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Motivation

• The compiler research has recently been enamored by the MLIR 
framework, whose first-class polyhedral representation may provide 
benefits on a variety of codes
• We can fully leverage decades of polyhedral research by connecting 

MLIR with existing polyhedral tools.
• Without MLIR-versions of standard polyhedral benchmarks, one 

cannot perform a fair assessment
• Goal of this work is to provide a fair baseline for subsequent work 

AND explore the potential of polyhedral optimizations that require 
both high level and low level information
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Polygeist
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A platform for polyhedral transformations within MLIR
• Generic C or C++ frontend that generates "standard" MLIR
• Raising transformations for transforming "standard" MLIR to polyhedral 

MLIR (Affine)
• Embedding of existing polyhedral tools (Pluto, CLooG) into MLIR
• Novel transformations (statement splitting, reduction detection) that rely 

on high-level compiler representation
• Polyhedral benchmarks for MLIR based off of Polybench
• End-to-end evaluation on standard polyhedral benchmarks



The MLIR Framework

• A toolkit for representing and transforming 
"code"
• Modular and extensible via dialects 

(namespaces of operations/types and 
attributes)
• Non-opinionated – choose the level of 

abstraction that is right for you
• State-of-the-art SSA-based compiler technology
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The Affine dialect

• Represent SCoP with polyhedral-
friendly loops and conditions
• Core Affine representation
• Symbols - parameters
• Dimensions - symbol extension that 

accepts induction variables
• Maps - multi-dimensional function 

of symbols and dimensions
• Sets - integer tuples constrained by 

a conjunction
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Polygeist Frontend
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• Built a generic C or C++ frontend for MLIR, based off of Clang
• C control flow directly lowered to MLIR for, if, etc..
• Variables and arrays represented by MLIR memref (memory 

reference) construct
• Loops within a scop are assumed to be affine, with other loops raised 

if proven to be affine



Polygeist Frontend
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void set(int *arr, int val) {
#pragma scop
for(int i=0; i<10; i++){

arr[2*i] = val;
}
#pragma endscop

}

func @set(%arg0: memref<?xi32>, %arg1: i32) {
%c0 = constant 0 : index
%0 = alloca() : memref<1xmemref<?xi32>>
store %arg0, %0[%c0] : memref<1xmemref<?xi32>>
%1 = alloca() : memref<1xi32>
store %arg1, %1[%c0] : memref<1xi32>
%c0_i32 = constant 0 : i32
%c2_i32 = constant 2 : i32
%c10_i32 = constant 10 : i32
%2 = index_cast %c10_i32 : i32 to index
scf.for %arg2 = %c0_i32 to %2 {

%3 = index_cast %arg2 : index to i32
%4 = alloca() : memref<1xi32>
store %3, %4[%c0] : memref<1xi32>
%5 = load %0[%c0] : memref<1xmemref<?xi32>>
%6 = load %4[%c0] : memref<1xi32>
%7 = muli %c2_i32, %6 : i32
%8 = index_cast %7 : i32 to index
%9 = load %1[%c0] : memref<1xi32>
store %9, %5[%8] : memref<?xi32>

}
return

}



Polygeist Raising
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• Directly lowered constructs are not valid polyhedral programs
• Local variables eliminated, if possible, by new MLIR mem2reg pass
• Loads and stores are raised to affine loads, if possible
• Detect if index calculation is a valid affine expression
• Progressively fold index calculation into an affine operation

• if statements are changed to affine if their condition can be raised
• Loops canonicalized and raised  if legal (while => for, scf.for => 

affine.for, etc)



Polygeist Raising
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func @set(%arg0: memref<?xi32>, %arg1: i32) {
%c0 = constant 0 : index
%0 = alloca() : memref<1xmemref<?xi32>>
store %arg0, %0[%c0] : memref<1xmemref<?xi32>>
%1 = alloca() : memref<1xi32>
store %arg1, %1[%c0] : memref<1xi32>
%c0_i32 = constant 0 : i32
%c10_i32 = constant 10 : i32
%2 = index_cast %c10_i32 : i32 to index
scf.for %arg2 = %c0_i32 to %2 {

%3 = index_cast %arg2 : index to i32
%4 = alloca() : memref<1xi32>
store %3, %4[%c0] : memref<1xi32>
%5 = load %0[%c0] : memref<1xmemref<?xi32>>
%c2_i32 = constant 2 : i32
%6 = load %4[%c0] : memref<1xi32>
%7 = muli %c2_i32, %6 : i32
%8 = index_cast %7 : i32 to index
%9 = load %1[%c0] : memref<1xi32>
store %9, %5[%8] : memref<?xi32>

}
return

}

func @set(%arg0: memref<?xi32>, %arg1: i32) {
affine.for %arg2 = 0 to 10 {

affine.store %arg1, %arg0[%arg2 * 2] 
: memref<?xi32>

}
return

}



Polygeist Raising
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• Select statements must be represented by a C ternary operator
• C ternaries have lazy-evaluation semantics which are replicated in the 

generated MLIR
• Mem2Reg and code motion attempt to remove unnecessary loads within if's 

to generate a valid select.

prefixMax[i] = (prefixMax[i-1] >= data[i])
? prefixMax[i-1] : data[i];

%0 = index_cast %arg2 : i32 to index
%1 = subi %0, %c1 : index
%2 = load %arg0[%1] : memref<?xi32>
%3 = load %arg1[%0] : memref<?xi32>
%4 = cmpi "sgt", %2, %3 : i32
%5 = scf.if %4 -> (i32) {
%6 = load %arg0[%1] : memref<?xi32>
scf.yield %6 : i32

} else {
%6 = load %arg1[%0] : memref<?xi32>
scf.yield %6 : i32

}
store %5, %arg0[%0] : memref<?xi32>



Connecting MLIR to Polyhedral Tools

• Polygeist can obtain polyhedral 
representation in MLIR Affine
• But it is difficult to leverage existing 

polyhedral tools
• OpenScop is the interchangeable 

format among polyhedral tools
• How to translate between MLIR 

code and OpenScop representation?
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Polyhedral Optimization Pipeline
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Polyhedral Statement

• OpenScop expects C-like statements:

• MLIR is lower level and a store 
instruction alone does not specify 
how to compute the stored operand
• 1 OpenScop statement may 

correspond to many MLIR operations
• To match C-like statements:
• Extract 1 MLIR memory write
• Traverse SSA use-def chains
• Continue until all operations are loads 

or symbols
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C[i][j] += A[i][k] * B[k][j]



Region-Spanning Problem

• A use-def chain may span multiple 
loops (regions).
• e.g., A load op defines a register used by 

other ops in inner loops.

• Statement nesting in loops is 
ambiguous
• Difficult to reconstruct when 

converting back to MLIR
• Reg2mem pass: insert a scratchpad for 

each use-def across regions
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Avoid RAW Hazard

• The RAW hazard problem:
• A load op is duplicated for use in 

multiple statements
• Intermediate writes may clobber
• After extraction, later 

statements may load wrong values

• Simplified value analysis to detect
• Insert scratchpads
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Outlining 

• We outline statements into 
functions
• Opaque calls with known memory 

footprints
• Lift local stack allocations and 

symbol definitions
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Statement Splitting

• The previous slides describe how Polygeist attempts to reconstruct 
statements similar to the original C input.
• We can instead form statements out of any subset of operations, 

assuming dependencies hold.
• The ability to split statements gives the schedular additional flexibility 

and choose different schedules for different parts of the same 
program.
• This is difficult to do at a source level as it requires reinterpreting 

C/C++ semantics, and also difficult in low-level IR’s that lack loops and 
multidimensional indexing 
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Translate to OpenScop

• First pre-process MLIR Affine code by previous passes
• For each extracted polyhedral statement:
• Domain: get constraints from affine.for/if
• Initial Schedule: derive from region nesting and operation order
• Access: extract from affine load/stores

• Store symbols in OpenScop extensions
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Translate to OpenScop
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Regenerate MLIR Code

• Obtain a CLooG AST from an optimized OpenScop representation
• Regenerate MLIR code by traversing AST
• OpenScop symbols will be translated to MLIR values or operations 

based on a maintained symbol table.
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Evaluation

• Compare Polygeist frontend with Clang

• Compare Polygeist polyhedral optimization with native Pluto

• Novel optimizations
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Serial Non-Polyhedral Comparison
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Polygeist faster

Clang faster



Serial Non-Polyhedral Comparison
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Polygeist faster

Clang faster

Frontend within 0.32% of 
“standard” frontend

Remaining gap attributed 
to small tests where minor 
assembly differences 
matter



Frontend Performance Differences

• 8% performance boost on Floyd-Warshall occurs if Polygeist
generates a single MLIR module for both benchmarking and 
timing code by default
•MLIR doesn't properly generate LLVM datalayout, preventing 

vectorization for MLIR-generated code (patched in our 
lowering)
• Different choice of allocation function can make a 30% 

impact on some tests (adi)
• LLVM strength-reduction is fragile and sometimes misses 

reversed loop induction variable (remaining gap in adi) 24



Sequential Polyhedral Comparison
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Clang faster

Polygeist: 2.53x speedup
Pluto:        2.34x speedup
Polly:         1.41x speedup



Polyhedral Performance Differences

• Polly differs from other two as it uses a different scheduler
• Even when using the same scheduler, Polygeist can select a different 

statement set and thus schedule coming from partially optimized SSA 
rather than the original C.
• Pluto executes significantly more (~10^11) more integer instructions on 

seidel-2d than Polygeist, which is ~59s at 3GHz, accounting for the gap. Can 
be caused by different integer optimization and the use of a proper 
machine type/bound simplification.
• For jacobi-2d, Polygeist performs worse, stopping earlier when simplifying 

(75 statement copies in 40 branches), whereas Clang by default takes 
longer to process this but has better end vectorization.
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Parallel Polyhedral Comparison
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Clang faster

Polygeist: 9.47x speedup
Pluto:        7.54x speedup
Polly:         3.26x speedup



Parallel Performance Differences

• Same scheduling differences as sequential (Cholesky and LU are 
better on Pluto/Polygeist than Polly; Gemver and MVT are better on 
Polly)
• Ludcmp and syr(2)k benefit from SSA optimizations
• Polygeist is only framework that can parallelize deriche (6.9x) and 

symm (7.7x) by analyzing and removing the loop-carried dependency
• Polygeist identifies a parallel reduction within gramschmidt (56x 

Polygeist, 54x Pluto, 34x Polly) and durbin (6x slowdown as few 
iterations)
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Parallel Reduction Detection (durbin)
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Conclusion

• Polygeist provides tools to fairly compare MLIR-based polyhedral 
flows with prior Polyhedral tools
• C or C++ frontend for (Affine) MLIR
• Integration of existing polyhedral tools for transforming MLIR
• End-to-end comparison using existing Polyhedral benchmarks (Polybench)

• Polygeist outperforms existing Polyhedral optimizers for both serial 
and parallel code generation
• Polygeist provides an easy platform to introduce novel polyhedral 

optimizations (statement splitting, reduction) that are difficult to 
perform on existing representations
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Future Work

• GPU optimization and GPU <-> CPU

• Embedded DSL / C-style semantics for directly generating MLIR Ops

• LLVM Incubator Project
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Conclusion

• Polygeist provides tools to fairly compare MLIR-based polyhedral 
flows with prior Polyhedral tools
• C or C++ frontend for (Affine) MLIR
• Integration of existing polyhedral tools for transforming MLIR
• End-to-end comparison using existing Polyhedral benchmarks (Polybench)

• Polygeist outperforms existing Polyhedral optimizers for both serial 
and parallel code generation
• Polygeist provides an easy platform to introduce novel polyhedral 

optimizations (statement splitting, reduction) that are difficult to 
perform on existing representations
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Backup Slides
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func @set(%arg0: memref<?xi32>, %arg1: i32) {
affine.for %arg2 = 0 to 10 {

affine.store %arg1, %arg0[%arg2 * 2] : memref<?xi32>
}
return

}



Conclusion

• Polygeist providing tools to fairly compare MLIR-based polyhedral 
representations with prior art in Polyhedral representations
• C/C++ frontend for (Affine) MLIR
• Integration of existing polyhedral tools for transforming MLIR (via OpenScop)
• End-to-end comparison using existing Polyhedral benchmarks (Polybench)

• Polygeist enables future research on polyhedral MLIR transformations
• MLIR-based frontend differs from Clang by 1.25%
• @Ruizhe, add a good polymer conclusion
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