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Existing Compilation Pipelines

Existing compilers lose information about programs when compiled. This
hinders any subsequent optimizations which may require this information
including parallel optimizations, polyhedral optimizations, and domain‐
specific optimizations.

__device__ float sum(float* data, int n) { ... }
__global__ void normalize(float* out, float* in, int n) {
int tid = blockIdx.x + blockDim.x * threadIdx.x;
// Optimization: Compute the sum once per block.
// __shared__ int val;
// if (threadIdx.x == 0) val = sum(in, n);
// __syncthreads;
float val = sum(in, n);
if (tid < n) out[tid] = in[tid] / val;

}
void launch(int* d_out, int* d_in, int n) {
normalize<<<(n+31)/32, 32>>>(d_out, d_in, n);

}

Figure 1. A sample CUDA program normalize, which normalizes a vector and the CPU
function launch launching the kernel. Each GPU threads calls sum, resulting in O(N2)
work. Using shared memory (commented) reduces the work to O(N2/B) at extra
resource cost. Computing sum before the kernel reduces work to O(N).

Polygeist GPU

By directly emiting MLIR from C/C++, Polygeist preserves parallelism,
control‐flow, multi‐dimensional tensors, and more. Polygeist introduces a
new barrier operation to preserve parallel semantics in a backend‐agnostic
form, enabling Polygeist to handle a variety of parallel input languages, par‐
allel backends, and enable optimizations to apply to all.

// Kernel body is available within the calling function,
// enabling optimizations across the GPU/CPU boundary.
func @launch(%d_out : memref<?xf32>, %d_in : memref<?xf32>, %n : i64) {
// Parallel for across all blocks in a grid.
parallel.for (%gx, %gy, %gz) = (0, 0, 0) to (grid.x, grid.y, grid.z) {
// Shared memory = stack allocation in a block.
%shared_val = memref.alloca : memref<f32>
// Parallel for across all threads in a block.
parallel.for (%tx, %ty, %tz) = (0, 0, 0) to (blk.x, blk.y, blk.z) {
// Control-flow is directly preserved.
if %tx == 0 {
%sum = func.call @sum(%d_in, %n)
memref.store %sum, %shared_val[] : memref<f32>

}
// Syncronization via explicit operation.
polygeist.barrier(%tx, %ty, %tz)
%tid = %gx + grid.x * %tx
if %tid < %n {
%res = ...
store %res, %d_out[%tid] : memref<?xf32>

}
}

}
}

Figure 2. Polygeist/MLIR representation of the shared‐memory version of the CUDA
launch/normalize code from Fig. 1. The kernel call is made available directly in the
host code which calls it. The parallelism is made explicit with parallel for loops across the
blocks and threads. Shared memory is placed within the block parallel for, allowing
access from any thread in the same block, but not a different block.

Barrier Representation

Representing barriers as a form of memory enables Polygeist to perform
GPU‐specific optimizations like barrier elimination, shared memory for‐
warding/elimination, fusion, and more!

__global__ void bpnn_layerforward(...) {
__shared__ float node[HEIGHT];
__shared__ float weights[HEIGHT][WIDTH];
if ( tx == 0 ) node[ty] = input[index_in] ;
// Unnecessary Barrier #1
__syncthreads();
// Unnecessary Store #1
weights[ty][tx] = hidden[index];
__syncthreads();

// Unnecessary Load #1
weights[ty][tx] = weights[ty][tx] * node[ty];
__syncthreads();

for ( int i = 1 ; i <= log2(HEIGHT) ; i++){
if( ty % pow(2, i) == 0 )
weights[ty][tx] += weights[ty+pow(2, i-1)][tx];

__syncthreads();
}

hidden[index] = weights[ty][tx];
// Unnecessary Barrier #2
__syncthreads();

if ( tx == 0 ) out[by * hid + ty] = weights[tx][ty];
}

Figure 3. A CUDA kernel from the Rodinia that contains unnecessary synchronization.

Polygeist can also perform transformations that entirely eliminate barriers
to enable backends without barrier support (like CPUs) to efficiently exe‐
cute parallel programs from other models.

Barrier Lowering

As some systems do not have a GPU‐equivalent thread group synchronize,
Polygeist efficiently enables execution of barrier‐semantics on platforms
without a construct through recursive splitting.

parallel %i = 0 to 10 {
%x = load data[%i]
%y = load data[2 * %i]
%a = fmul %x, %x
%b = fmul %y, %y
%c = fsub %x, y
barrier
call @use(%a, %b, %c)
...

}

%x_cache = memref<10xf32>
%y_cache = memref<10xf32>
parallel %i = 0 to 10 {

%x = load data[%i]
%y = load data[2 * %i]
store %x, %x_cache[%i]
store %y, %y_cache[%i]

}
parallel %i = 0 to 10 {
%x = load %x_cache[%i]
%y = load %y_cache[%i]
%a = fmul %x, %y
%b = fsub %y, %z
call @use(%a, %b)
...

}

Figure 4. Parallel loop splitting around a barrier: the code above the barrier is placed in a
separate parallel “for” loop from the code following the barrier. This transformation
eliminates the barrier, while preserving the semantics. The min‐cut algorithm stores %x
and %y, which are then used to recompute %a, %b, and %c in the second loop.

Evaluation

To test performance and portability, we use Polygeist to transpile sev‐
eral CUDA GPU benchmarks to efficiently run on the CPU and compare
against hand‐written CPU (OpenMP) code. On the Rodinia suite, Polygeist
achieves a 58% geomean speedup over handwritten OpenMP code. On
a PyTorch Resnet‐50, Polygeist (with our compatability MocCUDA layer)
outperforms PyTorch’s native CPU backend by 2.7×.
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Figure 5. Scaling behavior behavior of CUDA Rodinia kernels, when run on the CPU with
OpenMP, and OpenMP Rodinia kernels (where available), using 32 threads.
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Figure 6. ResNet50 training on Fugaku node. Left: heatmap of relative throughput
increase of “MocCUDA+Polygeist” over tuned oneDNN, higher is better. Right:
throughput across batch sizes.
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