MLIR-In-The-Middle: compiling C++ and extensions via the new extensible infrastructure

William S. Moses
wmoses@mit.edu

Alex Zinenko
zinenko@google.com

ISC
June 2022
The Current Compilation Pipeline

```c
void set(int *arr, int val) {
    for(int i=0; i<10; i++){
        arr[2*i] = val;
    }
}
```

```
FunctionDecl set 'void (int *, int)'
  ForStmt
  DeclStmt
    `-VarDecl used i 'int' cinit
    `-IntegerLiteral 'int' 0
    BinaryOperator 'bool' '<'
    `-ImplicitCastExpr 'int' <LValueToRValue>
    | `-DeclRefExpr 'int' lvalue Var 0x563e22a396b8 'i' 'int'
    `-IntegerLiteral 'int' 10
    UnaryOperator 'int' postfix '++'
    `-DeclRefExpr 'int' lvalue Var 0x563e22a396b8 'i' 'int'

define void @_Z3setPii(i32 *%0, i32 %1) {
    br label %4

3: ; preds = %4
    ret void

4: ; preds = %2, %4
    %5 = phi i64 [ 0, %2 ], [ %8, %4 ]
    %6 = shl i64 %5, 1
    %7 = getelementptr inbounds i32, i32 *%0, i64 %6
    store i32 %1, i32* %7
    %8 = add i64 %5, 1
    %9 = icmp eq i64 %8, 10
    br i1 %9, label %3, label %4
}
```
Losing High Level Structure

• LLVM, while general enough to represent any program, must represent all parts of a program in a single, low-level IR
 • Loses control flow constructs (if, for, etc)
 • Hides parallelism behind runtime calls (and for GPU in a separate module)
 • High-level semantics & properties cannot be represented and are lost.

```c
void foo(DataStructure& x) {
    print(size(x));
    insert(x);
    print(size(x));
}
```

```c
define void @foo(ptr %x) {
    %2 = call @size(ptr %x)
    call @print(i32 %2)
    call @insert(ptr %x)
    ; %3 = add i32 %2, 1
    %3 = call @size(ptr %x)
    call @print(i32 %3)
    ret void
}
```
The MLIR Framework

• MLIR is a recent compiler infrastructure designed for reuse and extensibility

• Rather than providing a predefined set of instructions and types, MLIR operates on collections of dialects that contain sets of interoperable user-defined operations, attributes and types

• Anyone can define their own optimizable dialect/operation, with a large set of existing dialects (structured control flow, affine, GPU, quantum, fully homomorphic encryption, circuits, LLVM, and more!)
Polygeist[1] Pipeline

- Generic C or C++ frontend that generates "standard” and user-defined MLIR
- Raising transformations for raising "standard" MLIR to high-level
- Collection of high-level optimization passes (general mem2reg, parallel optimizations)
- Polyhedral optimization via novel optimizations and integrating prior tools (Pluto, CLooG) into MLIR
- Parallel/GPU optimizations & transformations

[1] Polygeist: Raising C to Polyhedral MLIR; Moses, Chelini, Zhao, and Zinenko. PACT ’21.
void set(int *arr, int val) {
 for(int i=0; i<10; i++){
 arr[2*i] = val;
 }
}
func @set(%arg0: memref<?x i32>, %arg1: i32) {
 %c0 = constant 0 : index
 %0 = alloca() : memref<1x memref<?x i32>>
 store %arg0, %0[%c0] : memref<1x memref<?x i32>>
 %1 = alloca() : memref<1 x i32>
 store %arg1, %1[%c0] : memref<1 x i32>
 %c0_i32 = constant 0 : i32
 %c10_i32 = constant 10 : i32
 %2 = index_cast %c10_i32 : i32 to index
 scf.for %arg2 = %c0_i32 to %2 {
 %3 = index_cast %arg2 : index to i32
 %4 = alloca() : memref<1 x i32>
 store %3, %4[%c0] : memref<1 x i32>
 %5 = load %0[%c0] : memref<1x memref<?x i32>>
 %c2_i32 = constant 2 : i32
 %6 = load %4[%c0] : memref<1 x i32>
 %7 = muli %c2_i32, %6 : i32
 %8 = index_cast %7 : i32 to index
 %9 = load %1[%c0] : memref<1 x i32>
 store %9, %5[%8] : memref<?x i32>
 }
 return
}
Polygeist Raising

```swift
func @set(%arg0: memref<?x i32>, %arg1: i32) {
   %c0 = constant 0 : index

   %c0_i32 = constant 0 : i32
   %c10_i32 = constant 10 : i32
   %2 = index_cast %c10_i32 : i32 to index
   scf.for %arg2 = %c0_i32 to %2 {
      %3 = index_cast %arg2 : index to i32

      %c2_i32 = constant 2 : i32

      %7 = muli %c2_i32, %3 : i32
      %8 = index_cast %7 : i32 to index

      store %arg1, %arg0[%8] : memref<?x i32>
   }
   return
}
```

1. Mem2Reg
Polygeist Raising

```
func @set(%arg0: memref<?x i32>, %arg1: i32) {
    %c0 = constant 0 : index
    %c2 = constant 2 : i32
    %c10 = constant 10 : i32

    scf.for %arg2 = %c0 to %c10 {

        %7 = muli %c2_i32, %arg2 : index

        store %arg1, %arg0[%7] : memref<?x i32>
    }
    return
}
```
func @set(%arg0: memref<?x:i32>, %arg1: i32) {

affine.for %arg2 = 0 to 10 {

 affine.store %arg1, %arg0 [2 * %arg2]:
 memref<?x:i32>
}

return
}

1. Mem2Reg
2. Canonicalize
3. Raise to Affine
Two Case Studies

• Demonstrate the benefits of a compiler-based IR with multiple abstraction levels by two case studies in Polygeist/MLIR
 • Polyhedral optimization [1]
 • GPU optimization and transpilation to the CPU [2]

[1] Polygeist: Raising C to Polyhedral MLIR; Moses, Chelini, Zhao, and Zinenko. PACT ’21.
[2] High-Performance GPU-to-CPU Transpilation and Optimization via High-Level Parallel Constructs; Moses, Ivanov, Domke, Endo, Doerfert, and Zinenko. Under Review
Case Study 1: The Polyhedral Model

• Represent programs as a collection of computations and constraints on a multi-dimensional grid (polyhedron)
• Makes it easy to analyze and specify program transformations best exploit the available hardware
 • Loop restructuring for spatial/temporal locality, automatic parallelization, etc.
• One of the best frameworks for optimizing compute-intensive programs like machine learning kernels or scientific simulations as well as for programming accelerators.
Polyhedral Compilation Today

Lower

Optimizer

CodeGen

Source-Based Transformation
Pluto, PPCG

Planner-Based Transformation
Polly (LLVM), Graphite (GCC)

Keeps High Level Info; Fails On Unoptimized Code

Runs Optimizations First Attempts to Recover Structure
Polyhedral Compilation Today

Pluto, PPCG
- Keeps High Level Info;
 - Fails On Unoptimized Code

Polly (LLVM), Graphite (GCC)
- Runs Optimizations First
 - Attempts to Recover Structure

Source-Based Transformation

Compiler-Based Transformation
Polygeist + Polyhedral

- Polygeist gets the benefits of both worlds
 - Preserves the high-level (polyhedral/affine) structure of programs AND
 - Optimizes & simplifies programs prior to transformations
 - New polyhedral optimizations that cannot otherwise be easily expressed

```c
int mul2(int val) { return 2 * val; }

void set(int *arr, int val) {
  for(int i=0; i<10; i++){
    arr[mul2(i)] = val;
  }
}
```

```c
func @set(%arg0: memref<?x i32>, %arg1: i32) {
  affine.for %arg2 = 0 to 10 {
    affine.store %arg1, %arg0 [2 * %arg2] :
      memref<?x i32>
    }
  }
  return
}
```

- Serial Programs: 80% speedup over LLVM-based; 8% speedup over source-based
- Parallel Programs: 190% speedup over LLVM-based; 26% speedup over source-based
Case Study 2: GPUs

- Mainstream compilers do not have a high-level representation of parallelism, making optimization difficult or impossible.
- This is accentuated for GPU programs where the kernel is kept in a separate module to allow emission of different assembly and synchronization is treated as a complete optimization barrier.

```c
__global__ void normalize(int *out, int* in, int n) {
    int tid = blockIdx.x;
    if (tid < n)
        out[tid] = in[tid] / sum(in, n);
}

void launch(int *out, int* in, int n) {
    normalize<<<n>>>(d_out, d_in, n);
}
```

```c
#define void @Z9normalize(i32* %out, i32* %in, i32 %n) {
    %4 = call i32 @llvm.tid.x()
    %5 = icmp slt i32 %4, %n
    br i1 %5, label %6, label %13

6:  
    %8 = getelementptr i32, i32* %in, i32 %4
    %9 = load i32, i32* %8, align 4
    %10 = call i32 @Z3sumPii(i32* %in, i32 %n)
    %11 = sdiv i32 %9, %10
    %12 = getelementptr i32, i32* %out, i32 %4
    store i32 %11, i32* %12, align 4
    br label %13

13:  
    ret void
}
```

Host Code

Device Code
Preserve the parallel structure

• Maintain GPU parallelism in a form understandable to the compiler
• Enables optimization between caller and kernel
• Enable parallelism-specific optimization

```c
__global__ void normalize(int *out, int* in, int n) {
    int tid = blockIdx.x;
    if (tid < n)
        out[tid] = in[tid] / sum(in, n);
}

void launch(int *out, int* in, int n) {
    normalize<<<n>>>(d_out, d_in, n);
}
```

```c
func @_Z6launch(%out: memref<?xi32>,
                     %in: memref<?xi32>, %n: i32) {
    %c1 = constant 1 : index
    %c0 = constant 0 : index
    parallel (%tid) = (%c0) to (%n) step (%c1) {
        %2 = load %in[%tid]
        %sum = call @_Z3sumPii(%in, %n)
        %4 = divsi %2, %sum : i32
        store %4, %out[%tid]
    }
    return
}
```
Preserve the parallel structure

- Maintain GPU parallelism in a form understandable to the compiler
- Enables optimization between caller and kernel
- Enable parallelism-specific optimization

```c
__global__ void normalize(int *out, int* in, int n) {
    int tid = blockIdx.x;
    if (tid < n)
        out[tid] = in[tid] / sum(in, n);
}

void launch(int *out, int* in, int n) {
    normalize<<<n>>>(d_out, d_in, n);
}
```

```c
func @_Z6launch(%out: memref<?xi32>,
              %in: memref<?xi32>, %n: i32) {
    %c1 = constant 1 : index
    %c0 = constant 0 : index
    %sum = call @_Z3sumPii(%in, %n)
    parallel (%tid) = (%c0) to (%n) step (%c1) {
        %2 = load %in[%tid]
        %4 = divsi %2, %sum : i32
        store %4, %out[%tid]
        yield
    }
    return
}
```
Synchronization via Memory

• Synchronization *(sync_threads)* ensures all threads within a block finish executing *codeA* before executing *codeB*

• The desired synchronization behavior can be reproduced by defining *sync_threads* to have the union of the memory semantics of the code before and after the sync.

• This prevents code motion of instructions which require the synchronization for correctness, but permits other code motion (e.g. index computation).
Synchronization via Memory

• High-level synchronization representation enables new optimizations, like sync elimination.
• A synchronize instruction is not needed if the set of read/writes before the sync don’t conflict with the read/writes after the sync.

```cpp
__global__ void bpnn_layerforward(...) {
    __shared__ float node[HEIGHT];
    __shared__ float weights[HEIGHT][WIDTH];

    if (tx == 0) {
        node[ty] = input[index_in];

        // Unnecessary Barrier #1
        // None of the read/writes below the sync
        // (weights, hidden)
        // intersect with the read/writes above the sync
        // (node, input)
        __syncthreads();

        weights[ty][tx] = hidden[index];

        __syncthreads();
    }
}
```
GPU Transpilation

• A unified representation of parallelism enables programs in one parallel architecture (e.g. CUDA) to be compiled to another (e.g. CPU/OpenMP)

• Most CPU backends do not have an equivalent block synchronization

• Efficiently lower a top-level synchronization by distributing the parallel for loop around the sync, and interchanging control flow

```c
parallel_for %i = 0 to N {
    codeA(%i);
    sync_threads;
    codeB(%i);
}
```

```c
parallel_for %i = 0 to N {
    codeA(%i);
}
parallel_for %i = 0 to N {
    codeB(%i);
}
```
CUDA programs transcompiled by Polygeist not only match the performance of handwritten OpenMP programs, but *achieve a speedup*!

- 76% geomean speedup on Rodinia
- 2.7x geomean speedup on PyTorch versus built-in CPU backend (also using our MocCUDA compatibility layer)
Conclusion

• Optimizable, multi-level operations are key to compiler extensibility and therefore performance

• Polygeist/MLIR is a new Clang-based compiler that allows you to leverage this extensibility
 • C/C++ frontend for MLIR
 • Compiler transformations for raising MLIR to a higher-level
 • Collection of high-level optimization passes (general mem2reg, etc)
 • Polyhedral optimization via novel optimizations and integrating prior tools into MLIR
 • Parallel/GPU optimizations & transformations

• Polygeist beats existing polyhedral tools on sequential and parallel code

• Polygeist can optimize and transcompile your GPU/parallel code

• LLVM incubator project, open sourced on Github, see https://polygeist.mit.edu and discuss on Discourse!
Acknowledgements

• Thanks to Valentin Churavy, Albert Cohen, Henk Corporaal, Tobias Grosser, and Charles Leiserson for thoughtful discussions on this work.

• William S. Moses was supported in part by a DOE Computational Sciences Graduate Fellowship, in part by Los Alamos National Laboratories, and in part by the United States Air Force Research Laboratory. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the United States Air Force or the U.S. Government.

• Lorenzo Chelini is partially supported by the European Commission Horizon 2020

• Ruizhe Zhao is sponsored by UKRI and Corerain Technologies Ltd. The support of the UK EPSRC is also gratefully acknowledged.

• The work was supported in part by JSPS KAKENHI Grant Number JP19H04119 and in part by the Japan Society for the Promotion of Science KAKENHI Grant Number JP19H04119, and in part by the New Energy and Industrial Technology Development Organization (NEDO).
Conclusion

• Optimizable, multi-level operations are key to compiler extensibility and therefore performance
• Polygeist/MLIR is a new Clang-based compiler that allows you to leverage this extensibility
 • C/C++ frontend for MLIR
 • Raising transformations for raising MLIR
 • Collection of high-level optimization passes (general mem2reg, parallel optimizations)
 • Polyhedral optimization via novel optimizations and integrating prior tools into MLIR
 • Parallel/GPU optimizations & transformations
• Polygeist beats existing polyhedral tools on sequential and parallel code
• Polygeist can optimize and transcompile your GPU/parallel code
• LLVM incubator project, open sourced on Github, see https://polygeist.mit.edu and discuss on Discourse!
Backup Slides
Translate to OpenScop

• First pre-process MLIR Affine code by previous passes
• For each extracted polyhedral statement:
 • Domain: get constraints from affine.for/if
 • Initial Schedule: derive from region nesting and operation order
 • Access: extract from affine load/stores
• Store symbols in OpenScop extensions
Translate to OpenScop

affine.for %i = 0 to %N

affine.for %j = 0 to %N

call @S0(%A, %i, %j)

func @S0(%A: memref<?x?xf32>, %i: index, %j: index) {
 %0 = affine.load %A[%i, %j]
 %1 = mulf %0, %0
 affine.store %1, %A[%i, %j]
 return
}
Regenerate MLIR Code

• Obtain a CLooG AST from an optimized OpenScop representation
• Regenerate MLIR code by traversing AST
• OpenScop symbols will be translated to MLIR values or operations based on a maintained symbol table.
Motivation

- The compiler research has recently been enamored by the MLIR framework, whose first-class polyhedral representation may provide benefits on a variety of codes.
- We can fully leverage decades of polyhedral research by connecting MLIR with existing polyhedral tools.
- Without MLIR-versions of standard polyhedral benchmarks, one cannot perform a fair assessment.

Goal of this work is to provide a fair baseline for subsequent work AND explore the potential of polyhedral optimizations that require both high level and low level information.
Outlining

• Outline statements into functions
• Function interfaces:
 • Memory to access
 • Lifted stack allocated symbols

```plaintext
func @S0(%A: memref<xf32>) {
  %c0 = constant 0 : index
  %s0 = dim %A, %c0 : index

  %l = affine.load %A[0]
  affine.store %l, %A[symbol(%s0) - 1]
  return
}
```

```plaintext
func @S0(%A: memref<xf32>, %s0: index ) {
  %o = affine.load %A[0]
  affine.store %o, %A[%s0 - 1]
  return
}
```
Polygeist Raising

- Select statements must be represented by a C ternary operator
- C ternaries have lazy-evaluation semantics which are replicated in the generated MLIR
- Mem2Reg and code motion attempt to remove unnecessary loads within if's to generate a valid select.

```
prefixMax[i] = (prefixMax[i-1] >= data[i])
    ? prefixMax[i-1] : data[i];
```
The Affine dialect

• Represent SCoP with polyhedral-friendly loops and conditions

• Core Affine representation
 • **Symbols** - parameters
 • **Dimensions** - symbol extension that accepts induction variables
 • **Maps** - multi-dimensional function of symbols and dimensions
 • **Sets** - integer tuples constrained by a conjunction

```plaintext
%c0 = constant 0 : index
%0 = dim %A, %c0 : memref<%xf32>
%1 = dim %B, %c0 : memref<%xf32>
affine.for %i = 0 to affine_map<>()[s0] -> (s0)[%0] {
  affine.for %j = 0 to affine_map<>()[s0] -> (s0)[%1] {
    %2 = affine.load %A[%i] : memref<%xf32>
    %3 = affine.load %B[%j] : memref<%xf32>
    %4 = mulf %2, %3 : f32
    %5 = affine.load %C[%i + %j] : memref<%xf32>
    %6 = addf %4, %5 : f32
    affine.store %6, %C[%i + %j] : memref<%xf32>
  }
}
```
func @set(%arg0: memref<?x32>, %arg1: i32) {
 %c0 = constant 0 : index
 %0 = alloca() : memref<1xmemref<?x32>>
 store %arg0, %0[%c0] : memref<1xmemref<?x32>>
 %1 = alloca() : memref<1x32>
 store %arg1, %1[%c0] : memref<1x32>
 %c0_i32 = constant 0 : i32
 %c10_i32 = constant 10 : i32
 %2 = index_cast %c10_i32 : i32 to index
 scf.for %arg2 = %c0_i32 to %2 {
 %3 = index_cast %arg2 : index to i32
 %4 = alloca() : memref<1x32>
 store %3, %4[%c0] : memref<1x32>
 %5 = load %0[%c0] : memref<1xmemref<?x32>>
 %c2_i32 = constant 2 : i32
 %6 = load %4[%c0] : memref<1x32>
 %7 = muli %c2_i32, %6 : i32
 %8 = index_cast %7 : i32 to index
 %9 = load %1[%c0] : memref<1x32>
 store %9, %5[%8] : memref<?x32>
 }
 return
}

func @set(%arg0: memref<?x32>, %arg1: i32) {
 affine.for %arg2 = 0 to 10 {
 affine.store %arg1, %arg0[%arg2 * 2] : memref<?x32>
 }
 return
}
Polyhedral Performance Differences

• Polly differs from other two as it uses a different scheduler

• Even when using the same scheduler, Polygeist can select a different statement set and thus schedule coming from partially optimized SSA rather than the original C.

• Pluto executes significantly more (~10^11) more integer instructions on seidel-2d than Polygeist, which is ~59s at 3GHz, accounting for the gap. Can be caused by different integer optimization and the use of a proper machine type/bound simplification.

• For jacobi-2d, Polygeist performs worse, stopping earlier when simplifying (75 statement copies in 40 branches), whereas Clang by default takes longer to process this but has better end vectorization.
Sequential Polyhedral Comparison

Polygeist: 2.53x speedup
Pluto: 2.34x speedup
Polly: 1.41x speedup

Big gaps come from different schedules
Parallel Performance Differences

• Same scheduling differences as sequential (Cholesky and LU are better on Pluto/Polygeist than Polly; Gemver and MVT are better on Polly)

• Ludcmp and syr(2)k benefit from SSA optimizations

• Polygeist is only framework that can parallelize deriche (6.9x) and symm (7.7x) by analyzing and removing the loop-carried dependency

• Polygeist identifies a parallel reduction within gramschmidt (56x Polygeist, 54x Pluto, 34x Polly) and durbin (6x slowdown as few iterations)
Polygeist Frontend

• Ingests Clang AST to simplify parsing, semantic analysis, linkage, etc.
• Each C/C++ type is defined to have a corresponding MLIR. Pointers, arrays, and some structs can use MLIR’s structured pointer or `memref` type, preserving sizes and multi-dimensional indexing.
 • `int[12][30]` => `memref<12x30x132>`
 • `float*` => `memref<?xf32>`
• Allocation and deallocation instructions converted to `memref alloc/dealloc`.
• Control flow and loops are directly lowered to structured MLIR-equivalent operations.
• Supports advanced C++ features like templates and constructors.
Polygeist Raising

• Local variables eliminated by new MLIR mem2reg pass
• Canonicalizations run to simplify the code, including while => for
• Raising an operation (for, if, load, store) to its affine-variant:
 • Detect if index calculation is a valid affine expression
 • Progressively fold index calculation into a new replacement affine operation

%off = muli %c2, %idx : index
store %val, %ptr[%off] : memref<?x132>

affine.store %val, %ptr[2 * %idx] : memref<?x132>
Sequential Polyhedral Comparison

Polygeist: 2.53x speedup
Pluto: 2.34x speedup
Polly: 1.41x speedup
Polygeist: 2.53x speedup
Pluto: 2.34x speedup
Polly: 1.41x speedup

Big gaps come from different schedules
Polygeist: 2.53x speedup
Pluto: 2.34x speedup
Polly: 1.41x speedup

24% Polygeist speedup comes from better integer operations
Sequential Polyhedral Comparison

Polygeist: 2.53x speedup
Pluto: 2.34x speedup
Polly: 1.41x speedup

Polygeist slower due to smaller branch-simplification timeout
Parallel Polyhedral Comparison

Polygeist: 9.47x speedup
Pluto: 7.54x speedup
Polly: 3.26x speedup
Parallel Polyhedral Comparison

Polygeist: 9.47x speedup
Pluto: 7.54x speedup
Polly: 3.26x speedup

Polygeist and Polly benefit from SSA optimizations
Parallel Polyhedral Comparison

Polygeist: 9.47x speedup
Pluto: 7.54x speedup
Polly: 3.26x speedup

Polygeist can remove loop-carried dependency and parallelize when others cannot.
Parallel Polyhedral Comparison

Polygeist: 9.47x speedup
Pluto: 7.54x speedup
Polly: 3.26x speedup

Polygeist can detect parallel reductions
Case Study 2: GPUs

__device__ int sum(int* data, int n);

__global__ void square(int* out, int* in, int n) {
 int tid = blockIdx.x;
 if (tid < n)
 out[tid] = in[tid] / sum(in, n);
}

void launch(int* h_out, int* h_in, int n) {
 int* d_out, *d_in;
 cudaMalloc(&d_out, n*sizeof(n));
 cudaMalloc(&d_in, n*sizeof(n));
 cudaMemcpy(d_in, h_in, n*sizeof(n), cudaMemcpyHostToDevice);
 square<<<(n+31)/32, 32>>>(d_out, d_in, n);
 cudaMemcpy(h_out, h_out, n*sizeof(n), cudaMemcpyDeviceToHost);
}
A first-class representation of parallelism

- Current mainstream compilers do not have a good notion or representation of parallelism
- This is accentuated for GPU programs where the kernel is kept in a separate module to allow emission of different assembly

```cpp
__device__ int sum(int *in, int n);

__global__ void normalize(int *out, int *in, int n) {
    int tid = threadIdx.x;
    if (tid < n)
        out[tid] = in[tid] / sum(in, n);
}

void launch(int *out, int *in, int n) {
    normalize<<<nblocks, nthreads>>>(out, in, n);
}
```

GPU Memory Hierarchy

<table>
<thead>
<tr>
<th>Per Thread</th>
<th>Per Block</th>
<th>Per GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register</td>
<td>Shared Memory</td>
<td>Global Memory</td>
</tr>
<tr>
<td>~Bytes</td>
<td>~KBs</td>
<td>~GBs</td>
</tr>
<tr>
<td>Use Limits Parallelism</td>
<td>Use Limits Parallelism</td>
<td></td>
</tr>
</tbody>
</table>

Slower, larger amount of memory
A first-class representation of parallelism

- Current mainstream compilers do not have a good notion or representation of parallelism
- This is accentuated for GPU programs where the kernel is kept in a separate module to allow emission of different assembly

```
target triple = "x86_64-unknown-linux-gnu"
define void @_Z6launchPiS_i(i32* %out, i32* %in, i32 %n)
{
  call i32 @__cudaPushCallConfiguration(...)
  call i32 @cudaLaunchKernel(@_device_stub, ...)
  ret void
}

```

```
target triple = "nvptx"
define void @_Z9normalizePiS_i(i32* %out, i32* %in, i32 %n)
{
  %4 = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
  %5 = icmp slt i32 %4, %n
  br i1 %5, label %6, label %13

  6: ; preds = %3
    %8 = getelementptr inbounds i32, i32* %in, i32 %4
    %9 = load i32, i32* %8, align 4
    %10 = call i32 @_Z3sumPii(i32* %in, i32 %n) #5
    %11 = sdiv i32 %9, %10
    %12 = getelementptr inbounds i32, i32* %out, i32 %4
    store i32 %11, i32* %12, align 4
    br label %13

  13:
  ret void
```

GPU Synchronization Lowering

- Most CPU backends (e.g. Cilk, OpenMP) do not have an equivalent & general synchronization instruction (more akin to a barrier)
- Existing approaches create a heavy-weight state machine of all synchronizations that stores all values
GPU Synchronization Lowering: Registers

• Registers defined before the synchronization and used after the synchronization must be preserved through an allocation.

• If the memory semantics allow us to more efficiently recompute the value, it doesn’t need to be stored.

```c
parallel_for %i = 0 to N {
  %off = %i + 1
  codeA(%off);
  sync_threads;
  codeB(%off);
}
```

```c
%offm = alloca N
parallel_for %i = 0 to N {
  %off = %i + 1
  %offm[%i] = %off
  codeA(%off);
}
parallel_for %i = 0 to N {
  codeB(%off_m[%i]);
}
```
GPU Synchronization Lowering: Registers

- Registers defined before the synchronization and used after the synchronization must be preserved through an allocation.
- If the memory semantics allow us to more efficiently recompute the value, it doesn’t need to be stored.

- **[Question]** Is distributing the parallelism around the barrier the best approach?

- **[Question]** How do we minimize the runtime of preserving registers?
 - Tradeoff parallel recompute vs preserve
 - Min Cut?
• Synchronization within control flow (for, if, while, etc) can be lowered by splitting around the control flop and interchanging the parallelism.

```
parallel_for %i = 0 to N {
  codeA(%i);
  for %j = ... {
    codeB1(%i, %j);
    sync_threads;
    codeB2(%i, %j);
  }
  codeC(%i);
}
```

```
parallel_for %i = 0 to N {
  codeA(%i);
  for %j = ... {
    codeB1(%i, %j);
    sync_threads;
    codeB2(%i, %j);
  }
  sync_threads;
  codeC(%i);
}
```

```
parallel_for %i = 0 to N {
  codeA(%i);
}
parallel_for %i = 0 to N {
  for %j = ... {
    codeB1(%i, %j);
    sync_threads;
    codeB2(%i, %j);
  }
}
```

```
parallel_for %i = 0 to N {
  codeC(%i);
}
```
- Synchronization within control flow (for, if, while, etc) can be lowered by splitting around the control flop and interchanging the parallelism.

```c
parallel_for %i = 0 to N {
    codeA(%i);
}
parallel_for %i = 0 to N {
    for %j = ... {
        codeB1(%i, %j);
        sync_threads;
        codeB2(%i, %j);
    }
}
parallel_for %i = 0 to N {
    codeC(%i);
}
```

```c
parallel_for %i = 0 to N {
    codeA(%i);
}
for %j = ... {
    parallel_for %i = 0 to N {
        codeB1(%i, %j);
        sync_threads;
        codeB2(%i, %j);
    }
}
parallel_for %i = 0 to N {
    codeC(%i);
}
```

```c
parallel_for %i = 0 to N {
    codeA(%i);
}
for %j = ... {
    parallel_for %i = 0 to N {
        codeB1(%i, %j);
        sync_threads;
        codeB2(%i, %j);
    }
}
parallel_for %i = 0 to N {
    codeC(%i);
}
```
Open Research Directions

• How can we optimize GPU programs?

• Can we convert GPU to CPU (and vice versa)?
 • Working with Riken/Tokyo Tech to port GPU to Fugaku supercomputer

• What advantages can we gain from compiler representations?
Introduction GPU Programming

- GPU threads are like CPU threads in which they can run in parallel.
- A group of threads (up to 32) are combined in a block.
- Threads can share data and/or sync within a block but not between blocks.
- All threads in a block are guaranteed to execute at the same time (and may run in lockstep).
- Blocks are not
The Polygeist Compilation Flow

- Generic C or C++ frontend that generates "standard" MLIR
- Raising transformations for transforming "standard" MLIR to polyhedral MLIR (Affine)
- Embedding of existing polyhedral tools (Pluto, CLooG) into MLIR
- Novel transformations (statement splitting, reduction detection) that rely on high-level compiler representation
- End-to-end evaluation of standard polyhedral benchmarks (Polybench)
Polygeist on Polyhedral

• An MLIR-based end-to-end polyhedral compilation flow
• Keeps the best parts of high-level abstractions and low-level optimizations by directly lowering to and optimizing MLIR.

• Multiple abstraction levels allows new polyhedral optimization opportunities and simplifies the implementation of others

• State-of-the-art performance when compared with existing source and compiler-based tools.
Connecting MLIR to Polyhedral Tools

- Polygeist produces MLIR **Affine**
- MLIR **Affine** \leftrightarrow polyhedral model
- Existing tools don't take **Affine**
- **OpenScop** is a target representation
- How to translate **Affine** \leftrightarrow **OpenScop**?
Polyhedral Optimization Pipeline

- Polygeist: -raise-affine
 - MLIR Affine
 - reg2mem
 - resolve-hazards
 - extract-polystmt
 - Translate to OpenScop
 - OpenScop
 - pluto-opt
 - Translate to MLIR
 - MLIR Affine
 - MLIR -lower-affine
Polyhedral Statement

- **OpenScop** expects **C-like** statements:

 \[
 C[i][j] += A[i][k] \times B[k][j]
 \]

- **MLIR Affine** is at a lower level.
- To match C-like statements:
 - **Extract** 1 MLIR memory write
 - **Traverse** SSA use-def chains
 - **Gather** until loads or symbols

```mlir
affine.for %i = 0 to %N
%0 = affine.load %A[%i]
%1 = affine.load %B[%i]
%2 = mulf %0, %1
%3 = affine.load %C[%i]
%4 = addf %2, %3
affine.store %4, %C[%i]
```

```mlir
affine.for %i = 0 to %N
   call @s0(%A, %B, %C, %i)
```
Region-Spanning Problem

- A use-def chain spans across loops
- Statement nesting is **ambiguous**
- MLIR reconstruction is **difficult**
- Reg2mem pass: insert a **scratchpad** for each region-spanning use-def chain
Avoid RAW Hazard

• Two stores **share** the same load
• 1st store **overwrite** the address
• Detected by **value analysis**
• **Solution**: insert scratchpads
Evaluation

• Compare Polygeist frontend with Clang to establish a fair baseline

• Compare Polygeist polyhedral optimization with Pluto (source-based) and Polly (compiler-based)

• Novel optimizations
Serial Non-Polyhedral Comparison
Serial Non-Polyhedral Comparison

Frontend within 0.32% of “standard” frontend
Serial Non-Polyhedral Comparison

Frontend within 0.32% of “standard” frontend

Remaining gap attributed to small tests where minor assembly differences matter
Parallel Reduction Detection (durbin)
Statement Splitting

• We don’t need to reconstruct the original C statements from Affine
• We can split statements by inserting scratchpads.

```c
for (i=0; i<NI; i++)
    for (j=0; j<NJ; j++)
        for (k=0; k<NK; k++)
            S:  A[i][j] += f(B[k][i], C[k][j]);
```

```
for (i=0; i<NI; i++)
    for (j=0; j<NJ; j++)
        for (k=0; k<NK; k++)
            double M[NK];
```

```
for (i=0; i<NI; i++)
    for (j=0; j<NJ; j++)
        for (k=0; k<NK; k++)
            S:  M[k] = f(B[k][i], C[k][j]);
T:  A[i][j] += M[k];
```

```c
for (i=0; i<NI; i++)
    for (j=0; j<NJ; j++)
        for (k=0; k<NK; k++)
            for (i=0; i<NI; i++)
                double M[NK];
```

```
for (j=0; j<NJ; j++)
    for (k=0; k<NK; k++)
        for (i=0; i<NI; i++)
            for (j=0; j<NJ; j++)
                S:  M[k] = f(B[k][i], C[k][j]);
T:  A[i][j] += M[k];
```
Statement Splitting

(a) sequential

(b) parallel

Lower is better

polygeist

polygeist-nosplit
Future Work

- Exploration of Statement Splitting beyond a simple heuristic
- GPU optimization and GPU <-> CPU
- Embedded DSL / C-style semantics for directly generating MLIR Ops
- Upstreaming LLVM Incubator Project
Frontend Performance Differences

• 8% performance boost on Floyd-Warshall occurs if Polygeist generates a single MLIR module for both benchmarking and timing code by default
• MLIR doesn't properly generate LLVM datalayout, preventing vectorization for MLIR-generated code (patched in our lowering)
• Different choice of allocation function can make a 30% impact on some tests (adi)
• LLVM strength-reduction is fragile and sometimes misses reversed loop induction variable (remaining gap in adi)
“Case Study 3”: Your Programs!

• There are already several efforts starting using Polygeist/MLIR to leveraging the benefits of optimizable multi-level operations
 • SYCL
 • Circuit Compilation
 • BLAS Kernels
 • Databases
 • ...

• If you’re interested in applying such techniques to your programs, please reach out!