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Abstract
This thesis explores how fork-join parallelism, as supported by concurrency platforms such
as Cilk and OpenMP, can be embedded into a compiler’s intermediate representation (IR).
Mainstream compilers typically treat parallel linguistic constructs as syntactic sugar for
function calls into a parallel runtime. These calls prevent the compiler from perform-
ing optimizations across parallel control constructs. Remedying this situation is generally
thought to require an extensive reworking of compiler analyses and code transformations
to handle parallel semantics.

Tapir is a compiler IR that represents logically parallel tasks asymmetrically in the
program’s control flow graph. Tapir allows the compiler to optimize across parallel con-
trol constructs with only minor changes to its existing analyses and code transformations.
To prototype Tapir in the LLVM compiler, for example, the Tapir team added or modi-
fied about 6000 lines of LLVM’s 4-million-line codebase. Tapir enables LLVM’s existing
compiler optimizations for serial code — including loop-invariant-code motion, common-
subexpression elimination, and tail-recursion elimination — to work with parallel control
constructs such as spawning and parallel loops. Tapir also supports parallel optimizations
such as loop scheduling.

This research reported in this thesis represents joint work with Tao B. Schardl and
Charles E. Leiserson.
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Chapter 1

Introduction

Mainstream compilers, such as GCC [62], ICC [18], and LLVM [26] provide linguistic

extensions for frameworks such as Cilk Plus[16] and OpenMP [4, 47] that allow program-

mers to write fork-join parallel programs. Typically in such frameworks, one can specify

parallelism at a high level by denoting tasks or loops iterations that may be executed con-

currently.

Although these mainstream compilers support fork-join parallelism, they struggle to

optimize programs when they encounter such linguistic constructs. Paradoxically this can

even mean that programs you’d expect to show large parallel speedups, are slower than the

equivalant serial code. Consider, for example, the parallel cilk_for loop on lines 6–7 in

Figure 1-1a, which indicates that iterations of the loop are free to execute in parallel. In a

serial version of this loop, where the cilk_for keyword is replaced by an ordinary for key-

word, each of the compilers GCC 5.3.0, ICC 16.0.3, and Cilk Plus/LLVM 3.9.0 observes

that the call to norm on line 7 produces the same value in every iteration of the loop, and

they optimize the loop by computing this value only once before the loop executes. This

optimization dramatically reduces the total time to execute normalize from Θ(n2) to Θ(n).

Although this same optimization can, in principle, be performed on the actual parallel loop

in the figure, no mainstream compiler performs this code-motion optimization. The same

is true when the parallel loop is written using OpenMP, as shown in Figure 1-1b.

This failure to optimize stems from how these compilers for serial languages imple-

ment parallel linguistic constructs. The compiler for a serial language, such as C [22] or

9



a b

01 __attribute__((const))
02 double norm(const double *A, int n);
03
04 void normalize(double *restrict out,
05 const double *restrict in, int n) {
06 cilk_for (int i = 0; i < n; ++i)
07 out[i] = in[i] / norm(in, n);
08 }

09 __attribute__((const))
10 double norm(const double *A, int n);
11
12 void normalize(double *restrict out,
13 const double *restrict in, int n) {
14 #pragma omp parallel for
15 for (int i = 0; i < n; ++i)
16 out[i] = in[i] / norm(in, n);
17 }

Figure 1-1: A function that GCC, ICC, and Cilk Plus/LLVM all fail to optimize effectively.
a A Cilk version of the code. The cilk_for loop on lines 6–7 allows each iteration of
the loop to execute in parallel. The norm function computes the norm of a vector in Θ(n)
time. The call to norm on line 7 can be safely moved outside of the loop, but none of these
three mainstream compilers perform this code motion, even though they all do so when
the cilk_for keyword is replaced with an ordinary for keyword. b The corresponding
OpenMP code.

C++ [63], can be viewed as consisting of three phases: a front end, a middle end, and a

back end. The front end parses and type-checks the input program and translates it to an

intermediate representation (IR), which represents the control flow of the program as a

more-or-less language-independent control-flow graph (CFG) [2, Sec. 8.4.3]. The middle

end consists of optimization passes that transform the IR into a more-efficient form. These

optimizations tend to be independent of the instruction-set architecture of the target com-

puter. The back end translates the optimized IR into machine code, performing low-level

machine-dependent optimizations.

GCC, ICC, and Cilk Plus/LLVM all lower the parallel constructs — transform the par-

allel constructs to a more-primitive representation — in the front end. To compile the code

in Figure 1-1a, for example, the front-end translates the parallel loop in lines 6–7 into IR

in two steps. (The OpenMP code in Figure 1-1b is handled similarly.) First, the loop body

(line 7) is lifted into a helper function. Next, the loop itself is replaced with a call to a

library function implemented by the Cilk Plus runtime system, which takes as arguments

the loop bounds and helper function, and handles the spawning of the loop iterations for

parallel execution. Since this process occurs in the front end, it renders the parallel loop

unrecognizable to middle-end loop-optimization passes, such as code motion. In short,

these compilers treat parallel constructs as syntactic sugar for opaque runtime calls, which

confounds the many middle-end analyses and optimizations.

10



1.1 Previous approaches

This thesis aims to enable middle-end optimizations involving fork-join control flow by

embedding parallelism directly into the compiler IR, an endeavor that has historically been

challenging [31, 30]. For example, it is well documented [40] that traditional compiler

transformations for serial programs can jeopardize the correctness of parallel programs. In

general, four types of approaches have been proposed to embed parallelism in a mainstream

compiler IR.

First, the compiler can use metadata to delineate logical parallelism. LLVM’s parallel

loop metadata [34], for example, is attached to memory accesses in a loop to indicate that

they have no dependence on other iterations of the same loop. LLVM can only conclude

that a loop is parallel if all its memory accesses are labeled with this metadata. Unfortu-

nately, encoding parallel loops in this way is fragile, since a compiler transformation that

moves code into a parallel loop risks serializing the loop from LLVM’s perspective.

Second, the compiler can use intrinsic functions to demark parallel tasks. (For exam-

ples, see [65, 48, 32].) Often, either existing serial analyses and optimizations must be shut

down when code contains these intrinsics, or the intrinsics offer minimal opportunities for

compiler optimization.

Third, the compiler can use a separate IR to encode logical parallelism in the program.

The HPIR [65, 6], SPIRE [23], and INSPIRE [21] representations, for instance, model par-

allel constructs using an alternative IR, such as one based on the program’s abstract syntax

tree [2, Sec. 2.5.1]. Such an IR can support optimizations involving parallel constructs

without requiring changes to existing middle-end optimizations. But adopting a separate

IR into a mainstream compiler has historically been criticized [33] as requiring consider-

able effort to engineer, develop, and maintain the additional IR to the same standards as the

compiler’s existing serial IR.

Fourth, the compiler can augment its existing IR to encode logical parallelism, which

is the approach that Tapir follows. Unlike Tapir, all prior research on parallel precedence

graphs [61, 60], parallel flow graphs [59, 13], concurrent control-flow graphs [28, 46], and

parallel program graphs [53, 52] represent parallel tasks as symmetric entities in a CFG.

11



a b

18 int fib(int n) {
19 if (n < 2) return n;
20 int x, y;
21 x = cilk_spawn fib(n - 1);
22 y = fib(n - 2);
23 cilk_sync;
24 return x + y;
25 }

26 int fib(int n) {
27 if (n < 2) return n;
28 int x, y;
29 #pragma omp task shared(x)
30 x = fib(n - 1);
31 #pragma omp task shared(y)
32 y = fib(n - 2);
33 #pragma omp taskwait
34 return x + y;
35 }

c d
br (n < 2), exit, if.elseentry:

parbeginif.else:

x = fib(n-1)
br join

y = fib(n-2)
br join

parend
add = x+y
br exit

join:

rv = φ([n,entry],[add,join])
return rv

exit:

F

T

x = alloca i64
br (n < 2), exit, if.else

entry:

detach det, contif.else:

x0 = fib(n-1)
store x0, x
reattach cont

det:
y = fib(n-2)
sync
x1 = load x
add = x1 + y
br exit

cont:

rv = φ([n,entry],[add,cont])
return rv

exit:

F

T
detach continue

reattach

Figure 1-2: Comparison between a traditional CFG with symmetric parallelism and Tapir’s
CFG with asymmetric parallelism. a The Cilk function fib computes Fibonacci numbers.
The cilk_spawn on line 21 allows the two recursive calls to fib to execute in parallel,
and the cilk_sync on line 23 waits for the spawned call to return. A serial execution of
fib executes fib(n-1) before fib(n-2). b A comparable implementation of fib us-
ing OpenMP task parallelism. c A CFG for fib that encodes parallelism symmetrically.
Rectangles denote basic blocks, which contain C-like pseudocode for fib. Edges denote
control flow between basic blocks. The parbegin and parend statements create and syn-
chronize the parallel calls to fib. The br instruction encodes either an unconditional or a
conditional branch. True and false edges from a conditional branch are labeled T and F,
respectively. The φ instruction, used to support a static-single-assignment (SSA) form of
the program (see Chapter 2), takes as its arguments pairs that associate a value with each
predecessor basic block of the current block. At runtime the φ instruction returns the value
associated with the predecessor basic block that executed immediately before the current
block. d The Tapir CFG for fib, which encodes parallelism asymmetrically. The alloca
instruction allocates shared-memory storage on the call stack for a local variable. Chap-
ter 2 defines the detach, reattach, and sync instructions and the detach, reattach, and
continue edge types.

For the parallel fib function in Figures 1-2a and 1-2b, for example, the parallel flow graph

in Figure 1-2c illustrates how forked subcomputations might be represented symmetrically.

Some of these approaches struggle to represent common parallel constructs, such as par-

allel loops [28, 23], while others exhibit problems when subjected to standard compiler
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analyses and transformations for serial programs [28, 52, 13, 25, 61, 60, 51]. Existing

serial-program analyses in LLVM, for example, assume that a basic block with multiple

predecessors can observe the variables of only one predecessor at runtime. For the parallel

flow graph in Figure 1-2c, however, instructions in the join block must observe the values

of x and y from both of its predecessors, as has been observed by [28]. Parallel loops exac-

erbate this problem by allowing a dynamic number of tasks to join at the same basic block.

Previous research [51, 1] has proposed solutions to these problems, including additional

representations of the program and augmented analyses that account for interleavings of

parallel instructions, but adopting these techniques into a mainstream compiler seems to

require extensive changes to the existing codebase.

1.2 The Tapir approach

This thesis introduces Tapir, a compiler IR that represents logical fork-join parallelism

asymmetrically in the program’s CFG. The asymmetry corresponds to the assumption of

serial semantics [12], which means it is always semantically correct to execute parallel

tasks in the same order as an ordinary serial execution.

Tapir adds three instructions — detach, reattach, and sync — to the IR of an ordinary

serial compiler to express fork-join parallel programs with serial semantics. Figure 1-2d

illustrates the Tapir CFG for the fib function. As with the symmetric parallel flow graph

in Figure 1-2c, Tapir places the logically parallel recursive calls to fib in separate basic

blocks. But these blocks do not join at a synchronization point symmetrically. Instead, one

block connects to the other, reflecting the serial execution order of the program.

The Tapir approach provides five advantages:

1. Introducing fork-join parallelism into the compiler is relatively easy.

2. The IR is expressive and can represent fork-join control constructs from different

parallel-language extensions.

3. Tapir parallel constructs harmonize with the invariants associated with existing rep-

resentations of serial code.

4. Standard serial optimizations work on parallel code with few modifications.
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5. The optimizations enabled by Tapir’s parallelism constructs are effective in practice.

I discuss each of these advantages in turn.

1.3 Ease of implementation

Tapir’s asymmetric representation of logically parallel tasks makes it relatively simple to in-

tegrate Tapir into an existing compiler’s intermediate representation such as LLVM IR [34].

Figure 1-3 documents the lines of code added, modified, or deleted to implement a proto-

type of Tapir in LLVM. As Figure 1-3 shows, Tapir/LLVM was implemented with about

6000 lines, compared to LLVM’s roughly 4-million-line codebase. Moreover, fewer than

2000 lines of code were needed to adapt LLVM’s existing compiler analyses and transfor-

mations to accommodate Tapir.

Compiler Component LLVM 4.0svn Tapir/LLVM

Instructions 105,995 943
1,768Memory Behavior 21,788 445

Optimizations 152,229 380
Parallelism Lowering 0 3,782
Other 3,803,831 460

Total 4,083,843 6,010

Figure 1-3: Breakdown of the lines of code added, modified, or deleted in LLVM to imple-
ment the Tapir/LLVM prototype.

The breakdown of lines is as follows. The lines for “Instructions” add Tapir’s instruc-

tions to LLVM IR and adapt LLVM’s routines for reading and writing LLVM IR and bit-

code files. Conceptually, these changes allow LLVM to correctly compile a Tapir program

to a serial executable with no optimizations. The lines for “Memory Behavior” control how

Tapir instructions may interact with memory operations, preventing the compiler from cre-

ating any races. The lines for “Optimizations” perform any adjustments required for LLVM

analyses and transformations to compile a Tapir program at optimization level -O3. Most

of these modifications are not necessary for creating a correct executable but are added

to allow the compiler to perform additional optimizations, such as parallel tail-recursion

elimination (described in Chapter 4). The lines for “Parallelism Lowering” translate Tapir

14



instructions into Cilk Plus runtime calls and allow the code to be race-detected with a

provably good race detector [11]. The lines for “Other” address a bug in LLVM’s imple-

mentation of setjmp and implement useful features for our development environment.

1.4 Expressiveness of Tapir

Tapir can express logical fork-join parallelism in parallel programs that have serial seman-

tics. For example, Figure 1-2 illustrates how Tapir can express the parallelism encoded by

the cilk_spawn and cilk_sync linguistics from Cilk++ [29] and Cilk Plus [16], as well as

the parallelism encoded by OpenMP task and taskwait clauses [4]. Similarly, Tapir can

express the parallelism encoded by OpenMP parallel sections [47] and Habanero’s async

and finish constructs [8]. Tapir can also express parallel loops, including cilk_for loops

and OpenMP parallel loops that have serial semantics (described in Chapter 2). Other

parallel constructs, such as those proposed in the C++17 parallelism extensions, can be

represented as well. However, parallel operations that cannot be expressed in terms of

fork-join parallelism, such as OpenMP’s ordered clause, cannot be represented directly

using Tapir’s detach, reattach, and sync instructions.

Tapir makes minimal assumptions about the consistency [49, 7] of concurrent mem-

ory accesses. Tapir assumes that memory is shared among parallel tasks and that virtual-

register state is local to each task. Parallel instructions in Tapir can exhibit a determinacy

race1 [11] if they access the same memory location concurrently and at least one instruction

writes to that location. Tapir itself does not fully define the possible outcomes of a deter-

minacy race, and instead defers to existing compiler mechanisms, such as LLVM’s atomic

memory-ordering constraints [34], to define whichever memory model they choose. For

any targeted runtime system, Tapir relies on a correct implementation of lowering in or-

der to implement the necessary synchronization, but Tapir is oblivious to how that runtime

system implements the synchronization.

1Determinacy races are also called general races [43] and are distinct from data races, which involve
nonatomic accesses to critical regions.
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1.5 Serial semantics

By grounding its model of parallelism in serial semantics, Tapir enables common compiler

optimizations for serial code to work on parallel code. Intuitively, because Tapir always

allows parallel tasks to execute in their ordinary serial execution order, the compiler can to

optimize parallel code in any manner that preserves the serial semantics of the program and

does not introduce new determinacy races. These mild constraints support common opti-

mizations on parallel code, such as sequentialization, which can be invalid under models

of parallelism without serial semantics [64].

1.6 Optimizations

In practice, the Tapir team has found that Tapir enables a wide variety of standard compiler

optimizations to work with parallel code. The prototype implementation of Tapir/LLVM,

for example, successfully moves the call to norm in Figure 1-1 outside of the loop, just as

it would for a serial for loop. As Chapter 4 discusses, Tapir enables other optimizations,

including common-subexpression elimination [41, Sec. 12.2], loop-invariant-code motion

[41, Sec. 13.2], and tail-recursion elimination [41, Sec. 15.1], to work on parallel code.

Tapir also enables new optimizations on parallel control flow.

1.7 Evaluation of Tapir/LLVM

The compiler optimizations that Tapir enables are effective in practice. We evaluated the

Tapir approach by measuring the performance of 20 Cilk application benchmarks compiled

using Tapir/LLVM. We compared the performance of these executables to those produced

by a comparable reference compiler, called Reference. Conceptually, Reference lowers

parallel linguistic constructs directly into runtime calls, as mainstream compilers do today,

but otherwise performs the same set of optimization passes as Tapir/LLVM. Chapter 6

describes our experimental setup in detail, including the design of Reference.

Figure 1-4 presents the results of comparing Tapir/LLVM and Reference in terms of the
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Figure 1-4: Comparison of the work efficiency of 20 parallel application benchmarks com-
piled using Tapir/LLVM (X’s) and the comparable Reference compiler (O’s), described in
Chapter 6, which lowers parallelism in the compiler front end. Each point plots the work
efficiency TS /T1 of a compiled benchmark, where T1 is the work of the benchmark and Ts

is the running time of the serial elision of the benchmark. Higher values indicate better
work efficiency. The horizontal line at 1.0 plots the theoretically maximum work efficiency
TS /T1 = 1. Benchmarks are sorted by decreasing difference in work efficiency between
Tapir/LLVM- and Reference-compiled executables. Benchmarks marked with an “L” use
parallel loops, and benchmarks marked with an “S” use cilk_spawn.

“work efficiency” of the compiled benchmarks. To perform this comparison, We compiled

each benchmark using each compiler and then ran the executable on a single processing

core of a multicore machine to measure its work, the 1-core running time, denoted T1. We

also used each compiler to compile, run, and measure the 1-core running time of the serial

elision [12] of each benchmark, denoted TS , in which the benchmark is converted into a

corresponding serial program by replacing all parallel linguistic constructs with their serial

equivalents. We then computed the work efficiency of each compiled benchmark, which is

the ratio TS /T1 of the running time TS of the benchmark’s serial elision divided by the work

T! of the benchmark. In theory, the maximum possible work efficiency is TS /T1 = 1, but

in practice, quirky behaviors of the compiler and multicore architecture can occasionally

produce work efficiencies greater than 1. As Figure 1-4 shows, for most benchmarks,

the executables compiled using Tapir/LLVM achieve equal or higher work efficiency than

those compiled using Reference. Moreover, for many benchmarks, and particularly those

implemented using parallel loops, Tapir/LLVM produces executables that achieve nearly

optimal work efficiency. Chapter 6 elaborates on these experiments.
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1.8 Contributions

This thesis makes the following research contributions:

• The design of a compiler IR that represents fork-join parallelism asymmetrically,

which enables existing serial optimizations to operate on parallel code and which

also enables parallel optimizations.

• The implementation of Tapir/LLVM in the LLVM compiler by modifying about 6000

source lines of code (0.15% of the 4-million-line LLVM codebase).

• The implementation of parallel optimizations such as unnecessary synchronization

elimination and parallel-loop scheduling.

• Experiments that demonstrate the advantage of embedding fork-join parallelism into

a compiler’s IR, as opposed to dealing with parallelism only in the compiler’s front

end.

1.9 Outline

The remainder of this thesis is organized as follows. Chapter 2 describes Tapir’s represen-

tation and properties. Chapter 3 discusses how analysis passes can be adapted to operate

on Tapir programs. Chapter 4 describes various optimizations on parallel control flow that

Tapir enables. Chapter 5 describes auxiliary software we developed to exercise and test

Tapir/LLVM. Chapter 6 discusses our evaluation of the effectiveness of Tapir. Chapter 7

discusses related work. Chapter 8 provides some concluding remarks. An appendix de-

scribes how to set up Tapir/LLVM and how to download and run our suite of application

benchmarks.
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Chapter 2

Tapir

This chapter describes how Tapir represents logically parallel tasks asymmetrically in the

CFG of a program. I define Tapir’s three new instructions and how they interact with

LLVM’s static single-assignment (SSA) form [2, Sec. 6.2.4]. Although I describe Tapir as

an extension to LLVM IR [34], the Tapir team sees no reason why other compilers cannot

gain similar advantages from Tapir-like instructions.

Like LLVM IR, Tapir treats a program function as a CFG G = (V, E, v0), where

• the set V of vertices represents the function’s basic blocks: sequences of LLVM

instructions, where control flow can only enter through the first instruction and leave

from the last instruction;

• the set E of edges denote control flow between (basic) blocks; and

• the designated vertex v0 ∈ V represents the entry point of the function.

2.1 Tapir instructions

Tapir extends LLVM IR with three instructions: detach, reattach, and sync. The detach

and reattach instructions together delineate logically parallel tasks, and the sync instruc-

tion imposes synchronization on parallel tasks. The three instructions have the following

syntax, where b, c ∈ V:
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detach label b, label c

reattach label c

sync

The label keywords indicate that b and c are (labels of) basic blocks in V .

The detach and reattach instructions together delineate a parallel task as follows.

A detach instruction terminates the block a that contains it and takes a detached block

b and a continuation block c as its arguments. The detach instruction spawns the task

starting at block b, allowing that task to execute in parallel with block c. The control-

flow edge (a, b) ∈ E is a detach edge, and the edge (a, c) ∈ E is a continue edge. A

reattach instruction, meanwhile, terminates the block a′ that contains it and takes a single

continuation block c as its argument, inducing a reattach edge (a′, c) ∈ E in the CFG. The

reattach terminates the task spawned by a preceding detach instruction with the same

continuation block. Together, a detach instruction and associated reattach instructions

demark the start and end of a parallel task and indicate that that task can execute in parallel

with their common continuation block.

For the example in Figure 1-2d, the detach in the if.else block and the reattach

in the det block share the same continuation block cont. Together, this detach and this

reattach indicate that the det block is a parallel task which can execute in parallel with

the cont block. In general, a parallel task delineated by detach and reattach can consist

of many basic blocks in a single-entry subgraph.

The detach and reattach instructions in a CFG obey several structural properties.

A reattach instruction j reattaches a detach instruction i if i and j share a common

continuation block and there is a path from the detached block of i to j. Tapir assumes that

every CFG G = (V, E, v0) obeys the following invariants on every detach instruction i and

reattach instruction j in G:

1. A reattach instruction reattaches exactly one detach instruction.

2. If j reattaches i, then every path from v0 to the block terminated by j passes through

the detach edge of i, that is, the detach edge of i dominates j.

3. Every path starting from the detached block of i must reach a block terminated by a

reattach instruction that reattaches i.
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4. If j reattaches i and a path from i to j passes through the detach edge of another

detach instruction i′, then it must also pass through a reattach instruction j′ that

reattaches i′.

5. Every cycle containing a detach instruction i must pass through a reattach instruc-

tion that reattaches i.

6. The continuation block of j cannot contain any φ instructions [2, Sec 6.2.4].

These invariants imply that, at runtime, a detach instruction i with detached block b and

continuation block c spawns the execution of a detached sub-CFG, which is the single entry

sub-CFG starting at b induced by all blocks on paths from b to a reattach instruction that

reattaches i.

The dynamic execution of the program organizes memory as a tree of parallel contexts.

A new parallel context is created as a child of the current context when control enters a

function or follows a detach edge. When control executes a reattach instruction or leaves

a function, the context is destroyed and the parent’s context becomes the current context.

An alloca instruction allocates shared memory in the current context.

The sync instruction synchronizes tasks spawned within its parallel context. At run-

time, a sync instruction dynamically waits for the set of sub-CFG’s detached in the same

parallel context or any of its descendant parallel contexts to reach a reattach instruction.

In the Tapir CFG illustrated in Figure 1-2d, for example, the sync instruction in the cont

block simply waits for the execution of the det block to complete. Unlike reattach in-

structions, sync instructions are not explicitly associated with detach instructions, and

they, in fact, can be executed within conditionals. A sync instruction j syncs a detach

instruction i if i and j belong to the same parallel context and the CFG detached by i cannot

be guaranteed to have completed when j executes.

2.2 Static single-assignment form

LLVM’s static single-assignment (SSA) form [2, Sec. 6.2.4] must be adapted for Tapir

programs. SSA form ensures that each virtual register is set at most once in a function.

LLVM IR employs the φ instruction [2, Sec 6.2.4] to combine definitions of a variable
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from different predecessors of a basic block. In adapting SSA to Tapir, one concern is

that a φ instruction might allow registers defined in the detached sub-CFG to be used in

the continuation. A basic block containing a φ instruction must avoid inheriting register

definitions from predecessors that are connected by reattach edges. Otherwise, a register in

the detached sub-CFG might not have been computed by the time the continuation executes.

We implemented this constraint by simply forbidding reattach edges from going into

basic blocks with φ instructions. But what if the continuation c of a detach instruction

begins with a φ instruction? In this case, Tapir creates a new basic block c′ containing

only a branch instruction to c. Tapir reroutes the reattach and continuation edges originally

going to c so that they go instead to c′. All other edges going to c are left in place.

The reason this solution works is as follows. No reattach edges in the resulting CFG

go to blocks containing φ instructions. Because a detached sub-CFG does not dominate

any outside block, registers in the detached CFG can only be used in φ instructions of

the immediate successors of the detached sub-CFG. Since the continuation is the only

immediate successor of the detached sub-CFG and it contains no φ instructions, no registers

from the detached sub-CFG may be accessed in the continuation.

2.3 Asymmetry in Tapir

The detach and reattach instructions express parallel tasks asymmetrically both syntac-

tically in the structure of the CFG and semantically in the way memory state is managed.

Both asymmetries are illustrated in Figure 1-2d.

First, the CFG detached by a detach instruction is connected by a reattach edge to the

continuation block of that instruction, even though they can execute in parallel. For exam-

ple, the reattach edge between det and cont in Figure 1-2d breaks the symmetry between

them. Reattach edges reflect the serial semantics of a Tapir program, which dictates that a

serial execution of the program executes the detached CFG to completion before starting

to execute the continuation block. In fact, the parallel task delineated by a detach and

a reattach instruction can be serialized by replacing the detach instruction with an un-

conditional branch to its detached block and replacing the reattach with an unconditional
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br (0 < n), head, exitentry:

i0 = φ([0,entry],[i1,inc])
detach body, inc

head:

norm0 = norm(in,n)
out[i0] = in[i0] / norm0
reattach inc

body:

i1 = i0 + 1
br (i1 < n), head, exit

inc:

sync
returnexit:

T

detach

continue

reattach

T

F

F

Figure 2-1: Tapir CFG for the parallel loops in Figure 1-1.

branch to its continuation block. In contrast, parallel flow graphs and similar previously

explored representations join logically parallel tasks in the CFG at a synchronization point.

By supporting separate reattach and sync instructions, Tapir decouples the termination

of a parallel task from its synchronization.

Second, although memory state is shared among all parallel tasks in Tapir, a virtual

register defined in a detached sub-CFG is not accessible in its parent parallel context. For

example, the continuation block cont in Figure 1-2d cannot assume that the register value

x0 returned by fib(n-1) in block det is accessible, because the two basic blocks belong

to different parallel contexts. Thus, cont must load it again after the sync instruction.

2.4 Parallel loops in Tapir

Figure 2-1 illustrates Tapir’s default representation of the parallel loops from Figure 1-1. As

Figure 2-1 shows, Tapir can represent a parallel loop in the CFG as an ordinary loop, where

the head block repeatedly spawns the body block, and the exit block syncs the detached

CFG’s. Chapter 4 describes how this representation of parallel loops allows existing com-

piler loop optimizations to operate on Tapir parallel loops with only minor modifications.

Although this loop structure can exhibit poor parallel performance when the loop body is

small, separate optimization passes in Tapir/LLVM (see Chapter 4) transform this parallel-

loop representation into a divide-and-conquer form that exhibits good performance.
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Chapter 3

Analysis passes

This chapter describes how LLVM’s analysis passes can be adapted to operate on Tapir

programs. I first discuss constraints on how Tapir programs can be safely transformed.

Implementing these contraints on LLVM optimization passes primarily involves adapting

standard compiler analyses — specifically alias analysis [2, Ch. 12], dominator analysis [2,

Ch. 9], and data-flow analysis [2, Ch. 9] — to accomodate Tapir’s instructions. I describe

how each of these analyses was minimally modified to support Tapir.

3.1 Constraints on transformations

To be correct, a code transformation on a Tapir program must preserve the program’s serial

semantics, and it must not introduce any new behaviors into the program’s set of behaviors.

A program can exhibit more than one behavior if it contains a determinacy race. In general,

the result of a determinacy race can vary nondeterministically from run to run depending

on the order in which the participating instructions access the memory location. To avoid

introducing new behaviors, code transformations must not create determinacy races, al-

though they can eliminate determinacy races. Many existing serial optimizations can be

adapted to respect these properties by adapting the standard compiler analyses they rely

on. I now describe how LLVM’s alias, dominator, and data-flow analyses were adapted for

Tapir.
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3.2 Alias analysis

LLVM uses alias analysis [2, Ch. 12] to determine whether different instructions might

reference the same locations in memory, and in particular, to restrict the reordering of

instructions that access the same memory. Tapir/LLVM modifies LLVM’s alias analysis

to prevent optimizations that move code around from introducing determinacy races. In

particular, Tapir adapts LLVM’s alias analysis to treat the instructions as if they access

memory. For example, consider an instruction k that performs a load or a store. There

are four cases to consider when moving k around either a detach instruction i or a sync

instruction j:

1. The instruction k moves from before i to after i.

2. The instruction k moves from after i to before i.

3. The instruction k moves from before j to after j.

4. The instruction k moves from after j to before j.

Neither Case 2 nor Case 3 can introduce a determinacy race, because both motions serialize

the execution of k with respect to the sub-CFG detached by i. Cases 1 and 4 might introduce

a determinacy race, however, if k loads or stores a memory location that is also accessed

by the CFG detached by i. To handle Case 1, i is treated as if it were a function call that

accesses all memory locations accessed in the CFG detached by i. Similarly, for Case 4,

j is treated as if it were a function call that accesses all memory locations accessed by

all instructions that j might sync. A reattach instruction is treated as a compiler fence

that prevents instructions from moving across it. With these modifications, existing rules

in LLVM that restrict reordering of loads and stores properly restrict memory reordering

around Tapir’s instructions.

3.3 Dominator analysis

Optimization passes determine what values are available to an instruction in part by using

dominator analysis [2, Ch. 9], which deduces the dominance relation between all basic

blocks and edges in a CFG. To handle Tapir programs correctly, optimization passes must
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not mistakenly cause instructions to use virtual registers that are defined in logically parallel

tasks. If instruction i dominates instruction j, than an optimization pass might assume that

the value produced by i is always available when j executes.

The asymmetry of Tapir’s representation allows LLVM’s dominator analysis to analyze

Tapir programs correctly without any changes. Ignoring the names of edges, the difference

between the CFG G = (V, E, v0) of a Tapir program and the CFG G′ = (V, E′, v0) of its

serial elision is the set E − E′ of continue edges, each of which connects a detach in-

struction to its continuation. A continue edge short-cuts a detached sub-CFG, changing the

continuation’s immediate dominator from the detached sub-CFG to the block containing

the detach instruction itself. This configuration of detach, reattach, and continue edges

looks much like an ordinary if construct in which the detached sub-CFG is conditionally

executed. As a result, dominator analysis never concludes that an instruction in a detached

sub-CFG can execute before the corresponding continuation block.

3.4 Data-flow analysis

A wide class of code transformations, including those that might move instructions across

a reattach edge, rely on data-flow analysis [2, Ch. 9] to examine the propagation of values

along different paths through a CFG G = (V, E, v0). Fundamental to data-flow analysis is an

understanding of the set of possible program states at the beginning and end of each basic

block b ∈ V , denoted in(b) and out(b), respectively.

To illustrate how LLVM’s data-flow analyses were adapted to Tapir, let us examine the

particular case of forward data-flow analysis. (Backward data-flow analysis is similar.) In

an ordinary serial CFG, forward data-flow analysis evaluates in(b) as the union of out(a)

for each predecessor block a of b:

in(b) =
⋃

(a,b)∈E

out(a) .

To handle Tapir CFG’s, data-flow analyses must be adapted specifically to handle reat-

tach edges. Because Tapir’s asymmetric representation propagates virtual registers and
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memory state differently across a reattach edge, the modifications to LLVM data analyses

consider registers and memory separately.

For variables stored in shared memory, the standard data-flow equations remain un-

changed. Thus, LLVM need not be modified to handle them for Tapir.

For register variables, however, LLVM’s data-flow analyses must be modified to ex-

clude the values in registers from an immediate predecessor a of a basic block b if the edge

(a, b) ∈ E is a reattach edge. Denote the set of reattach edges in E by ER. For a Tapir CFG,

forward data-flow analyses define in(b) for register variables as

in(b) =
⋃

(a,b)∈E−ER

out(a) ,

that is, they ignore predecessors across a reattach edge. With this change, Tapir/LLVM

correctly propagates register variables through the CFG, never allowing register values in

a basic block to use register values set in a logically parallel detached sub-CFG.

27



Chapter 4

Optimization passes

Tapir enables LLVM’s existing optimization passes [35] to work across parallel control

flow. It also enables new optimization passes that specifically target Tapir’s fork-join

parallel constructs. This chapter discusses four representative optimizations. Common-

subexpression elimination [41, Sec. 12.2] illustrates an optimization pass that “just works”

with the additional Tapir instructions. Loop-invariant code motion [41, Sec. 13.2], and

tail-recursion elimination [41, Sec. 15.1] were the only two out of LLVM’s roughly 80

optimization passes that required any modification to work effectively on parallel code.

Parallel-loop scheduling serves as an example of a new optimization pass.

4.1 Common-subexpression elimination

The common-subexpression elimination (CSE) optimization identifies redundant calcula-

tions and transforms the code so that they are only computed once. For example, the

expression (low+high)/2 in Figure 4-1a is computed in both line 39 and line 40. Tapir/L-

LVM performs CSE on this code, producing code equivalent to that in Figure 4-1b. Exist-

ing mainstream compilers that support fork-join parallelism do not eliminate this common

subexpression, however, and they compute (low+high)/2 twice. Tapir/LLVM can per-

form CSE across either a continue edge, as in the example, or a detach edge. Like the vast

majority of optimization passes in Tapir/LLVM, CSE “just works” on Tapir code without

any modifications to LLVM’s CSE pass.
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a

36 void search(int low, int high) {
37 if (low == high) search_base(low);
38 else {
39 cilk_spawn search(low, (low+high)/2);
40 search((low+high)/2 + 1, high);
41 cilk_sync;
42 } }

b

43 void search(int low, int high) {
44 if (low == high) search_base(low);
45 else {
46 int mid = (low+high)/2;
47 cilk_spawn search(low, mid);
48 search(mid + 1, high);
49 cilk_sync;
50 } }

Figure 4-1: Example of common-subexpression elimination on a Cilk program.
a The function search, which uses parallel divide-and-conquer to apply the function
search_base to every integer in the closed interval [low, high]. b An optimized ver-
sion of search, where the common subexpression (low+high)/2 in lines 39 and 40 of
the original version is computed only once and stored in the variable mid in line 46 of the
optimized version.

4.2 Loop-invariant code motion

The loop-invariant code motion (LICM) optimization [41, Sec. 13.2] aims to move com-

putations out of loop bodies if they compute the same value on every iteration of the loop.

LICM is responsible, for example, for moving the call to norm in the parallel loop in Fig-

ure 1-1a outside of the loop, as described in Chapter 1. By adapting LICM to handle

parallel loops, Tapir/LLVM reduces the asymptotic serial running time of this parallel loop

from Θ(n2) to Θ(n).

Tapir/LLVM requires a minor change to LLVM’s LICM pass to handle parallel loops.

Consider the CFG illustrated in Figure 2-1, which models the parallel loops in Figure 1-1.

For the serial elision of the loop, which would have a similar graph structure except with

the continue edge missing, LLVM attempts to find candidate computations to move outside

the loop by looking for instructions in the basic blocks of the loop body that dominate the

exit block of the loop, such as the block inc in Figure 2-1. (The block labeled exit is the

exit of the function, not the loop exit.) For a parallel loop, however, this analysis fails to

identify any code to move due to the existence of the continue edge. As Figure 2-1 shows,

with the continue edge, blocks in the loop body can never dominate the exit block inc as

they could for the serial elision.

Tapir/LLVM modifies LLVM’s LICM pass to handle a parallel loop by analyzing the

serial elision of the loop, which essentially means ignoring continue edges. For simple
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a

51 void pqsort(int* start, int* end) {
52 if (begin == end) return;
53 int* mid = partition(start, end);
54 swap(end, mid);
55 cilk_spawn pqsort(begin, mid);
56 pqsort(mid+1, end);
57 cilk_sync;
58 return;
59 }

c

60 void pqsort(int* start, int* end) {
61 pqsort_start:
62 if (begin == end) {
63 cilk_sync;
64 return;
65 }
66 int* mid = partition(start, end);
67 swap(end, mid);
68 cilk_spawn pqsort(begin, mid);
69 start = mid+1;
70 goto pqsort_start;
71 }

b

72 void pqsort(int* start, int* end) {
73 if (begin == end) return;
74 int* mid = partition(start, end);
75 swap(end, mid);
76 cilk_spawn pqsort(begin, mid);
77
78 start = mid+1;
79 // Begin inlined code
80 if (begin == end) goto join;
81 mid = partition(start, end);
82 swap(end, mid);
83 cilk_spawn pqsort(begin, mid);
84 pqsort(mid+1, end);
85 cilk_sync;
86 // End inlined code
87
88 join:
89 cilk_sync;
90 return;
91 }

Figure 4-2: Example of tail-recursion elimination on a parallel quicksort program. a The
Cilk function pqsort sorts an array of integers in the range specified by the start and end
pointers. b A version of pqsort where the recursive tail call on line 56 has been replaced
by one round of inlining. c A version of pqsort where tail-recursion elimination has
removed the recursive tail call on line 56.

parallel loop structures with a single continue edge, such as that shown in Figure 2-1,

this modification is implemented by finding blocks in the loop body that dominate the

predecessors of the loop exit. The modification required changing only 25 lines of LLVM’s

LICM pass.

4.3 Tail-recursion elimination

Tail-recursion elimination (TRE) [41, Sec. 15.1] aims to replace a recursive call at the end

of a function with a branch to the start of the function. By eliminating these recursive tail

calls, TRE can avoid function-call overheads and reduce the stack space they consume.

This optimization can especially benefit fork-join parallel programs, as many parallel run-

time systems impose additional setup and cleanup overhead on a spawned function.
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LLVM’s existing TRE pass can perform the TRE optimization on Tapir programs with

just a minor modification. Specifically, the modified TRE pass ignores sync instructions

after the tail-recursive call. Further, if TRE is applied and ignores a sync instruction, it

must then insert a sync instruction before any remaining returns. This modification to

LLVM’s TRE pass required changing only 68 lines.

To see why these sync instructions can be safely ignored, consider Figure 4-2, which

illustrates how Tapir/LLVM’s TRE pass operates on the pqsort function, a parallel version

of Hoare’s quicksort algorithm [14]. The original tail-recursive code is shown in Figure 4-

2a. Figure 4-2b illustrates the result of simply inlining the tail-recursive call. For the inlined

code, all return statements are replaced with branches to the join label. Because there

is a cilk_sync at the start of join, the cilk_sync on line 85 can be eliminated. call an

arbitrary number of times, TRE can safely ignore a cilk_sync instruction after the final

tail-recursive call, assuming that it inserts a cilk_sync instruction before all remaining

returns.

4.4 Parallel-loop scheduling and lowering

As discussed above and in Chapter 2, Tapir effectively represents a parallel loop as a serial

loop over a body that is spawned every iteration. Depending on the number of iterations of

the loop and the amount of work inside each loop, however, statically scheduling loop iter-

ations in this way may be inefficient. For a parallel loop with a large number of iterations,

for instance, it is faster to schedule the iterations in a recursive divide-and-conquer fashion,

which produces more parallelism (see [39, Sec. 8.3]. For parallel loops with few iterations,

however, the additional function calls required to perform the parallel divide-and-conquer

can make the loop run slower than simply spawning off the iterations.

Tapir/LLVM implements a parallel optimization pass that schedules the iterations of a

parallel loop using recursive divide-and-conquer, but only if that loop contains sufficiently

many iterations. This pass is implemented as part of Tapir/LLVM’s 3800-line lowering

pass, which translates detach, reattach, and sync instructions into appropriate Cilk Plus

runtime calls [15]. In particular, Tapir/LLVM uses the Cilk Plus runtime calls for cilk_for
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loops [15, Sec 10.7] to schedule parallel loops. Although we could have separated parallel-

loop scheduling from lowering, we chose to combine these two passes so that we could per-

form fair comparisons between Tapir/LLVM and compilers that lower parallel constructs

in their front end. We plan to separate the parallel-loop-scheduling and lowering passes in

a future version of Tapir/LLVM.

4.5 Other optimization passes

Tapir/LLVM implements two minor parallel optimization passes: unnecessary-synchronization

elimination and puny-task elimination. Unnecessary-synchronization elimination identi-

fies and eliminates sync instructions that could not possibly sync a detached sub-CFG.

Puny-task elimination serializes detached sub-CFG’s that perform little or no work. If the

runtime overhead of creating a parallel task outweighs the work in the task, the task might

as well be run serially. Both of these optimization passes were implemented in 52 lines of

code by augmenting LLVM’s SimplifyCFG pass.
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Chapter 5

Auxiliary software

This chapter describes auxiliary software that the Tapir team developed to exercise and

test Tapir/LLVM. Although our research focuses on the middle end of the compiler, we

implemented a front end for Cilk Plus. In addition, we developed compiler instrumentation

that allows the compiler to interface to a race detector to verify the correctness of the

Tapir/LLVM implementation.

To create the front end, the Tapir team created a modification of the Clang front end

called PClang, which translates Cilk Plus codes to Tapir. We also created a version of

Clang that can handle some OpenMP codes. PClang handles most of the fork-join control

constructs specified by the Cilk Plus programming model, and specifically, enough to run

all the benchmarks described in Chapter 6.

We augmented Tapir/LLVM in two ways to test the correctness of the implementation.

First, we modified LLVM’s internal verification pass to check that Tapir’s invariants are also

maintained. Second, we added an instrumentation pass to Tapir/LLVM to allow parallel

executables to be tested for determinacy races using a provably good determinacy race

detector. This race detector, based on the SP-bags algorithm [11], is guaranteed to find a

determinacy race if an only if one exists in the program execution. The verification pass and

race detector helped us locate and fix bugs in Tapir/LLVM, both within our code and within

the underlying LLVM codebase. Tapir/LLVM now passes all tests in LLVM’s regression

test suites and correctly compiles our own suite of parallel test programs.

The instrumentation pass has proved useful for supporting other dynamic-analysis tools
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based on Tapir/LLVM. Genghis Chau of MIT adapted the Cilkprof scalability profiler [54]

to use Tapir/LLVM and this instrumentation in order to build an integrated development

environment with always-on race detection and scalability profiling facilities.
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Chapter 6

Evaluation

To evaluate the effectiveness of the approach, the Tapir team evaluated Tapir/LLVM on 20

benchmarks. The experiments support the contention that Tapir’s approach of embedding

parallelism in the IR is superior to lowering parallelism in the compiler front end. We

could not simply run Tapir/LLVM against another compiler, such as Cilk Plus/LLVM [17],

which lowers parallelism in the front end, because Cilk Plus/LLVM and Tapir/LLVM differ

in more ways than just where they lower parallel constructs. Consequently, to perform an

apples-to-apples comparison of these two approaches, we implemented a compiler called

“Reference,” which is as close to identical to Tapir/LLVM as we could muster, except for

where lowering occurs. Figure 6-1 illustrates the compilation pipelines for Clang/LLVM,

Tapir/LLVM, and Reference.

The first pipeline, Clang/LLVM, has the traditional three-phase structure. The Clang

front-end takes serial C/C++ code and emits LLVM IR. The -O3 middle-end optimizes the

IR, and the CodeGen back-end lowers LLVM IR to machine code for a particular hardware

platform.

The second pipeline shows how Tapir/LLVM is organized. The PClang front end takes

parallel Cilk Plus code as input and emits Tapir. The middle-end now consists of three

steps: -O3 optimization, a Lower pass to lower Tapir to LLVM IR, and another pass at

-O3 optimization. The first -O3 pass performs optimizations on the Tapir representation,

the lowering pass translates all the Tapir-specific constructs to LLVM IR, and the second

-O3 pass performs optimizations on the LLVM IR. Finally, the CodeGen back end lowers
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Figure 6-1: The compilation pipelines for Clang/LLVM, Tapir/LLVM, and Reference.
Each block represents a compiler transformation, and each oval designates the format of
the code at that point in the pipeline.

LLVM IR to machine code.

The third pipeline, called Reference, models how mainstream compilers work today,

where parallel constructs are transformed into runtime calls before any optimization can

take place. The only difference between Reference and Tapir/LLVM is that the Tapir code

emitted by the PClang front end is immediately lowered to LLVM IR before the rest of

the Tapir pipeline is invoked. (The second Lower pass in the Reference pipeline therefore

has no effect.) Although Reference lowers the parallel constructs early, two iterations of

-O3 are included to ensure that the Tapir/LLVM gains no advantage from optimizing twice.

Although one might think that a second pass of -O3 would be redundant, it is not. For

example, a simple matrix-multiplication code runs 13% faster after two rounds of opti-
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Suite Benchmark Description

Cilk Cholesky Cholesky decomposition
FFT Fast Fourier transform

NQueens n-Queens solver
QSort Hoare quicksort

RectMul Rectangular matrix multiplication
Strassen Strassen matrix multiplication

Intel AvgFilter Averaging filter on an image
Mandel Mandelbrot set computation

PBBS CHull Convex hull
detBFS BFS, deterministic algorithm
incMIS MIS, incremental algorithm

incST Spanning tree, incremental algorithm
kdTree Performance test of a parallel k-d tree
ndBFS BFS, nondeterministic algorithm
ndMIS MIS, nondeterministic algorithm

ndST Spanning tree, nondeterministic algorithm
parallelSF Spanning-forest computation

pRange Compute ranges on a parallel suffix array
radixSort Radix sort

SpMV Sparse matrix-vector multiplication

Figure 6-2: Descriptions of the 20 benchmarks used to evaluate Tapir/LLVM. These bench-
marks were taken from the MIT Cilk benchmark suite [12], Intel Cilk Plus example pro-
grams [19], and the CMU Problem-Based Benchmark Suite [57]. “MIS” denotes the com-
putation of a maximal independent set of a graph. “BFS” denotes the breadth-first search
of a graph.

mization compared to just one. And although most benchmarks run faster after two -O3

passes, some actually run slower. Thus, we implemented Reference with the same passes

as Tapir/LLVM, except for the initial Lower pass in Reference. This difference only affects

parallel code. Serial code passes through both pipelines identically.

6.1 Benchmarking

To benchmark the compiler pipelines, we assembled a collection of benchmark programs

taken from the MIT Cilk benchmark suite [12], Intel Cilk code samples [19], and the CMU

Problem-Based Benchmark Suite [57]. From these collections, we selected stable programs

that tend to exhibit little performance difference when the number or order of optimization
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passes is changed. Figure 6-2 describes the suite of benchmarks tested.

We compiled each program in our benchmark suite with both Tapir/LLVM and Ref-

erence, and we ran them on both 1 and 18 cores of our test machine. Additionally, we

compiled the serial elision of each benchmark with each compiler. Each running time is

the minimum of 10 runs on an Amazon AWS c4.8xlarge spot instance, which is a dual-

socket Intel Xeon E5-2666 v3 system with a total of 60 GiB of memory. Each Xeon is a

2.9 GHz 18-core CPU with a shared 25 MiB L3-cache. Each core has a 32 KiB private L1-

data-cache and a 256 KiB private L2-cache. The system was “quiesced” to permit careful

measurements by turning off Turbo Boost, dvfs, hyperthreading, extraneous interrupts, etc.

6.2 Overall performance

The results of our tests are given in Figure 6-3. For the first pair of rows, Reference and

Tapir/LLVM produce essentially identical executables when compiling the serial elision of

a benchmark. Differences in running times in these rows are due to system noise. The

second pair of rows shows that Tapir/LLVM produces executables with better work than

Reference on 15 of the benchmarks. Of the remaining 5 benchmarks, 4 demonstrate less

than a 1% difference between their work relative to Tapir/LLVM or Reference. The fourth

pair of rows elaborates on the results in the second pair to show that Tapir/LLVM produces

executables with nearly optimal work efficiency (within 1%) on 12 of the benchmarks,

whereas Reference does so on only 2. The third and fifth pairs of row show that Tapir/L-

LVM generally produces executables with similar or better parallel speedups than those

produced by Reference.

The biggest slowdown created from Tapir/LLVM’s compilation occurs on Cholesky,

for which the executable produced by Tapir/LLVM has 4% more work than that produced

by Reference. In investigating this benchmark, we found that LLVM runs a handful of

optimizations on each function before the middle-end optimization and lowering passes in

either Tapir/LLVM or Reference. Although these early optimizations have little effect on

most programs, they reduce the work of the Reference-compiled Cholesky executable by

approximately 20%. Although we experimented with several ways to implement lowering
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in Reference before these early optimizations, the resulting compilers consistently exhib-

ited bugs on other benchmarks in the suite. In our final design for Reference, we placed the

initial lowering pass as early as we could muster while still ensuring that Reference could

compile all benchmarks correctly.
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Cholesky FFT NQueens QSort RectMul Strasssen AvgFilter

TS
Ref. 2.935 10.304 3.084 4.983 10.207 10.105 1.751
Tapir 2.933 10.271 3.083 4.984 10.207 10.119 1.750

T1
Ref. 6.581 10.413 10.196 2.355 30.520 1.316 6.596
Tapir 6.461 10.415 10.196 1.730 25.774 1.187 5.673

T18
Ref. 0.648 0.609 1.106 0.708 1.847 0.124 0.517
Tapir 0.709 0.611 1.124 0.615 1.559 0.120 0.467

TS

T1

Ref. 0.757 0.980 0.991 0.743 0.845 0.710 0.801
Tapir 0.771 0.980 0.991 1.012 1.000 0.788 0.992

TS

T18

Ref. 7.690 16.760 9.137 2.472 13.957 7.540 9.518
Tapir 7.028 16.705 8.990 2.846 16.536 7.792 10.942

Mandel CHull detBFS incMIS incST kdTree ndBFS

TS
Ref. 25.779 0.938 5.670 4.993 4.190 5.473 3.950
Tapir 25.780 0.935 5.666 5.006 4.173 5.466 3.956

T1
Ref. 4.572 11.919 3.409 6.030 4.733 5.640 4.930
Tapir 4.739 11.733 3.419 5.043 4.203 5.546 3.980

T18
Ref. 0.387 0.788 0.196 0.559 0.352 0.342 0.415
Tapir 0.396 0.774 0.197 0.527 0.329 0.339 0.361

TS

T1

Ref. 0.642 0.862 0.904 0.828 0.882 0.969 0.801
Tapir 0.619 0.875 0.902 0.990 0.993 0.986 0.992

TS

T18

Ref. 7.579 13.034 15.730 8.932 11.855 15.982 9.518
Tapir 7.407 13.270 15.650 9.474 12.684 16.124 10.942

ndBFS ndMIS ndST parallelSF pRange radixSort SpMV

TS
Ref. 3.950 9.210 4.069 5.136 2.564 3.775 1.780
Tapir 3.956 9.253 4.053 5.136 2.559 3.775 1.783

T1
Ref. 4.930 10.760 4.286 5.646 3.438 3.795 1.836
Tapir 3.980 9.246 4.063 5.183 3.083 3.800 1.786

T18
Ref. 0.415 0.774 1.925 0.414 0.348 0.284 0.118
Tapir 0.361 0.701 1.692 0.392 0.330 0.285 0.112

TS

T1

Ref. 0.801 0.856 0.946 0.910 0.744 0.995 0.969
Tapir 0.992 0.996 0.998 0.991 0.830 0.993 0.997

TS

T18

Ref. 9.518 11.899 2.105 12.406 7.353 13.292 15.085
Tapir 10.942 13.138 2.395 13.102 7.755 13.246 15.893

Figure 6-3: Comparison between executables compiled using Reference and using Tapir/L-
LVM. Each column refers to a different parallel benchmark described in Figure 6-2. Rows
labeled “Ref.” describe executables compiled using Reference, and rows labeled “Tapir”
describe executables compiled using Tapir/LLVM. Each measured running time is the min-
imum over 10 executions, measured in seconds. The pair of rows labeled TS gives the
running time of the executable compiled from the serial elision of each benchmark. The
pair of rows labeled T1 gives the work of each benchmark. The pair of rows labeled T18

gives the 18-core running time of each benchmark. The pair of rows labeled TS /T1 gives
the work efficiency of each compiled benchmark, derived from the first and second pairs
of rows. The pair of rows labeled TS /T18 gives the parallel speedup of each compiled
executable on 18 cores, derived from the first and third pairs of rows.
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Chapter 7

Related work

This chapter describes related work in representing parallelism in a compiler IR and in

analyzing and optimizing parallel programs.

Various prior research explores compiler optimizations on unstructured parallel threads.

For example, some researchers have explored how to find and remove unnecessary synchro-

nization in Java programs [3, 50]. Joisha et al. [20] present a technique to detect instruc-

tions that are unaffected by parallel threads and can be safely optimized across unstruc-

tured parallel control flow. In contrast, our work on Tapir focuses on compiler optimiza-

tions for structured parallelism, namely fork-join parallel programs with serial semantics.

Although fork-join parallelism may be more restricted than unstructured parallel threads,

Tapir demonstrates that many of the optimizations for serial code easily extend to fork-join

parallelism. Enabling similar optimizations for unstructured parallel threads appears to be

a much harder problem.

Some previous work on compiler optimizations for fork-join parallel programs evaluate

which instructions can safely execute in parallel [1] based on concurrency mechanisms sup-

ported by a particular memory model. For example, Barik et al. [5, 6] use interprocedural

analysis to perform various optimizations affecting critical sections of X10 and Habanero-

Java programs. Rather than dealing with the complexities of general concurrency mecha-

nisms, Tapir enables compiler optimizations for an easy-to-understand situation: when the

optimization respects the serial semantics of the program and does not introduce determi-

nacy races. Compared with general concurrency mechanisms, well-structured parallelism
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seems to offer a less onerous path to performance.

Khaldi et al. [24] modify LLVM IR to support OpenSHMEM parallel programs with the

aim of achieving performance in modern network interconnects that support efficient data

transfers for partitioned global address spaces (PGAS). Based on the SPIRE methodology

[23] for representing parallel code, they augment functions, basic blocks, instructions, iden-

tifiers, and types in LLVM IR with execution, synchronization, scheduling, and memory-

layout information. In contrast, Tapir models fork-join parallelism for shared-memory mul-

ticores, a conceptually simpler context than PGAS systems, and extends LLVM IR mini-

mally using only three instructions. Once again, the Tapir’s strong assumption of a fork-join

programming model with serial semantics that compiles to a flexible multicore architecture

seems to provide both performance and simplicity, albeit at the cost of scalability to huge

cluster-based supercomputers that lack strong memory-consistency guarantees.

In contrast with much of the work referenced above, Chatarasi et al. [9] focus, as Tapir

does, on fork-join programs with serial semantics. Specifically, they examine polyhedral

optimizations on OpenMP programs with serial semantics. By combining dependency and

happens-before analyses, they manage to enable traditional polyhedral optimizers to work

on parallel loops, much as Tapir enables common middle-end compiler optimizations to

work on parallel code.
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Chapter 8

Conclusion

To conclude, I would like to leave the reader with three interesting considerations regarding

the nature of asymmetry in parallelism, the future of parallel optimizations, and extensions

of Tapir-like systems to other models of parallel programming.

Reasoning about logically parallel tasks asymmetrically based on serial semantics can

sometimes simplify the understanding of a parallel program’s behavior. When a task is

spawned to execute in parallel with another, it is natural to reason about the logically par-

allel tasks as symmetric, because their instructions can execute in any relative order. For

parallel programs with serial semantics, however, it is always valid to execute the program

on a single processor, which asymmetrically executes one parallel task to completion be-

fore starting the other. Serial semantics encourage an asymmetric representation of parallel

control flow that is similar enough to its serial elision that most common analyses and trans-

formations for serial programs work on parallel constructs with little or no modification.

In particular, serial semantics enables common optimizations on parallel code that can be

invalid under other models of parallelism [64].

One of the great benefits of Tapir is that its strategy for representing parallelism makes it

easy to write optimization passes specifically for parallel code. Chapter 4 briefly mentioned

some parallel optimization passes we implemented, including parallel-loop scheduling and

unnecessary-sync elimination. In addition to helping close the performance gap between

serial and parallel versions of code, we hope that the introduction of Tapir will encourage

the development and implementation of many more parallel-optimization passes.
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Finally, Tapir allows fork-join parallel programs to benefit from both serial and parallel

optimizations. Moving forwards, it is natural to wonder whether other models of paral-

lelism, such as pipeline parallelism [27, 42, 10] or data-graph computations [37, 36, 38, 44,

45, 56, 58], can take advantage of the Tapir approach.
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Appendix A

Artifact description

This guide describes how to set up Tapir/LLVM and how to download and run our suite of

application benchmarks. In particular, this guide focuses on setting up and running three

software components:

• the Tapir/LLVM compiler,

• the PClang front end to Tapir/LLVM, and

• the suite of 20 Cilk application benchmarks described in Figure 6-2.

I provide instructions to download and build Tapir/LLVM and PClang. I also provide in-

structions to download the application benchmark suite and run the Tapir/LLVM compiler

on that suite.

We have built and tested Tapir/LLVM, PClang, and the test suite on an x86 64 shared-

memory multicore machine running Linux. We provide instructions for obtaining Tapir/L-

LVM and PClang from my GitHub repositories and setting up the compiler on such a

machine. Due to the complexity of the LLVM compiler on which Tapir/LLVM is based,

building Tapir/LLVM requires significant computational resources: approximately 50 GiB

of disk, 12 GiB of RAM, and anywhere from a few minutes to a couple of hours, depending

on the machine. We also provide instructions for obtaining a copy of our test suite from a

tarball.
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A.1 Building Tapir/LLVM from source

This section describes how to download the source code for Tapir/LLVM and PClang from

GitHub and build them. These instructions assume you are building Tapir/LLVM on an

x86 64 system running Linux.

System requirements. Building Tapir/LLVM and PClang involves building the LLVM

and Clang systems that they extend. Because of the size of the underlying LLVM and

Clang codebases, you need a relatively powerful machine in order to build the compiler in

a timely fashion. Approximately 50 GiB of disk space and 12 GiB of memory are needed

to compile LLVM and Clang. A fresh build of LLVM and Clang can take substantial

time to complete, e.g., approximately an hour on one processor of an AWS c4.8xlarge

instance. The build script will attempt to use parallel processors to speed up compilation.

See http://llvm.org/docs/CMake.html for more information on building LLVM and

Clang.

1. Install the requisite software to build Tapir/LLVM and PClang, namely, cmake, gcc,

and git.

2. Download the sources of Tapir/LLVM and PClang from GitHub:

$ git clone --recursive https://github.com/wsmoses/Tapir-Meta.git

The source is approximately 800 MiB in size.

3. Compile Tapir/LLVM and PClang:

$ cd Tapir-Meta/

$ bash ./build.sh

This script will build Tapir/LLVM and PClang and store the compiled binaries in

Tapir-Meta/tapir/build. If the build succeeds, the final line of output will be

Installation successful.

4. Set up your environment variables to use Tapir/LLVM and PClang:
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$ source ./setup-env.sh

This script will add the Tapir-Meta/tapir/build/bin/ subdirectory to your path,

so that the clang command will refer to Tapir/LLVM and PClang.

A.2 Running the benchmark suite

This section describes how you can download the application benchmark suite described in

Figure 6-2 and test Tapir/LLVM on these benchmarks.

1. Install the requisite software to download and run the tests, namely, bc, libcilkrts,

numactl, python, taskset, and wget.

2. Download the tarball containing the application benchmark suite and unpack it:

$ wget http://tinyurl.com/TapirLLVMTesting -O testing.tar

$ tar -xvf testing.tar

This tarball is approximately 12 GiB in size. Unpacking the tarball creates the testing/

subdirectory of the current working directory that contains the application benchmark

suite.

3. Run the test script:

$ cd testing

$ ./test.sh

The test script takes approximately 7 hours to run. The script compiles each bench-

mark in the test suite twice using Tapir/LLVM: once as a parallel program, and once

as the program’s serial elision. All compilations use optimization level -O3. The test

script runs each compiled executable 10 times using 1 worker thread and 10 times

using 18 worker threads.
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A.3 Evaluation and expected result

Once the test script finishes running, the results can be summarized into a table similar to

Figure 6-3 as follows:

$ ./results.sh > results.csv

This command will produce results.csv, a table of tab-separated values that contains the

minimum running time from each set of 10 runs of a particular executable on a particular

worker count. The table also contains derived work-efficiency and parallel speedup values

for each benchmark program.

Because these results are performance measurements, they are likely to vary from run

to run and from system to system. Moreover, the Tapir team is continuing to develop the

Tapir/LLVM compiler and PClang, meaning that your results will not precisely match those

in Figure 6-3.

You can write your own programs and compile them using PClang and Tapir/LLVM.

The PClang front end is not a fully featured Cilk front end, however. For more information

on the source language parsed by PClang, please see testing/PClang-README.txt.
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