
Cross-Translation Unit Optimization via
Annotated Headers
“Header Time Optimization”

William S. Moses
wmoses@mit.edu

Johannes Doerfert
jdoerfert@anl.gov

Writing optimizable code is difficult

• How do we ensure that norm is hoisted outside the loop and
normalize gets vectorized?

// Defined inside an external library
double norm(double *A, int n);

void normalize(double *out, double *in, int n) {
for (int i = 0; i < n; ++i)
out[i] = in[i] / norm(in, n);

}

Writing optimizable code is difficult

// Defined inside an external library
double norm(double *A, int n);

void normalize(double *restrict out, double *restrict in, int n) {
for (int i = 0; i < n; ++i)
out[i] = in[i] / norm(in, n);

}

• Let’s add restrict (if in and out alias, calls to norm would be different)

Writing optimizable code is difficult

• Let’s make sure the compiler knows that the input is constant

// Defined inside an external library
double norm(const double *A, int n);

void normalize(double *restrict out, const double *restrict in,
int n) {

for (int i = 0; i < n; ++i)
out[i] = in[i] / norm(in, n);

}

Writing optimizable code is difficult

• Let’s really make sure the compiler knows norm is pure

__attribute__((pure))
double norm(const double *A, int n);

void normalize(double *restrict out, const double *restrict in,
int n) {

for (int i = 0; i < n; ++i)
out[i] = in[i] / norm(in, n);

}

Writing optimizable code is difficult

• Maybe marking it as vectorizable will work?

__attribute__((pure))
double norm(const double *A, int n);

void normalize(double *restrict out, const double *restrict in,
int n) {

#pragma clang loop vectorize(enable) interleave(enable)
for (int i = 0; i < n; ++i)
out[i] = in[i] / norm(in, n);

}

Writing optimizable code is difficult

• If we mark norm as having the LLVM attributes “readonly” and
”argmemonly” this finally happens!

__attribute__((fn_attr(“readonly”), fn_attr(“argmemonly”)))
double norm(double *A, int n);

void normalize(double *restrict out, double *restrict in, int n) {
for (int i = 0; i < n; ++i)
out[i] = in[i] / norm(in, n);

}

^Note this specific syntax doesn’t exist in mainline Clang

This is a problem in real programs

• In the DOE RSBench benchmark adding “readnone” to fast_cexp gives
a 7% improvement to the entire program (with another 1% for
“unwind”)

complex double fast_cexp(double complex z);

…
Z = …;

for (int i = w.start; i < w.end; ++i) {
sigT += data.poles[nuc][i] * fast_cexp(Z);
…

}

How do we automatically make code optimizable?

Idea!

LLVM automatically derives these attributes as part of the compilation
process, then throws it away when it’s done

Let’s ensure this information is accessible across translation units

Why not always use LTO?

• Running LTO (even ThinLTO [1]) is a burden on compile times
• LTO may not be available in your build / operating system
• It’s often impossible to run LTO on your entire program (e.g. using an

external library)

Also, it’s interesting to see how much of LTO’s speedups come from
“easily fixable” mechanisms and provide user’s the agency to fix them
in source code (making the speedups available to everyone
independent from compiler/linker used)

[1] Teresa Johnson, Mehdi Amini, and Xinliang David Li. Thinlto: scalable and incremental lto. In 2017 IEEE/ACM Interna�onal Symposium on
Code Generation and Optimization (CGO), pages 111–121. IEEE, 2017

Introducing “Header Time Optimization”
• At the end of the compilation process, denote what derived attributes can be

added to functions using LLVM's existing analyses and Attributor [2]

• Modes of operation:
• Remark Mode: print out optimization remarks specifying attributes that

should be added to functions
• Pipeline Mode: automatically generate a new header file with this new

information
• Diff Mode (in progress): create a diff for original source tree

• Annotated headers account for half of speedups found by LTO alone!

[2] J. Doerfert, H. Ueno, and S.0 Stipanovic: The Attributor: A Versatile Inter-procedural Fixpoint Iteration Framework. US LLVM Dev Meeting, 2019.

Header Time Optimization - Remarks
// file1.c
double fcexp(double *A, int n) { ...

file1.c:2:1: remark: derived following attributes:

fn_attr("readonly") arg_attr(0, "nocapture") arg_attr(0,
"readonly") [-Rannotations]

double fcexp(double* a, int n) {

clang -Rannotations

Header Time Optimization – Pipeline
// fileN.c
double
norm(double *A, int n) {

...
}

clang -hto_dir=hto
// file1.c
double
fcexp(double *A, int n){

...
}

// hto/fileN.h

// hto/file1.h
attribute((fn_attr(“readnone”)))
double fcexp(double *A,int n);

// fileN.c
double
norm(double *A, int n) {

...
}

// file1.c
double
fcexp(double *A, int n){

...
}

clang -include=hto/*

executable.o

Header Time Optimization – Pipeline (Library)

clang -hto_dir=hto
// libsum.c
double sum(double *A){

…
}

// sum.h
fn_attr(“readnone”)
double sum(double *A);

// user.c
double
fcexp(double *A, int n){

sum(A); ...
}

clang user.c –lsum

executable.o

libsum.so

Header files

struct Vector;
struct Matrix;

__attribute__((fn_attr(“readonly”)))
Vector* matvec(Matrix *M, Vector *B);

• HTO creates new files in a given directory that can be included in any
C/C++ program (design chosen for easiest experimentation)

• Leverage forward declarations of functions and structs in C/C++

New attributes for Clang

__attribute__((fn_attr(“readonly”)))

__attribute__((arg_attr(1, “readonly”)))
__attribute__((arg_attr(B, “readonly”)))

__attribute__((ret_attr(“noalias”)))

double* vector_add(double *A, double *B, int len);

Not all LLVM attributes are representable with existing Clang attributes

Created a generic way to represent LLVM attributes in Clang

Experiments

• Multi-source benchmarks in LLVM test suite
• DOE C/C++ Proxy Apps, Bit Stream benchmark Suite, TSVC test

suite, NIST SciMark suite, RNA alignment application, & more
• Selected tests with runtime > 0.5 seconds
• 84 tests

• Run min of 10 on quiesced AWS c4.8xlarge
• Disabled turboboost, hyperthreading

• Compared normal run (with -O3) vs HTO vs ThinLTO

Percentage speedup of HTO over Normal

HTO vs ThinLTO

HTO vs ThinLTO

Neither HTO nor LTO
find speedups

HTO vs ThinLTO

LTO finds some
optimizations HTO doesn’t

Neither HTO nor LTO
find speedups

HTO vs ThinLTO

HTO able to match LTO
for many benchmarks

LTO finds some
optimizations HTO doesn’t

Neither HTO nor LTO
find speedups

HTO vs “Fat” LTO

HTO vs ThinLTO Where Speedup Exists

HTO vs ThinLTO Where Speedup Exists

More than half of LTO speedups can be found by HTO alone

HTO vs ThinLTO Compile and Link Times

HTO vs ThinLTO Compile and Link Times

LTO was much slower when HTO
didn’t optimize, implying the need
for heavier IPO/inlining

Optimization Statistics with HTO

Takeaways

• HTO (and LTO) can have meaningful performance gains for programs
• In practice programs don’t have the attributes they should
• Lack of attributes hinders optimizations

• HTO provides tools to automatically integrate these attributes into
your programs / libraries with an additional compiler flag

• Simply propagating attributes (via HTO) accounts for ~50% of the
speedups seen by LTO
• Other 50% likely need IPO/inlining

Present Limitations & Future Work

• No anonymous structs (have a script to automatically generate
random names)
• No attributes generated for C++ member functions (since can’t

forward declare)
• No attributes generated for array type (not pointer type) of

struct/classes (type mystruct[3] is incomplete ahead of time)
• Allow outputting a diff (resolves above and allows for more

performance gains)
• Should generate standard C/C++ attributes when they exist

Conclusions
• Properly annotating programs can make real performance difference
• Writing annotations manually can be difficult
• We provide three mechanisms to remedy:
• Support for writing LLVM annotations in C/C++
• Optimization remark to point out missing annotations
• Pipeline to automatically inject missing annotations into programs

• Code is available on Github (github.com/wsmoses/LLVM-HTO), plans
to upstream once cleaned up (and submitted for publication)
• Thanks to DOE CSGF/Exascale project and Google Summer of Code

for funding the project

Appendix

HTO vs ThinLTO

HTO vs ThinLTO

Optimized HTO vs ThinLTO Compile and Link Times (Estimated)

Headers Aren't Optimized Yet

Compiler, not Programmer should Optimize Code

• Easier to maintain
• Costly (time or financially) to manually optimize
• Legacy code base

• Insufficient expertise
• Can’t modify source code
• Calling external library
• Called by a user program

HTO vs ThinLTO

Writing Optimizable Code is Difficult

• What do we need to do to ensure norm is hoisted outside the loop?

__declspec((noalias)) // == argmemonly in llvm, not combinable
__attribute__((pure))
double norm(const double *A, int n);

void normalize(double *restrict out, const double *restrict in,
int n) {

#pragma clang loop vectorize(enable) interleave(enable)
for (int i = 0; i < n; ++i)
out[i] = in[i] / norm(in, n);

}

