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What is this talk about?
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Outline

• A warmup
• Measuring the rate of change

• Introduction
• Computing derivatives. Approaches
• A gentle introduction to AD. Chain rule
• Applications using AD

• Differentiable Programming
• Deep learning & AD
• Backpropagation
• Existing tools & Frameworks

• Implementation
• Discuss possible implementation approaches
• Showcase tools built as part of the Clang/LLVM compiler toolchain.
• Explain how such tools work and what are the benefits

• Briefly outline standardization efforts (as per https://wg21.link/P2072)
• Conclusion
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https://wg21.link/P2072
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How fast he ran?



How fast he ran? What does that even mean?

Displacement = velocity * time
100/9.58 = 10.44 m/s => 37.58 km/h on average

• Did he accelerate until the end?
• When did he slow down?
• What was his top speed?
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Measuring the rate of change
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Bolt (m) 2008 (s) 2009 (s)
0 0 0

10 1.83 1.89
20 2.87 2.88
30 3.78 3.78
40 4.65 4.64
50 5.5 5.47
60 6.32 6.29
70 7.14 7.1
80 7.96 7.92
90 8.79 8.75

100 9.69 9.58

Δ𝑡

Δ𝑥

Plot credits: A. Penev

Data from SportEndurance.com

To find the time and velocity at 
some interval we could calculate the 
gradient graph at different times.

𝑣 =
∆𝑥
∆𝑡

For example the velocity of Bolt 
from the 50th to the 80th meter was:

𝑣 =
∆𝑥
∆𝑡

=
80 − 50
7.96 − 5.5

= 12.19𝑚/𝑠



Could he do better in 2009?
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Bolt, 100m dash, Beijing Olympics, 2008, source quantamagazine.org

https://www.quantamagazine.org/infinite-powers-usain-bolt-and-the-art-of-calculus-20190403/


Derivatives: measure the rate of change
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A derivative measures the rate of a function’s output value wrt a change in its input:

accelerationvelocity

f ! x = lim
"→$

𝑓 𝑎 + ℎ − 𝑓(𝑎)
ℎPlot credits: A. Penev



The longer the distance the more parameters
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Schickhofer, Lukas, and Henry Hanson. "Aerodynamic effects and performance 
improvements of running in drafting formations." Journal of Biomechanics 122 (2021): 
110457.

Tactics are skills required in a 
competition that allow a player or
team to effectively use their 
talent and skill to the best
possible advantage. Usually 
means to empirically 
develop an intuition how to win
and apply it.

Building a reference trajectory
with a goal of maximizing 
performance (output) while
minimizing the set of inputs.

Thus, we need to know how each
input parameter affects the
output.



Gradient Descent
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A gradient is the vector of values of the function; each entry 
is the output of the function’s derivative wrt a parameter…

The gradient vector can be interpreted as the "direction and 
rate of fastest increase"

𝛻𝑓 𝑥1, … , 𝑥% =

𝜕𝑓
𝑥&
(𝑥1, … , 𝑥%)

.

.

.
𝜕𝑓
𝑥%
(𝑥1, … , 𝑥%)

Plot credits: https://ruder.io/optimizing-gradient-descent/



Computing Derivatives
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Computing Derivatives
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Manual
• Error prone

Numerical Differentiation (ND)
• Precision errors
• High computational complexity
• Higher order problem (formula approximated by missing higher order terms)

Symbolic Differentiation (SD)
• Only works on single mathematical expressions (no control flow)
• May require transcribing result back into code

Algorithmic or Automatic Differentiation (AD)
• Automatically generate a C++ program to compute the derivative of a given function



Numerical Differentiation
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• The choice of h is problem-dependent.
• Too big step h makes the approximation too

poor
• Too small h makes the floating point 

round-off error too big
• The computational complexity is O(n), where n is 

the number of parameters – for a function with 
100 parameters we need 101 evaluations

𝑑𝑓(𝑥)
𝑑𝑥 ≈

𝑓 𝑥 − 𝑓 𝑥 + ℎ
ℎ



Symbolic Differentiation

• Limited to closed form expressions
• Requires a symbolic processing system (eg

Mathematica, Mapple) and transcribing back 
the algorithm
• Suffers from expression swell (subexpression 

accumulation), especially challenging when 
going to higher order derivatives
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// Supports
double pow3(double x) {
return x * x * x;

}
// Does not support
double pow3_(double x) {
if (x == 0) return 0;
return x * x * x;

}



Automatic Differentiation

”[AD] is a set of techniques to evaluate the derivative of a function specified by a 
computer program. AD exploits the fact that every computer program, no matter 
how complicated, executes a sequence of elementary arithmetic operations 
(addition, subtraction, multiplication, division, etc.) and elementary functions 
(exp, log, sin, cos, etc.).” [Wikipedia]

Known as algorithmic differentiation, autodiff, algodiff, computational 
differentiation.

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 16



Automatic and Symbolic Differentiation

double f_dx(double x) {
double result = x;
double d_result = 1;
for (unsigned i = 0; i < 5; i++) {

result = std::exp(result);
d_result *= result;

}
return d_result;

}

𝑑
𝑑𝑥 𝑒7$

$$
%

= 𝑒897$
$$
%
97$$

%
97$%97%

// f(x)=e^(e^(e^(e^(e^x))))
#include <cmath>
double f (double x) {
double result = x;
for (unsigned i = 0; i < 5; i++)
result = std::exp(result);

return result;
}

𝑓 𝑥 = 𝑒7$
$$
% Symbolic via Wolfram Alpha

Handcode Handcode

AD
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Figure out the
analytical fn



AD. Chain Rule
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𝑑𝑧
𝑑𝑥

=
𝑑𝑧
𝑑𝑦

.
𝑑𝑦
𝑑𝑥

Intuitively, the chain rule states that knowing the instantaneous rate of change of 
z relative to y and that of y relative to x allows one to calculate the instantaneous 
rate of change of z relative to x as the product of the two rates of change. 

“if a car travels twice as fast as a bicycle and the bicycle is four times as fast as a 
walking man, then the car travels 2 × 4 = 8 times as fast as the man.” G. Simmons



AD. Algorithm Decomposition

y = f(x)
z = g(y)

dydx = dfdx(x)
dzdy = dgdy(y)
dzdx = dzdy * dydx

x zy

𝑑𝑦
𝑑𝑥

𝑑𝑧
𝑑𝑦

In the computational graph each 
node is a variable and each edge is 

derivatives between adjacent edges
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We recursively apply the rules until we encounter an elementary function such as addition, 
multiplication, division, sin, cos or exp.



AD. Chain Rule

y = f(x0, x1)
z = g(y)
w0, w1 = l(z)

x0

zy

x1

w0

w1

zy

w0

w1

x0

x1

zy

w0

w1

x0

x1

zy

w0

w1

x0

x1
zy

w0

w1

x0

x1

𝜕𝑤0
𝜕𝑥0 =

𝜕𝑤0
𝜕𝑧

𝜕𝑧
𝜕𝑦

𝜕𝑦
𝜕𝑥0

𝜕𝑤0
𝜕𝑥1 =

𝜕𝑤0
𝜕𝑧

𝜕𝑧
𝜕𝑦

𝜕𝑦
𝜕𝑥1

𝜕𝑤1
𝜕𝑥0 =

𝜕𝑤1
𝜕𝑧

𝜕𝑧
𝜕𝑦

𝜕𝑦
𝜕𝑥0

𝜕𝑤1
𝜕𝑥1 =

𝜕𝑤1
𝜕𝑧

𝜕𝑧
𝜕𝑦

𝜕𝑦
𝜕𝑥1
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AD step-by-step. Forward Mode

dx0dx = {1, 0}
dx1dx = {0, 1}

y = f(x0, x1)

dydx = df(x0, dx0dx, x1, dx1dx)

z = g(y)

dzdx = dg(y, dydx)

w0, w1 = l(z)

dw0dx, dw1dx = dl(z, dzdx)

zy

w0

w1

x0

x1
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AD step-by-step. Reverse Mode

dwdw0 = {1, 0}
dwdw1 = {0, 1}

y = f(x0, x1)
z = g(y)
w0, w1 = l(z)

dwx0, dwx1 = df(x0, x1, dwdy)

dwdy = dg(y, dwdz)

dwdz = dl(dwdw0, dwdw1)

zy

w0

w1

x0

x1
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AD Control Flow

• Control Flow and 
Recursion fall naturally in 
forward mode.
• Extra work is required for 

reverse mode in reverting 
the loop and storing the 
intermediaries.

double f_reverse (double x) {
double result = x;
std::stack<double> results;
for (unsigned i = 0; i < 5; i++) {
results.push(result);
result = std::exp(result);

}
double d_result = 1;
for (unsigned i = 5; i; i--) {
d_result *= std::exp(results.top());
results.pop();

}
return d_result;

}
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AD. Cheap Gradient Principle

• The computational graph has common subpaths which can be precomputed
• If a function has a single input parameter, no mater how many output 

parameters, forward mode AD generates a derivative that has the same time 
complexity as the original function
• More importantly, if a function has a single output parameter, no matter how 

many input parameters, reverse mode AD generates derivative with the same 
time complexity as the original function.
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Uses of AD outside of Deep Learning
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Gradient of the Sonic Boom objective function 
on the skin of the plane, CFD, Laurent Hascoët
et al.

Intensity Modulated Radiation 
Therapy, Biomedicine, Kyung-Wook
Jee et al

Sensitivities of a Global
Sea-Ice Model, Climate, Jong G. Kim et al



Differentiable Programming
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Deep Learning & Automatic Differentiation
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Imagined by GAN, 
ThisPersonDoesNotExist.com

Medical Imaging, CNN, A. Esteva et al, A guide to deep learning in healthcare

Image colorization Tesla Autopilot, tesla.com

Speech Recognition



Backpropagation
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Input layer HL 1 Output layerHL 2

are inputs, input weights, activation 
function and learning rate of the 
neuron

Forward pass – make a prediction
Calculate Loss

Backpropagation – adjust the weights to minimize loss

The error propagates 
back, through updates of 
the subtracted gradient 
ratio from the weights.

Training pattern is fed, 
forward generating 
corresponding output

Error at output, the error 
between observed and 
desired state. Computed 
from the output y and seen 
desired output t.

𝑥&

𝑥'

𝑎&

𝑎'

𝑎(

𝑏'

𝑏&
𝑡



𝑎@
(A)

Backpropagation
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Differentiable Programming

“A programming paradigm in which a numeric computer program can be 
differentiated throughout via automatic differentiation. This allows for gradient 
based optimization of parameters in the program, often via gradient descent.” 
[Wikipedia]
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• Deep learning drives recent advancements in automatic differentiation
• AD is useful also in bayesian inference, uncertainty quantification, 

modeling, simulation
• Several programming languages and frameworks have enabled the 

differential programming paradigm by adding support for AD.
• Swift, Kotlin, and Julia have made AD a first-class citizen.



Automatic Differentiation & C++
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out

Interoperable Machine Learning

• Limited support for C++ automatic 
differentiation hinders the use of 
C++ within machine learning
• Cannot easily use the vast set of 

existing C++ codebases in ML 
applications
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“[The key challenge of scientific ML is that] if there is just one 
part of your loss function that isn’t AD-compatible, then the 
whole network won’t train.” -Rackauckas

Python

C++

Swift

in



C++ Automatic Differentiation Wish-List
• Fast
• Compilation Time (ideally not JIT)
• Execution Time

• Works on existing code
• Doesn't require rewriting user code
• Supports (most) C++

• Easily Maintainable
• Minimal impact outside of AD (e.g. no rewrite of STL)
• Keeps up with evolving standards
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Existing AD Approaches (1/3)
• Differentiable DSL (TensorFlow, PyTorch, DiffTaichi, Halide)
• Provide a new language designed to be differentiated
• Requires rewriting everything in the DSL and the DSL must support all 

operations in original code
• Fast if DSL matches original code well
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#include "tensorflow/core/public/session.h"

GraphDef graph_def;
session->Create(graph_def);
...
session->Run(inputs,{"output_class/Softmax:0"}, {}, &outputs);



Existing AD Approaches (2/3)
• Operator overloading (Adept [C++], JAX [Python])
• Provide differentiable versions of existing language constructs
• May require writing to use non-standard utilities
• Often dynamic: storing instructions/values to later be interpreted
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template<typename T> square(T val) { return val * val; }

adept::Stack stack;
adept::adouble inp = 3.14;
adept::adouble out(square(inp));
out.set_gradient(1.00);

double derivative = out.get_gradient(3.14);



Existing AD Approaches (3/3)
• Source rewriting
• Statically analyze program to produce a new gradient function in 

the source language
• Re-implement parsing and semantics (hard for C++ & must keep 

up with standard)
• Requires all code to be available ahead of time
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double square(double val) { return val * val; }

double grad_square(double val) { return 2 * val; }

tapenade -b -o out.c -head "square(val)/(out)" square.c



Idea: Compiler-Based AD!
• Want the no user-rewriting, speed, and low STL-rewriting impact

of source AD
• Do not want the extra maintenance burden
• Since the compiler already implements parsing, semantic analysis, 

etc, we can use the compiler to perform source-based AD without 
maintaining a second parser!
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Two Case Studies of Compiler-Based AD
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Implementation of AD in Clang/LLVM
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Optimize

Lower CodeGenLower Clang
AST



Implementation of AD in Clang/LLVM
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Optimize

Lower CodeGenLower Clang
AST

Clad Enzyme



Case Study 1: Clad – AD of Clang AST
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double square(double val) {
return val * val;

}

FunctionDecl square double (double)
|-ParmVarDecl val double
`-CompoundStmt
`-ReturnStmt
`-BinaryOperator double *
|-ImplicitCastExpr double <LValueToRValue>
| `-DeclRefExpr double ParmVar val
`-ImplicitCastExpr double <LValueToRValue>

`-DeclRefExpr double ParmVar val

FunctionDecl square_darg0 double (double)
|-ParmVarDecl val double
`-CompoundStmt
|-DeclStmt
| `-VarDecl d_val double
| `-ImplicitCastExpr double <IntegralToFloating>
| `-IntegerLiteral int 1
`-ReturnStmt
`-BinaryOperator double +
|-BinaryOperator double *
| |-ImplicitCastExpr double <LValueToRValue>
| | `-DeclRefExpr double Var d_val
| `-ImplicitCastExpr double <LValueToRValue>
| `-DeclRefExpr double ParmVar val
`-BinaryOperator double *
|-ImplicitCastExpr double <LValueToRValue>
| `-DeclRefExpr double ParmVar val
`-ImplicitCastExpr double <LValueToRValue>
`-DeclRefExpr double lvalue Var d_val

Clad

Clang



Case Study 1: Clad – AD of Clang AST
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#include "clad/Differentiator/Differentiator.h"
double square(double val) {

return val * val;
}

int main() {
auto dfdx = clad::differentiate(pow2, 0);

double res = dfdx.execute(1);

// OR
auto dfdxFnPtr = dfdx.getFunctionPtr();
dfdx = dfdxFnPtr(2);

printf("%s\n", dfdx.getCode());

...
}

double square_darg0(double val) {
double d_val = 1;
return d_val * val + val * d_val;

}



Clad Key Insights

• Works on the compiler frontend level and uses the tree-rebuilding 
approach like the C++ template instantiator
• Can produce valid C++ source code

https://clad.readthedocs.io / https://github.com/vgvassilev/clad
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https://github.com/vgvassilev/clad
https://github.com/vgvassilev/clad


Existing Automatic Differentiation Pipelines

AD
Optimize

Lower
AD

AD

AD

CodeGen
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Vector Normalization

//Compute magnitude in O(n)
double magnitude(const double[] x);

//Compute norm in O(n^2)
void normalize(double[] __restrict__ out, 

const double[] __restrict__ in) {

for (int i=0; i<N; i++) {
out[i] = in[i] / magnitude(in);

}
}

𝑂 𝑛!
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Vector Normalization: LICM

//Compute magnitude in O(n)
double magnitude(const double[] x);

//Compute norm in O(n)
void normalize(double[] __restrict__ out, 

const double[] __restrict__ in) {
double res = magnitude(in);
for (int i=0; i<N; i++) {
out[i] = in[i] / res;

}
}

𝑂 𝑛
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Vector Normalization: LICM then AD
void grad_normalize(double[] out, double[] dout,

double[] in, double[] din) {
double res = magnitude(in);
for (int i=0; i<N; i++) {
out[i] = in[i] / res;

}
double d_res = 0;
for (int i=N-1; i>=0; i--) {
dres += -in[i]*in[i]/res * dout[i];
din[i] += dout[i]/res;

}
grad_magnitude(in, din, n, dres);

}

𝑂 𝑛
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Vector Normalization: AD, then LICM
void grad_normalize(double[] out, double[] dout,

double[] in, double[] din) {
double res = magnitude(in);
for (int i=0; i<N; i++) {
out[i] = in[i] / res;

}
for (int i=N-1; i>=0; i--) {
double dres = -in[i]*in[i]/res * dout[i];
din[i] += dout[i]/res;
grad_magnitude(in, din, n, dres);

}
}

𝑂 𝑛!

Can’t LICM as uses loop-local variable dres



Differentiating after optimization can create asymptotically faster gradients!

𝑂 𝑛! 𝑂 𝑛 𝑂 𝑛

𝑂 𝑛!𝑂 𝑛! 𝑂 𝑛!
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Optimization & Automatic Differentiation

OptimizeAD

for i=0..n {
out[i] /= mag(in)

}

for i=0..n {
out[i] /= mag(in)

}

res = mag(in)
for i=0..n {
out[i] /= res

}

d_res = 0.0
for i=n..0 {
d_res += d_out[i]…

}
∇mag(d_in, d_res)

for i=n..0 {
d_res = d_out[i]…
∇mag(d_in, d_res)

}

for i=n..0 {
d_res = d_out[i]…
∇mag(d_in, d_res)

}

Optimize AD



Optimize

Performing AD at low-level lets us work on optimized code!
Optimize

Lower Enzyme CodeGen

[MC20] Moses, Churavy.  Instead of Rewriting Foreign Code for Machine Learning, Automatically Synthesize Fast Gradients.  NeurIPS, 2020.

Enzyme Approach [MC20]
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Case Study 2: Enzyme – AD of LLVM IR
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double square(double val) {
return val * val;

}

double __enzyme_autodiff(void*, ...);

double grad_square(double val) {
return __enzyme_autodiff((void*)square, val);

}

define double @square(double %val) {
%sq = fmul double %val, %val
ret double %sq

}

Enzyme
define double @grad_square(double %val) {
%res = fadd double %val, %val
ret double %res

}

Clang



Case Study 2: Enzyme – AD of LLVM IR
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double square(double val) {
return val * val;

}

double __enzyme_autodiff(void*, ...);

double grad_square(double val) {
return __enzyme_autodiff((void*)square, val);

}

define double @square(double %val) {
%sq = fmul double %val, %val
ret double %sq

}

Enzyme
define double @grad_square(double %val) {
%res = fadd double %val, %val
ret double %res

}

https://bit.ly/3aNP6bB

Clang

Try Online On
The Enzyme Compiler Explorer!

https://bit.ly/3aNP6bB


Enzyme Evaluation

Enzyme:

Ref:

Tapenade:

Adept: -O2

Enzyme      .

Tapenade

Adept

Compared against Enzyme without preprocessing optimizations and two fastest AD tools

-O2

-O2-O2

-O2-O2

-O2 Enzyme      . -O2
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Speedup of Enzyme 
H
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r

Enzyme is 4.2x faster than Reference!
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Key        Enzyme Insights

• Running AD after/alongside optimization enables substantial 
speedups, including 4.2x on a suite of ML/scientific codes
• Enzyme achieves state-of-the art performance
• Enzyme is the first AD tool to differentiate arbitrary GPU kernels 

(including AMD and NVIDIA) [MCPH+21]
• Enzyme has support for generic forms of parallelism including 

OpenMP, MPI, and other frameworks that build upon them like 
Kokkos and RAJA

https://enzyme.mit.edu / https://github.com/wsmoses/Enzyme

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 55
[MCPH+21] Moses et al. Reverse-Mode Automatic Differentiation and Optimization of GPU Kernels via Enzyme. To appear at SC, 2021.

http://enzyme.mit.edu
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Overall AD Compiler Insights

• Existing code does not need to be rewritten to be differentiated.
• Being within the compiler AD tools to continue function as the 

frontend languages & standards evolve.
• Has access to source locations and can issue precise diagnostics
• Can be successfully implemented at either a high or low level

…but this requires using a conformant compiler
=> Can we standardize this?
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Standardization Efforts

• We believe first class support of differentiable programming paradigm is an 
important feature which will become central for various data science, research 
and industry communities
• We believe that compiler-aided AD is the most viable path forward to 

supporting high-performance
• We have produced an overview paper “Differentiable programming 

for C++” https://wg21.link/P2072
• We have solicited feedback from the ML study group of isocpp (aka SG19) but 

also from various other parties
• We are keen on turning the overview paper into a concrete plan!
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Conclusion
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• Differentiable Programming is a new and promising programming paradigm 
which relies on well developed theory and technology
• The presented tools are being developed and integrated in various fields
• The standardization efforts are ramping up and we hope to solicit support after 

this talk



Thank you!
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Q & A
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Backup
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Optimal Control
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Can steer a process 
towards a reference 

trajectory automatically?

Credit: imgur.com Credit: Reddit.com

https://i.imgur.com/1sEH9j9.png


Differentiable Programming. Birds’ eye

• Sees computer programs as components which interact with each other. Each 
(sub)component represents a process which can be described with a function 
(in the math sense). 
• The AD can provide information about key properties of the process to enable 

optimization and possibly changing the algorithm.
• The differentiable programming paradigm encourages software to be written in 

such a way that AD can be applied to (almost) all components.
• In many cases the software tends to optimize a process – e.g. minimize 

unemployment, minimize expenses and maximize profit, reach the moon with 
minimal fuel consumption, minimize log likelihood given data and constraints
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Today's Automatic Differentiation Ecosystem

• First-Class Support (Swift)
• (Almost) everything in the language is differentiable

• Domain-Specific Language/Libraries (PyTorch, TensorFlow, Halide, Taichi)
• A new language or library has been created where every operation is differentiable
• Requires rewriting everything in the new language, and cannot handle programs outside 

it
• Meta Programming (Julia, C++)
• Packages (Zygote.jl, Diffractor.jl, Adept) build off of meta-programming (such as generated 

functions, templates, or operator overloading) to c
• External Tools (C)
• A tool (e.g. Tapenade) takes in input code and generates a new source file 

which computes the derivative
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Implementation Classification

Implementations vary on how much work is done at compile-time:
• Tracing/Taping – the compute graph is constructed as the program is executed, just 

like tracing JITs, the execution is recorded, transformed, and compiled “just-in-time”.
• Typical implementation in C++ is using metaprogramming using operator overloading on a special 

type.
• Easy to implement
• Inefficient, needs code modification

• Source transformation – the compute graph is constructed before compilation and 
then transformed and compiled.
• Typical implementation is a custom parser building code representation and producing the 

transformed code.
• Efficient as many computations and optimizations are done ahead of time
• Hard to implement (especially for C++)
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Derivatives + Programming

• Many algorithms require the derivatives of various functions
• Machine learning (back-propagation, Bayesian inference, uncertainty 

quantification)
• Scientific computing (modeling, simulation)

//Compute magnitude in O(n)
double magnitude(const double[] x);

//Compute norm in O(n^2)
double PotentialEnergy(double[] __restrict__ out, 

const double[] __restrict__ in) {

for (int i=0; i<N; i++) {
out[i] = in[i] / magnitude(in);

}
}

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 67



Derivatives + Programming

//Compute magnitude in O(n)
double magnitude(const double[] x);

// Compute Compute norm in O(n^2)
double PotentialEnergy(vector<Planet> in) {
// Gµν + Λgµν = 8πG * Tµν/c^4
// ...

}
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Derivatives (Gradients)

• From calculus, the derivative of function as a rate of change
• Given a function f(x), the derivative f'(x) describes the slope.
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Derivatives + Programming

• Many algorithms require the derivatives of various functions
• Machine learning (back-propagation, Bayesian inference, uncertainty quantification)
• Scientific computing (modeling, simulation)

• When working with large codebases or dynamically-
generated programs, manually writing derivative
functions becomes intractable
• Several languages / frameworks (Swift,

PyTorch/TensorFlow/JaX in Python, Julia) have made
differentiation a first-class primitive
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Derivatives (Gradients)

• Remember from calculus the derivative of function Give some lightweight 
description about the chain rule
• Introduce the concept of a derivative and gradient and their high-level use
• Give examples how else one can produce a gradient – numerically or 

symbolically
• Describe existing approaches – source transformation, using metaprogramming 

or other reflection tools (such as trace-based ad)
• Enumerate prominent tools
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Differentiable Programming

• The concept of AD dates back from dual number algebra from 19th century
• In 1970’s AD was used to estimate roundoff errors
• In the ML era was rebranded as backpropagation
• In an essay, LeCun coined the term Differentiable Functional Programming
• Now there are efforts in enabling differentiable programming in computer 

graphics (differentiable rendering), computer vision, physics simulators (fluid 
dynamics), …
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Controlling a process
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The goal is to reach zero altitude 
with zero vertical velocity given 
tight constraints of landing area 

and fuel.

Credit: Official SpaceX Photos



Backpropagation
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Differentiable Programming Frameworks

• Define-by-run
• Pytorch..
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• Define-and-run
• Theano..

Static compute graph Dynamic compute graph



Case Study 1: Clad – AD of Clang AST

Clang 
FrontendCode

Clang 
Backend BinaryClad

AST AST

Der.cxx

Code

gcc/msvc

double fsq(double x) {
return x * x;

}

FunctionDecl f 'double (double)'
|-ParmVarDecl x 'double'
`-CompoundStmt
`-ReturnStmt
`-BinaryOperator 'double' '*'
|-ImplicitCastExpr 'double' <LValueToRValue>
| `-DeclRefExpr 'double' lvalue ParmVar 'x' 'double'
`-ImplicitCastExpr 'double' <LValueToRValue>
`-DeclRefExpr 'double' lvalue ParmVar 'x' 'double'

double f_darg0(double x) {
double _d_x = 1;
return _d_x * x + x * _d_x;

}

FunctionDecl 0x7f7f801dbff8 <<invalid sloc>> <invalid sloc> f_darg0 'double (double)'
|-ParmVarDecl 0x7f7f801dc090 <<invalid sloc>> <invalid sloc> used x 'double'
`-CompoundStmt 0x7f7f801dc3d0 <<invalid sloc>>

|-DeclStmt 0x7f7f801dc190 <<invalid sloc>>
| `-VarDecl 0x7f7f801dc118 <<invalid sloc>> <invalid sloc> used _d_x 'double' cinit
| `-ImplicitCastExpr 0x7f7f801dc178 <<invalid sloc>> 'double' <IntegralToFloating>
| `-IntegerLiteral 0x7f7f801dc0f8 <<invalid sloc>> 'int' 1
`-ReturnStmt 0x7f7f801dc398 <<invalid sloc>>

`-BinaryOperator 0x7f7f801dc318 <<invalid sloc>> 'double' '+'
|-BinaryOperator 0x7f7f801dc298 <<invalid sloc>, T.cpp:3:32> 'double' '*'
| |-ImplicitCastExpr 0x7f7f801dc268 <<invalid sloc>> 'double' <LValueToRValue>
| | `-DeclRefExpr 0x7f7f801dc1a8 <<invalid sloc>> 'double' lvalue Var 0x7f7f801dc118 '_d_x' 'double'
| `-ImplicitCastExpr 0x7f7f801dc280 <col:32> 'double' <LValueToRValue>
| `-DeclRefExpr 0x7f7f801dc208 <col:32> 'double' lvalue ParmVar 0x7f7f801dc090 'x' 'double'
`-BinaryOperator 0x7f7f801dc2f0 <col:30, <invalid sloc>> 'double' '*'

|-ImplicitCastExpr 0x7f7f801dc2c0 <col:30> 'double' <LValueToRValue>
| `-DeclRefExpr 0x7f7f801dc1d0 <col:30> 'double' lvalue ParmVar 0x7f7f801dc090 'x' 'double'
`-ImplicitCastExpr 0x7f7f801dc2d8 <<invalid sloc>> 'double' <LValueToRValue>

`-DeclRefExpr 0x7f7f801dc1a8 <<invalid sloc>> 'double' lvalue Var 0x7f7f801dc118 '_d_x' 'double'
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Clad. Usage
// clang –fplugin=/.../libclad.so
// Necessary for clad to work include
#include "clad/Differentiator/Differentiator.h"
double pow2(double x) { return x * x; }

double pow2_darg0(double); // to be filled by clad

int main() {
auto dfdx = clad::differentiate(pow2, 0);
// Function execution can happen in 3 ways:
// 1) Using CladFunction::execute method.
double res = dfdx.execute(1);

// 2) Using the function pointer.
auto dfdxFnPtr = dfdx.getFunctionPtr();
res = dfdxFnPtr(2);

// 3) Using direct function access through fwd declaration.
printf(pow2_darg0(3);
printf("The derivative code is: %s\n", dfdx.getCode());
return res;

}
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Tells the plugin to create 
pow2_darg0.

The programmer can use 
the derivative via a 
wrapper object, function 
pointer or forward 
declaration.



Differentiable Programming as Generalization of DL
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• Each layer describes a 
subprocess algorithmically
• Each layer can be considered as 

a reusable software building 
block
• Layers can be combined and 

their sensitivity can be tuned by 
gradient descent using AD

LeCun: “Deep Learning est mort. Vive Differentiable Programming!”
Andrej Karpathy: Software 2.0 is written in much more abstract, human unfriendly language […]. Instead, our approach 
is to specify some goal on the behavior of a desirable program (e.g., “satisfy a dataset of input output pairs of examples”, 
or “win a game of Go”).



Implementation of AD in Clang/LLVM
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Optimize

Lower CodeGenLower Clang
AST

double square(double val) {
return val * val;

}

FunctionDecl square double (double)
|-ParmVarDecl val double
`-CompoundStmt

`-ReturnStmt
`-BinaryOperator double *
|-ImplicitCastExpr double <LValueToRValue>
| `-DeclRefExpr double ParmVar val
`-ImplicitCastExpr double <LValueToRValue>
`-DeclRefExpr double ParmVar val

FunctionDecl square_darg0 double (double)
|-ParmVarDecl val double
`-CompoundStmt
|-DeclStmt
| `-VarDecl d_val double
| `-ImplicitCastExpr double <IntegralToFloating>
| `-IntegerLiteral int 1
`-ReturnStmt
`-BinaryOperator double +
|-BinaryOperator double *
| |-ImplicitCastExpr double <LValueToRValue>
| | `-DeclRefExpr double Var d_val
| `-ImplicitCastExpr double <LValueToRValue>
| `-DeclRefExpr double ParmVar val
`-BinaryOperator double *
|-ImplicitCastExpr double <LValueToRValue>
| `-DeclRefExpr double ParmVar val
`-ImplicitCastExpr double <LValueToRValue>
`-DeclRefExpr double lvalue Var d_val

double square_darg0(double val) {
double d_val = 1;
return d_val * val + val * d_val;

}



Implementation of AD in LLVM/Clang

Two options – transformation of the Clang AST or transformation of the 
LLVM IR each with pros and cons:
• Clad – a Clang Plugin transforming the AST of the supported languages by 

clang (C++ but also CUDA, C, ObjC...)
• Enzyme – an LLVM IR plugin transforming the LLVM IR
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Case Study 1: Clad – AD of Clang AST

Clang 
FrontendCode

Clang 
Backend BinaryClad

AST AST

Der.cxx

Code

gcc/msvc

double fsq(double x) {
return x * x;

}

FunctionDecl f 'double (double)'
|-ParmVarDecl x 'double'
`-CompoundStmt
`-ReturnStmt
`-BinaryOperator 'double' '*'
|-ImplicitCastExpr 'double' <LValueToRValue>
| `-DeclRefExpr 'double' lvalue ParmVar 'x' 'double'
`-ImplicitCastExpr 'double' <LValueToRValue>
`-DeclRefExpr 'double' lvalue ParmVar 'x' 'double'

double f_darg0(double x) {
double _d_x = 1;
return _d_x * x + x * _d_x;

}

FunctionDecl 0x7f7f801dbff8 <<invalid sloc>> <invalid sloc> f_darg0 'double (double)'
|-ParmVarDecl 0x7f7f801dc090 <<invalid sloc>> <invalid sloc> used x 'double'
`-CompoundStmt 0x7f7f801dc3d0 <<invalid sloc>>

|-DeclStmt 0x7f7f801dc190 <<invalid sloc>>
| `-VarDecl 0x7f7f801dc118 <<invalid sloc>> <invalid sloc> used _d_x 'double' cinit
| `-ImplicitCastExpr 0x7f7f801dc178 <<invalid sloc>> 'double' <IntegralToFloating>
| `-IntegerLiteral 0x7f7f801dc0f8 <<invalid sloc>> 'int' 1
`-ReturnStmt 0x7f7f801dc398 <<invalid sloc>>

`-BinaryOperator 0x7f7f801dc318 <<invalid sloc>> 'double' '+'
|-BinaryOperator 0x7f7f801dc298 <<invalid sloc>, T.cpp:3:32> 'double' '*'
| |-ImplicitCastExpr 0x7f7f801dc268 <<invalid sloc>> 'double' <LValueToRValue>
| | `-DeclRefExpr 0x7f7f801dc1a8 <<invalid sloc>> 'double' lvalue Var 0x7f7f801dc118 '_d_x' 'double'
| `-ImplicitCastExpr 0x7f7f801dc280 <col:32> 'double' <LValueToRValue>
| `-DeclRefExpr 0x7f7f801dc208 <col:32> 'double' lvalue ParmVar 0x7f7f801dc090 'x' 'double'
`-BinaryOperator 0x7f7f801dc2f0 <col:30, <invalid sloc>> 'double' '*'

|-ImplicitCastExpr 0x7f7f801dc2c0 <col:30> 'double' <LValueToRValue>
| `-DeclRefExpr 0x7f7f801dc1d0 <col:30> 'double' lvalue ParmVar 0x7f7f801dc090 'x' 'double'
`-ImplicitCastExpr 0x7f7f801dc2d8 <<invalid sloc>> 'double' <LValueToRValue>

`-DeclRefExpr 0x7f7f801dc1a8 <<invalid sloc>> 'double' lvalue Var 0x7f7f801dc118 '_d_x' 'double'
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Clad. Usage
// clang –fplugin=/.../libclad.so
// Necessary for clad to work include
#include "clad/Differentiator/Differentiator.h"
double pow2(double x) { return x * x; }

double pow2_darg0(double); // to be filled by clad

int main() {
auto dfdx = clad::differentiate(pow2, 0);
// Function execution can happen in 3 ways:
// 1) Using CladFunction::execute method.
double res = dfdx.execute(1);

// 2) Using the function pointer.
auto dfdxFnPtr = dfdx.getFunctionPtr();
res = dfdxFnPtr(2);

// 3) Using direct function access through fwd declaration.
printf(pow2_darg0(3);
printf("The derivative code is: %s\n", dfdx.getCode());
return res;

}
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Tells the plugin to create 
pow2_darg0.

The programmer can use 
the derivative via a 
wrapper object, function 
pointer or forward 
declaration.


