
Optimizing Nondeterminacy: Exploiting Race Conditions in Parallel Programs
William S. Moses (wmoses@mit.edu)

MIT CSAIL

Parallelism in the Compiler

A parallel IR (i.e. Tapir [2], HPVM [1], etc) allows for beħer opধmizaধon and analysis
of parallel programs and shared parallel infrastructure (i.e. compile OpenMP to Cilk,
single place to implement parallel opধmizaধons).

We can place opধmizaধons into three categories:

SerialOptimizations: Don’t use parallelism informaধon at all. Most of these
opধmizaধons are enabled by a parallel IR.
SchedulingOptimizations: Rearrange the parallelism in a computaধon
NondeterminacyOptimizations: Exploit the undefined behavior that exist in
parallel programs to improve performance.

This poster has three contribuধons:

A theoreধcal framework to ensure correctness of opধmizaধons on parallel
programs, as well as to provide semanধcs for a parallel IR;
The development of opধmizaধons that exploit nondeterminacy along with
proofs of correctness;
An in-progress implementaধon of said opধmizaধons

Parallel Execution Environment

Let us consider the types of semanধcs one can expect from a parallel framework by
looking at the ধme-orderings of code in Figure 1.

If we execute this on a strict runধme on one core, we only see the serializaধon
execuধon of the program. This model is called the serialexecutionmodel

Pserial(code) = {[A, B1, B2, C1, C2, D]} (1)

If we execute this on a relaxed runধme on one core, we see reorderings of the parallel
tasks. This model is called the reorderingexecutionmodel

Preorder(code) = {[A, B1, B2, C1, C2, D], [A, C1, C2, B1, B2, D]} (2)

If we execute this on a relaxed runধme on many cores, we expect an interleaving
of the tasks. The possible execuধons are valid topological ordering of tasks. This
model is called the interleavingexecutionmodel

Pinter(code) = {[A, B1, B2, C1, C2], [A, C1, C2, B1, B2], [A, B1, C1, B2, C2], (3)
[A, B1, C1, C2, B2], [A, C1, B1, B2, C2], [A, C1, B1, C2, B2]}

Theorem1: The reordering model, permiࣕng inlining and serializaࣅon, is the same as
the interleaving model. We can construct any interleaved execuধon in the following
manner: first, inline all funcধon calls. Next “reorder” the parallel tasks such that the
parallel task executes ađer any of the conধnuaধon tasks that precede the first
subtask. Serialize the subtask out of the top of parallel funcধon. Repeat unধl the
parallel task is empty. The resultant program will be a serial program whose
execuধon is the same as the desired interleaved execuধon.

Optimization Theory

void B() {
B1();
B2();

}

void C() {
C1();
C2();

}

void program() {
A();
cilk_spawn B();
C()
cilk_sync;
D();

}

A

B1

B2

C1

C2

D

Figure 1. A parallel program in Cilk and corresponding series-parallel DAG.

To create sound opধmizaধons, we must develop an acceptability metric that deems
whether one parallel program is an acceptable replacement for another program.

One such metric considers if all of a replacement program’s execuধons could have
happened in the original program is called the subsetmetric.

P(replacement) ⊆ P(replacee) (4)

The serialsubsetmetricadds the constraint that the serial execuধon is the same.

P(replacement) ⊆ P(replacee) and Pserial(replacement) = Pserial(replacee) (5)

The fairsubsetmetricadds the constraint that the probability of any given execuধon
of the replacement is close to the probability of that execuধon of the replacee.

subset and ∀e∈P(replacement) |P (e|replacement) − P (e|replacee)| < ∆ (6)

Scheduling Optimizations

Serialization: Take (part of) a parallel program and runs it program serially to
reduce the overhead from the runধme or employ more efficient operators
(strength reducধon). Many parallel opধmizaধons are simply serializaধon:
coarsening, spawn-switching, etc.

pfor(int i=0; i<N; i++) {
work(i);

}

pfor(int i=0; i<N; i+=M) {
for(int j=i; j<N && j<i+M; j++)
work(j);

}

spawn {
if (x) code();

}

if (x) {
spawn code();

}

x = a + b;
spawn {

f(x);
}

spawn {
x0 = a + b;
f(x0);

}

Figure 2. Loop coarsening on the leđ, spawn unswitching in the middle, and parallel region
expansion on the right.

ParallelRegionExpansion: Move code into a parallel region.
SynchronizationMotion: Remove tastwait barriers where possible, moving code
around them or making them less expensive where possible.

Nondeterministic Optimizations

NondeterministicLICM/Unswitching: LICM/Unswitching can be run on a loop that
could modify memory used later in the loop. This is permissible as you could choose
an ordering where you execute up to that instrucধon for all of the loops interaধons,
and then you run the remaining instrucধons in the loop for the remaining iteraধons.

using Eigen::MatrixXd;
double get(MatrixXd& m, int j);

double test(MatrixXd m) {
double sum = 0;
size_t len = m.rows();
pfor(int i=0; i < len; i++)
sum += m.size() / get(m, i);

return sum;
}

using Eigen::MatrixXd;
double get(MatrixXd& m, int j);

double test(MatrixXd m) {
double sum = 0;
size_t len = m.rows();
pfor(int i=0; i<len; i++)

sum += len / get(m, i);
return sum;

}

Figure 3. Nondeterminisধc LICM allowing the call to m.rows() to be moved out of the loop even
though get could potenধally modify m.

Loopinterchange/reordering: The iteraধons of a parallel loop can be reordered
in any way and iteraধons of parallel loops can be interchanged without addiধonal
checks.

NondeterministicVectorization: A parallel loop can always be vectorized by choos-
ing an interleaving where all of the loop’s first instrucধons are executed first, then
all of the loop’s second instrucধons, and so on.

NondeterministicMem2Reg/SROA: Loads to memory locaধons set by a previously
spawned task can be set to either a value of a store in or before the conধnuaধon,
or a store in the spawned task if this asserধon isn’t used by a later store. This is
especially helpful in tandem with other opধmizaধons (i.e. CSE/DCE) as we can now
choose which value is preferable to replace with.

Parallel Models in Practice

When choosing creaধng a parallel IR, one must trade off between its expressibility (is
ability to represent the semanধcs parallel languages) and the ability of the compiler
to opধmize programs. This analysis of opধmizaধons and parallel models hopes to
inform choices of parallel IR’s by bringing awareness to the limitaধons of certain
models.

Any model with a serializaধon metric is forbidden from doing the
nondeterminisধc opধmizaধons listed as they may change the serial execuধon.
A fairness metric may (specifically including the one provided) inhibits both
parallel and exisধng serial opধmizaধons on purely serial code as any opধmizaধon
changing the ধming of a program may substanধally change the rate that race
condiধons resolve a specific way.

References

[1] Maria Kotsifakou, Prakalp Srivastava, Maħhew D Sinclair, Rakesh Komuravelli, Vikram Adve, and Sarita Adve.
Hpvm: heterogeneous parallel virtual machine.
In ACM SIGPLAN Noࣅces, volume 53, pages 68–80. ACM, 2018.

[2] Tao B. Schardl, William S. Moses, and Charles E. Leiserson.
Tapir: Embedding fork-join parallelism into LLVM’s intermediate representaধon.
In Proc. 22nd Symposium on Principles and Pracࣅce of Parallel Programming, 2017.

