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Writing Optimizable Code is Hard

How do we ensure that norm is hoisted outside the loop (and normalize vectorized)?

double norm(double *A, int n);

void normalize(double *out, double *in, int n) {
for (int i = 0; i < n; ++i)

out[i] = in[i] / norm(in, n);
}

We could try adding: restrict type, const type, pure a�ribute, #pragma
vectorize(enable), #pragma interleave(enable), __declspec((noalias)).

None of those work.

What we really want are two LLVM a�ributes:

__attribute__((fn_attr("readonly"), fn_attr("argmemonly")))
double norm(double *A, int n);

void normalize(double *restrict out, double *restrict in, int n);

This is a problem in real programs! In the DOE RSBench benchmark [2] adding “read-
none” to fast_cexp gives a 7% improvement to the enঞre program (with another 1%
for “unwind”).

Automatically Making Code Optimizable

LLVM automaঞcally derives these a�ributes as part of the compilaঞon process, then
throws it away when it’s done

Let’s ensure this informaঞon is accessible across translaঞon units.

Why not always use LTO?

Running LTO (even ThinLTO [3]) is a burden on compile ঞmes
LTO may not be available in your build / operaঞng system
It’s o[en impossible to run LTO on your enঞre program (e.g. using an external
library)

Also, it’s interesঞng to see how much of LTO’s speedups come from “easily fixable”
mechanisms and provide user’s the agency to fix them in source code (making the
speedups available to everyone independent from compiler/linker used)

Header Files

HTO creates new files in a given directory that can be included in any C/C++ program
(chosen for easiest experimentaঞon).

Not all LLVM a�ributes are representable with exisঞng Clang a�ributes. We created a
generic way to represent LLVM a�ributes in Clang (shown below).

struct Vector; struct Matrix;

__attribute__((fn_attr("readonly"), arg_attr(0, "readonly"),
ret_attr("noalias")))

Vector* matvec(Matrix *M, Vector *B);

Introducing "Header Time Optimization"

At the end of the compilaঞon process, denote what derived a�ributes can be safely
added to funcঞons using LLVM’s exisঞng analyses and A�ributor [1].

Header ঞme opঞmizaঞon has three modes of operaঞon: remark mode (Figure 1),
pipeline mode (Figure 2, 3), and diff mode (in progress) where we create a diff for
original source tree.

// file1.c

double fcexp(double *A, int n) { ... }

file1.c:2:1: remark: derived following attributes:

fn_attr("readonly") arg_attr(0, "readonly") [-Rannotations]

double fcexp(double* a, int n) {

clang -Rannotations

Figure 1. Remark Mode: print out opঞmizaঞon remarks for a�ributes that should be added to
funcঞons

// fileN.c

double fcexp(double *A)

{ ... }
// file1.c

double fcexp(double *A)

{ ... }

// hto/fileN.h

attribute((fn_attr("readnone")))

double fcexp(double *A);
// hto/file1.h

attribute((fn_attr("readnone")))

double fcexp(double *A);

clang -hto_dir=hto

// fileN.c

double fcexp(double *A)

{ ... }
// file1.c

double fcexp(double *A)

{ ... }

executable.o
clang -include hto/*

Figure 2. Pipeline Mode: automaঞcally generate a new header file with this new informaঞon, then use
this header to recompile the source with this informaঞon. O[en this doesn’t even require an extra
compilaঞon (for example the HTO flag can be passed on a first build for profile guided-opঞmizaঞon).

// libsum.c

double sum(double *A)

{ ... }

// sum.h

attribute((fn_attr("readnone")))

double sum(double *A);

libsum.o

clang -hto_dir=hto

// user.c

double fcexp(double *A)

{ ... }

executable.o
clang user.c -lsum

Figure 3. Pipeline mode for a library. The annotated header is shipped with the library and used to
compile user code.

Present Limitations & FutureWork

We currently don’t generate annotaঞons for funcঞons with anonymous structs (we
have a script to automaঞcally generate random names), C++ member funcঞons (since
they can’t forward declared), array type of struct/classes (type mystruct[3] is incom-
plete ahead of ঞme).

When we allow users to output a diff (easier for integraঞon) rather than pipeline (easier
for experiments), these limitaঞons are resolved and we get more performance gains.

In the future we plan to generate standard C/C++ a�ributes when they exist.

Experiments

Ran mulঞ-source benchmarks in LLVM test suite

Annotated headers allow more LLVM opঞmizaঞons to perform be�er opঞmizaঞons:
165% increase in mem2reg promoঞons, 33% increase in correlated value propagaঞons,
28% increase common subexpression eliminaঞon, etc.

HTO was able to find sigificnat speedups for many programs. Comparing with LTO we
find that there are three places of interest: where neither found a speedup, where LTO
found a speedup HTO didn’t and where both HTO and LTO found a speedup.
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Figure 4. Speedups of HTO and LTO on the LLVM mulঞsource test suite

Let’s now look at the benchmarks where either LTO or HTO found a speedup. We
see that for more than half of the LTO speedups can be simply derived by funcঞon
annotaঞons/HTO alone. For the other half of the speedups, LTO takes sigificantly
longer to compile, implying that inlining/IPO is necessary.
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Figure 5. Comparison between LTO and HTO on codes where a speedup exists.
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