], (500 × 26 × 72 × 26), Nvidia Profiler reports the TC autotuned kernel
taking 56μs on the Nvidia Quadro P6000 GPU (Pascal), while both Pytorch and Caffe2 resort to
the specialized cuBLAS function maxwell_sgemm_128x64_nn that takes 87μs. Beyond architecture
mismatch indicated in the function name, a detailed performance comparison demonstrates that
TC executes 500 blocks of 26 × 13 = 338 threads, compared to 500 blocks of 128 threads for cuBLAS,
reaching 81.8% occupancy instead of 23.6%. Additionally, the cuBLAS kernel shows a large number
of predicated-off instructions due to the block size not matching the problem size. Occupancy is
limited by the number of registers in both cases (11,264 vs. 15,360), but the TC version can be
distributed over five blocks instead of four.10 TC promotes all tensors to shared memory, saturating
its bandwidth, whereas arithmetic instructions are the performance limiter for cuBLAS. Given the
large occupancy metric, performance can be further increased by promoting one tensor to registers
instead, trading off lower occupancy for reduced pressure on memory bandwidth.

Kronecker Recurrent Units. These have been recently proposed as a solution to drastically reduce
model sizes by replacing the weights matrix of a linear layer by a Kronecker product of much
smaller matrices [33]. In TC, a Kronecker product of three matrices is easily written as shown
in the kronecker3 function in Figure 6. The following table shows the running time in μs—or
out of memory (OOM)—of a large matrix multiplication in Caffe2 and the equivalent Kronecker
product of three matrices. Note that the performance difference mostly comes from using a different

algorithm. While no specialized GPU library primitives exist for Kronecker recurrent units, TC’s
automatic flow enabled rapid exploration and reached unprecedented levels of performance, as
shown in Table 2. Clearly, this benchmark deserves a deeper discussion of the space of possible
TC derivations, including memory/computation/parallelism trade-offs falling outside the scope of
this article. The kronecker3 function is one such possible implementation that performed well for
the three selected matrix shapes; it avoids redundant computation at the expense of storage (two
tensors for intermediate computations).

WaveNet. WaveNet [64] is a popular model that enables generation of realistic sounding voices
as highlighted at Google I/O 2018. We encoded a full WaveNet cell using a single TC function
and compared our generated kernel with a WaveNet layer from PyTorch. This experiment uses a
batch size of 1, residual and dilation channels of 32, and 256 skip channels. With TC, we observe
performance improvements up to 4× on Volta, as shown in Table 2.

6 RELATED WORK

Despite decades of progress in optimizing and parallelizing compilation, programmers of compu-
tationally intensive applications complain about the poor performance of optimizing compilers,
often missing the machine peak by orders of magnitude. Among the reasons for this state of affairs,
one may cite the complexity and dynamic behavior of modern processors, domain knowledge re-
quired to prove optimizations’ validity or profitability being unavailable to the compiler, program

10Mapping to blocks of 32 × 13 threads to obtain full warps results in 60μs execution time and only four blocks due to the

higher number of registers per block.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 38. Publication date: October 2019.



38:20 N. Vasilache et al.

Table 2. Algorithmic Exploration of Kronecker Recurrent Units and optimization of a WaveNet Cell

Algorithmic exploration Pascal Volta

of Kronecker Recurrent Units p0 p50 p90 p0 p50 p90

TC Kronecker 272 280 285 200 206 212

256 × 163 × 323 Caffe2 MatMul 7,714 8,158 8,216 4,946 5,065 5,466

TC Kronecker 1,334 1,349 1,365 998 1,004 1,011

256 × 163 × 643 Caffe2 MatMul 64,499 64,765 65,659 38,280 39,307 39,327

TC Kronecker 4,408 4,447 4,472 4,794 4,815 5,106

256 × 163 × 64 × 1282 Caffe2 MatMul OOM OOM OOM OOM OOM OOM

WaveNet Cell p0 p50 p90 p0 p50 p90

receptive field = 4K , dilation = 1 TC 457 466 477 253 255 257

receptive field = 4K , dilation = 1 PyTorch 549 576 790 563 571 594

receptive field = 4K , dilation = 32 TC 353 365 375 138 139 140

receptive field = 4K , dilation = 32 PyTorch 551 574 630 562 569 585

transformations whose profitability is difficult to assess, and the intrinsic difficulty of composing
complex transformations, particularly in the case of computationally intensive loop nests [6, 26].

Several contributions have successfully addressed this issue, not by improving a general-purpose
compiler, but through the design of application-specific program generators, a.k.a. active libraries
[67]. Such generators often rely on feedback-directed optimization to select the best generation
schema [60], as popularized by ATLAS [73] for dense matrix operations (and more recently BTO
[10]) and FFTW [25] for the fast Fourier transform. Most of these generators use transformations
previously proposed for traditional compilers, which fail to apply them for the aforementioned
reasons. The SPIRAL project [54] made a quantum leap over these active libraries, operating on
a domain-specific language (DSL) of digital signal processing formulas. Compilers for DSLs typ-
ically rely on domain-specific constructs to capture the intrinsic parallelism and locality of the
application. Using such an approach, DSL compilers such as Halide [55] for image processing
show impressive results. Its inputs are images defined on an infinite range while TC sets a fixed
size for each dimension using range inference. This is better suited to ML applications, dominated
by fixed-size tensors with higher temporal locality than 2-D images; it is also less verbose in the
case of reductions and does not carry the syntactic burden of anticipating the declaration of stage
names and free variables (Halide needs this as a C++ embedded DSL). OoLaLa [42] takes a sim-
ilar approach for linear algebra, and TACO [37] and Simit [38] use a similar notation as TC but
generate sparse matrix code for numerical solvers.

Following this trend in the context of deep neural networks, we not only design yet another DSL
and compiler but propose a more generic code generation and optimization framework, bringing
together decades of research in loop nest optimization and parallelization for high-performance
computing. We also design the domain language to cover a variety of existing and emerging ma-
chine learning models. Our framework automates a combination of affine transformations involv-
ing hierarchical tiling, mapping, shifting, fusion, distribution, interchange, on either parametric
or fully instantiated problems, that are not accessible to Halide [45, 55], Latte [63], or XLA’s [28]
representations of tensor operations.

The polyhedral framework is a powerful abstraction for the analysis and transformation of loop
nests, and a number of tools and libraries have been developed to realize its benefits [12, 14, 22,
70, 77], including production compilers such as GCC (Graphite) and LLVM (Polly). Polyhedral
techniques have also been tailored for domain-specific purposes. State-of-the-art examples in-
clude the PolyMage [46] DSL for image processing pipelines and the PENCIL approach to the

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 38. Publication date: October 2019.



The Next 700 Accelerated Layers 38:21

construction of parallelizing and compilers for DSLs [5, 9]. PolyMage is a clear illustration of the
benefits of operating at a high level of abstraction, closer to the mathematics of the domain of
interest: While GCC/Graphite and LLVM/Polly struggle to recover affine control and flow from
low-level code, PolyMage natively captures patterns amenable to domain-specific optimization,
such as stencil-specific overlapped tiling with or without recomputation, and cache-conscious fu-
sion and tiling heuristics; it also offers a more productive programming experience for end-users.
Interestingly, some techniques derived from PolyMage crossed out of polyhedral representations
into Halide’s automatic scheduler [45]. Back to deep learning frameworks, TVM extends Halide
with recurrent (parallel scan) operators, support for ML accelerators, and tight integration with
ML frameworks [17]. It also provides autotuning capabilities [18] and shares several engineering
goals of TC, such as transparent ML framework integration. Much like PolyMage, TC implements
optimizations well suited to the long-distance, non-uniform reuse patterns of deep learning mod-
els; these heuristics are not available in general-purpose compilers such as LLVM/Polly, Pluto, or
PPCG, or semi-automatic frameworks such as Halide and TVM.

None of the aforementioned frameworks offer the complete transparency of TC’s end-to-end
compilation flow. TVM involves some level of manual intervention and/or feedback-directed opti-
mization even for producing the most baseline GPU implementation, and it guarantees functional
correctness for a subset of the scheduling primitives and tensor operations: e.g., convolutions
can only be fused at the expense of introducing redundant computations or involving lower-level
transformations that cannot be verified at compilation time. In addition, the balance between ana-
lytical objective functions (profitability heuristics) and feedback-directed autotuning is completely
different: Halide and TVM auto-schedulers expose all scheduling decisions to the autotuner and
infer most performance-related information from execution profiles, while TC’s polyhedral flow
reduces the autotuning space to a narrow set of optimization options and tile sizes.

TC also shares several motivations with Latte [63] and PlaidML [49], including a high-level
domain-specific language and an end-to-end flow. TC provides elementwise access that is just as
expressive when implementing custom layers, but unlike Latte it is more concise (thanks to type
and shape inference), safer regarding static bound checking and graph connectivity, and more flex-
ible by decoupling indexing from representation and layout choices. In addition, our framework
implements more complex scheduling and mapping transformations than both Latte and PlaidML,
some of which are essential to GPU targets with partitioned memory architectures. Unlike Latte,
it is also designed as a JIT compilation library for seamless integration with deep learning frame-
works. Unlike PlaidML, it is not limited to high-level patterns and rewrite rules, but captures com-
plex affine transformations resulting from analytical modeling and autotuning. As a consequence,
the TC compilation process takes generally more time than PlaidML, a price to pay for the ability
to implement a wider range of optimizations.

Like TC, XLA [28] provides automatic shape and size inference, it may operate “in process” as a
JIT compilation library, and it integrates into a production deep learning framework (TensorFlow,
Caffe2 [29]). XLA shares many motivations with Latte, with a focus on integration and complete-
ness of functionality rather than on the complexity of the optimizations and mapping strategies.
Glow [58] is a recent domain-specific, retargetable compiler for PyTorch/Caffe2. It shares many of
the motivations and capabilities of XLA, while emphasizing retargetability (CPUs as well GPUs and
ML accelerators from multiple vendors) and the ability to differentiate, optimize, and lower opera-
tions and sub-graphs of operations within its own hierarchy of intermediate representations. It can
leverage blackbox numerical libraries as well as generate custom vector processing kernels rely-
ing on LLVM. Our compiler design and algorithmic contributions would naturally fit XLA, Latte,
or Glow, except for the following: TC remains independent from a specific computation graph
while preserving tight integration with production frameworks; we did not use an embedded DSL

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 38. Publication date: October 2019.



38:22 N. Vasilache et al.

approach—keeping C++ as an interface for implementing optimization strategies only—isolating
the user from complexity and debugging hurdles of embedded DSLs, and we leverage polyhedral
techniques to factor out most of the optimization heavy-lifting, while XLA, Latte, and Glow resort
to operation-specific emitters/lowering, optimization schemas, and heuristics.

Recently, R-Stream·TF [52] was presented as a proof-of-concept adaptation of the R-Stream
polyhedral compiler to the automatic optimization of TensorFlow operators. Similarly to our
approach, the generated code is wrapped as a custom operator of TensorFlow. The tool takes a
computation graph as input and partitions it into sub-graphs amenable to tensor fusion, contrac-
tion, and layout optimization. R-Stream·TF also leverages the broadcast semantics of TensorFlow
to maximize the operator’s polymorphism w.r.t. input tensor dimension and shapes. This makes
R-Stream·TF very aggressive in terms of static memory management and kernel partitioning. We
made the more pragmatic choice of leaving most of these decisions to the level of tensor algebra,
allowing a domain-specific optimizer or ML expert to rewrite declarative comprehensions into
capacity- and layout-optimized ones. However, TC is more ambitious in its domain-specialization
of affine scheduling and mapping, aiming for the generation of a single accelerated kernel, with
heuristics adapted to the high-dimensional, non-uniform, long-distance reuse patterns of neural
networks. The lack of algorithmic detail in the R-Stream·TF paper prevents us from comparing
those affine transformation heuristics.

7 CONCLUSION

We presented and evaluated the first fully automatic, end-to-end flow, mapping a high-level math-
ematical language to high-performance accelerated GPU kernels. TC resembles the mathematical
notation of a deep neural network and makes it easy to reason about, communicate, and to man-
ually alter the computation and storage/computation trade-offs. Our flow leverages decades of
progress in polyhedral compilation to implement the heavy-duty program transformations, ana-
lytical modeling of profitable optimizations, and code synthesis. It also implements domain-specific
optimizations, code generation, autotuning with a compilation cache, and lightweight integration
within Caffe2 and PyTorch. This unique combination differs from alternative proposals relying
mainly on autotuning such as TVM [18], or pattern-based transformations such as PlaidML [49].

TC is capable of quickly synthesizing solid accelerated implementations that effectively lift bot-
tlenecks in large training runs. In practice, such bottlenecks slow down ML research significantly,
requiring substantial engineering efforts to be mobilized. Our contribution addresses this pro-
ductivity gap; it brings more expressive power and control into the hands of domain experts,
relieving ML frameworks’ dependence on highly tuned vendor libraries without compromising
performance. TC automates boilerplate optimization that has been replicated over the numerous
deep learning frameworks and builds on a generic polyhedral intermediate representation and
libraries shared with other domains (image processing, linear algebra) and general-purpose com-
pilers (LLVM/Polly). Future work includes additional model-based domain-specific optimizations,
CPU code generation, learning best mapping configurations automatically, automatic differentia-
tion, interaction with the graph-level optimizer, and providing a path to emit a series of calls to a
native library or hardware acceleration blocks.

ACKNOWLEDGMENTS

We are indebted to Léon Bottou for the constant support, feedback, and for providing much of
the scientific inspiration and background for Tensor Comprehensions. We are also grateful to Cijo
Jose and Moustapha Cissé, with whom we derived the Kronecker Research Unit experiment. We
would also like to thank Antoine Bordes and Yann Lecun for making this collaboration possible
and for their insights.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 38. Publication date: October 2019.



The Next 700 Accelerated Layers 38:23

REFERENCES

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay

Ghemawat, Geoffrey Irving, Michael Isard et al. 2016. TensorFlow: A system for large-scale machine learning. In

Proceedings of the USENIX Symposium on Operating Systems Design and Implementation (OSDI’16), Vol. 16. 265–283.

[2] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle, J. Thomson, M. Toussaint, and C. K. I. Williams.

2006. Using machine learning to focus iterative optimization. In Proceedings of the International Symposium on Code

Generation and Optimization (CGO’06). IEEE Computer Society. Washington, DC, 295–305. DOI:https://doi.org/10.

1109/CGO.2006.37

[3] Corinne Ancourt and François Irigoin. 1991. Scanning polyhedra with DO loops. In Proceedings of the 37th ACM

SIGPLAN Conference on Programming Language Design and Implementation. ACM, 39–50.

[4] Ammar Ahmad Awan, Hari Subramoni, and Dhabaleswar K. Panda. 2017. An in-depth performance characterization

of CPU- and GPU-based DNN training on modern architectures. In Proceedings of the Conference on Machine Learning

on HPC Environments (MLHPC’17). ACM, New York, NY, Article 8, 8 pages. DOI:https://doi.org/10.1145/3146347.

3146356

[5] R. Baghdadi, U. Beaugnon, A. Cohen, T. Grosser, M. Kruse, C. Reddy, S. Verdoolaege, A. Betts, A. F. Donaldson,

J. Ketema, J. Absar, S. V. Haastregt, A. Kravets, A. Lokhmotov, R. David, and E. Hajiyev. 2015. PENCIL: A platform-

neutral compute intermediate language for accelerator programming. In Proceedings of the International Conference

on Parallel Architecture and Compilation (PACT’15). 138–149. DOI:https://doi.org/10.1109/PACT.2015.17

[6] Lénaïc Bagnères, Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul. 2016. Opening polyhedral compiler’s black

box. In Proceedings of the International Symposium on Code Generation and Optimization (CGO’16). ACM, New York,

NY, 128–138. DOI:https://doi.org/10.1145/2854038.2854048

[7] Muthu Manikandan Baskaran, Uday Bondhugula, Sriram Krishnamoorthy, J. Ramanujam, Atanas Rountev, and

P. Sadayappan. 2008. A compiler framework for optimization of affine loop nests for GPGPUs. In Proceedings of

the 22nd International Conference on Supercomputing (ICS’08). ACM, New York, NY, 225–234. DOI:https://doi.org/10.

1145/1375527.1375562

[8] Cédric Bastoul. 2004. Code generation in the polyhedral model is easier than you think. In Proceedings of the 13th In-

ternational Conference on Parallel Architectures and Compilation Techniques (PACT’04). IEEE Computer Society, Wash-

ington, DC, 7–16. DOI:https://doi.org/10.1109/PACT.2004.11

[9] Ulysse Beaugnon, Alexey Kravets, Sven van Haastregt, Riyadh Baghdadi, David Tweed, Javed Absar, and Anton

Lokhmotov. 2014. VOBLA: A vehicle for optimized basic linear algebra. In Proceedings of the SIGPLAN/SIGBED

Conference on Languages, Compilers and Tools for Embedded Systems (LCTES’14). ACM, New York, NY, 115–124.

DOI:https://doi.org/10.1145/2597809.2597818

[10] Geoffrey Belter, E. R. Jessup, Ian Karlin, and Jeremy G. Siek. 2009. Automating the generation of composed linear

algebra kernels. In Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis

(SC’09). ACM, New York, NY, Article 59, 12 pages. DOI:https://doi.org/10.1145/1654059.1654119

[11] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Cohen, and Cédric Bastoul. 2010. The polyhedral

model is more widely applicable than you think. In Compiler Construction, Rajiv Gupta (Ed.), Vol. 6011, Lecture Notes

in Computer Science.Springer, 283–303.

[12] Uday Bondhugula, Aravind Acharya, and Albert Cohen. 2016. The Pluto+ algorithm: A practical approach for paral-

lelization and locality optimization of affine loop nests. ACM Trans. on Prog. Lang. Syst. 38, 3 (Apr. 2016), 12:1–12:32.

DOI:https://doi.org/10.1145/2896389

[13] Uday Bondhugula, Sanjeeb Dash, Oktay Gunluk, and Lakshminarayanan Renganarayanan. 2010. A model for fusion

and code motion in an automatic parallelizing compiler. In Proceedings of the 19th International Conference on Parallel

Architectures and Compilation Techniques (PACT’10). IEEE, 343–352.

[14] Uday Bondhugula, Albert Hartono, Jagannathan Ramanujam, and Ponnuswamy Sadayappan. 2008. A practical auto-

matic polyhedral parallelizer and locality optimizer. In Proceedings of the 29th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation.

[15] Chun Chen, Jacqueline Chame, and Mary Hall. 2008. CHiLL: A Framework for Composing High-level Loop Transfor-

mations. Technical Report 08-897, University of Southern California.

[16] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and

Zheng Zhang. 2015. MXNet: A flexible and efficient machine learning library for heterogeneous distributed systems.

Retrieved from: http://arxiv.org/abs/1512.01274.

[17] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan

Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An automated end-to-end

optimizing compiler for deep learning. In Proceedings of the 13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI’18). USENIX Association, 578–594. Retrieved from https://www.usenix.org/conference/

osdi18/presentation/chen.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 38. Publication date: October 2019.

https://doi.org/10.1109/CGO.2006.37
https://doi.org/10.1109/CGO.2006.37
https://doi.org/10.1145/3146347.3146356
https://doi.org/10.1145/3146347.3146356
https://doi.org/10.1109/PACT.2015.17
https://doi.org/10.1145/2854038.2854048
https://doi.org/10.1145/1375527.1375562
https://doi.org/10.1145/1375527.1375562
https://doi.org/10.1109/PACT.2004.11
https://doi.org/10.1145/2597809.2597818
https://doi.org/10.1145/1654059.1654119
https://doi.org/10.1145/2896389
http://arxiv.org/abs/1512.01274
PLX-HTTPS://www.usenix.org/conference/osdi18/presentation/chen
PLX-HTTPS://www.usenix.org/conference/osdi18/presentation/chen


38:24 N. Vasilache et al.

[18] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos Guestrin, and Arvind

Krishnamurthy. 2018. Learning to optimize tensor programs. In Proceedings of the Conference on Advances in Neural

Information Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett

(Eds.). Curran Associates, Inc., 3389–3400.

[19] R. Collobert, K. Kavukcuoglu, and C. Farabet. 2012. Implementing neural networks efficiently. In Neural Networks:

Tricks of the Trade, G. Montavon, G. Orr, and K.-R. Muller (Eds.). Springer.

[20] Venmugil Elango, Norm Rubin, Mahesh Ravishankar, Hariharan Sandanagobalane, and Vinod Grover. 2018. Diesel:

DSL for linear algebra and neural net computations on GPUs. In Proceedings of the 2nd ACM SIGPLAN International

Workshop on Machine Learning and Programming Languages (MAPL’18). ACM, New York, NY, 42–51. DOI:https://

doi.org/10.1145/3211346.3211354

[21] Hadi Esmaeilzadeh, Emily R. Blem, Renée St. Amant, Karthikeyan Sankaralingam, and Doug Burger. 2011. Dark

silicon and the end of multicore scaling. In Proceedings of the 38th International Symposium on Computer Architecture

(ISCA’11). 365–376. DOI:https://doi.org/10.1145/2000064.2000108

[22] Paul Feautrier. 1992. Some efficient solutions to the affine scheduling problem. Part II. Multidimensional time. Int. J.

Parallel Prog. 21, 6 (1992), 389–420.

[23] Paul Feautrier and Christian Lengauer. 2011. Polyhedron model. In Encyclopedia of Parallel Computing, David Padua

(Ed.). Springer, 1581–1592.

[24] Basilio B. Fraguela, Ganesh Bikshandi, Jia Guo, María J. Garzarán, David Padua, and Christoph von Praun. 2012.

Optimization techniques for efficient HTA programs. Parallel Comput. 38, 9 (2012), 465–484. DOI:https://doi.org/10.

1016/j.parco.2012.05.002

[25] Matteo Frigo and Steven G. Johnson. 1998. FFTW: An adaptive software architecture for the FFT. In Proceedings of

the IEEE International Conference on Acoustics, Speech and Signal Processing, Vol. 3. IEEE, 1381–1384.

[26] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen, David Parello, Marc Sigler, and Olivier Temam. 2006.

Semi-automatic composition of loop transformations for deep parallelism and memory hierarchies. Int. J. Parallel

Prog. 34, 3 (July 2006), 261–317. DOI:https://doi.org/10.1007/s10766-006-0012-3

[27] David E. Goldberg. 1989. Genetic Algorithms in Search, Optimization and Machine Learning (1st ed.). Addison-Wesley

Longman Publishing Co., Inc., Boston, MA.

[28] Google 2017. XLA: Domain-Specific Compiler for Linear Algebra to Optimize TensorFlow Computations. Retrieved

from https://www.tensorflow.org/performance/xla.

[29] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,

Yangqing Jia, and Kaiming He. 2017. Accurate, large minibatch SGD: Training ImageNet in 1 hour. Retrieved from

http://arxiv.org/abs/1706.02677.

[30] Tobias Grosser, Armin Groesslinger, and Christian Lengauer. 2012. Polly-performing polyhedral optimizations on a

low-level intermediate representation. Parallel Proc. Lett. 22, 04 (2012), 1250010.

[31] John Hennessy. 2018. The Future of Computing. Google I/O presentation. Retrieved on May 2018 from https://www.

youtube.com/watch?v=Azt8Nc-mtKM.

[32] François Irigoin and Remi Triolet. 1988. Supernode partitioning. In Proceedings of the 15th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages. ACM, 319–329.

[33] Cijo Jose, Moustpaha Cisse, and François Fleuret. 2017. Kronecker recurrent units. Retrieved from http://arxiv.org/

abs/1705.10142.

[34] Norman P. Jouppi et al. 2017. In-datacenter performance analysis of a tensor processing unit. In Proceedings of the

44th International Symposium on Computer Architecture (ISCA’17). 1–12. DOI:https://doi.org/10.1145/3079856.3080246

[35] Ken Kennedy and John R. Allen. 2002. Optimizing Compilers for Modern Architectures: A Dependence-based Approach.

Morgan Kaufmann Publishers, Inc., San Francisco, CA.

[36] Andrew Kerr, Duane Merrill, Julien Demouth, and John Tran. 2017. CUTLASS: Fast Linear Algebra in CUDA C++.

Retrieved from https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/.

[37] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amarasinghe. 2017. The tensor algebra

compiler. Proc. ACM Program. Lang. 1, OOPSLA, Article 77 (Oct. 2017), 29 pages. DOI:https://doi.org/10.1145/3133901

[38] Fredrik Kjolstad, Shoaib Kamil, Jonathan Ragan-Kelley, David I. W. Levin, Shinjiro Sueda, Desai Chen, Etienne Vouga,

Danny M. Kaufman, Gurtej Kanwar, Wojciech Matusik, and Saman Amarasinghe. 2016. Simit: A language for physical

simulation. ACM Trans. Graph. 35, 2, Article 20 (Mar. 2016), 21 pages. DOI:https://doi.org/10.1145/2866569

[39] Martin Kong and Louis-Noël Pouchet. 2018. A performance vocabulary for affine loop transformations. Retrieved

from: http://arxiv.org/abs/1811.06043.

[40] Martin Kong, Richard Veras, Kevin Stock, Franz Franchetti, Louis-Noël Pouchet, and P. Sadayappan. 2013. When poly-

hedral transformations meet SIMD code generation. In Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI’13). 127–138. DOI:https://doi.org/10.1145/2462156.2462187

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 38. Publication date: October 2019.

https://doi.org/10.1145/3211346.3211354
https://doi.org/10.1145/3211346.3211354
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.1016/j.parco.2012.05.002
https://doi.org/10.1016/j.parco.2012.05.002
https://doi.org/10.1007/s10766-006-0012-3
https://www.tensorflow.org/performance/xla
http://arxiv.org/abs/1706.02677
https://www.youtube.com/watch?v=Azt8Nc-mtKM
https://www.youtube.com/watch?v=Azt8Nc-mtKM
http://arxiv.org/abs/1705.10142
http://arxiv.org/abs/1705.10142
https://doi.org/10.1145/3079856.3080246
https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/
https://doi.org/10.1145/3133901
https://doi.org/10.1145/2866569
http://arxiv.org/abs/1811.06043
https://doi.org/10.1145/2462156.2462187


The Next 700 Accelerated Layers 38:25

[41] Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E. Howard, Wayne E. Hubbard, and

Lawrence D. Jackel. 1989. Handwritten digit recognition with a back-propagation network. In Proceedings of the

Conference on Advances in Neural Information Processing Systems (NIPS’89). 396–404. Retrieved from http://papers.

nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network.

[42] Mikel Luján, T. L. Freeman, and John R. Gurd. 2000. OoLALA: An object oriented analysis and design of numerical lin-

ear algebra. In Proceedings of the 15th ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages,

and Applications (OOPSLA’00). ACM, New York, NY, 229–252. DOI:https://doi.org/10.1145/353171.353187

[43] Benoit Meister, Nicolas Vasilache, David Wohlford, Muthu Manikandan Baskaran, Allen Leung, and Richard Lethin.

2011. R-Stream Compiler. Springer, Boston, MA, 1756–1765. DOI:https://doi.org/10.1007/978-0-387-09766-4_515

[44] Microsoft 2017. Microsoft Unveils Project Brainwave for Real-time AI. Retrieved from https://www.microsoft.com/

en-us/research/blog/microsoft-unveils-project-brainwave.

[45] Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-Kelley, and Kayvon Fatahalian. 2016. Au-

tomatically scheduling Halide image processing pipelines. ACM Trans. Graph. 35, 4 (July 2016), 83:1–83:11. DOI:
https://doi.org/10.1145/2897824.2925952

[46] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. 2015. PolyMage: Automatic optimization for image

processing pipelines. In Proceedings of the 20th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS’15). ACM, New York, NY, 429–443. DOI:https://doi.org/10.1145/2694344.

2694364

[47] Nvidia 2017. Deploying Deep Neural Networks with Nvidia TensorRT. Retrieved from https://devblogs.nvidia.com/

parallelforall/deploying-deep-learning-nvidia-tensorrt.

[48] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban

Desmaison, Luca Antiga, and Adam Lerer. 2017. Automatic differentiation in PyTorch. In NIPS 2017 Autodiff Workshop:

The Future of Gradient-based Machine Learning Software and Techniques, Long Beach, CA.

[49] PlaidML 2018. PlaidML. Retrieved from https://www.intel.ai/plaidml/#gs.bBu0cF8W.

[50] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen, J. Ramanujam, P. Sadayappan, and Nicolas

Vasilache. 2011. Loop transformations: Convexity, pruning and optimization. In Proceedings of the 38th ACM Sympo-

sium on Principles of Programming Languages (POPL’11).

[51] Louis-Noel Pouchet, Peng Zhang, P. Sadayappan, and Jason Cong. 2013. Polyhedral-based data reuse optimization

for configurable computing. In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate

Arrays (FPGA’13). ACM, New York, NY, 29–38. DOI:https://doi.org/10.1145/2435264.2435273

[52] Benoit Pradelle, Benoit Meister, Muthu Baskaran, Jonathan Springer, and Richard Lethin. 2017. Polyhedral optimiza-

tion of TensorFlow computation graphs. In Proceedings of the 6th Workshop on Extreme-scale Programming Tools

(ESPT’17, associated with SC’17).

[53] William Pugh and David Wonnacott. 1994. Static analysis of upper and lower bounds on dependences and parallelism.

ACM Trans. Prog. Lang. Syst. 16, 4 (July 1994), 1248–1278. DOI:https://doi.org/10.1145/183432.183525

[54] Markus Püschel, José M. F. Moura, Bryan Singer, Jianxin Xiong, Jeremy Johnson, David Padua, Manuela Veloso, and

Robert W. Johnson. 2004. Spiral: A generator for platform-adapted libraries of signal processing alogorithms. Int. J.

High Perf. Comput. Appl. 18, 1 (2004), 21–45. DOI:https://doi.org/10.1177/1094342004041291

[55] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe.

2013. Halide: A language and compiler for optimizing parallelism, locality, and recomputation in image processing

pipelines. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation.

[56] Steffen Rendle. 2010. Factorization machines. In Proceedings of the IEEE International Conference on Data Mining

(ICDM’10). IEEE Computer Society, Washington, DC, 995–1000. DOI:https://doi.org/10.1109/ICDM.2010.127

[57] Nvidia Research. [n.d.]. CUB Documentation. Version 1.8.0. Retrieved from: https://nvlabs.github.io/cub.

[58] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Summer Deng, Roman Dzhabarov, James Hegeman, Roman Leven-

stein, Bert Maher, Nadathur Satish, Jakob Olesen, Jongsoo Park, Artem Rakhov, and Misha Smelyanskiy. 2018. Glow:

Graph lowering compiler techniques for neural networks. Retrieved from http://arxiv.org/abs/1805.00907.

[59] Mike Schroepfer. 2018. Day 2 Keynote. Facebook f8 presentation at McEnery Convention Center, San Jose, CA. Retrieved

from https://developers.facebook.com/videos/f8-2018/f8-2018-day-2-keynote/.

[60] Michael D. Smith. 2000. Overcoming the challenges to feedback-directed optimization (keynote talk). In Proceedings

of the ACM SIGPLAN Workshop on Dynamic and Adaptive Compilation and Optimization (DYNAMO’00). ACM, New

York, NY, 1–11. DOI:https://doi.org/10.1145/351397.351408

[61] Theano Development Team. 2016. Theano: A Python framework for fast computation of mathematical expressions.

Retrieved from http://arxiv.org/abs/1605.02688.

[62] Konrad Trifunovic, Albert Cohen, David Edelsohn, Feng Li, Tobias Grosser, Harsha Jagasia, Razya Ladelsky, Sebastian

Pop, Jan Sjödin, and Ramakrishna Upadrasta. 2010. GRAPHITE two years after: First lessons learned from real-world

polyhedral compilation. In Proceedings of the GCC Research Opportunities Workshop (GROW’10).

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 38. Publication date: October 2019.

http://papers.nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network
http://papers.nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network
https://doi.org/10.1145/353171.353187
https://doi.org/10.1007/978-0-387-09766-4_515
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave
https://doi.org/10.1145/2897824.2925952
https://doi.org/10.1145/2694344.2694364
https://doi.org/10.1145/2694344.2694364
https://devblogs.nvidia.com/parallelforall/deploying-deep-learning-nvidia-tensorrt
https://devblogs.nvidia.com/parallelforall/deploying-deep-learning-nvidia-tensorrt
https://www.intel.ai/plaidml/#gs.bBu0cF8W
https://doi.org/10.1145/2435264.2435273
https://doi.org/10.1145/183432.183525
https://doi.org/10.1177/1094342004041291
https://doi.org/10.1109/ICDM.2010.127
https://nvlabs.github.io/cub
http://arxiv.org/abs/1805.00907
https://developers.facebook.com/videos/f8-2018/f8-2018-day-2-keynote/
https://doi.org/10.1145/351397.351408
http://arxiv.org/abs/1605.02688


38:26 N. Vasilache et al.

[63] Leonard Truong, Rajkishore Barik, Ehsan Totoni, Hai Liu, Chick Markley, Armando Fox, and Tatiana Shpeisman.

2016. Latte: A language, compiler, and runtime for elegant and efficient deep neural networks. In Proceedings of the

37th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’16). ACM, New York,

NY, 209–223. DOI:https://doi.org/10.1145/2908080.2908105

[64] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner,

Andrew W. Senior, and Koray Kavukcuoglu. 2016. WaveNet: A generative model for raw audio. Retrieved from http:

//arxiv.org/abs/1609.03499.

[65] Nicolas Vasilache, Jeff Johnson, Michaël Mathieu, Soumith Chintala, Serkan Piantino, and Yann LeCun. 2014. Fast

convolutional nets with fbfft: A GPU performance evaluation. Retrieved from http://arxiv.org/abs/1412.7580.

[66] Nicolas Vasilache, Benoît Meister, Muthu Baskaran, and Richard Lethin. 2012. Joint scheduling and layout optimiza-

tion to enable multi-level vectorization. In Proceedings of the 2nd International Workshop on Polyhedral Compilation

Techniques.

[67] T. Veldhuizen and E. Gannon. 1998. Active libraries: Rethinking the roles of compilers and libraries. In Proceedings

of the SIAM Workshop: Object Oriented Methods for Interoperable Scientific and Engineering Computing, Michael E.

Henderson, Christopher R. Anderson, and Stephen L. Lyons (Eds.). SIAM Press, 286–295.

[68] Sven Verdoolaege. 2010. Isl: An integer set library for the polyhedral model. In Proceedings of the 3rd International

Conference on Mathematical Software (ICMS’10). Springer, Berlin, 299–302. Retrieved from http://dl.acm.org/citation.

cfm?id=1888390.1888455.

[69] Sven Verdoolaege. 2011. Counting affine calculator and applications. In Proceedings of the 1st International Workshop

on Polyhedral Compilation Techniques (IMPACT’11). DOI:https://doi.org/10.13140/RG.2.1.2959.5601

[70] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Christian Tenllado, and Francky Catthoor.

2013. Polyhedral parallel code generation for CUDA. ACM Trans. Archit. Code Optim. 9, 4 (Jan. 2013), 54:1–54:23.

DOI:https://doi.org/10.1145/2400682.2400713

[71] Sven Verdoolaege, Serge Guelton, Tobias Grosser, and Albert Cohen. 2014. Schedule trees. In Proceedings of the 4th

Workshop on Polyhedral Compilation Techniques (IMPACT’14, Associated with HiPEAC’14).

[72] Sven Verdoolaege and Gerda Janssens. 2017. Scheduling for PPCG. Report CW 706. Department of Computer Science,

KU Leuven, Leuven, Belgium. DOI:https://doi.org/10.13140/RG.2.2.28998.68169

[73] R. Clint Whaley and Jack J. Dongarra. 1998. Automatically tuned linear algebra software. In Proceedings of the

ACM/IEEE Conference on Supercomputing (SC’98). IEEE Computer Society, Washington, DC, 1–27. Retrieved from

http://dl.acm.org/citation.cfm?id=509058.509096.

[74] Yuxin Wu and Kaiming He. 2018. Group normalization. Retrieved from http://arxiv.org/abs/1803.08494.

[75] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. 2016. Aggregated residual transformations

for deep neural networks. Retrieved from http://arxiv.org/abs/1611.05431.

[76] Tomofumi Yuki and Sanjay Rajopadhye. 2013. Parametrically Tiled Distributed Memory Parallelization of Polyhedral

Programs. Technical Report CS13-105. Colorado State University. 19 pages.

[77] Oleksandr Zinenko, Sven Verdoolaege, Chandan Reddy, Jun Shirako, Tobias Grosser, Vivek Sarkar, and Albert

Cohen. 2018. Modeling the conflicting demands of parallelism and Temporal/Spatial locality in affine scheduling.

In Proceedings of the 27th International Conference on Compiler Construction. ACM, 3–13.

Received February 2019; revised July 2019; accepted August 2019

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 38. Publication date: October 2019.

https://doi.org/10.1145/2908080.2908105
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1412.7580
http://dl.acm.org/citation.cfm?id=1888390.1888455
http://dl.acm.org/citation.cfm?id=1888390.1888455
https://doi.org/10.13140/RG.2.1.2959.5601
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.13140/RG.2.2.28998.68169
http://dl.acm.org/citation.cfm?id=509058.509096
http://arxiv.org/abs/1803.08494
http://arxiv.org/abs/1611.05431

