

Speakers

William Moses,
Ph.D. Candidate, MIT

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 2

Vassil Vassilev,
Research Software Engineer,

Princeton/CERN

What is this talk about?

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 3

Outline

• A warmup
• Measuring the rate of change

• Introduction
• Computing derivatives. Approaches
• A gentle introduction to AD. Chain rule
• Applications using AD

• Differentiable Programming
• Deep learning & AD
• Backpropagation
• Existing tools & Frameworks

• Implementation
• Discuss possible implementation approaches
• Showcase tools built as part of the Clang/LLVM compiler toolchain.
• Explain how such tools work and what are the benefits

• Briefly outline standardization efforts (as per https://wg21.link/P2072)
• Conclusion

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 4

https://wg21.link/P2072

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 5

How fast he ran?

How fast he ran? What does that even mean?

Displacement = velocity * time
100/9.58 = 10.44 m/s => 37.58 km/h on average

• Did he accelerate until the end?
• When did he slow down?
• What was his top speed?

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 6

Measuring the rate of change

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 7

Bolt (m) 2008 (s) 2009 (s)
0 0 0

10 1.83 1.89
20 2.87 2.88
30 3.78 3.78
40 4.65 4.64
50 5.5 5.47
60 6.32 6.29
70 7.14 7.1
80 7.96 7.92
90 8.79 8.75

100 9.69 9.58

Δ𝑡

Δ𝑥

Plot credits: A. Penev

Data from SportEndurance.com

To find the time and velocity at
some interval we could calculate the
gradient graph at different times.

𝑣 =
∆𝑥
∆𝑡

For example the velocity of Bolt
from the 50th to the 80th meter was:

𝑣 =
∆𝑥
∆𝑡

=
80 − 50
7.96 − 5.5

= 12.19𝑚/𝑠

Could he do better in 2009?

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 8

Bolt, 100m dash, Beijing Olympics, 2008, source quantamagazine.org

https://www.quantamagazine.org/infinite-powers-usain-bolt-and-the-art-of-calculus-20190403/

Derivatives: measure the rate of change

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 9

A derivative measures the rate of a function’s output value wrt a change in its input:

accelerationvelocity

f ! x = lim
"→$

𝑓 𝑎 + ℎ − 𝑓(𝑎)
ℎPlot credits: A. Penev

The longer the distance the more parameters

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 10

Schickhofer, Lukas, and Henry Hanson. "Aerodynamic effects and performance
improvements of running in drafting formations." Journal of Biomechanics 122 (2021):
110457.

Tactics are skills required in a
competition that allow a player or
team to effectively use their
talent and skill to the best
possible advantage. Usually
means to empirically
develop an intuition how to win
and apply it.

Building a reference trajectory
with a goal of maximizing
performance (output) while
minimizing the set of inputs.

Thus, we need to know how each
input parameter affects the
output.

Gradient Descent

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 11

A gradient is the vector of values of the function; each entry
is the output of the function’s derivative wrt a parameter…

The gradient vector can be interpreted as the "direction and
rate of fastest increase"

𝛻𝑓 𝑥1, … , 𝑥% =

𝜕𝑓
𝑥&
(𝑥1, … , 𝑥%)

.

.

.
𝜕𝑓
𝑥%
(𝑥1, … , 𝑥%)

Plot credits: https://ruder.io/optimizing-gradient-descent/

Computing Derivatives

12

Computing Derivatives

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 13

Manual
• Error prone

Numerical Differentiation (ND)
• Precision errors
• High computational complexity
• Higher order problem (formula approximated by missing higher order terms)

Symbolic Differentiation (SD)
• Only works on single mathematical expressions (no control flow)
• May require transcribing result back into code

Algorithmic or Automatic Differentiation (AD)
• Automatically generate a C++ program to compute the derivative of a given function

Numerical Differentiation

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 14

• The choice of h is problem-dependent.
• Too big step h makes the approximation too

poor
• Too small h makes the floating point

round-off error too big
• The computational complexity is O(n), where n is

the number of parameters – for a function with
100 parameters we need 101 evaluations

𝑑𝑓(𝑥)
𝑑𝑥 ≈

𝑓 𝑥 − 𝑓 𝑥 + ℎ
ℎ

Symbolic Differentiation

• Limited to closed form expressions
• Requires a symbolic processing system (eg

Mathematica, Mapple) and transcribing back
the algorithm
• Suffers from expression swell (subexpression

accumulation), especially challenging when
going to higher order derivatives

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 15

// Supports
double pow3(double x) {
return x * x * x;

}
// Does not support
double pow3_(double x) {
if (x == 0) return 0;
return x * x * x;

}

Automatic Differentiation

”[AD] is a set of techniques to evaluate the derivative of a function specified by a
computer program. AD exploits the fact that every computer program, no matter
how complicated, executes a sequence of elementary arithmetic operations
(addition, subtraction, multiplication, division, etc.) and elementary functions
(exp, log, sin, cos, etc.).” [Wikipedia]

Known as algorithmic differentiation, autodiff, algodiff, computational
differentiation.

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 16

Automatic and Symbolic Differentiation

double f_dx(double x) {
double result = x;
double d_result = 1;
for (unsigned i = 0; i < 5; i++) {

result = std::exp(result);
d_result *= result;

}
return d_result;

}

𝑑
𝑑𝑥 𝑒7$

$$
%

= 𝑒897$
$$
%
97$$

%
97$%97%

// f(x)=e^(e^(e^(e^(e^x))))
#include <cmath>
double f (double x) {
double result = x;
for (unsigned i = 0; i < 5; i++)
result = std::exp(result);

return result;
}

𝑓 𝑥 = 𝑒7$
$$
% Symbolic via Wolfram Alpha

Handcode Handcode

AD

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 17

Figure out the
analytical fn

AD. Chain Rule

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 18

𝑑𝑧
𝑑𝑥

=
𝑑𝑧
𝑑𝑦

.
𝑑𝑦
𝑑𝑥

Intuitively, the chain rule states that knowing the instantaneous rate of change of
z relative to y and that of y relative to x allows one to calculate the instantaneous
rate of change of z relative to x as the product of the two rates of change.

“if a car travels twice as fast as a bicycle and the bicycle is four times as fast as a
walking man, then the car travels 2 × 4 = 8 times as fast as the man.” G. Simmons

AD. Algorithm Decomposition

y = f(x)
z = g(y)

dydx = dfdx(x)
dzdy = dgdy(y)
dzdx = dzdy * dydx

x zy

𝑑𝑦
𝑑𝑥

𝑑𝑧
𝑑𝑦

In the computational graph each
node is a variable and each edge is

derivatives between adjacent edges

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 19

We recursively apply the rules until we encounter an elementary function such as addition,
multiplication, division, sin, cos or exp.

AD. Chain Rule

y = f(x0, x1)
z = g(y)
w0, w1 = l(z)

x0

zy

x1

w0

w1

zy

w0

w1

x0

x1

zy

w0

w1

x0

x1

zy

w0

w1

x0

x1
zy

w0

w1

x0

x1

𝜕𝑤0
𝜕𝑥0 =

𝜕𝑤0
𝜕𝑧

𝜕𝑧
𝜕𝑦

𝜕𝑦
𝜕𝑥0

𝜕𝑤0
𝜕𝑥1 =

𝜕𝑤0
𝜕𝑧

𝜕𝑧
𝜕𝑦

𝜕𝑦
𝜕𝑥1

𝜕𝑤1
𝜕𝑥0 =

𝜕𝑤1
𝜕𝑧

𝜕𝑧
𝜕𝑦

𝜕𝑦
𝜕𝑥0

𝜕𝑤1
𝜕𝑥1 =

𝜕𝑤1
𝜕𝑧

𝜕𝑧
𝜕𝑦

𝜕𝑦
𝜕𝑥1

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 20

AD step-by-step. Forward Mode

dx0dx = {1, 0}
dx1dx = {0, 1}

y = f(x0, x1)

dydx = df(x0, dx0dx, x1, dx1dx)

z = g(y)

dzdx = dg(y, dydx)

w0, w1 = l(z)

dw0dx, dw1dx = dl(z, dzdx)

zy

w0

w1

x0

x1

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 21

AD step-by-step. Reverse Mode

dwdw0 = {1, 0}
dwdw1 = {0, 1}

y = f(x0, x1)
z = g(y)
w0, w1 = l(z)

dwx0, dwx1 = df(x0, x1, dwdy)

dwdy = dg(y, dwdz)

dwdz = dl(dwdw0, dwdw1)

zy

w0

w1

x0

x1

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 22

AD Control Flow

• Control Flow and
Recursion fall naturally in
forward mode.
• Extra work is required for

reverse mode in reverting
the loop and storing the
intermediaries.

double f_reverse (double x) {
double result = x;
std::stack<double> results;
for (unsigned i = 0; i < 5; i++) {
results.push(result);
result = std::exp(result);

}
double d_result = 1;
for (unsigned i = 5; i; i--) {
d_result *= std::exp(results.top());
results.pop();

}
return d_result;

}

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 23

AD. Cheap Gradient Principle

• The computational graph has common subpaths which can be precomputed
• If a function has a single input parameter, no mater how many output

parameters, forward mode AD generates a derivative that has the same time
complexity as the original function
• More importantly, if a function has a single output parameter, no matter how

many input parameters, reverse mode AD generates derivative with the same
time complexity as the original function.

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 24

Uses of AD outside of Deep Learning

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 25

Gradient of the Sonic Boom objective function
on the skin of the plane, CFD, Laurent Hascoët
et al.

Intensity Modulated Radiation
Therapy, Biomedicine, Kyung-Wook
Jee et al

Sensitivities of a Global
Sea-Ice Model, Climate, Jong G. Kim et al

Differentiable Programming

26

Deep Learning & Automatic Differentiation

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 27

Imagined by GAN,
ThisPersonDoesNotExist.com

Medical Imaging, CNN, A. Esteva et al, A guide to deep learning in healthcare

Image colorization Tesla Autopilot, tesla.com

Speech Recognition

Backpropagation

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 28

Input layer HL 1 Output layerHL 2

are inputs, input weights, activation
function and learning rate of the
neuron

Forward pass – make a prediction
Calculate Loss

Backpropagation – adjust the weights to minimize loss

The error propagates
back, through updates of
the subtracted gradient
ratio from the weights.

Training pattern is fed,
forward generating
corresponding output

Error at output, the error
between observed and
desired state. Computed
from the output y and seen
desired output t.

𝑥&

𝑥'

𝑎&

𝑎'

𝑎(

𝑏'

𝑏&
𝑡

𝑎@
(A)

Backpropagation

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 29

𝑥@
(B)

𝐸

𝑤!,!
(!)

𝑥A
(B)

𝑧@
(@)

𝑧A
(@)

𝑧@
(A)

𝑧C
(@) 𝑧A

(A)

𝑤!,%
(!)

𝑤!,&
(!)

𝑤%,&
(!)

𝑤%,%
(!)𝑤%,!

(!)

𝑤!,!
(%)

𝑤!,%
(%)

𝑤%,!
(%)

𝑤%,%
(%)

𝑤&,!
(%)

𝑤&,%
(%)

𝜕

𝜕

𝜕

𝜕

𝜕

𝜕
+
𝜕

𝜕

𝜕

𝜕

𝜕

𝜕

𝜕

𝜕

𝜕

𝜕

𝑎@
(@)

𝑎A
(@)

𝑎C
(@)

𝑎@
(A)

𝑎A
(A)

𝑒@
(C)

𝑒A
(C)

𝜕

𝜕
=

𝑧@
(A)𝑎@

(@) 𝑧@
(A)

𝑎A
(A)𝑧A

(A)𝑧A
(A)

𝑎@
(@)𝑎@
(@)𝑧@

(@)𝑤!,!
(!)

Differentiable Programming

“A programming paradigm in which a numeric computer program can be
differentiated throughout via automatic differentiation. This allows for gradient
based optimization of parameters in the program, often via gradient descent.”
[Wikipedia]

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 30

• Deep learning drives recent advancements in automatic differentiation
• AD is useful also in bayesian inference, uncertainty quantification,

modeling, simulation
• Several programming languages and frameworks have enabled the

differential programming paradigm by adding support for AD.
• Swift, Kotlin, and Julia have made AD a first-class citizen.

Automatic Differentiation & C++

31

out

Interoperable Machine Learning

• Limited support for C++ automatic
differentiation hinders the use of
C++ within machine learning
• Cannot easily use the vast set of

existing C++ codebases in ML
applications

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 32

“[The key challenge of scientific ML is that] if there is just one
part of your loss function that isn’t AD-compatible, then the
whole network won’t train.” -Rackauckas

Python

C++

Swift

in

C++ Automatic Differentiation Wish-List
• Fast
• Compilation Time (ideally not JIT)
• Execution Time

• Works on existing code
• Doesn't require rewriting user code
• Supports (most) C++

• Easily Maintainable
• Minimal impact outside of AD (e.g. no rewrite of STL)
• Keeps up with evolving standards

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 33

Existing AD Approaches (1/3)
• Differentiable DSL (TensorFlow, PyTorch, DiffTaichi, Halide)
• Provide a new language designed to be differentiated
• Requires rewriting everything in the DSL and the DSL must support all

operations in original code
• Fast if DSL matches original code well

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 34

#include "tensorflow/core/public/session.h"

GraphDef graph_def;
session->Create(graph_def);
...
session->Run(inputs,{"output_class/Softmax:0"}, {}, &outputs);

Existing AD Approaches (2/3)
• Operator overloading (Adept [C++], JAX [Python])
• Provide differentiable versions of existing language constructs
• May require writing to use non-standard utilities
• Often dynamic: storing instructions/values to later be interpreted

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 35

template<typename T> square(T val) { return val * val; }

adept::Stack stack;
adept::adouble inp = 3.14;
adept::adouble out(square(inp));
out.set_gradient(1.00);

double derivative = out.get_gradient(3.14);

Existing AD Approaches (3/3)
• Source rewriting
• Statically analyze program to produce a new gradient function in

the source language
• Re-implement parsing and semantics (hard for C++ & must keep

up with standard)
• Requires all code to be available ahead of time

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 36

double square(double val) { return val * val; }

double grad_square(double val) { return 2 * val; }

tapenade -b -o out.c -head "square(val)/(out)" square.c

Idea: Compiler-Based AD!
• Want the no user-rewriting, speed, and low STL-rewriting impact

of source AD
• Do not want the extra maintenance burden
• Since the compiler already implements parsing, semantic analysis,

etc, we can use the compiler to perform source-based AD without
maintaining a second parser!

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 37

Two Case Studies of Compiler-Based AD

38

Implementation of AD in Clang/LLVM

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 39

Optimize

Lower CodeGenLower Clang
AST

Implementation of AD in Clang/LLVM

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 40

Optimize

Lower CodeGenLower Clang
AST

Clad Enzyme

Case Study 1: Clad – AD of Clang AST

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 41

double square(double val) {
return val * val;

}

FunctionDecl square double (double)
|-ParmVarDecl val double
`-CompoundStmt
`-ReturnStmt
`-BinaryOperator double *
|-ImplicitCastExpr double <LValueToRValue>
| `-DeclRefExpr double ParmVar val
`-ImplicitCastExpr double <LValueToRValue>

`-DeclRefExpr double ParmVar val

FunctionDecl square_darg0 double (double)
|-ParmVarDecl val double
`-CompoundStmt
|-DeclStmt
| `-VarDecl d_val double
| `-ImplicitCastExpr double <IntegralToFloating>
| `-IntegerLiteral int 1
`-ReturnStmt
`-BinaryOperator double +
|-BinaryOperator double *
| |-ImplicitCastExpr double <LValueToRValue>
| | `-DeclRefExpr double Var d_val
| `-ImplicitCastExpr double <LValueToRValue>
| `-DeclRefExpr double ParmVar val
`-BinaryOperator double *
|-ImplicitCastExpr double <LValueToRValue>
| `-DeclRefExpr double ParmVar val
`-ImplicitCastExpr double <LValueToRValue>
`-DeclRefExpr double lvalue Var d_val

Clad

Clang

Case Study 1: Clad – AD of Clang AST

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 42

#include "clad/Differentiator/Differentiator.h"
double square(double val) {

return val * val;
}

int main() {
auto dfdx = clad::differentiate(pow2, 0);

double res = dfdx.execute(1);

// OR
auto dfdxFnPtr = dfdx.getFunctionPtr();
dfdx = dfdxFnPtr(2);

printf("%s\n", dfdx.getCode());

...
}

double square_darg0(double val) {
double d_val = 1;
return d_val * val + val * d_val;

}

Clad Key Insights

• Works on the compiler frontend level and uses the tree-rebuilding
approach like the C++ template instantiator
• Can produce valid C++ source code

https://clad.readthedocs.io / https://github.com/vgvassilev/clad

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 43

https://github.com/vgvassilev/clad
https://github.com/vgvassilev/clad

Existing Automatic Differentiation Pipelines

AD
Optimize

Lower
AD

AD

AD

CodeGen

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 44

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 45

Vector Normalization

//Compute magnitude in O(n)
double magnitude(const double[] x);

//Compute norm in O(n^2)
void normalize(double[] __restrict__ out,

const double[] __restrict__ in) {

for (int i=0; i<N; i++) {
out[i] = in[i] / magnitude(in);

}
}

𝑂 𝑛!

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 46

Vector Normalization: LICM

//Compute magnitude in O(n)
double magnitude(const double[] x);

//Compute norm in O(n)
void normalize(double[] __restrict__ out,

const double[] __restrict__ in) {
double res = magnitude(in);
for (int i=0; i<N; i++) {
out[i] = in[i] / res;

}
}

𝑂 𝑛

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 47

Vector Normalization: LICM then AD
void grad_normalize(double[] out, double[] dout,

double[] in, double[] din) {
double res = magnitude(in);
for (int i=0; i<N; i++) {
out[i] = in[i] / res;

}
double d_res = 0;
for (int i=N-1; i>=0; i--) {
dres += -in[i]*in[i]/res * dout[i];
din[i] += dout[i]/res;

}
grad_magnitude(in, din, n, dres);

}

𝑂 𝑛

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 48

Vector Normalization: AD, then LICM
void grad_normalize(double[] out, double[] dout,

double[] in, double[] din) {
double res = magnitude(in);
for (int i=0; i<N; i++) {
out[i] = in[i] / res;

}
for (int i=N-1; i>=0; i--) {
double dres = -in[i]*in[i]/res * dout[i];
din[i] += dout[i]/res;
grad_magnitude(in, din, n, dres);

}
}

𝑂 𝑛!

Can’t LICM as uses loop-local variable dres

Differentiating after optimization can create asymptotically faster gradients!

𝑂 𝑛! 𝑂 𝑛 𝑂 𝑛

𝑂 𝑛!𝑂 𝑛! 𝑂 𝑛!

49

Optimization & Automatic Differentiation

OptimizeAD

for i=0..n {
out[i] /= mag(in)

}

for i=0..n {
out[i] /= mag(in)

}

res = mag(in)
for i=0..n {
out[i] /= res

}

d_res = 0.0
for i=n..0 {
d_res += d_out[i]…

}
∇mag(d_in, d_res)

for i=n..0 {
d_res = d_out[i]…
∇mag(d_in, d_res)

}

for i=n..0 {
d_res = d_out[i]…
∇mag(d_in, d_res)

}

Optimize AD

Optimize

Performing AD at low-level lets us work on optimized code!
Optimize

Lower Enzyme CodeGen

[MC20] Moses, Churavy. Instead of Rewriting Foreign Code for Machine Learning, Automatically Synthesize Fast Gradients. NeurIPS, 2020.

Enzyme Approach [MC20]

50

Case Study 2: Enzyme – AD of LLVM IR

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 51

double square(double val) {
return val * val;

}

double __enzyme_autodiff(void*, ...);

double grad_square(double val) {
return __enzyme_autodiff((void*)square, val);

}

define double @square(double %val) {
%sq = fmul double %val, %val
ret double %sq

}

Enzyme
define double @grad_square(double %val) {
%res = fadd double %val, %val
ret double %res

}

Clang

Case Study 2: Enzyme – AD of LLVM IR

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 52

double square(double val) {
return val * val;

}

double __enzyme_autodiff(void*, ...);

double grad_square(double val) {
return __enzyme_autodiff((void*)square, val);

}

define double @square(double %val) {
%sq = fmul double %val, %val
ret double %sq

}

Enzyme
define double @grad_square(double %val) {
%res = fadd double %val, %val
ret double %res

}

https://bit.ly/3aNP6bB

Clang

Try Online On
The Enzyme Compiler Explorer!

https://bit.ly/3aNP6bB

Enzyme Evaluation

Enzyme:

Ref:

Tapenade:

Adept: -O2

Enzyme .

Tapenade

Adept

Compared against Enzyme without preprocessing optimizations and two fastest AD tools

-O2

-O2-O2

-O2-O2

-O2 Enzyme . -O2

53

Speedup of Enzyme
H

ig
he

r
is

 B
et

te
r

Enzyme is 4.2x faster than Reference!
54

Key Enzyme Insights

• Running AD after/alongside optimization enables substantial
speedups, including 4.2x on a suite of ML/scientific codes
• Enzyme achieves state-of-the art performance
• Enzyme is the first AD tool to differentiate arbitrary GPU kernels

(including AMD and NVIDIA) [MCPH+21]
• Enzyme has support for generic forms of parallelism including

OpenMP, MPI, and other frameworks that build upon them like
Kokkos and RAJA

https://enzyme.mit.edu / https://github.com/wsmoses/Enzyme

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 55
[MCPH+21] Moses et al. Reverse-Mode Automatic Differentiation and Optimization of GPU Kernels via Enzyme. To appear at SC, 2021.

http://enzyme.mit.edu
https://github.com/wsmoses/Enzyme

Overall AD Compiler Insights

• Existing code does not need to be rewritten to be differentiated.
• Being within the compiler AD tools to continue function as the

frontend languages & standards evolve.
• Has access to source locations and can issue precise diagnostics
• Can be successfully implemented at either a high or low level

…but this requires using a conformant compiler
=> Can we standardize this?

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 56

Standardization Efforts

• We believe first class support of differentiable programming paradigm is an
important feature which will become central for various data science, research
and industry communities
• We believe that compiler-aided AD is the most viable path forward to

supporting high-performance
• We have produced an overview paper “Differentiable programming

for C++” https://wg21.link/P2072
• We have solicited feedback from the ML study group of isocpp (aka SG19) but

also from various other parties
• We are keen on turning the overview paper into a concrete plan!
26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 57

https://wg21.link/P2072

Conclusion

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 58

• Differentiable Programming is a new and promising programming paradigm
which relies on well developed theory and technology
• The presented tools are being developed and integrated in various fields
• The standardization efforts are ramping up and we hope to solicit support after

this talk

Thank you!

59

Q & A

60

Backup

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 61

Optimal Control

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 62

Can steer a process
towards a reference

trajectory automatically?

Credit: imgur.com Credit: Reddit.com

https://i.imgur.com/1sEH9j9.png

Differentiable Programming. Birds’ eye

• Sees computer programs as components which interact with each other. Each
(sub)component represents a process which can be described with a function
(in the math sense).
• The AD can provide information about key properties of the process to enable

optimization and possibly changing the algorithm.
• The differentiable programming paradigm encourages software to be written in

such a way that AD can be applied to (almost) all components.
• In many cases the software tends to optimize a process – e.g. minimize

unemployment, minimize expenses and maximize profit, reach the moon with
minimal fuel consumption, minimize log likelihood given data and constraints

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 63

Today's Automatic Differentiation Ecosystem

• First-Class Support (Swift)
• (Almost) everything in the language is differentiable

• Domain-Specific Language/Libraries (PyTorch, TensorFlow, Halide, Taichi)
• A new language or library has been created where every operation is differentiable
• Requires rewriting everything in the new language, and cannot handle programs outside

it
• Meta Programming (Julia, C++)
• Packages (Zygote.jl, Diffractor.jl, Adept) build off of meta-programming (such as generated

functions, templates, or operator overloading) to c
• External Tools (C)
• A tool (e.g. Tapenade) takes in input code and generates a new source file

which computes the derivative

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 64

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 65

Implementation Classification

Implementations vary on how much work is done at compile-time:
• Tracing/Taping – the compute graph is constructed as the program is executed, just

like tracing JITs, the execution is recorded, transformed, and compiled “just-in-time”.
• Typical implementation in C++ is using metaprogramming using operator overloading on a special

type.
• Easy to implement
• Inefficient, needs code modification

• Source transformation – the compute graph is constructed before compilation and
then transformed and compiled.
• Typical implementation is a custom parser building code representation and producing the

transformed code.
• Efficient as many computations and optimizations are done ahead of time
• Hard to implement (especially for C++)

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 66

Derivatives + Programming

• Many algorithms require the derivatives of various functions
• Machine learning (back-propagation, Bayesian inference, uncertainty

quantification)
• Scientific computing (modeling, simulation)

//Compute magnitude in O(n)
double magnitude(const double[] x);

//Compute norm in O(n^2)
double PotentialEnergy(double[] __restrict__ out,

const double[] __restrict__ in) {

for (int i=0; i<N; i++) {
out[i] = in[i] / magnitude(in);

}
}

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 67

Derivatives + Programming

//Compute magnitude in O(n)
double magnitude(const double[] x);

// Compute Compute norm in O(n^2)
double PotentialEnergy(vector<Planet> in) {
// Gµν + Λgµν = 8πG * Tµν/c^4
// ...

}

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 68

Derivatives (Gradients)

• From calculus, the derivative of function as a rate of change
• Given a function f(x), the derivative f'(x) describes the slope.

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 69

Derivatives + Programming

• Many algorithms require the derivatives of various functions
• Machine learning (back-propagation, Bayesian inference, uncertainty quantification)
• Scientific computing (modeling, simulation)

• When working with large codebases or dynamically-
generated programs, manually writing derivative
functions becomes intractable
• Several languages / frameworks (Swift,

PyTorch/TensorFlow/JaX in Python, Julia) have made
differentiation a first-class primitive

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 70

Derivatives (Gradients)

• Remember from calculus the derivative of function Give some lightweight
description about the chain rule
• Introduce the concept of a derivative and gradient and their high-level use
• Give examples how else one can produce a gradient – numerically or

symbolically
• Describe existing approaches – source transformation, using metaprogramming

or other reflection tools (such as trace-based ad)
• Enumerate prominent tools

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 71

Differentiable Programming

• The concept of AD dates back from dual number algebra from 19th century
• In 1970’s AD was used to estimate roundoff errors
• In the ML era was rebranded as backpropagation
• In an essay, LeCun coined the term Differentiable Functional Programming
• Now there are efforts in enabling differentiable programming in computer

graphics (differentiable rendering), computer vision, physics simulators (fluid
dynamics), …

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 72

http://colah.github.io/posts/2015-09-NN-Types-FP/

Controlling a process

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 73

The goal is to reach zero altitude
with zero vertical velocity given
tight constraints of landing area

and fuel.

Credit: Official SpaceX Photos

Backpropagation

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 74

𝑥@
(B)

𝐸

𝑤!,!
(!)

𝑥A
(B)

𝑧@
(@)

𝑧A
(@)

𝑧C
(@)

𝑧@
(A)

𝑧A
(A)

𝑤!,%
(!)

𝑤!,&
(!)

𝑤%,&
(!)

𝑤%,%
(!)𝑤%,!

(!)

𝑤!,!
(%)

𝑤!,%
(%)

𝑤%,!
(%)

𝑤%,%
(%)

𝑤&,!
(%)

𝑤&,%
(%)

𝜕𝐸

𝜕𝑤4,4
(4) =

𝜕𝑒4
(8)

𝜕𝑎4
(9)
𝜕𝑎4

(9)

𝜕𝑧4
(9)
𝜕𝑧4

(9)

𝜕𝑎4
(4) +

𝜕𝑒9
(8)

𝜕𝑎9
(9)
𝜕𝑎9

(9)

𝜕𝑧9
(9)
𝜕𝑧9

(9)

𝜕𝑎4
(4)

𝜕𝑎4
(4)

𝜕𝑧4
(4)

𝜕𝑧4
(4)

𝜕𝑤4,4
(4)

𝑎@
(@)

𝑎A
(@)

𝑎C
(@)

𝑎@
(A)

𝑎A
(A)

𝑒@
(C)

𝑒A
(C)

Differentiable Programming Frameworks

• Define-by-run
• Pytorch..

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 75

• Define-and-run
• Theano..

Static compute graph Dynamic compute graph

Case Study 1: Clad – AD of Clang AST

Clang
FrontendCode

Clang
Backend BinaryClad

AST AST

Der.cxx

Code

gcc/msvc

double fsq(double x) {
return x * x;

}

FunctionDecl f 'double (double)'
|-ParmVarDecl x 'double'
`-CompoundStmt
`-ReturnStmt
`-BinaryOperator 'double' '*'
|-ImplicitCastExpr 'double' <LValueToRValue>
| `-DeclRefExpr 'double' lvalue ParmVar 'x' 'double'
`-ImplicitCastExpr 'double' <LValueToRValue>
`-DeclRefExpr 'double' lvalue ParmVar 'x' 'double'

double f_darg0(double x) {
double _d_x = 1;
return _d_x * x + x * _d_x;

}

FunctionDecl 0x7f7f801dbff8 <<invalid sloc>> <invalid sloc> f_darg0 'double (double)'
|-ParmVarDecl 0x7f7f801dc090 <<invalid sloc>> <invalid sloc> used x 'double'
`-CompoundStmt 0x7f7f801dc3d0 <<invalid sloc>>

|-DeclStmt 0x7f7f801dc190 <<invalid sloc>>
| `-VarDecl 0x7f7f801dc118 <<invalid sloc>> <invalid sloc> used _d_x 'double' cinit
| `-ImplicitCastExpr 0x7f7f801dc178 <<invalid sloc>> 'double' <IntegralToFloating>
| `-IntegerLiteral 0x7f7f801dc0f8 <<invalid sloc>> 'int' 1
`-ReturnStmt 0x7f7f801dc398 <<invalid sloc>>

`-BinaryOperator 0x7f7f801dc318 <<invalid sloc>> 'double' '+'
|-BinaryOperator 0x7f7f801dc298 <<invalid sloc>, T.cpp:3:32> 'double' '*'
| |-ImplicitCastExpr 0x7f7f801dc268 <<invalid sloc>> 'double' <LValueToRValue>
| | `-DeclRefExpr 0x7f7f801dc1a8 <<invalid sloc>> 'double' lvalue Var 0x7f7f801dc118 '_d_x' 'double'
| `-ImplicitCastExpr 0x7f7f801dc280 <col:32> 'double' <LValueToRValue>
| `-DeclRefExpr 0x7f7f801dc208 <col:32> 'double' lvalue ParmVar 0x7f7f801dc090 'x' 'double'
`-BinaryOperator 0x7f7f801dc2f0 <col:30, <invalid sloc>> 'double' '*'

|-ImplicitCastExpr 0x7f7f801dc2c0 <col:30> 'double' <LValueToRValue>
| `-DeclRefExpr 0x7f7f801dc1d0 <col:30> 'double' lvalue ParmVar 0x7f7f801dc090 'x' 'double'
`-ImplicitCastExpr 0x7f7f801dc2d8 <<invalid sloc>> 'double' <LValueToRValue>

`-DeclRefExpr 0x7f7f801dc1a8 <<invalid sloc>> 'double' lvalue Var 0x7f7f801dc118 '_d_x' 'double'

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 76

Clad. Usage
// clang –fplugin=/.../libclad.so
// Necessary for clad to work include
#include "clad/Differentiator/Differentiator.h"
double pow2(double x) { return x * x; }

double pow2_darg0(double); // to be filled by clad

int main() {
auto dfdx = clad::differentiate(pow2, 0);
// Function execution can happen in 3 ways:
// 1) Using CladFunction::execute method.
double res = dfdx.execute(1);

// 2) Using the function pointer.
auto dfdxFnPtr = dfdx.getFunctionPtr();
res = dfdxFnPtr(2);

// 3) Using direct function access through fwd declaration.
printf(pow2_darg0(3);
printf("The derivative code is: %s\n", dfdx.getCode());
return res;

}
26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 77

Tells the plugin to create
pow2_darg0.

The programmer can use
the derivative via a
wrapper object, function
pointer or forward
declaration.

Differentiable Programming as Generalization of DL

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 78

𝑥!
(#)

𝐸

𝑤!,!
(!)

𝑥&
(#)

𝑧!
(!)

𝑧&
(!)

𝑧'
(!)

𝑧!
(&)

𝑧&
(&)

𝑤!,&
(!)

𝑤!,'
(!)

𝑤&,'
(!)

𝑤&,&
(!)𝑤&,!

(!)

𝑤!,!
(&)

𝑤!,&
(&)

𝑤&,!
(&)

𝑤&,&
(&)

𝑤',!
(&)

𝑤',&
(&)

𝑎!
(!)

𝑎&
(!)

𝑎'
(!)

𝑎!
(&)

𝑎&
(&)

𝑒!
(')

𝑒&
(')

• Each layer describes a
subprocess algorithmically
• Each layer can be considered as

a reusable software building
block
• Layers can be combined and

their sensitivity can be tuned by
gradient descent using AD

LeCun: “Deep Learning est mort. Vive Differentiable Programming!”
Andrej Karpathy: Software 2.0 is written in much more abstract, human unfriendly language […]. Instead, our approach
is to specify some goal on the behavior of a desirable program (e.g., “satisfy a dataset of input output pairs of examples”,
or “win a game of Go”).

Implementation of AD in Clang/LLVM

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 79

Optimize

Lower CodeGenLower Clang
AST

double square(double val) {
return val * val;

}

FunctionDecl square double (double)
|-ParmVarDecl val double
`-CompoundStmt

`-ReturnStmt
`-BinaryOperator double *
|-ImplicitCastExpr double <LValueToRValue>
| `-DeclRefExpr double ParmVar val
`-ImplicitCastExpr double <LValueToRValue>
`-DeclRefExpr double ParmVar val

FunctionDecl square_darg0 double (double)
|-ParmVarDecl val double
`-CompoundStmt
|-DeclStmt
| `-VarDecl d_val double
| `-ImplicitCastExpr double <IntegralToFloating>
| `-IntegerLiteral int 1
`-ReturnStmt
`-BinaryOperator double +
|-BinaryOperator double *
| |-ImplicitCastExpr double <LValueToRValue>
| | `-DeclRefExpr double Var d_val
| `-ImplicitCastExpr double <LValueToRValue>
| `-DeclRefExpr double ParmVar val
`-BinaryOperator double *
|-ImplicitCastExpr double <LValueToRValue>
| `-DeclRefExpr double ParmVar val
`-ImplicitCastExpr double <LValueToRValue>
`-DeclRefExpr double lvalue Var d_val

double square_darg0(double val) {
double d_val = 1;
return d_val * val + val * d_val;

}

Implementation of AD in LLVM/Clang

Two options – transformation of the Clang AST or transformation of the
LLVM IR each with pros and cons:
• Clad – a Clang Plugin transforming the AST of the supported languages by

clang (C++ but also CUDA, C, ObjC...)
• Enzyme – an LLVM IR plugin transforming the LLVM IR

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 80

Case Study 1: Clad – AD of Clang AST

Clang
FrontendCode

Clang
Backend BinaryClad

AST AST

Der.cxx

Code

gcc/msvc

double fsq(double x) {
return x * x;

}

FunctionDecl f 'double (double)'
|-ParmVarDecl x 'double'
`-CompoundStmt
`-ReturnStmt
`-BinaryOperator 'double' '*'
|-ImplicitCastExpr 'double' <LValueToRValue>
| `-DeclRefExpr 'double' lvalue ParmVar 'x' 'double'
`-ImplicitCastExpr 'double' <LValueToRValue>
`-DeclRefExpr 'double' lvalue ParmVar 'x' 'double'

double f_darg0(double x) {
double _d_x = 1;
return _d_x * x + x * _d_x;

}

FunctionDecl 0x7f7f801dbff8 <<invalid sloc>> <invalid sloc> f_darg0 'double (double)'
|-ParmVarDecl 0x7f7f801dc090 <<invalid sloc>> <invalid sloc> used x 'double'
`-CompoundStmt 0x7f7f801dc3d0 <<invalid sloc>>

|-DeclStmt 0x7f7f801dc190 <<invalid sloc>>
| `-VarDecl 0x7f7f801dc118 <<invalid sloc>> <invalid sloc> used _d_x 'double' cinit
| `-ImplicitCastExpr 0x7f7f801dc178 <<invalid sloc>> 'double' <IntegralToFloating>
| `-IntegerLiteral 0x7f7f801dc0f8 <<invalid sloc>> 'int' 1
`-ReturnStmt 0x7f7f801dc398 <<invalid sloc>>

`-BinaryOperator 0x7f7f801dc318 <<invalid sloc>> 'double' '+'
|-BinaryOperator 0x7f7f801dc298 <<invalid sloc>, T.cpp:3:32> 'double' '*'
| |-ImplicitCastExpr 0x7f7f801dc268 <<invalid sloc>> 'double' <LValueToRValue>
| | `-DeclRefExpr 0x7f7f801dc1a8 <<invalid sloc>> 'double' lvalue Var 0x7f7f801dc118 '_d_x' 'double'
| `-ImplicitCastExpr 0x7f7f801dc280 <col:32> 'double' <LValueToRValue>
| `-DeclRefExpr 0x7f7f801dc208 <col:32> 'double' lvalue ParmVar 0x7f7f801dc090 'x' 'double'
`-BinaryOperator 0x7f7f801dc2f0 <col:30, <invalid sloc>> 'double' '*'

|-ImplicitCastExpr 0x7f7f801dc2c0 <col:30> 'double' <LValueToRValue>
| `-DeclRefExpr 0x7f7f801dc1d0 <col:30> 'double' lvalue ParmVar 0x7f7f801dc090 'x' 'double'
`-ImplicitCastExpr 0x7f7f801dc2d8 <<invalid sloc>> 'double' <LValueToRValue>

`-DeclRefExpr 0x7f7f801dc1a8 <<invalid sloc>> 'double' lvalue Var 0x7f7f801dc118 '_d_x' 'double'

26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 81

Clad. Usage
// clang –fplugin=/.../libclad.so
// Necessary for clad to work include
#include "clad/Differentiator/Differentiator.h"
double pow2(double x) { return x * x; }

double pow2_darg0(double); // to be filled by clad

int main() {
auto dfdx = clad::differentiate(pow2, 0);
// Function execution can happen in 3 ways:
// 1) Using CladFunction::execute method.
double res = dfdx.execute(1);

// 2) Using the function pointer.
auto dfdxFnPtr = dfdx.getFunctionPtr();
res = dfdxFnPtr(2);

// 3) Using direct function access through fwd declaration.
printf(pow2_darg0(3);
printf("The derivative code is: %s\n", dfdx.getCode());
return res;

}
26-Oct-2021 V. Vassilev, W. Moses - Differentiable Programming in C++ 82

Tells the plugin to create
pow2_darg0.

The programmer can use
the derivative via a
wrapper object, function
pointer or forward
declaration.

