
CloudCompiler
Saman Amarasinghe, William S. Moses,

Daniel Donenfeld, Katsumi Okuda

Language Processing Software in the 1990’s
Programming Language ProcessingNatural Language Processing

Rule-based Machine Translation (RBMT) GCC Compiler Flow

Components
• SL morphological analyser

• SL parser

• Translator

• TL morphological generator

• TL parser

• SL dictionary

• Bilingual dictionary

• TL dictionary

Components
• Lexer

• Parser

• Semantic Analyser

• Intermediate Code Generator

• Code optimizer

• Low Level Code Generator

Language Processing Software in the 2020’s

Neural Machine Translation (NMT) LLVM Compiler Flow

Programming Language ProcessingNatural Language Processing

Components
• Sequence to sequence model

• Encoder

• Decoder

Sequence to Sequence Learning with Neural Networks
Sutskever, et. al (NIPS 2014)

Attention is all you need
Vaswani, et. al (NIPS 2017)

Components
• Lexer

• Parser

• Semantic Analyser

• Intermediate Code Generator

• Code optimizer

• Low Level Code Generator

What Changed in 30 years?
•More Computing Power

• Faster CPUs with multicores, GPUs & accelerators

• More memory and storage

• Cloud computing

• Better/Faster Algorithms

• Integer Liner Programming

• SMT solvers

• Theorem provers

• Deep Neural Networks

•More Data

• Larger, better curated, and globally  

available data sets

Bringing the Compiler Technology to the 21st Century

• Use more compute power

• Why not use parallelism, GPUs and the cloud?

• Use better algorithms

• Complexity of compiler optimizations is due to search

• Can we search better, faster, simpler?

• Use data better

• From using data for testing and intuition to learning from data

• From running SPEC benchmarks to Github mining

The Structure of a Modern Compiler
Build with ancient technology

• A command line tool

• Running on the developer’s

workstation (or a local cluster)

• With a single CPU thread

• Sequential execution of passes

• Prog → AST →IR1 →…→ IRn → Assembly

Impact

• Compile time still matters

• No expensive analyses

• Limited to no global optimizations

• Memory footprint still matters

• Highly optimized data structures

• Limited to no global optimizations

• No path to learn and improve

CaaS: Compilation as a Service
• Access to unlimited processing power

• Access to accelerators

• Access to unlimited memory and storage

• Use of modern system building methods and frameworks

• Ability to learn from everyone and improve over time

•Build LLVM in 90 seconds (vs 10 minutes)

•Using llama -- A CLI for outsourcing  

computation to AWS Lambda

•Many related works of General Offloading  
Eg: “From Laptop to Lambda..” USENIX 2019

Analysis & Transformations with Serverless
•Most of the compiler is parallel and stateless

• Passes → Files → Functions → Basic Blocks → Statements

• Fits well to the serverless computing paradigm

• Scale-out for to match any program size

• Size of functions and basic blocks are normally constant

• Constant compile time for any size program!

Interprocedural Analysis with
Distributed Graph Processing

• Compilers rarely/never do global analysis on real applications

• Eg: Interprocedural type specialization, constant prop., inlining etc.

• Too slow or too much memory consumption

• Many papers written, never used in practice :(

• On the cloud, fits nicely to distributed graph processing

• Many frameworks available, scales well, may even use GPUs

Expensive and Unpredictable Analysis using
Redundancy Techniques used in Latency Reduction
• Production compilers don’t use expensive analyses or

analyses with unpredictable runtimes

• Ex: Polyhedral analysis, program synthesis etc.

• Many papers written, never used in practice :(

•Many modern systems use redundancy to hide tail latency

• Compilers can use redundancy to incorporate powerful but

unpredictable analyses

Compiler Pass
Simple & Fast

Powerful but Unpredictable

Best finished in time to participate Best is too slow, killed and Fast is used
Time Time

Ansel et. al “SiblingRivalry: Online Autotuning Through Local Competitions.” [CASES’12]

Overall Cost Reduction with Deduplication
• Reuse of compiled files is nothing new

• Makefiles only compile changed files and their dependencies

• If most programmers use a single CaaS system for compiling

• Each run is a small modification to a one seen before

• Most probably exactly the same program as seen before

•Memoization can drastically reduce the cost of compilation

• As done by many SaaS systems for storage

Centrally Collected Data for Continuous Improvement

• CaaS will see many programs

• Usage is clear

• Failures are obvious

• Can use the usage information for continuous improvement

Existing Cloud Compilation Infrastructure

?
Compatibility Parallelism Caching

 Bazel

 DistCC

 Goma

 gg

Must use build system Requires user cluster*

Requires user cluster

Requires user cluster

Limited or none

Per-codebase

?
Per-codebase

?Per-invocationModels all build commands

Models compile command
?
?

Models compile command

On-demand compute

Extensible

Only Bazel Tasks

Wrapper for cc

Wrapper for cc

Wrapper for cc

• Hackable drop in replacement for existing compilers:

• Start the daemon, set desired parallelism and let it run!

 in action

• Integrate remote execution into the compiler itself

• Use in any existing build system & “model” will always be perfect

• Compiler-level information of source code => better task
normalization and more effective cache

• Merged remote execution and compilation => reduced latency
and total build time

• Hackable! Re-use (or augment) any compilation phase

• Cloud functions provide parallelism without user-level infrastructure

 Smoke Test

21 Hour Google Chrome Build

4.5 minutes with l

 Workflow

• Use a shared daemon process
(cymbld) to avoid duplicate uploads
across compilation jobs and manage
authentication

• clang and lld processes send
dependency file paths to daemon
through IPC.

• cymbld hashes, dedups, and batches
before querying the server for cache
misses

 Daemon

 Normalization
• Identify required arguments & inputs (purple)

• Remove unused defines (blue)

• Normalize include paths (green)

• Provide map of exactly what files are used
with their corresponding hash in content-
addressable storage (red)

args: ["-cc1", "-triple", “arm64-apple-ios10.0.0", "-o", "o0",
 "-x", "objective-c", "PropertyAnimatorViewController.m",
 "-internal-isystem", "/fakeroot-s"],
inputs: {
 "/fakeroot-s/UIKit.framework/Headers/UIKit.h":
 "wFrlpQYtbT2X04lsYCr+rKR3FfJUGhvy9Xw8sIYcGG4=",
 "PropertyAnimatorViewController.h":
 "fke8yluU1f/H55VrnLK3xOzubvr/3h24VjBSW8aZc+Q=",
 "PropertyAnimatorViewController.m":
 "uqncMKT16aeuzIjFrlwkYh4vH0Wtp1nB+Nz8Vc82nuc="
}

clang -x objective-c -target arm64-apple-ios10.0 -DDEBUG=1
-DOBJC_OLD_DISPATCH_PROTOTYPES=0 -DBUILD_ID=fadb4ca184dcb4680 -isysroot /
Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/
Developer/SDKs/iPhoneOS14.2.sdk -iquote /Users/wmoses/Library/Developer/Xcode/
DerivedData/UIViewPropertyAnimatorObjCSample-gmyxiqyiqqtmgfbeqgqiuwfodewt/
Build/Intermediates.noindex/UIViewPropertyAnimatorObjCSample.build/Debug-
iphoneos/UIViewPropertyAnimatorObjCSample.build/
UIViewPropertyAnimatorObjCSample-generated-files.hmap -I/Users/wmoses/Library/
Developer/Xcode/DerivedData/UIViewPropertyAnimatorObjCSample-
gmyxiqyiqqtmgfbeqgqiuwfodewt/Build/Intermediates.noindex/
UIViewPropertyAnimatorObjCSample.build/Debug-iphoneos/
UIViewPropertyAnimatorObjCSample.build/UIViewPropertyAnimatorObjCSample-own-
target-headers.hmap -I/Users/wmoses/Library/Developer/Xcode/DerivedData/
UIViewPropertyAnimatorObjCSample-gmyxiqyiqqtmgfbeqgqiuwfodewt/Build/
Intermediates.noindex/UIViewPropertyAnimatorObjCSample.build/Debug-iphoneos/
UIViewPropertyAnimatorObjCSample.build/UIViewPropertyAnimatorObjCSample-all-
target-headers.hmap -iquote /Users/wmoses/Library/Developer/Xcode/DerivedData/
UIViewPropertyAnimatorObjCSample-gmyxiqyiqqtmgfbeqgqiuwfodewt/Build/
Intermediates.noindex/UIViewPropertyAnimatorObjCSample.build/Debug-iphoneos/
UIViewPropertyAnimatorObjCSample.build/UIViewPropertyAnimatorObjCSample-
project-headers.hmap -I/Users/wmoses/Library/Developer/Xcode/DerivedData/
UIViewPropertyAnimatorObjCSample-gmyxiqyiqqtmgfbeqgqiuwfodewt/Build/Products/
Debug-iphoneos/include -I/Users/wmoses/Library/Developer/Xcode/DerivedData/
UIViewPropertyAnimatorObjCSample-gmyxiqyiqqtmgfbeqgqiuwfodewt/Build/
Intermediates.noindex/UIViewPropertyAnimatorObjCSample.build/Debug-iphoneos/
UIViewPropertyAnimatorObjCSample.build/DerivedSources-normal/arm64 -I/Users/
wmoses/Library/Developer/Xcode/DerivedData/UIViewPropertyAnimatorObjCSample-
gmyxiqyiqqtmgfbeqgqiuwfodewt/Build/Intermediates.noindex/
UIViewPropertyAnimatorObjCSample.build/Debug-iphoneos/
UIViewPropertyAnimatorObjCSample.build/DerivedSources/arm64 -I/Users/wmoses/
Library/Developer/Xcode/DerivedData/UIViewPropertyAnimatorObjCSample-
gmyxiqyiqqtmgfbeqgqiuwfodewt/Build/Intermediates.noindex/
UIViewPropertyAnimatorObjCSample.build/Debug-iphoneos/
UIViewPropertyAnimatorObjCSample.build/DerivedSources -F/Users/wmoses/Library/
Developer/Xcode/DerivedData/UIViewPropertyAnimatorObjCSample-
gmyxiqyiqqtmgfbeqgqiuwfodewt/Build/Products/Debug-iphoneos /Users/wmoses/apple/
iOS-10-Sampler/UIViewPropertyAnimator/UIViewPropertyAnimatorObjCSample/
UIViewPropertyAnimatorObjCSample/PropertyAnimatorViewController.m -o /Users/
wmoses/Library/Developer/Xcode/DerivedData/UIViewPropertyAnimatorObjCSample-
gmyxiqyiqqtmgfbeqgqiuwfodewt/Build/Intermediates.noindex/
UIViewPropertyAnimatorObjCSample.build/Debug-iphoneos/
UIViewPropertyAnimatorObjCSample.build/Objects-normal/arm64/
PropertyAnimatorViewController.o

• Before compiling, check if it has 
previously been compiled 
(perhaps by another user) 

• When downloading final results, re-localize file paths and
debug information 

• Produces same result as local compilation, now taking
advantage of parallelism and redundancy

 Compilation & Caching

 Performance

1-Core 96-Core Cymbl Cached 
Cymbl gg*

FFmpeg 9.43 0.48 0.53 0.04 0.73*

InkScape 39.96 1.06 1.12 0.25 1.45*

Clang 183.55 4.32 2.42 0.36

Chrome 1302.65 25.71 6.99 4.42 18.92*

*gg results taken from paper, due to inability to reproduce results

• Leverage parallelism and execution 
environment of the cloud to extend 
the capabilities of compilers!

• Simultaneously run multiple 
optimization pipelines

• Use cost modeling (or real machines) 
to predict the runtime of programs

• Leverage profiling information across all users to
improve models

 Advanced Compilation*

* Currently in progress

• Embarrassingly parallel structure makes compilation an
excellent candidate for speedup with cloud resources

• Direct integration of the compiler and cloud
infrastructure provides:

• Easy-to-use in existing workflows

• Reduced maintenance and engineering effort

• Extensibility for novel capabilities

The Future of Compilation is Cloud-Based

