
: To -jInfinity & Beyond
William S. Moses1 (wmoses@mit.edu), Kevin Kwok1 (kkwok@mit.edu), Lizhou Sha12 (lsha@wisc.edu)

1MIT SIPB 2University of Wisconsin–Madison

Introduction

Recent years have seen the advent of serverless compuঞng, where thou-
sands of containers can be launched instantaneously, and paid in millisec-
ond increments. For embarassingly parallel burst tasks, such as compiling
and linking so[ware, these pla�orms can be used for massive speed-ups,
while cosঞng much less than a dedicated server.

Exisঞng tools o[en require maintaining prohibiঞvely expensive clusters,
while exisঞng serverless approaches such as gg have limited build system
compaঞbility. By integraঞng into the Clang compiler itself, Cymbl provides
four key advantages over exisঞng tools: infinite parallelism without user-
supplied infrastructure, drop-in compaঞbility with exisঞng build-systems,
determinisঞc builds, and a fine-grained compilaঞon cache across users and
codebases. Cymbl also has support for Clang’s tools and compiler plugins
such as LLVM-based automaঞc differenঞator (see the Enzyme poster).

Cymbl gg [1] Goma DistCC [2] Bazel
Any Build System 3 ? 3 3 7

No Modeling 3 7 7 7 ?
Infinite Parallelism 3 3 7 7 ?
Determinism 3 7 7 7 3

Intra-Codebase Cache 3 3 3 7 3

Inter-User Cache 3 7 3 7 3

Cross-Codebase Cache 3 7 7 7 7

Plugin Support 3 7 7 7 7

Normalization

Determinisঞc builds are both desirable for debugging and allows Cymbl to
legally cache compilaঞons.

Content-Addressable Hash: Files are represented to Cymbl by the hash
of their contents.
Determinisঞc Macros: We replace nondeterminsঞc macros (e.g.
ঞme/date) with fixed values.

To maximize cache hits, we normalize the input as follows:

Path Normalizaঞon: We derive all files that are used by the compilaঞon
job and create an equivalent compilaঞon task where all include paths
are inside “/fakeroot“. This allows our cache to work invariant of build
locaঞon, include directory, or machine.
Macro Removal: For ease, it is common for build systems to define
macros which would otherwise break caching. As we run the
preprocessor, we take a note of what macros are used, removing any
extraneous ones. Note: Someঞmes these are added explicitly to
prevent caching if the caching mechanism isn’t 100% correct.
Argument Normalizaঞon Being the compiler itself, we have a true
understanding of how compiler arguments are used and can normalize
input arguments.

Workflow

λ
λ
λ

λ
λ
λ

λ
λ
λ

content-addressed
storage

clang

make -j∞
lld

clang

lld

compilation cache

gatekeepercymbld

Client
output binary

source code

compile & link jobs

normalized
arguments

unique

file pathspreprocess

original
arguments ∞

λ

a.out

obj

obj
obj

λ

λ

Cloud

Evaluation

1-Core 96-Core gg

FFmpeg 9.43 0.48 0.53 0.04 0.73*
Inkscape 39.96 1.06 1.12 0.25 1.45*
Clang 183.55 4.32 2.42 0.36
Chrome 1302.65 25.71 6.99 4.42 18.92*

Table 1. Geomean build ঞme (in minutes) of various codebases when compiled with
different tools. We also include the gg build ঞmes of codebases where available as the
current state of the art. We could not reproduce their results and include the results
from the gg paper.

We evaluate the performance of Cymbl by benchmarking compile ঞmes
of several codebases. We evaluate 1 local core, 96 local cores, and 8000
simultaneous Cymbl tasks. We also evaluate the performance of Cymbl
when the compilaঞon has already been cached. Times are the geomean of
three runs taken from an Amazon c5.metal instance.

All codebases greatly benefit from increased parallelism both when adding
more local cores and when using Cymbl in the cloud. Smaller codebases like
FFmpeg and Inkscape maxed out the available build parallelism and didn’t
see a speedup between 96-cores and an uncached Cymbl. Notably, there
wasn’t much addiঞonal overhead from using Cymbl. Using Cymbl cached
on these codebases was significantly faster. Larger codebases like Clang
and Chrome saw addiঞonal and significant speedup when using Cymbl

above even a 96-core build. Caching added addiঞonal speedboosts. No-
tably, the enঞre cached build ঞme of Clang/LLVM was running tablegen
and the Chrome build was o[en bo�lenecked by network and disk.

We also include performance numbers of gg as the current state of the
art. In spite of several a�empts to patch gg, it was incompaঞble with the
build flags needed to build the current version of these codebases.We thus
include the numbers from the gg paper (also an Amazon machine). While
we found roughly similar performance on 1 and 48-core builds, this isn’t
a true apples-to-apples comparison. That said, it appears gg had a much
more significant overhead than Cymbl. On the Chrome build, Cymbl also
appears to be significantly more performant.

To try Cymbl out, please email us and visit https://cymbl.dev/.

Acknowledgments

William S. Moses was supported in part by a DOE Computaঞonal Sciences Graduate Fel-
lowship DE-SC0019323.

References

[1] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Cha�erjee, Christos
Kozyrakis, Matei Zaharia, and Keith Winstein. From laptop to lambda: Outsourcing
everyday jobs to thousands of transient funcঞonal containers. In 2019 USENIX An-
nual Technical Conference (USENIX ATC 19), pages 475–488, 2019.

[2] Jes Hall. Distributed compuঞng with distcc. Linux Journal, 2007(163):4, 2007.

https://cymbl.dev/

	References

