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A Diverse Parallel Ecosystem

* Recent explosion of parallel software
packages and hardware architectures.

* Changing landscape frequently requires
re-engineering application to run at all, Am;:,ﬁggygg&:
|et alone faSt. s EiRGY (P @

* Existing approaches require some
rewriting in either a performance
portability library or DSL — infeasible for
large / complex applications.

e Can fast and automated parallel
performance portability be achieved
through the compiler?




The Current Compilation Pipeline

void set(int *arr, int val) {
for(int i=0; i<10; i++){
arr[2*i] = val;
}
}

Parse Clang AST

Lowering

Optimize

CodeGen

LTVM

ForStmt

DeclStmt

‘-VarDecl used i 'int' cinit
‘-IntegerLiteral 'int’ 0
BinaryOperator 'bool’' ’'<’

"int’
‘-IntegerLiteral 'int’' 10
UnaryOperator 'int' postfix ’'++'

FunctionDecl set 'void (int *, int)’

|-ImplicitCastExpr 'int’' <LValueToRValue>
| ‘-DeclRefExpr 'int’' lvalue Var 0x563e22a396b8 'i’

‘-DeclRefExpr 'int' lvalue Var 0x563e22a396b8 'i’

define void @ Z3setPii(i32* %@, i32 %1) {
br label %4

3: ; preds = %4
ret void

4: ; preds = %2, %4

%5 = phi ied4 [ o0, %2 ], [ %8, %4 ]

%6 = shl ied4 %5, 1

%7 = getelementptr inbounds i32, i32* %@, i64 %6
store 132 %1, i32* %7

%8 = add ie4 %5, 1

%9 = icmp eq i64 %8, 10

br i1 %9, label %3, label %4




Losing High Level Structure

* LLVM, while general enough to represent any program, must
represent all parts of a program in a single, low-level IR
* Loses control flow constructs (if, for, etc)
* Hides parallelism behind runtime

* High-level semantics & properties cannot be represented and are lost.

void foo(DataStructure& x) { define void @foo(ptr %x) {
print(size(x)); %2 = call @size(ptr %x)
insert(x); call @print(i32 %2)
print(size(x)); call @insert(ptr %x)

} ; %3 = add 132 %2, 1

%3 = call @size(ptr %Xx)
call @print(i32 %3)
ret void




__global__ void normalize(int *out, int* in, int n) {
int tid = blockIdx.x;
if (tid < n)

G PU Programmlng } out[tid] = in[tid] / sum(in, n);

void launch(int *out, int* in, int n) {

* Mainstream compilers do not have a normalize<<<ns>>>(d out, d_in, n);

high-level representation of )
parallelism, making optimization
difficult or impossible Host Code Device Code
. . target triple = "x86_64-unknown-linux- target triple = ”nvptx”
¢ Thls IS accentuatEd for GPU o define void @ Z9normalize(i32* %out,
programs where the kernel is | *" " &m0 W= oll 132 @l i
kept in a separate module to | e 1z s | | o1 o e o
a”OW emiSSion Of diffe re nt } et void 6:%8 = getelementptr 132, i32* %in, 132 %4
. . %9 = load 132, i32* %8, align 4
assembly and synchronization 10 = call 133 0 Z3sunbii(132% %in, 132 %)
. . . . %11 = sdiv 132 %9, %%0 o ' )
is treated as a complete optimization e SN 2 e e
. br label %13
barrier. N
ret void
}




Raise & Optimize Optimize

Polygeist!l!//MLIR 2]

Clang . "’ )
Y Parse Lowerin Lowering he CodeGen —
d AST s @ LIVM

* Generic C and C++ frontend that generates "standard” and user-defined
MLIR (templates, classes, unions, etc. all supported)

* Preserves the structure of programs (parallelism, control flow, etc)
* Raising transformations for raising "standard"” MLIR to high-level

* Collection of high-level optimization and analysis passes (general
mem2reg, parallel optimizations)

[1] Polygeist: Raising C to Polyhedral MLIR; Moses, Chelini, Zhao, and Zinenko. PACT "21.
[2] MLIR: Scaling Compiler Infrastructure for Domain Specific Computation. CGO’21.



Polygeist Frontend Example

%0 = alloca() : memref<lxmemref<?xi32>>
store Z%argo, %0[%cO] : memref<lxmemref<?xi32>>

void set(int *arr, int val) {
for(int i=0; i<10; i++){
arr[2*i] = val;

) } scf.for %arg2 = %cO _i32 to %2 {
%6 = load %4[%c@] : memref<1xi32>
%7 = muli %c2 i32, %6 : 132
%8 = index_cast %7 : 132 to index

store %9, %5[%8] : memref<?xi32>

}

return




Polygeist Raising

func @set(%argd: memref<?xi32>, %argl: i32) {
%CcO = constant @ : index
%0 = alloca() : memref<lxmemref<?xi32>>
store %argo, %0[%c0] : memref<lxmemref<?xi32>>
%1 = alloca() : memref<1xi32>
store %argl, %1[%c@] : memref<1xi32>
%CO 132 = constant @ : 132
%CclO 132 = constant 10 : 132
%2 = index_cast %c10 132 : 132 to index
scf.for %arg2 = %cO _i32 to %2 {
%3 = index_cast %arg2 : index to 132
%4 = alloca() : memref<1xi32>
store %3, %4[%cO] : memref<1xi32>
%5 = load %0[%cO] : memref<lxmemref<?xi32>>
%Cc2 132 = constant 2 : 132
%6 = load %4[%c@] : memref<1xi32>
%7 = muli %c2 i32, %6 : 132
%8 = index_cast %7 : 132 to index
%9 = load %1[%c@] : memref<1xi32>
store %9, %5[%8] : memref<?xi32>

}

return




Polygeist Raising

func @set(%argd: memref<?xi32>, %argl: i32) {
%CcO = constant @ : index

%CO 132 = constant @ : 132
%CclO 132 = constant 10 : 132
%2 = index_cast %c10 132 : 132 to index
scf.for %arg2 = %cO _i32 to %2 {
%3 = index_cast %arg2 : index to 132

%Cc2 132 = constant 2 : 132

%7 = muli %c2 i32, %3 : i32
%8 = index_cast %7 : 132 to index

store %argl, %arg@[%8] : memref<?xi32>

}

return

1. Mem2Reg



Polygeist Raising

func @set(%argd: memref<?xi32>, %argl: i32) {
%»CO = constant O : index
%»Cc2 = constant 2 : 132
%Cc10 = constant 10 : i32

scf.for %arg2 = %cO to %clo {

%7 = muli %c2_i32, %arg2 : index

store %argl, %arg@[%7] : memref<?xi32>

}

return

1. Mem2Reg
2. Canonicalize
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Polygeist Raising

func @set(%argd: memref<?xi32>, %argl: i32) {

affine.for %arg2 = 0 to 10 {

affine.store %argl, %argd [2 * %arg2] :
memref<?x1i32>

}

return

}

Mem2Reg
Canonicalize

If legal, raise
while to for, for
to affine, etc

11



Polygeist Raising

func @set(%argd: memref<?xi32>, %argl: i32) {

affine.for %arg2 = 0 to 10 {

affine.store %argl, %argo [2 * %arg2] :

}

return

memref<?xi32>

void set(int *arr, int val) {
for(int i=0; i<10; i++){
arr[2*i] = val;
}
}

12




Preserving the GPU parallel structure

* Maintain GPU parallelism in a form understandable to the compiler

* Enables optimization between caller and kernel

* Enable parallelism-specific optimization

__global__ void normalize(int *out, int *in, int n) {
int tid = blockIdx.x;
if (tid < n)
out[tid] = in[tid] / sum(in, n);
}

void launch(int *out, int* in, int n) {
normalize<<<n>>>(d_out, d_in, n);

}

func @_Z6launch(%out: memref<?xi32>,

%in: memref<?xi32>, %n: 132) {
constant 1 : index
constant @ : index

%cl
%CO

parallel (%tid) = (%c@) to (%n) step (%cl) {
%2 = load %in[%tid]
%sum = call @_Z3sumPii(%in, %n)
%4 = divsi %2, %sum : 132
store %4, %out[%tid]
yield
}

return




Preserving the GPU parallel structure

* Maintain GPU parallelism in a form understandable to the compiler

* Enables optimization between caller and kernel

* Enable parallelism-specific optimization

__global__ void normalize(int *out, int *in, int n) {
int tid = blockIdx.x;
if (tid < n)
out[tid] = in[tid] / sum(in, n);
}

void launch(int *out, int* in, int n) {
normalize<<<n>>>(d_out, d_in, n);

}

func @_Z6launch(%out: memref<?xi32>,
%in: memref<?xi32>, %n: 132) {
%cl = constant 1 : index
%cO = constant @ : index

%sum = call @_Z3sumPii(%in, %n)
parallel (%tid) = (%c@) to (%n) step (%cl)
%2 = load %in[%tid]

%4 = divsi %2, %sum : 132
store %4, %out[%tid]
yield

}

return




Preserve the parallel structure

func @launch(%h_out : memref<?xf32>, %h_in : memref<?xf32>, %n : i64) {
parallel.for (%gx, %gy, %gz) = (0, 0, 0) to (grid.x, grid.y, grid.z) {
%shared val = memref.alloca : memref<f32>
parallel.for (%tx, %ty, %tz) = (6, 0, 0) to (blk.x, blk.y, blk.z) {
if %tx == 0 {

store .., %shared val[] : memref<f32>

}

polygeist.barrier(%tx, %ty, %tz)



Synchronization via Memory

* Synchronization (sync_threads) ensures all
threads within a block finish executing codeA
before executing codeB

* The desired synchronization behavior can be
reproduced by defining sync_threads to have
the union of the memory semantics of the
code before and after the sync.

* This prevents code motion of instructions
which require the synchronization for
correctness, but permits other code motion
(e.g. index computation).

codeA(fib(idx));
sync_threads;

codeB(fib(idx));

I

off = fib(idx);
codeA(off);

sync_threads;

codeB(off);




Synchronization via Memory

* High-level synchronization
representation enables new

optimizations, like sync elimination.

* A synchronize instruction is not
needed if the set of read/writes
before the sync don’t conflict

with the read/writes after the sync.

__global__ void bpnn_layerforward(...) {

__shared__ float node[HEIGHT];
__shared__ float weights[HEIGHT][WIDTH];

if ( tx == 0 )
node[ty] = input[index_in] ;

// Unnecessary Barrier #1

// None of the read/writes below the sync

// (weights, hidden)

// intersect with the read/writes above the sync

// (node, input)

__syncthreads();

// Unnecessary Store #1
weights[ty][tx] = hidden[index];
__syncthreads();

// Unnecessary Load #1
weights[ty][tx] = weights[ty][tx] * node[ty];




GPU Transpilation

* A unified representation of parallelism enables programs in one parallel
architecture (e.g. CUDA) to be compiled to another (e.g. OpenMP)

* Most CPU backends do not have an equivalent block synchronization

* Many existing approaches create a heavy-weight state machine of all
synchronizations that stores all values [1,2]

* Efficiently lower a top-level synchronization by distributing the parallel
for loop around the sync, and interchanging control flow, pioneered by
MCUDA for source code [3] and used in POCL, Ocelot, and COX

[1] Efficient Compilation of Fine-Grained SPMD-Threaded Programs for Multicore CPUs. CGO (2010)
[2] Improving performance of OpenCL on CPUs, CC (2012)
[3] MCUDA: An Efficient Implementation of CUDA Kernels for Multi-core CPUs. In Languages and Compilers for Parallel Computing (2008)



GPU Synchronization Lowering: Fission

e OQutermost synchronization can be handled by performing fission on

the surrounding parallel for loop.

parallel for %i
codeA(%i);
sync_threads;
codeB(%1i);

}

© to N {

parallel for %i
codeA(%1);

}
parallel for %i
codeB(%1i);

}

© to N {

© to N {
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GPU Synchronization Lowering: Registers

* Registers defined before the synchronization and used after the
synchronization must be preserved through an allocation.

* If the memory semantics allow us to more efficiently recompute the
value, it doesn’t need to be stored.

parallel for %1 = @ to N {
%off = %i + 1
codeA(%off);
sync_threads;
codeB(%off);

}

%o0ffm = alloca N

parallel for %i = @ to N {
%off = %1 + 1
%offm[%i] = %off
codeA(%off);

}

parallel for %i = @ to N {
codeB(%off m%[%i]);

}

parallel for %i
%off = %1 + 1
codeA(%off);

}

parallel for %i
%off = %1 + 1
codeB(%off);

}

©@ to N {

© to N {
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GPU Synchronization Lowering: Control Flow

* Synchronization within control can be lowered by splitting around the

control flop and interchanging the parallelism.

parallel for %i = @ to N {
for %j = .. {
codeB1(%i, %j);
sync_threads;
codeB2(%i, %j);
}
}

for %j = .. {
parallel for %i = @ to N {
codeB1(%i, %j);
sync_threads;
codeB2(%i, %j);
}
}

for %j = .. {
parallel for %i
codeB1(%i, %7j)

- o

}
parallel for %i =

codeB2(%i, %j);
}
}

©@ to N {

©@ to N {

21




GPU Synchronization Lowering: Control Flow

* Less structured control flow can still be lowered, but requires more
infrastructure.

%helper = alloca i1l
parallel for %i = @ to N { 1o {p

do { . parallel for %i = @ to N {
run(%1i); run(%i);

sync_threads; sync_threads;

run2(%1); run2(%i);
} while (condition()); %c = condition();
} if %i == 0 {

store %helper[] = %c;

}
}
%c2 = load helper|]
} while (%c2);




Evaluating Performance Portability

* Motivation of this work was to enable the often GPU-only versions o
programs to run on the CPU-only systems, like the Fugaku
supercomputer.

* Having demonstrated the ability to convert GPU code to CPU, how
close do these transpiled versions get to hand written CPU
performance?

In Proceedings of the IEEE International Symposium on Workload Characterization (IISWC), Oct. 2009
(c) IEEE, 2009

Rodinia: A Benchmark Suite for Heterogeneous Computing

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha Lee and Kevin Skadron
{sc5nf, mwb7w, jm6dg, dt2f, jws9c, sldge, ks7h} @virginia.edu

Department of Computer Science, University of Virginia

Abstract—This paper presents and characterizes Rodinia, a
suite for To help architects
study emerging platforms such as GPUs (Graphics Processing
Umls), Rodinia includes applications and kernels which target
ore CPU and GPU platforms. The choice of applications
nspired by Berkeley’s dwarf taxonomy. Our characterization
shows that the Rodinia benchmarks cover a wide range of
parallel ? patterns, sy and
power consumption, and has led to some important architectural
insight, such as the growing importance of memory-bandwidth
limitations and the consequent importance of data layout.

I. INTRODUCTION

‘With the microprocessor industry’s shift to multicore archi-
tectures, research in parallel computing is essential to ensure
future progress in mainstream computer systems. This in turn
requires standard benchmark programs that researchers can use
to compare platforms, identify performance bottlenecks, and
evaluate potential solutions. Several current benchmark suites
provide parallel programs, but only for conventional, general-
e CPIT arehifartirec

dwarves and application domains and currently includes nine
applications or kernels. We characterize the suite to ensure
that it covers a diverse range of behaviors and to illustrate
interesting differences between CPUs and GPUs.

In our CPU vs. GPU comparisons using Rodinia, we
have also that the major archi
between CPUs and GPUs have important implications for
software. For instance, the GPU offers a very low ratio of on-
chip storage to number of threads, but also offers specialized
memory spaces that can mitigate these costs: the per-block
shared memory (PBSM), constant, and texture memories. Each
is suited to different data-use patterns. The GPU’s lack of
persistent state in the PBSM results in less efficient commu-
nication among producer and consumer kernels. GPUs do not
easily allow runtime load balancing of work among threads
within a kernel, and thread resources can be wasted as a
result. Finally, discrete GPUs have high kernel-call and data-
transfer costs. Although we used some optimization techniques
1 olleviate thace icenpe they remain a hottflenack far come.

O PyTorch



Rodinia Benchmarks

* Geomean 54% improvement over hand-written OpenMP code.
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Rodinia Scalability

CUDA-OpenMP OpenMP
* CUDA-OpenMP 32;
has 14x speedup 16
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B |
cores 2
(@ o
wn
* OpenMP has 7x 1
speedup on 32 BN U S (N S O [N N S U T
1 2 4 8 16 32 1 2 4 8 16 32
cores Number of threads Number of threads
—e— b+tree findK* —e— myocyte solver 2 -~ srad vl reduce*
-+~ b+tree findRangeK* nw kernl* —-—- srad_v1 srad
—m backprop adjust weights* nw kern2* —¥— srad vl srad2
-+ backprop layerforward* nw total -#- srad vl total
—a— Dfs —e— particlefilter float* —— srad_v2 kernl*
— cfd —m-- particlefilter naive* -+~ srad_v2 kern2*
—»—- hotspot* - pathfinder* -+~ srad_v2 total
=— hotspot3D —e— srad_v1 compress streamcluster

—— Jud* --#- srad vl prepare «+»+«+ Perfect scaling



PyTorch Benchmark

* Built compatibility layer called MocCUDA which allows us to overwrite
CUDA versions of libraries with CPU versions, including those
generated by Polygeist.

* Evaluate training of Resnet-50 on Fugaku supercomputer

* Tested existing Fugaku-tuned CPU backends, as well as expert-written
kernels

O PyTorch



PyTorch Benchmark

MocCUDA outperforms Fujitsu-tuned oneDNN backend by 2.7x on
average across batch sizes/thread counts (ranges 1.2x - 4.5x)

—— PytorchCPU —— MocCUDA+Polygeist
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Conclusion

» Extending Polygeist/MLIR, we developed an end-to-end system capable of
representing, optimizing, and transpiling CPU and GPU parallel programs.

* Development of a high-level barrier operation, whose behavior is defined
by memory semantics, enables interoperability with serial and parallel-

specific optimizations.

* Ability to preserve high-level structure, including parallelism, barriers, and
control flow enables more efficient lowering to CPU’s

* Validate approach by performing GPU to CPU transpilation on Rodinia and
a PyTorch Resnet-50, which runs faster than existing CPU backends

* LLVM incubator project, open sourced on Github
(github.com/llvm/Polygeist), see polygeist.mit.edu & discuss on Discourse!



https://github.com/llvm/Polygeist
https://polygeist.mit.edu/
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GPU Synchronization Lowering: Registers

* Registers defined before the synchronization and used after the
synchronization must be preserved through an allocation.

* If the memory semantics allow us to more efficiently recompute the
value, it doesn’t need to be stored.

parallel for %1 = @ to N {
%off = %i + 1
codeA(%off);
sync_threads;
codeB(%off);

}

%o0ffm = alloca N

parallel for %i = @ to N {
%off = %1 + 1
%offm[%i] = %off
codeA(%off);

}

parallel for %i = @ to N {
codeB(%off m%[%i]);

}

parallel for %i
%off = %1 + 1
codeA(%off);

}

parallel for %i
%off = %1 + 1
codeB(%off);

}

©@ to N {

© to N {
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Rodinia Ablation
* Mincut: 5.8%; OpenMPOpt: 10.5%; Affine: 5.4% (2.4x backprop)
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PyTorch Scaling
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Conclusion

* Optimizable, multi-level operations are key to compiler extensibility and
therefore performance

* Polygeist/MLIR is a new Clang-based compiler that allows you to leverage
this extensibility

e C/C++ frontend for MLIR

* Compiler transformations for raising MLIR to a higher-level

» Collection of high-level optimization passes (general mem2reg, etc)

* Polyhedral optimization via novel optimizations and integrating prior tools into MLIR
 Parallel/GPU optimizations & transformations

* Polygeist beats existing polyhedral tools on sequential and parallel code
* Polygeist can optimize and transcompile your GPU/parallel code
» Supports recognizing and lowering to custom ops/dialects

* LLVM incubator project, open sourced on Github, see
https://polygeist.mit.edu and discuss on Discourse!
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GPU Memory Hierarchy

Per Thread Per Block Per GPU
Register Shared Memory Global Memory
~Bytes ~KBs ~GBs

Use Limits Parallelism Use Limits Parallelism

-_— - —_
Slower, larger amount of memory



Case Study 2: GPUs

__device__ int sum(int* data, int n);

GPU Code __global  void square(int *out, int* in, int n) {
> int tid = blockIdx.x;
if (tid < n)

out[tid] = in[tid] / sum(in, n);
}
CPU Code

v

void launch(int *h_out, int* h_in, int n) {
T CPU Memory

int *d_out, *d_in;

*c i .
Cudaalloc (8 in, nisizeor(n)); * GPUMemory
cudaMemcpy(d_in, h_in, n*sizeof(n), cudaMemcpyHostToDevice);
square<<<(n+31)/32, 32>>>(d_out, d _in, n);

Block T T Thread

cudaMemcpy (h_out, h_out, n*sizeof(n), cudaMemcpyDeviceToHost);




A first-class representation of parallelism

* Current mainstream compilers do not have a good notion or

representation of parallelism

* This is accentuated for GPU programs where the kernel is kept in a
separate module to allow emission of different assembly

target triple = "x86_64-unknown-1linux-gnu”

define void @ Z6launchPiS_i(i32* %out, i32* %in, 132 %n)

{

}

call i32 @_ cudaPushCallConfiguration(..)
call i32 @cudalLaunchKernel(@ device_stub,
ret void

2)

targe

defin
%4
%5
br

6: ;
%8
%9
%10
%11
%12
sto
br

13:

t triple = ”nvptx”

e void @ _Z9normalizePiS i(i32* %out, i32* %in, i32 %n) {
= call i32 @llvm.nvvm.read.ptx.sreg.tid.x()

= icmp slt 132 %4, %n

il %5, label %6, label %13

preds = %3
getelementptr inbounds 132, i32* %in, 132 %4
load i32, i32* %8, align 4

call i32 @ Z3sumPii(i32* %in, i32 %n) #5

sdiv i32 %9, %10

= getelementptr inbounds 132, 1i32* %out, 132 %4
re i32 %11, i32* %12, align 4
label %13

41



Open Research Directions

* How can we optimize GPU programs?

e Can we convert GPU to CPU (and vice versa)?
* Working with Riken/Tokyo Tech to port GPU to Fugaku

supercomputer

* What advantages can we gain
from compiler representations?

Exploring and Merging Different Routes to
0O(100,000s) Nodes Deep Learning

- - Data-parallel‘Model-parallel Data-parallel
Non-intrusive  graph-based AN s I N X » - layer-wise  distribution  and
partitioning  strategy for  f-| ° E (e 2 LEEE e ) inverse-free  design  further
large DNN models achieving SRR e S - A model-parallel 2nd-order method ~ accelerate K-FAC [5]
superlinear scaling [1] ot o] fefhing | (K-FAC) trains ResNet-50 on 1K GPUs UT Austin, UChicago, ANL
AIST, Koc U. Sutt’O {olrlel istri tuteftralrnng (EU_IEZ Model-parallélism in 10 minutes [4]
Ni:'p"";a Ie) ;’:Gp:&o';"'"g 012 enables 3D CNN training  TokyoTech, NVIDIA, RIKEN, AIST
e L on 2K GPUs with 64x | | ,
A atsuoka-lab, R . .
J— 5 3 larger spatial size and
better convergence [3] Merging Theory'and Practice
Inference (FP32)
Matsuoka-lab, LLNL, LBL, RIKEN
& MocCUDA: Porting CUDA-based ) Seme effiency e
Deep Neural Network Library to - - Porting CPU_-based Deep Neurgl onintel CPU
A64FX and (other CPU arch.) Engineering for Network Library to AGIEX chip . .
wowe  RIKEN, Matsuoka-lab, AIST Performance Foundation Eujitsw, RIKEN, ARM

[1] M. Fareed et al., “A Computational-Graph Partitioning Method for Training Memory-Constrained DNNs", Submitted to PPoPP21

[2] M. Wahib et al., “scaling Distributed Deep Learning Workloads beyond the Memory Capacity with KARMA”, ACM/IEEE SC20 (Supercomputing 2020) 1deal pert

3] Y. Oyama et al., “The Case for Strong Scaling in Deep Leaming: Training Large 3D CNNS with Hybrid Parallelism,” arXiv e-prints, pp. 1-12, 2020.

[4]K Osawa et al “Large-scale distributed second-order optinization using kronecker factored approximate cunature fr deep convolutional neuralneworks,” Proc. IEEE Comput Soc. Cont. Comput Vi. Pattem Recogni, Vol 2019-June, pp. 12351-12350, 2019
sl G P;ml(wkl 7 7hana | Huana W Xu and | T Faster ‘Convolutional Neural Network Trainina with Distributed K-FAC * arXiv a-nrinte nn 1-11 20



Introduction GPU Programming

e GPU threads are like CPU threads in which
they can run in parallel.

* A group of threads (up to 32) are combined

in a block

* Threads can share data and/or sync
within a block but not between blocks

 All threads in a block are guaranteed
to execute at the same time (and may
run in lockstep)

e Blocks are not

Grid

Block(0, 0) Block(1, 0) Block(2, 0)

Block(0, 1)° Block(1, 1) “Block(2, 1)

Block(1, 1)




The Polygeist Compilation Flow

-raise-affine [ » Polyhedral Model ]-Iower-affine
v Clang -O3

C code —> ——>» MLIR-SCF MLIR-SCF —>» LLVM- IR —» Binary

¥

-emit-llvm

Clang AST

e Generic C or C++ frontend that generates "standard” MLIR

* Raising transformations for transforming "standard" MLIR to
polyhedral MLIR (Affine)

 Embedding of existing polyhedral tools (Pluto, CLooG) into MLIR

* Novel transformations (statement splitting, reduction detection) that
rely on high-level compiler representation

* End-to-end evaluation of standard polyhedral benchmarks
(Polybench)



“Case Study 3”: Your Programs!

* There are already several efforts starting using Polygeist/MLIR to
leveraging the benefits of optimizable multi-level operations

SYCL

Circuit Compilation

BLAS Kernels

Databases

* If you're interested in applying such techniques to your
programs, please reach out!



GPU Synchronization Lowering

* Most CPU backends (e.g. Cilk, OpenMP) do not have an equivalent &
general synchronization instruction (more akin to a barrier)

* Existing approaches create a heavy-weight state machine of all
synchronizations that stores all values



GPU Synchronization Lowering: Registers

* Registers defined before the synchronization and used after the
synchronization must be preserved through an allocation.

* If the memory semantics allow us to more efficiently recompute the
value, it doesn’t need to be stored.

parallel for %1 = @ to N {
%off = %i + 1
codeA(%off);
sync_threads;
codeB(%off);

}

%o0ffm = alloca N

parallel for %i = @ to N {
%off = %1 + 1
%offm[%i] = %off
codeA(%off);

}

parallel for %i = @ to N {
codeB(%off m%[%i]);

}

parallel for %i
%off = %1 + 1
codeA(%off);

}

parallel for %i
%off = %1 + 1
codeB(%off);

}

©@ to N {

© to N {
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GPU Synchronization Lowering: Registers

* Registers defined before the synchronization and used after the
synchronization must be preserved through an allocation.

* If the memory semantics allow us to more efficiently recompute the
value, it doesn’t need to be stored.

* [Question] Is distributing the parallelism around the barrier the best
approach?

* [Question] How do we minimize the runtime of preserving registers?
* Tradeoff parallel recompute vs preserve
* Min Cut?



GPU Synchronization Lowering: Control Flow

* Synchronization within control flow (for, if, while, etc) can be lowered
by splitting around the control flop and interchanging the parallelism.

parallel for %i = @ to N {

codeA(%1i);

for %) = .. {
codeB1(%i, %j);
sync_threads;
codeB2(%i, %j);

}

codeC(%1i);

parallel for %1 = @ to N {

codeA(%1i);

sync_threads;

for %j = .. {
codeB1(%i, %j);
sync_threads;
codeB2(%i, %j);

}

sync_threads;

codeC(%1i);

parallel for %i = 0 to N {
codeA(%1);

}

parallel for %i = @ to N {
for %j = .. {

codeB1(%i, %j);
sync_threads;
codeB2(%i, %j);
}
}
parallel for %i = @ to N {
codeC(%1i);
}




GPU Synchronization Lowering: Control Flow

* Synchronization within control flow (for, if, while, etc) can be lowered
by splitting around the control flop and interchanging the parallelism.

parallel for %1 = @ to N {
codeA(%1i);

}
parallel for %1 = @ to N {
for %j = .. {

codeB1(%i, %j);
sync_threads;
codeB2(%i, %j);
}
}
parallel for %1 = @ to N {
codeC(%1i);
}

parallel for %1 = @ to N {
codeA(%1i);
}

for %j = .. {
parallel for %i = @ to N {
codeB1(%i, %j);
sync_threads;
codeB2(%i, %j);
}
}
parallel for %1 = @ to N {
codeC(%1i);
}

parallel for %1 = @ to N {
codeA(%1);
}

for %j = .. {
parallel for %i
codeB1(%i, %7j)
}
parallel for %i = @ to N {
codeB2(%i, %j);
}
}
parallel for %i = @ to N {
codeC(%1i);
1

©@ to N {

oo




