
Polygeist: Raising C to
Polyhedral MLIR

William S. Moses
wmoses@mit.edu

1

Lorenzo Chelini
l.chelini@tue.nl

Alex Zinenko
zinenko@google.com

Ruizhe Zhao
rz3515@ic.ac.uk

Motivation

• The compiler research has recently been enamored by the MLIR
framework, whose first-class polyhedral representation may provide
benefits on a variety of codes
• We can fully leverage decades of polyhedral research by connecting

MLIR with existing polyhedral tools.
• Without MLIR-versions of standard polyhedral benchmarks, one

cannot perform a fair assessment
• Goal of this work is to provide a fair baseline for subsequent work

AND explore the potential of polyhedral optimizations that require
both high level and low level information

2

Polygeist

3

A platform for polyhedral transformations within MLIR
• Generic C or C++ frontend that generates "standard" MLIR
• Raising transformations for transforming "standard" MLIR to polyhedral

MLIR (Affine)
• Embedding of existing polyhedral tools (Pluto, CLooG) into MLIR
• Novel transformations (statement splitting, reduction detection) that rely

on high-level compiler representation
• Polyhedral benchmarks for MLIR based off of Polybench
• End-to-end evaluation on standard polyhedral benchmarks

The MLIR Framework

• A toolkit for representing and transforming
"code"
• Modular and extensible via dialects

(namespaces of operations/types and
attributes)
• Non-opinionated – choose the level of

abstraction that is right for you
• State-of-the-art SSA-based compiler technology

4

The Affine dialect

• Represent SCoP with polyhedral-
friendly loops and conditions
• Core Affine representation
• Symbols - parameters
• Dimensions - symbol extension that

accepts induction variables
• Maps - multi-dimensional function

of symbols and dimensions
• Sets - integer tuples constrained by

a conjunction

5

Polygeist Frontend

6

• Built a generic C or C++ frontend for MLIR, based off of Clang
• C control flow directly lowered to MLIR for, if, etc..
• Variables and arrays represented by MLIR memref (memory

reference) construct
• Loops within a scop are assumed to be affine, with other loops raised

if proven to be affine

Polygeist Frontend

7

void set(int *arr, int val) {
#pragma scop
for(int i=0; i<10; i++){

arr[2*i] = val;
}
#pragma endscop

}

func @set(%arg0: memref<?xi32>, %arg1: i32) {
%c0 = constant 0 : index
%0 = alloca() : memref<1xmemref<?xi32>>
store %arg0, %0[%c0] : memref<1xmemref<?xi32>>
%1 = alloca() : memref<1xi32>
store %arg1, %1[%c0] : memref<1xi32>
%c0_i32 = constant 0 : i32
%c2_i32 = constant 2 : i32
%c10_i32 = constant 10 : i32
%2 = index_cast %c10_i32 : i32 to index
scf.for %arg2 = %c0_i32 to %2 {

%3 = index_cast %arg2 : index to i32
%4 = alloca() : memref<1xi32>
store %3, %4[%c0] : memref<1xi32>
%5 = load %0[%c0] : memref<1xmemref<?xi32>>
%6 = load %4[%c0] : memref<1xi32>
%7 = muli %c2_i32, %6 : i32
%8 = index_cast %7 : i32 to index
%9 = load %1[%c0] : memref<1xi32>
store %9, %5[%8] : memref<?xi32>

}
return

}

Polygeist Raising

8

• Directly lowered constructs are not valid polyhedral programs
• Local variables eliminated, if possible, by new MLIR mem2reg pass
• Loads and stores are raised to affine loads, if possible
• Detect if index calculation is a valid affine expression
• Progressively fold index calculation into an affine operation

• if statements are changed to affine if their condition can be raised
• Loops canonicalized and raised if legal (while => for, scf.for =>

affine.for, etc)

Polygeist Raising

9

func @set(%arg0: memref<?xi32>, %arg1: i32) {
%c0 = constant 0 : index
%0 = alloca() : memref<1xmemref<?xi32>>
store %arg0, %0[%c0] : memref<1xmemref<?xi32>>
%1 = alloca() : memref<1xi32>
store %arg1, %1[%c0] : memref<1xi32>
%c0_i32 = constant 0 : i32
%c10_i32 = constant 10 : i32
%2 = index_cast %c10_i32 : i32 to index
scf.for %arg2 = %c0_i32 to %2 {

%3 = index_cast %arg2 : index to i32
%4 = alloca() : memref<1xi32>
store %3, %4[%c0] : memref<1xi32>
%5 = load %0[%c0] : memref<1xmemref<?xi32>>
%c2_i32 = constant 2 : i32
%6 = load %4[%c0] : memref<1xi32>
%7 = muli %c2_i32, %6 : i32
%8 = index_cast %7 : i32 to index
%9 = load %1[%c0] : memref<1xi32>
store %9, %5[%8] : memref<?xi32>

}
return

}

func @set(%arg0: memref<?xi32>, %arg1: i32) {
affine.for %arg2 = 0 to 10 {

affine.store %arg1, %arg0[%arg2 * 2]
: memref<?xi32>

}
return

}

Polygeist Raising

10

• Select statements must be represented by a C ternary operator
• C ternaries have lazy-evaluation semantics which are replicated in the

generated MLIR
• Mem2Reg and code motion attempt to remove unnecessary loads within if's

to generate a valid select.

prefixMax[i] = (prefixMax[i-1] >= data[i])
? prefixMax[i-1] : data[i];

%0 = index_cast %arg2 : i32 to index
%1 = subi %0, %c1 : index
%2 = load %arg0[%1] : memref<?xi32>
%3 = load %arg1[%0] : memref<?xi32>
%4 = cmpi "sgt", %2, %3 : i32
%5 = scf.if %4 -> (i32) {
%6 = load %arg0[%1] : memref<?xi32>
scf.yield %6 : i32

} else {
%6 = load %arg1[%0] : memref<?xi32>
scf.yield %6 : i32

}
store %5, %arg0[%0] : memref<?xi32>

Connecting MLIR to Polyhedral Tools

• Polygeist can obtain polyhedral
representation in MLIR Affine
• But it is difficult to leverage existing

polyhedral tools
• OpenScop is the interchangeable

format among polyhedral tools
• How to translate between MLIR

code and OpenScop representation?

11

Polyhedral Optimization Pipeline

12

Polyhedral Statement

• OpenScop expects C-like statements:

• MLIR is lower level and a store
instruction alone does not specify
how to compute the stored operand
• 1 OpenScop statement may

correspond to many MLIR operations
• To match C-like statements:
• Extract 1 MLIR memory write
• Traverse SSA use-def chains
• Continue until all operations are loads

or symbols
13

C[i][j] += A[i][k] * B[k][j]

Region-Spanning Problem

• A use-def chain may span multiple
loops (regions).
• e.g., A load op defines a register used by

other ops in inner loops.

• Statement nesting in loops is
ambiguous
• Difficult to reconstruct when

converting back to MLIR
• Reg2mem pass: insert a scratchpad for

each use-def across regions

14

Avoid RAW Hazard

• The RAW hazard problem:
• A load op is duplicated for use in

multiple statements
• Intermediate writes may clobber
• After extraction, later

statements may load wrong values

• Simplified value analysis to detect
• Insert scratchpads

15

Outlining

• We outline statements into
functions
• Opaque calls with known memory

footprints
• Lift local stack allocations and

symbol definitions

16

Statement Splitting

• The previous slides describe how Polygeist attempts to reconstruct
statements similar to the original C input.
• We can instead form statements out of any subset of operations,

assuming dependencies hold.
• The ability to split statements gives the schedular additional flexibility

and choose different schedules for different parts of the same
program.
• This is difficult to do at a source level as it requires reinterpreting

C/C++ semantics, and also difficult in low-level IR’s that lack loops and
multidimensional indexing

17

Translate to OpenScop

• First pre-process MLIR Affine code by previous passes
• For each extracted polyhedral statement:
• Domain: get constraints from affine.for/if
• Initial Schedule: derive from region nesting and operation order
• Access: extract from affine load/stores

• Store symbols in OpenScop extensions

18

Translate to OpenScop

19

Regenerate MLIR Code

• Obtain a CLooG AST from an optimized OpenScop representation
• Regenerate MLIR code by traversing AST
• OpenScop symbols will be translated to MLIR values or operations

based on a maintained symbol table.

20

Evaluation

• Compare Polygeist frontend with Clang

• Compare Polygeist polyhedral optimization with native Pluto

• Novel optimizations

21

Serial Non-Polyhedral Comparison

22

Polygeist faster

Clang faster

Serial Non-Polyhedral Comparison

23

Polygeist faster

Clang faster

Frontend within 0.32% of
“standard” frontend

Remaining gap attributed
to small tests where minor
assembly differences
matter

Frontend Performance Differences

• 8% performance boost on Floyd-Warshall occurs if Polygeist
generates a single MLIR module for both benchmarking and
timing code by default
•MLIR doesn't properly generate LLVM datalayout, preventing

vectorization for MLIR-generated code (patched in our
lowering)
• Different choice of allocation function can make a 30%

impact on some tests (adi)
• LLVM strength-reduction is fragile and sometimes misses

reversed loop induction variable (remaining gap in adi) 24

Sequential Polyhedral Comparison

25

Clang faster

Polygeist: 2.53x speedup
Pluto: 2.34x speedup
Polly: 1.41x speedup

Polyhedral Performance Differences

• Polly differs from other two as it uses a different scheduler
• Even when using the same scheduler, Polygeist can select a different

statement set and thus schedule coming from partially optimized SSA
rather than the original C.
• Pluto executes significantly more (~10^11) more integer instructions on

seidel-2d than Polygeist, which is ~59s at 3GHz, accounting for the gap. Can
be caused by different integer optimization and the use of a proper
machine type/bound simplification.
• For jacobi-2d, Polygeist performs worse, stopping earlier when simplifying

(75 statement copies in 40 branches), whereas Clang by default takes
longer to process this but has better end vectorization.

26

Parallel Polyhedral Comparison

27

Clang faster

Polygeist: 9.47x speedup
Pluto: 7.54x speedup
Polly: 3.26x speedup

Parallel Performance Differences

• Same scheduling differences as sequential (Cholesky and LU are
better on Pluto/Polygeist than Polly; Gemver and MVT are better on
Polly)
• Ludcmp and syr(2)k benefit from SSA optimizations
• Polygeist is only framework that can parallelize deriche (6.9x) and

symm (7.7x) by analyzing and removing the loop-carried dependency
• Polygeist identifies a parallel reduction within gramschmidt (56x

Polygeist, 54x Pluto, 34x Polly) and durbin (6x slowdown as few
iterations)

28

Parallel Reduction Detection (durbin)

29

Conclusion

• Polygeist provides tools to fairly compare MLIR-based polyhedral
flows with prior Polyhedral tools
• C or C++ frontend for (Affine) MLIR
• Integration of existing polyhedral tools for transforming MLIR
• End-to-end comparison using existing Polyhedral benchmarks (Polybench)

• Polygeist outperforms existing Polyhedral optimizers for both serial
and parallel code generation
• Polygeist provides an easy platform to introduce novel polyhedral

optimizations (statement splitting, reduction) that are difficult to
perform on existing representations

30

Future Work

• GPU optimization and GPU <-> CPU

• Embedded DSL / C-style semantics for directly generating MLIR Ops

• LLVM Incubator Project

31

Acknowledgements

• Thanks to Valentin Churavy, Albert Cohen, Henk Corporaal,
Tobias Grosser, and Charles Leiserson for thoughtful discussions on
this work.
• William S. Moses was supported in part by a DOE Computational

Sciences Graduate Fellowship, in part by Los Alamos National
Laboratories, and in part by the United States Air Force Research
Laboratory.
• Lorenzo Chelini is partially supported by the European Commission

Horizon 2020
• Ruizhe Zhao is sponsored by UKRI and Corerain Technologies Ltd. The

support of the UK EPSRC is also gratefully acknowledged.

32

Conclusion

• Polygeist provides tools to fairly compare MLIR-based polyhedral
flows with prior Polyhedral tools
• C or C++ frontend for (Affine) MLIR
• Integration of existing polyhedral tools for transforming MLIR
• End-to-end comparison using existing Polyhedral benchmarks (Polybench)

• Polygeist outperforms existing Polyhedral optimizers for both serial
and parallel code generation
• Polygeist provides an easy platform to introduce novel polyhedral

optimizations (statement splitting, reduction) that are difficult to
perform on existing representations

33

Backup Slides

34

func @set(%arg0: memref<?xi32>, %arg1: i32) {
affine.for %arg2 = 0 to 10 {

affine.store %arg1, %arg0[%arg2 * 2] : memref<?xi32>
}
return

}

Conclusion

• Polygeist providing tools to fairly compare MLIR-based polyhedral
representations with prior art in Polyhedral representations
• C/C++ frontend for (Affine) MLIR
• Integration of existing polyhedral tools for transforming MLIR (via OpenScop)
• End-to-end comparison using existing Polyhedral benchmarks (Polybench)

• Polygeist enables future research on polyhedral MLIR transformations
• MLIR-based frontend differs from Clang by 1.25%
• @Ruizhe, add a good polymer conclusion

35

