
Reverse-Mode Automatic Differentiation and Optimization of GPU Kernels via Enzyme
William S. Moses∗, Valentin Churavy ∗, Ludger Paehler§, Jan Hückelheim †, MIT CSAIL∗

Sri Hari Krishna Narayanan †, Michel Schanen †, Johannes Doerfert† TUM§, ANL†

Existing Automatic Differentiation Tools

Differentiable DSLs (TensorFlow [1], PyTorch [2]) provide a new
language where everything is differentiable. Must rewrite code, only
fast if DSL matches abstractions of program.
Operator Overloading (Adept [3], JAX [4]) tools provide differentiable
versions of existing language constructs (double => adouble, np.sum =>
jax.sum). Often creates instruction tape to be interpreted dynamically.
Source Rewriting (Tapenade [5]) tools statically analyze code to produce
a new gradient function in the source language. Re‐implements
parsing/semantics => limited support for recent/complex features.

Optimization and AD

Regardless of approach, all existing AD tools apply on unoptimized source
code. Fig 1 demonstrates how applying optimization prior to AD can be
asymptotically faster than current approaches.

float mag(const float*); //Compute magnitude in O(N)
void norm(float* out, const float* in){

// float res = mag(in); LICM moves mag outside loop
for(int i = 0; i < N; i++) { out[i] = in[i] / mag(in); }

}

// LICM, then AD, O(N)
float res = mag(in);
for(int i = 0; i < N; i++) {

out[i] = in[i] / res;
}
float d_res = 0;
for (int i = 0; i < N; i++) {

d_res += -in[i] * in[i]
* d_out[i]/res;

d_in[i] += d_out[i]/res;

}
∇mag(in, d_in, d_res);

// AD then LICM, O(N^2)
float res = mag(in);
for(int i = 0; i < N; i++) {

out[i] = in[i] / res;
}

for (int i = 0; i < N; i++) {
float d_res = -in[i] * in[i]

* d_out[i]/res;
d_in[i] += d_out[i]/res;
∇mag(in, d_in, d_res);

}
//

Figure 1. When differentiating norm, running LICM prior to AD is asymptotically faster
than running AD followed by LICM.

Design

Enzyme operates on a common compiler intermediate representation,
LLVM [6]. This not only enables Enzyme to operate after optimization (get‐
ting speedups like above), but also differentiate any LLVM‐based language
(C, C++, Fortran, Rust, Swift, Julia, Python, JaX, MLIR, PyTorch, etc).

Lower Enzyme .

Optimize

CodeGen

Optimize

GPU AD Challenges

Prior work did not explore reverse mode AD of existing GPU code because:

1. Reversing parallel control flow can lead to incorrect results
2. Complex performance characteristics => difficult to write efficient code
3. Resource limitations can prevent kernels from running at all

void set(float* ar,
float val) {

par_for(i=0; i<10; i++) {
// Read race
ar[i] = val;

}
}

float ∇set(float* ar, float* d_ar,
float val) {

float d_val = 0.0;
...
par_for(i=0; i<10; i++) {
// Write race
d_val += d_ar[i];
d_ar[i] = 0.0;

}
return d_val;

}
Figure 2. Differentiating a concurrent read becomes a write‐race in the derivative.

Per Thread
Register
~ Bytes

Use Limits Parallelism

Per Block
Shared Memory

~KBs
Use Limits Parallelism

Per GPU
Global Memory

~GBs

Slower

Thread‐local memory
Non‐atomic load/store

Thread‐independent loc
Parallel Reduction

Others
Atomic Increment

Figure 3. GPU Memory Hierarchy and corresponding AD race resolution mechanism.

GPU & AD-specific Optimizations

Enzyme may need to cache values in order to compute the gradient. Stor‐
ing too many values in GPU memory can slow down the program dramat‐
ically, or even cause it to fail to run. While like on the CPU, existing op‐
timizations reduce overhead, they aren’t sufficient. Novel GPU and AD‐
specific optimizations can speedup by several orders of magnitude.

Naive Cache

XOverwritten Y

SumRequired for ∇

Min Cache

for(int i=0; i<10; i++) {
float sum = x[i] + y[i];
use(sum);

}
overwrite(x, y);
grad_overwrite(x, y);
for(int i=9; i>=0; i--) {

sum = ...
grad_use(sum);

}

Figure 4. Min‐Cut Cache Optimization. The variable sum is required to compute the
derivative, however both of its operands x and y are overwritten. Rather than caching x
and y to recompute sum in the derivative, one can simply cache sum. This generalizes to
taking the minimum cut of the data‐flow graph.

Evaluation

On the CPU (Fig 5), AD after optimization is 4.2× faster than AD before
optimization. On the GPU (Fig 6), AD after optimization (blue) is required
for most benchmarks to run and novel AD and GPU‐specific optimizations
(green) provide order‐of‐magnitude performance improvements.

Speedup (Higher is Better)

LSTM BA GMM Euler RK4 FFT Bruss0.0

0.2

0.4

0.6

0.8

1.0
Enzyme Ref Tapenade Adept

-O2

Enzyme

Enzyme

-O2

Enzyme
Ref

-O2

-O2

Figure 5. Relative speedup of AD systems on ADBench+ [7] benchmarks, higher is better.
A red X denotes programs that an AD system does not produce a correct gradient.

Forward (1x) 10x 100x 1000x OOM

XSBench

RSBench

LULESH

LBM

DG (CUDA)

DG (ROCm)
5.4×

o

1378.3×
o

116.6×
o

17.8×
o

19.87×
o

8.7×
o

6.4×
o

2979.1×
o

2.4×
o

2.0×
o

6372.2×
o

9.5×
o

4.7×
o

25.9×
o

16.3×
o

9.5×
o

3.2×
o

Overhead above Forward Pass

Unrolling

Unrolling MallocCoalescing PreOptimization

Allocator Recompute InlineCacheABI

SpecPHI PreOptimization

CacheLICM Inlining PreOpt

Templating PHI LoopBound PreOptimization

Figure 6. GPU + AD overhead with no optimizations, only LLVM optimizations (blue), and
AD‐specific optimizations (green). An overhead of N means computing the derivative of
all inputs and original outputs is equivalent to running the original code N times.

References & Acknowledgements

For information on installing and using Enzyme, visit enzyme.mit.edu.
[1] M. Abadi et al., TensorFlow: A system for large‐scale machine learning, in 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 16), pp. 265–283, 2016.
[2] A. Paszke et al., Automatic differentiation in PyTorch, in NIPS 2017 Workshop Autodiff, 2017.
[3] R. J. Hogan, ACM Transactions on Mathematical Software (TOMS) 40, 1 (2014).
[4] J. Bradbury et al., JAX: composable transformations of Python+NumPy programs, 2018.
[5] L. Hascoët and V. Pascual, ACM Transactions On Mathematical Software 39 (2013).
[6] C. Lattner and V. Adve, LLVM: A compilation framework for lifelong program analysis & transformation,

in CGO, pp. 75–86, IEEE, 2004.
[7] F. Srajer, Z. Kukelova, and A. Fitzgibbon, Optimization Methods and Software 33, 889 (2018).

This research supported in part by a DOE CSGF DE‐SC0019323, in part by the DARPA under Agreement
No. HR0011‐20‐9‐0016; in part by NSF Grant OAC‐1835443; in part by the German Research Council
(DFG) under grant agreement No. 326472365; in part by LANL grant 531711; in part by the DOE under
contract number DE‐AC02‐06CH11357; in part by the Exascale Computing Project (17‐SC‐20‐SC); and in
part by the United States Air Force Research Laboratory and the United States Air Force Artificial Intelligence
Accelerator under FA8750‐19‐2‐1000. The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official policies, either expressed or implied,
of the United States Air Force or the U.S. Government. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding any copyright notation herein.

.

enzyme.mit.edu

	References

