Polygeist: Affine C in MLIR

William S. Moses
wmoses@mit.edu

Lorenzo Chelini
l.chelini@tue.nl

Ruizhe Zhao
rz3515@ic.ac.uk

Alex Zinenko
zinenko@google.com
Motivation

The compiler research has recently been enamored by the MLIR framework, whose first-class polyhedral representation may provide benefits on a variety of codes.

We can fully leverage decades of polyhedral research by connecting MLIR with existing polyhedral tools first.

Without MLIR-versions of standard polyhedral benchmarks, one cannot perform a fair assessment.

Goal of this work is not to use polyhedral tools to speedup MLIR, but to provide a fair baseline for subsequent work.
Polygeist

A platform to establish baselines for polyhedral transformations within MLIR

- Generic C or C++ frontend that generates "standard" MLIR
- Raising transformations for transforming "standard" MLIR to polyhedral MLIR (Affine)
- Embedding of existing polyhedral tools (Pluto, CLooG) into MLIR
- Polyhedral benchmarks for MLIR based off of Polybench
- End-to-end evaluation on standard polyhedral benchmarks
The MLIR Framework

• A toolkit for representing and transforming "code"
 • Modular and extensible via dialects (namespaces of operations/types and attributes)
 • Non-opinionated – choose the level of abstraction that is right for you
 • State-of-the-art SSA-based compiler technology

%result = "dialect.operation"(%operand, %operand)
 {attribute = #dialect"value"}) {{
 ^basic_block(%block_argument: !dialect.type):
 "another.operation"() : () -> ()
 }} : (!dialect.type) -> !dialect.result_type
The Affine dialect

• Represent SCoP with polyhedral-friendly loops and conditions

• Core Affine representation
 • **Symbols** - parameters
 • **Dimensions** - symbol extension that accepts induction variables
 • **Maps** - multi-dimensional function of symbols and dimensions
 • **Sets** - integer tuples constrained by a conjunction

```c
%c0 = constant 0 : index
%0 = dim %A, %c0 : memref<%xf32>
%1 = dim %B, %c0 : memref<%xf32>
affine.for %i = 0 to affine_map<() [s0] -> (s0)>()[%0] {
  affine.for %j = 0 to affine_map<() [s0] -> (s0)>()[%1] {
    %2 = affine.load %A[%i] : memref<%xf32>
    %3 = affine.load %B[%j] : memref<%xf32>
    %4 = mulf %2, %3 : f32
    %5 = affine.load %C[%i + %j] : memref<%xf32>
    %6 = addf %4, %5 : f32
    affine.store %6, %C[%i + %j] : memref<%xf32>
  }
}
```
Polygeist Frontend

• Built a generic C or C++ frontend for MLIR, based off of Clang
• C control flow directly lowered to MLIR for, if, etc..
• Variables and arrays represented by MLIR `memref` (memory reference) construct
void set(int *arr, int val) {
 #pragma scop
 for(int i=0; i<10; i++){
 arr[2*i] = val;
 }
 #pragma endscop
}
Polygeist Raising

• Directly lowered constructs are not valid polyhedral programs
• Local variables eliminated, if possible, by new MLIR mem2reg pass
• Loads and stores are raised to affine loads, if possible
 • Detect if index calculation is a valid affine expression
 • Progressively fold index calculation into an affine operation
• if statements are changed to affine if their condition can be raised
Polygeist Raising

```
func @set(%arg0: memref<?x?x32>, %arg1: i32) {
    %c0 = constant 0 : index
    %0 = alloca() : memref<1xmemref<?x?x32>>
    store %arg0, %0[%c0] : memref<1xmemref<?x?x32>>
    %1 = alloca() : memref<1xi32>
    store %arg1, %1[%c0] : memref<1xi32>
    %c0_i32 = constant 0 : i32
    %c10_i32 = constant 10 : i32
    %2 = index_cast %c10_i32 : i32 to index
    scf.for %arg2 = %c0_i32 to %2 {
        %3 = index_cast %arg2 : index to i32
        %4 = alloca() : memref<1xi32>
        store %3, %4[%c0] : memref<1xi32>
        %5 = load %0[%c0] : memref<1xmemref<?x?x32>>
        %c2_i32 = constant 2 : i32
        %6 = load %4[%c0] : memref<1xi32>
        %7 = muli %c2_i32, %6 : i32
        %8 = index_cast %7 : i32 to index
        %9 = load %1[%c0] : memref<1xi32>
        store %9, %5[%8] : memref<?x?x32>
    }
    return
}
```
Polygeist Raising

• Select statements must be represented by a C ternary operator
 • C ternaries have lazy-evaluation semantics which are replicated in the generated MLIR
 • Mem2Reg and code motion attempt to remove unnecessary loads within if's to generate a valid select.

```c
prefixMax[i] = (prefixMax[i-1] >= data[i]) ? prefixMax[i-1] : data[i];
```

```mlir
%0 = index_cast %arg2 : i32 to index
%1 = subi %0, %c1 : index
%2 = load %arg0[%1] : memref<?xi32>
%3 = load %arg1[%0] : memref<?xi32>
%4 = cmpi "sgt", %2, %3 : i32
%5 = scf.if %4 -> (i32) {
    %6 = load %arg0[%1] : memref<?xi32>
    scf.yield %6 : i32
} else {
    %6 = load %arg1[%0] : memref<?xi32>
    scf.yield %6 : i32
}
store %5, %arg0[%0] : memref<?xi32>
```
Connecting MLIR to Polyhedral Tools

• Polygeist can obtain polyhedral representation in MLIR Affine
• But it is difficult to leverage existing polyhedral tools
• OpenScop is the interchangeable format among polyhedral tools
• How to translate between MLIR code and OpenScop representation?
Polyhedral Statement

• OpenScop expects C-like statements:
 \[
 C[i][j] += A[i][k] \times B[k][j]
 \]

• MLIR is lower level and a store instruction alone does not specify how to compute the stored operand

• 1 OpenScop statement may correspond to many MLIR operations

• To match C-like statements:
 • Extract 1 MLIR memory write
 • Traverse SSA use-def chains
 • Continue until all operations are loads or symbols
Region-Spanning Problem

- A use-def chain may span multiple loops (regions).
 - e.g., A load op defines a register used by other ops in inner loops.
- Statement nesting in loops is ambiguous
- Difficult to reconstruct when converting back to MLIR
- Reg2mem pass: insert a scratchpad for each use-def across regions
Avoid RAW Hazard

• The RAW hazard problem:
 • A load op is duplicated for use in multiple statements
 • Intermediate writes may clobber
 • After extraction, later statements may load wrong values

• Simplified value analysis to detect
• Insert scratchpads
Outlining

- We outline statements into functions
- Opaque calls with known memory footprints
- Lift local stack allocations and symbol definitions

```swift
func @S0(%A: memref<?xf32>) {
    %c0 = constant 0 : index
    %s0 = dim %A, %c0 : index
    %l = affine.load %A[0]
    affine.store %l, %A[symbol(%s0) - 1]
    return
}
```

```
func @S0(%A: memref<?xf32>, %s0: index) {
    %0 = affine.load %A[0]
    affine.store %0, %A[%s0 - 1]
    return
}
```
Translate to OpenScop

• First pre-process MLIR Affine code by previous passes
• For each extracted polyhedral statement:
 • Domain: get constraints from affine.for/if
 • Initial Schedule: derive from region nesting and operation order
 • Access: extract from affine load/stores
• Store symbols in OpenScop extensions
Translate to OpenScop

affine.for %i = 0 to %N

affine.for %j = 0 to %N

call @S0(%A, %i, %j)

func @S0(%A: memref<?x?xf32>, %i: index,
 %j: index) {
 %0 = affine.load %A[%i, %j]
 %1 = mulf %0, %0
 affine.store %1, %A[%i, %j]
 return
}
Regenerate MLIR Code

• Obtain a CLooG AST from an optimized OpenScop representation
• Regenerate MLIR code by traversing AST
• OpenScop symbols will be translated to MLIR values or operations based on a maintained symbol table.
Polyhedral Optimization Pipeline

- After Polygeist's -raise-affine
- MLIR Affine code
 -reg2mem
 -resolve-hazards
 -extract-polystmt
- Translate to OpenScop
- OpenScop representation
 -pluto-opt
- Translate back to MLIR
- Polyhedral-optimized MLIR Affine code
- MLIR -lower-affine
Evaluation

• Compare Polygeist frontend with Clang

• Compare Polygeist polyhedral optimization with native Pluto
Frontend Comparison with Clang

X denotes tests with runtime < 0.05s

Polygeist faster

Clang faster
Frontend Performance Differences

• Solved differences (removed prior to benchmarking):
 • 8% performance boost on Floyd-Warshall occurs if Polygeist generates a single MLIR module for both benchmarking and timing code by default
 • MLIR doesn't properly generate LLVM datalayout, preventing vectorization for MLIR-generated code (patched in our lowering)
Frontend Performance Differences

• Remaining gaps:
 • Different memory allocation function
 • ~48% of gap in adi benchmark
 • LLVM strength-reduction is fragile and sometimes misses reversed loop induction variable (remaining gap in adi)
 • Type of induction variables (MLIR index vs C int32) make it easier for LLVM loop analyses to analyze code generated from MLIR.
Polygeist vs Pluto

Red X denotes test incompatible with Pluto (PET failed)
Green X denotes tests with runtime < 0.05s

Polygeist faster

Pluto faster

Bar chart showing percentage differences in performance between Polygeist and Pluto for various tests.
Polyhedral Performance Differences

Besides previously mentioned issues:

• CLooG AST generation
 • We test Pluto by its CLI tool (polycc)
 • Polygeist uses libpluto's `pluto_schedule_prog` API together with CLooG
 • Pluto configure options & optimized schedules are identical between them
 • Different CLooG AST, e.g., 579 (Pluto) vs 78 (Polygeist) lines for jacobi-2d
 • Pluto CLI has finer-grained control over CLooG AST generation

• Induction variable types (Pluto int vs MLIR i64)
• Auto-vectorization triggered differently

More details in IMPACT paper
Conclusion

- Polygeist provides tools to fairly compare MLIR-based polyhedral flows with prior Polyhedral tools
 - C or C++ frontend for (Affine) MLIR
 - Integration of existing polyhedral tools for transforming MLIR
 - End-to-end comparison using existing Polyhedral benchmarks (Polybench)

- Polygeist enables future research on polyhedral MLIR transformations

- MLIR-based frontend differs from Clang by 1.25%

- Polygeist's polyhedral optimized code differs from Pluto by 7.76%
Future Work

• Compare pipeline with Polly (LLVM-based polyhedral transformations)

• Use Polyhedral tools to speed up MLIR programs

• Parse existing polyhedral, CPU, and GPU programs for use in MLIR
Acknowledgements

• Thanks to Valentin Churavy, Albert Cohen, Henk Corporaal, Tobias Grosser, and Charles Leiserson for thoughtful discussions on this work.

• William S. Moses was supported in part by a DOE Computational Sciences Graduate Fellowship, in part by Los Alamos National Laboratories, and in part by the United States Air Force Research Laboratory.

• Lorenzo Chelini is partially supported by the European Commission Horizon 2020

• Ruizhe Zhao is sponsored by UKRI and Corerain Technologies Ltd. The support of the UK EPSRC is also gratefully acknowledged.
Conclusion

• Polygeist provides tools to fairly compare MLIR-based polyhedral flows with prior Polyhedral tools
 • C or C++ frontend for (Affine) MLIR
 • Integration of existing polyhedral tools for transforming MLIR
 • End-to-end comparison using existing Polyhedral benchmarks (Polybench)
• Polygeist enables future research on polyhedral MLIR transformations
• MLIR-based frontend differs from Clang by 1.25%
• Polygeist's polyhedral optimized code differs from Pluto by 7.76%
func @set(%arg0: memref<?x i32>, %arg1: i32) {
 affine.for %arg2 = 0 to 10 {
 affine.store %arg1, %arg0[%arg2 * 2] : memref<?x i32>
 }
 return
}