
LLVM
Performance

Tutorial

jdoerfert@anl.govwmoses@mit.edu

Part 0
General Setup &
Recommendations

Single command often suffices to configure:
cmake …/llvm-project/llvm -DLLVM_ENABLE_PROJECTS='clang;lld' -DLLVM_ENABLE_RUNTIMES=’openmp’
make -j

Useful options include: CMAKE_BUILD_TYPE={Release,Asserts,…}
 LLVM_ENABLE_ASSERTIONS={ON,OFF}
 LLVM_CCACHE_BUILD={ON,OFF}
 -G Ninja

May need debug build to debug certain compiler-based issues,
release + assert is often used as trade off
Various resources available online! Start here:

http://llvm.org/docs/GettingStarted.html

Building LLVM yourself

http://llvm.org/docs/GettingStarted.html

- Use a fast linker (lld), ccache, and ninja
- Consider LTO, either thin or full
- Use tooling (clang-format, clang-tidy, clang-modernize, …)
- Use -O3/Ofast -march=native as default
- Online documentation is not great but often not bad either
- Debug with sanitizers enabled
- A release + asserts build is best for every-day use

General Recommendations

Ask the LLVM Community

Many ways to interact:
- Discourse (forum/mailing list)
- Discord (persistent chat)
- IRC (non-persistent chat)
- Online Sync-Ups:

- AA, MLIR, ML, RISC-V, …
- Office Hours *NEW*

- “AMA” with an “expert”
- Meetups (soon again!)

Part 1
Locating the Problem

Perf
Binary Instrumentation Tool

● Provides hardware performance counters
● Samples program at intervals to see where time is being spent
● Compiling with debug info (-g) can provide more source-level

information

wmoses@beast:~LULESH $ perf record --call-graph=fp ./lulesh.exe -s 50

Perf
● Can view the call trace of the program and which calls are taking the

most time
wmoses@beast:~LULESH $ perf report

Perf

wmoses@beast:~LULESH $ perf report

● Can view the call trace of the program and which calls are taking the
most time

GDB/LLDB (Debugger)
Binary Instrumentation Tool

● Can either attach to currently running programs or execute a program
from scratch

● Lets you interact with the program at any point (step through
instructions, print out variables).

● Pausing execution at a point lets you see where (and why) a program is
potentially hanging

wmoses@beast:~LULESH $ gdb –-args ./lulesh.exe -s 50

GDB/LLDB (Debugger)
Run the program

Pause execution

Print the stack trace

Print (and run)
arbitrary code

Reversible debugger (rr)
● Like gdb/lldb, but lets you execute the

program backwards

Part 2
Diagnosing the Problem

Clang/LLVM-level Performance Diagnosis
● Now that we’ve diagnosed where the program is slow, we need to

determine, why it is running slowly
● Already, some problems can be identified by looking at the source and

fixing algorithmic/data structure problems.
● Much worse problems: your code should be fine, but an optimization

isn’t run?

Optimization Remarks
Remarks (aka. optimization record) provides
user-centric feedback.

Most-common use cases are determining why
a program didn’t vectorize

Lots of tooling (see LLVM Remarks page).
Extensions available, e.g., FAROS1

https://clang.llvm.org/docs/UsersManual.html
https://www.llvm.org/docs/Remarks.html
1 https://github.com/LLNL/FAROS

https://clang.llvm.org/docs/UsersManual.html
https://www.llvm.org/docs/Remarks.html
https://github.com/LLNL/FAROS

Part II

Random Thoughts

Compiler Explorer (Godbolt.org)

Interactively write code and see the impact of optimizations, final assembly, etc

Inspecting LLVM IR
The compiler’s internal intermediate representation (LLVM IR) can be
instructive for why certain code is generated

● Consider: https://godbolt.org/z/Prxdo15KE

● LLVM had to insert a check whether in and out overlap

https://godbolt.org/z/Prxdo15KE

Inspecting LLVM IR
Marking the variables as restrict (noalias in LLVM) informs the optimizer
that the pointers don’t overlap, getting rid of the check:

Inspecting LLVM IR
Inserting an assumption that the number of iterations is at least 4, gets rid
of the minimum iteration check.

Part 3
Random Thoughts

LTO / PGO

Use link time optimization (LTO) to optimize across source files:
-flto <- full/ monolithic LTO
-flto=thin <- thin LTO

Use profile guided optimization (PGO):
-fprofile-generate
-fprofile-use

-save-temps + llvm-extract

Get the “pristine” LLVM-IR from clang via
-save-temps

Use `llvm-extract` to get a subset of the functions:
llvm-extract --recursive --func=foo test.bc

llvm-extract, and other cool script are in llvm/tools

-save-temps + run -OX multiple times

Running -O{1,2,3} multiple times help decide if optimizations are “possible”.

For host only code, get an executable with
clang <myflags> -march=... test.bc -o test.exe

Simple way to get a possible upper bound:
perf stat -r 11 ./test.exe

Also checkout the bisect scripts in llvm/utils!

-save-temps + opt + bisect

Get the “pristine” LLVM-IR from clang via
-save-temps

Use `opt` to apply (a subset) of transformations:
opt -O3 test.bc

or
opt -O3 -opt-bisect-limit=50

Also checkout the bisect scripts in llvm/utils!

LLVM-Core Flags

Most passes have an enable/disable flags:
-mllvm -enable-gvn-sink

check
{opt, clang} -help

and
{opt, clang} -help-hidden

(and grep for enable/disable/gvn/…)

Command Line Flag – Cheat Sheet
-O{1,2,3,fast} <- enable optimization pipelines (-O0 is default)
-march={native,...} <- enable CPU specific features, e.g., AVX512,

 and target specific choices

-ffast-math <- enable “unsafe” (=non standard) floating pointer
optimizations
 -fno-math-errno
 -freciprocal-math
 -fapprox-func

-fveclib={libmvec, Accelerate, MASSV, SVML, …} <- use vectorized math functions

-save-temps <- get the IR, assembly, … *before*
each step
-O0 -Xclang -disable-O0-optnone <- do not attach `optnone`, which is

 default with -O0

Command Line Flag – Cheat Sheet (cont’t)

-ftime-passes <- get a compile time breakdown (time per pass)

-mllvm -stats <- get statistics, e.g., #vectorized loops,
 from all the passes

-save-stats <- clang version to save the statistics to a file

-pass-remarks{-missed,-analysis}=<regex> <- get optimization remarks
 from opt

-Rpass-remarks{-missed,analysis}=<regex> <- clang versions

C/C++ Source Annotations - Cheat Sheet
[__]restrict <- no pointer alias
__attribute__((noescape)) <- nocapture in IR, pointer is not “copied”
__attribute__((const)) <- will not access memory
__attribute__((pure)) <- will at most read global memory
__attribute__((alloc_size(<i>))) <- return at least <arg_i> bytes allocated memory
__attribute__((alloc_align(<i>))) <- returned pointer is <arg_i> aligned
__attribute__((always_inline)) <- force inlining (even with -O0)
__attribute__((noinline)) <- do not inline the function
__attribute__((optnone)) <- do not optimize the function

Builtins:
__builtin_assume(<bool>)
__builtin_unreachable()
__builtin_unpredicable(expr)
__builtin_expect(expr, value)
__builtin_expect_with_probability(expr, value, prob)
__builtin_prefetch(addr, rw, locality)

https://clang.llvm.org/docs/LanguageExtensions.html https://clang.llvm.org/docs/AttributeReference.html

https://clang.llvm.org/docs/LanguageExtensions.html
https://clang.llvm.org/docs/AttributeReference.html

Performance
Gap Estimation

Research for Performance GAP estimation

Embed “assumed
knowledge” into a
program, compile it,
test it.

Determine knowledge
that is probably
correct and
definitively helpful to
improve performance.

Got up to 20%
improvement for
proxy apps with 3
minimal code
changes!

PETOSPA (ISC’19): https://github.com/jdoerfert/PETOSPA
HTO (LLVMDev ‘19): https://www.youtube.com/watch?v=elmio6AoyK0
ORAQL (LLVMDev ‘21): https://www.youtube.com/watch?v=7UVB5AFJM1w

https://github.com/jdoerfert/PETOSPA
https://www.youtube.com/watch?v=elmio6AoyK0
https://www.youtube.com/watch?v=7UVB5AFJM1w

OpenMP Offload
Additional Notes

Optimization Remarks
Example: OpenMP runtime call deduplication

double *A = malloc(size * omp_get_thread_limit());

double *B = malloc(size * omp_get_thread_limit());

#pragma omp parallel

do_work(A, B);

$ clang -g -O2 deduplicate.c -fopenmp -Rpass=openmp-opt

deduplicate.c:12:29: remark: OpenMP runtime call omp_get_thread_limit moved to deduplicate.c:11:29: [-Rpass=openmp-opt]
 double *B = malloc(size*omp_get_thread_limit());
deduplicate.c:11:29: remark: OpenMP runtime call omp_get_thread_limit deduplicated [-Rpass=openmp-opt]
 double *A = malloc(size*omp_get_thread_limit());

OpenMP runtime
calls with same
return values can
be merged to a
single call

Optimization Remarks
Example: OpenMP Target Scheduling

clang12 -Rpass=openmp-opt ...
remark: Found a parallel region that is called in a target region but not part of a combined target construct nor nested inside a target construct
without intermediate code. This can lead to excessive register usage for unrelated target regions in the same translation unit due to spurious call
edges assumed by ptxas.
remark: Parallel region is not known to be called from a unique single target region, maybe the surrounding function has external linkage?; will not
attempt to rewrite the state machine use.
remark: Found a parallel region that is called in a target region but not part of a combined target construct nor nested inside a target construct
without intermediate code. This can lead to excessive register usage for unrelated target regions in the same translation unit due to spurious call
edges assumed by ptxas.
remark: Specialize parallel region that is only reached from a single target region to avoid spurious call edges and excessive register usage in
other target regions. (parallel region ID: __omp_outlined__1_wrapper, kernel ID: __omp_offloading_35_a1e179_foo_l7)
remark: Target region containing the parallel region that is specialized. (parallel region ID: __omp_outlined__1_wrapper, kernel ID:
__omp_offloading_35_a1e179_foo_l7)
remark: Found a parallel region that is called in a target region but not part of a combined target construct nor nested inside a target construct
without intermediate code. This can lead to excessive register usage for unrelated target regions in the same translation unit due to spurious call
edges assumed by ptxas.
remark: Specialize parallel region that is only reached from a single target region to avoid spurious call edges and excessive register usage in
other target regions. (parallel region ID: __omp_outlined__3_wrapper, kernel ID: __omp_offloading_35_a1e179_foo_l7)
remark: Target region containing the parallel region that is specialized. (parallel region ID: __omp_outlined__3_wrapper, kernel ID:
__omp_offloading_35_a1e179_foo_l7)
remark: OpenMP GPU kernel __omp_offloading_35_a1e179_foo_l7

void bar(void) {
 #pragma omp parallel
 { }
}
void foo(void) {
 #pragma omp target teams
 {
 #pragma omp parallel
 {}
 bar();
 #pragma omp parallel
 {}
 }
}

Explained onlin
e!

- Use a recent (e.g., nightly) compiler version.
- Enable compilation remarks https://openmp.llvm.org/remarks/OptimizationRemarks.html
- Use LIBOMPTARGET_INFO(=16) to learn about the GPU execution

https://openmp.llvm.org/design/Runtimes.html#libomptarget-info
- Use LIBOMPTARGET_PROFILE for built in profiling support.
- Use LIBOMPTARGET_DEBUG (and -fopenmp-target-debug) for runtime assertions and

other opt-in debug features https://openmp.llvm.org/design/Runtimes.html#debugging
- Consider assumptions for better performance:

LIBOMPTARGET_MAP_FORCE_ATOMIC=false and -fopenmp-assume-no-thread-state
- Use the new driver -fopenmp-new-driver and device-side LTO -foffload-lto

OpenMP offload Recommendations

https://openmp.llvm.org/remarks/OptimizationRemarks.html
https://openmp.llvm.org/design/Runtimes.html#libomptarget-info
https://openmp.llvm.org/design/Runtimes.html#debugging

Ask Us Anything

Johannes Doerfert (he/him)

work with LLVM since ~2012

initial polyhedral optimization

nowadays
 - OpenMP (runtime, openmp-opt, …)
 - interprocedural Optimization (Attributor)
 - LLVM-IR

involved in various working groups:
- Alias Analysis, ML, OpenMP, Flang, …

@jdoerfert

