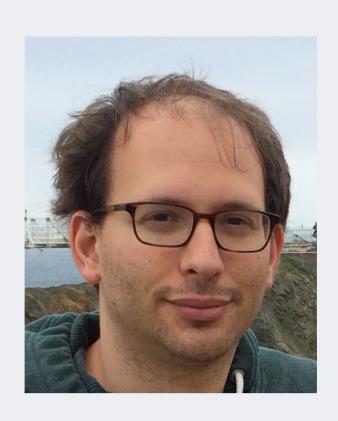
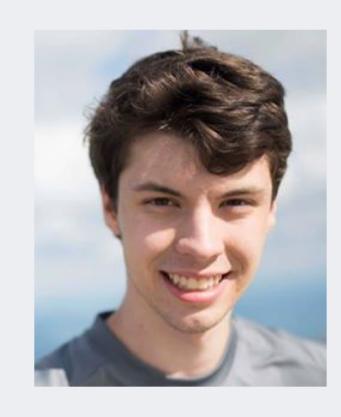


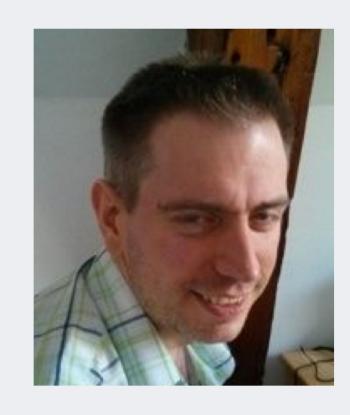
Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zach DeVito, William S. Moses, Sven Verdoolaege, Andrew Adams, Albert Cohen

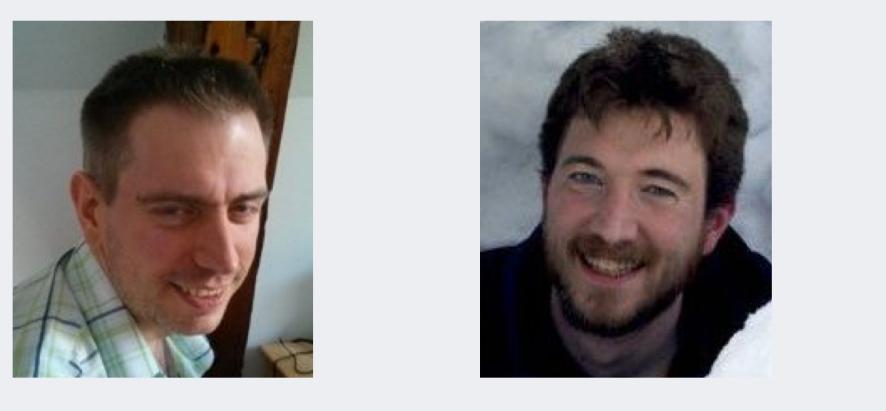
LLVM Workshop at CGO 2018 February 24, 2018

The Tensor Comprehensions Team

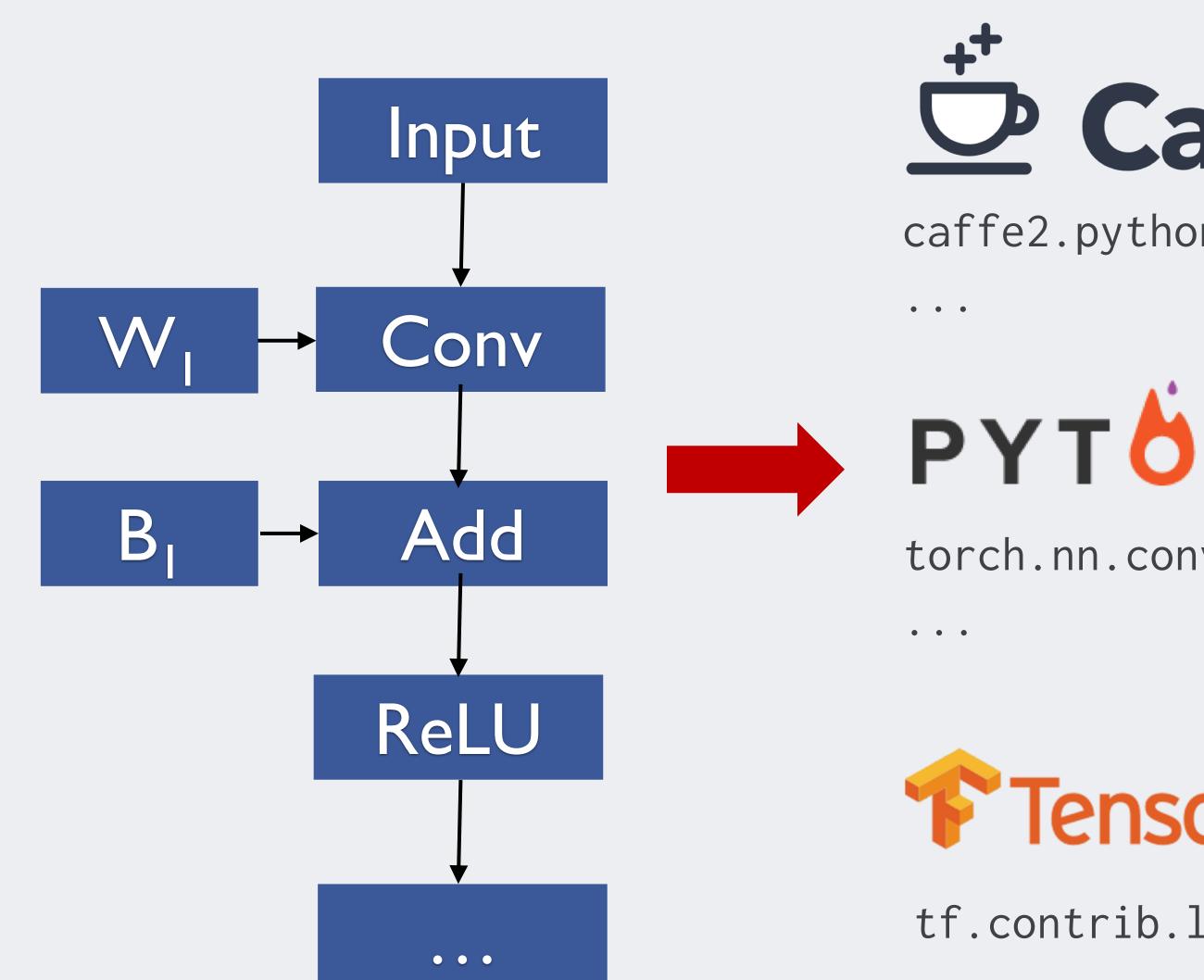








A tale of many layers



caffe2.python.brew.conv()

torch.nn.conv2d()

• • •

NVIDIA. CUDNIN

cudnnConvolutionForward()

tf.contrib.layers.conv2d()

dnnConvolutionCreateForwa rd_F32()

* TF also can compile via XLA, discussed later

Someone has a clever idea

- Suppose a ML researcher invents a new layer: hconv
- He/she can implements it two ways:
 - Inefficiently cobbling together existing operators [slow]
 - Write optimized GPU/CPU kernel [difficult, time-consuming]
- Even when the operator exists, it often misses peakperformance, lacking cross-operator-optimization and data-shape/size tuning [1]

"Abstraction without regret"

- To make development efficient, we need abstractions that provide productivity without sacrificing performance
- Given the enormous number of potential kernels, suggests a dynamic-code-generation approach

Prior work

- "Direct generation" such as active library [2] or built-to-order (BTO) [3] provide usability, but miss optimization
- DSLs such as Halide [4] provide usability, and permit scheduling transformations, though manually specify.
- Compilers like XLA [5] or Latte [6] optimize and fuse operators, though performance lacking as the language can't represent complex schedules crucial to GPU/others.

^[2] Run-time code generation in C++ as a foundation for domain-specific optimization, 2003

^[3] Automating the generation of composed linear algebra kernels, 2009

^[4] Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines, 2013

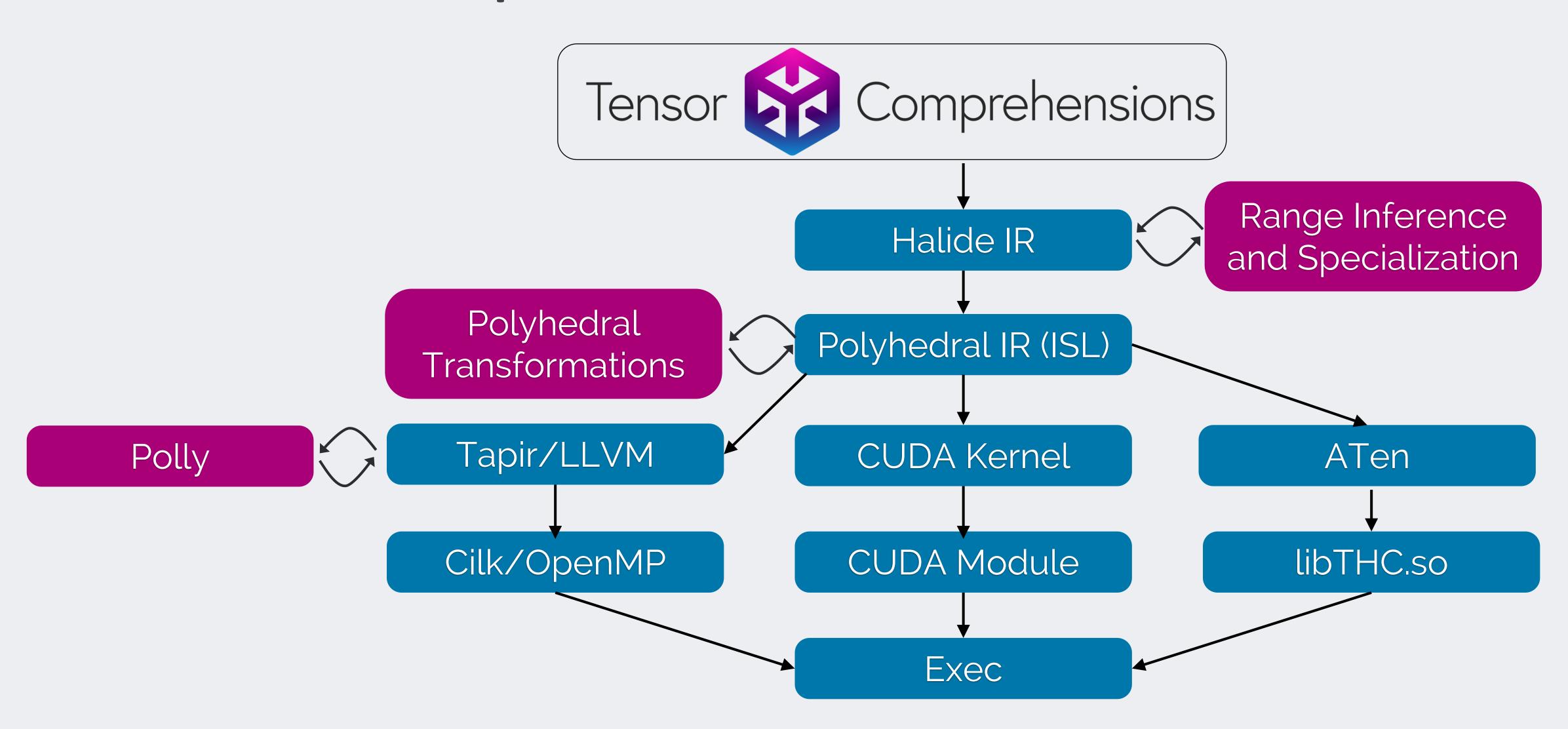
^[5] Xla:domain-specific compiler for linear algebra to optimizes tensorflow computations, 2017

^[6] Latte: A language, compiler, and runtime for elegant and efficient deep neural networks, 2016

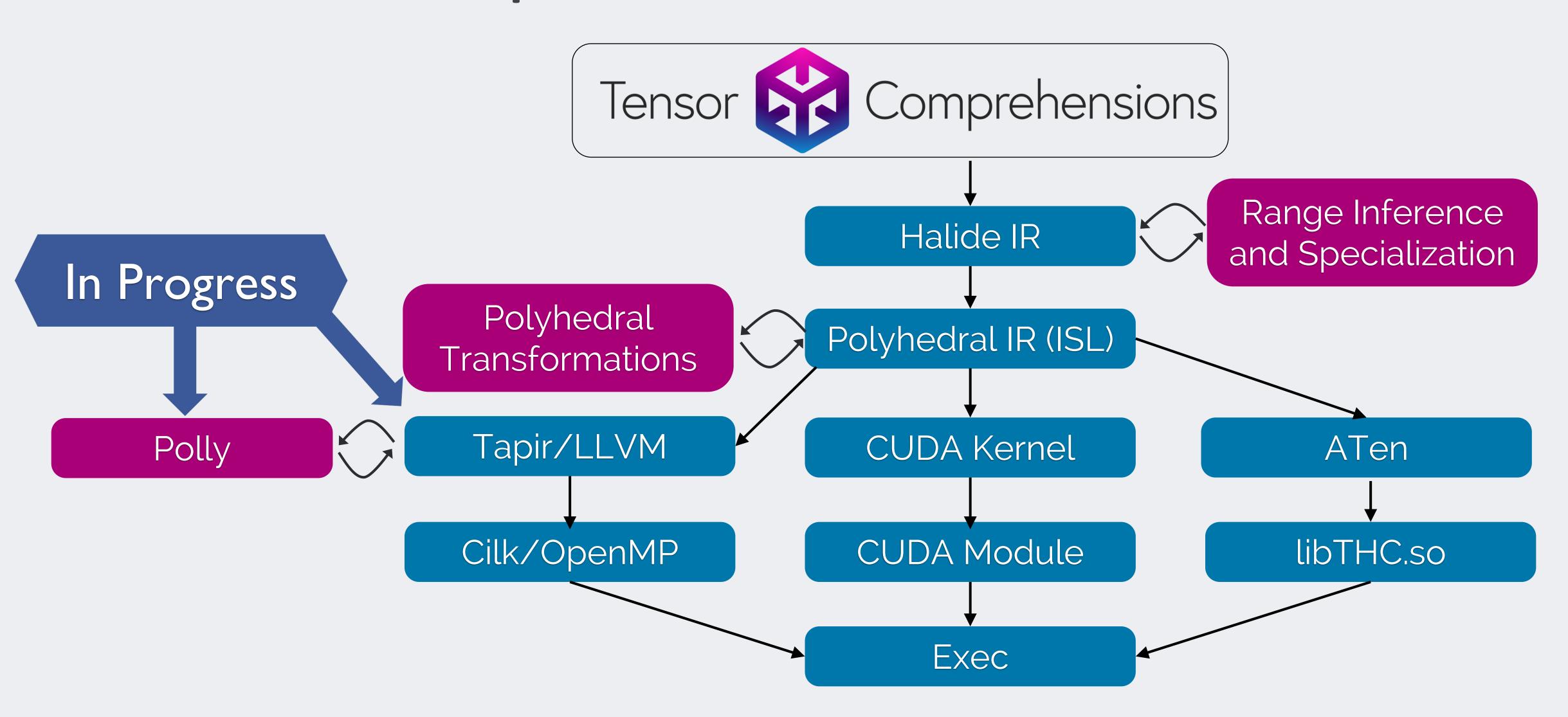
Tensor Comprehensions

- High-level DSL to express tensor computations by extending Einstein-notation.
- End-to-End compilation flow capable of lowering tensor comprehensions to efficient GPU code (CPU in progress)
- Collection of polyhedral compilation algorithms with a specific domain and target orientation
- Autotuning framework built off JIT compilation and caching
- Integration into ML Frameworks (Caffe2, Pytorch)

Tensor Comprehensions



Tensor Comprehensions



Optimizations at the appropriate time

- High-level polyhedral: broader scheduling optimizations (mapping, tiling, fusion, etc)
- Halide: Expression simplification / optimizations
- Tapir/LLVM [7] <-> Polly [8]: Runtime-level
 optimization/scheduling (coarsening, vectorization),
 instruction-level optimization (i.e. LICM, fuse instructions)
- [7] Tapir: Embedding Fork-Join Parallelism into LLVM's Intermediate Representation, 2017 https://github.com/wsmoses/Tapir-LLVM
- [8] Polly Performing polyhedral optimizations on a low-level intermediate representation, 2012 https://github.com/wsmoses/Tapir-Polly

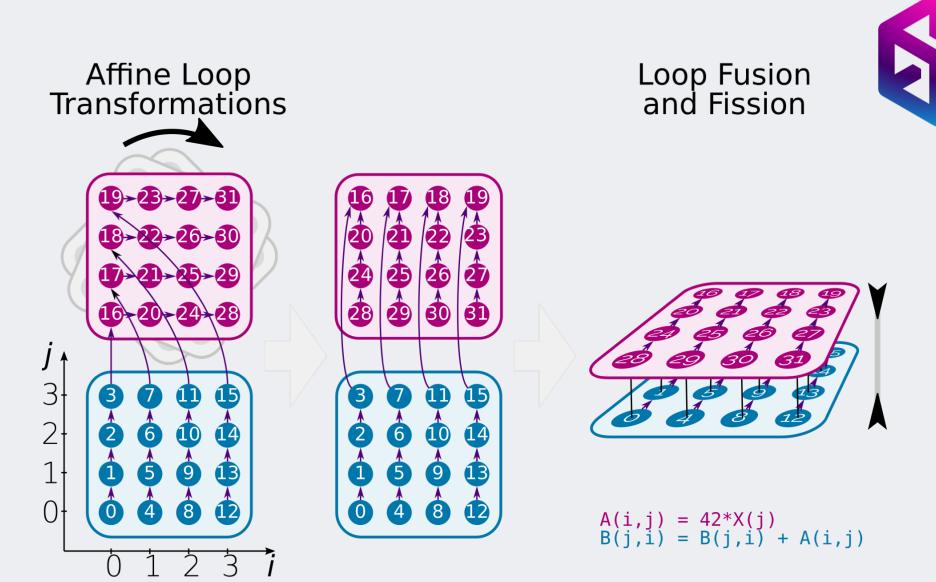
TC language

Concise, emits 1000's of optimized LOC

```
def mv(float(M,K) A, float(K) x) -> (C) {
 C(i) +=! A(i,k) * x(k)
def conv3(float(N,C,H,W) I, float(0,C,H,W) W1, float(D,O,H,W) W2, float(E,D,H,W) W3) -> (01, 02, 03) {
 01(n, o, h, w) +=! I(n, c, h + kh, w + kw) * W1(o, c, kh, kw)
                                                                   Iteration bounds inferred
 01(n, o, h, w) = fmax(01(n, o, h, w), 0) // relu
 02(n, d, h, w) +=! 01(n, d, h + kh, w + kw) * W2(d, o, kh, kw)
 02(n, d, h, w) = fmax(02(n, d, h, w), 0)
 03(n, e, h, w) +=! 02(n, c, h + kh, w + kw) * W3(e, d, kh, kw)
 03(n, e, h, w) = fmax(03(n, e, h, w), 0)
```

Variables only on one side are reduced

High Level Polyhedral IR (ISL) =>
 Easy Transformations



- Schedule heuristic folds into a single kernel
- Schedule tiled to facilitate the mapping and reuse of memory hierarchy of GPU/CPU
- GPU mapping borrows from PPCG, with extensions for more complex/imperfectly nested structures
- Memory promotion into shared cache

ISL scheduling

Sequence node: order-dependent collection of nodes

Band node: (partial) execution

Filter node: partition iteration space

ISL scheduling

- ISL's scheduling algorithm
 - Works by solving a linear program
 - Uses *affine clustering*, computing schedule for each strongly-connected components then scheduling those together

Extending ISL scheduling

- Extended ISL's scheduler to allow additional constraints
 - Affine constraint added to the LP
 - Supply clustering decision for graph component combining
- Clustering allows for conventional minimum and maximum fusion targets AND maximum fusion that preserves at least three nested parallel loops (i.e. for mapping to CUDA blocks / threads)

Memory promotion

Cache indirectly accessed arrays

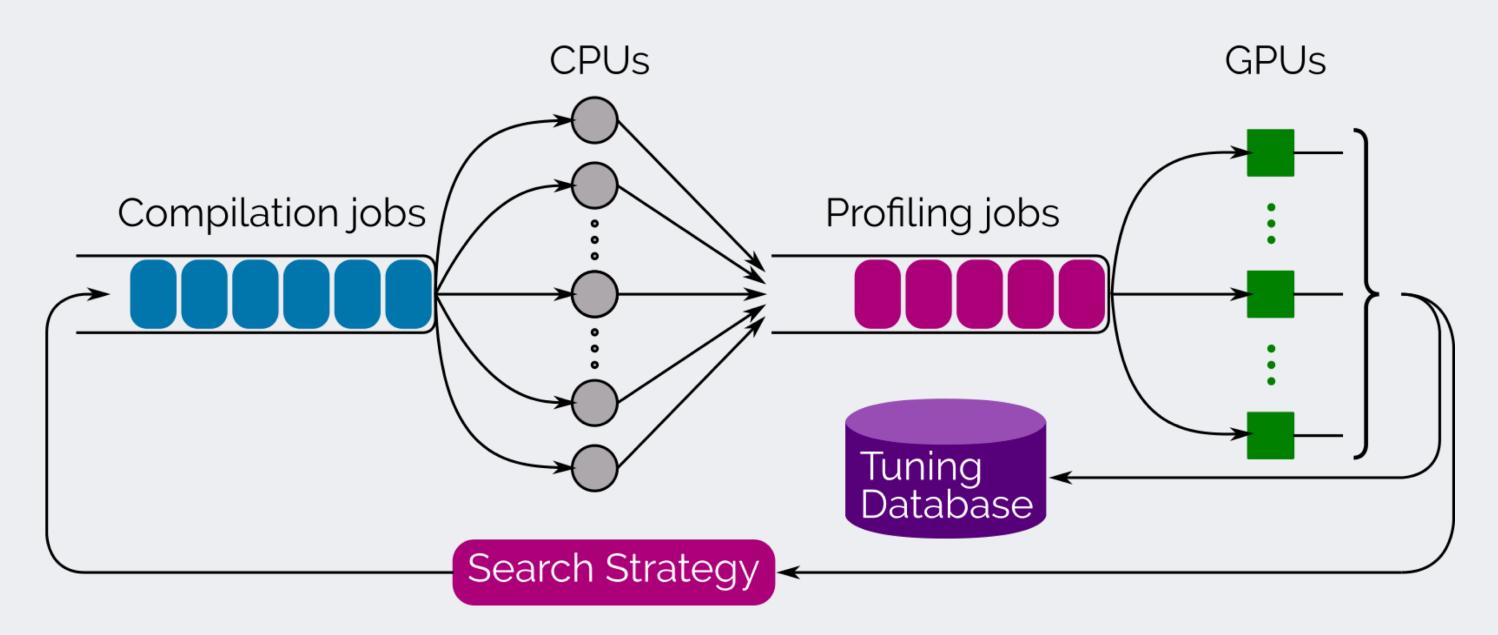
```
O[l+Idx[i][j]][k] => shared_0[l][i][j][k]
```

Only done when 0 and Idx are only read (not written)

- Promote directly accesses if tile of fixed size, elements reused, and >= 1 access without memory coalescing
- Promote indirectly accessed arrays in same way (ignore coalescing)

Autotuning

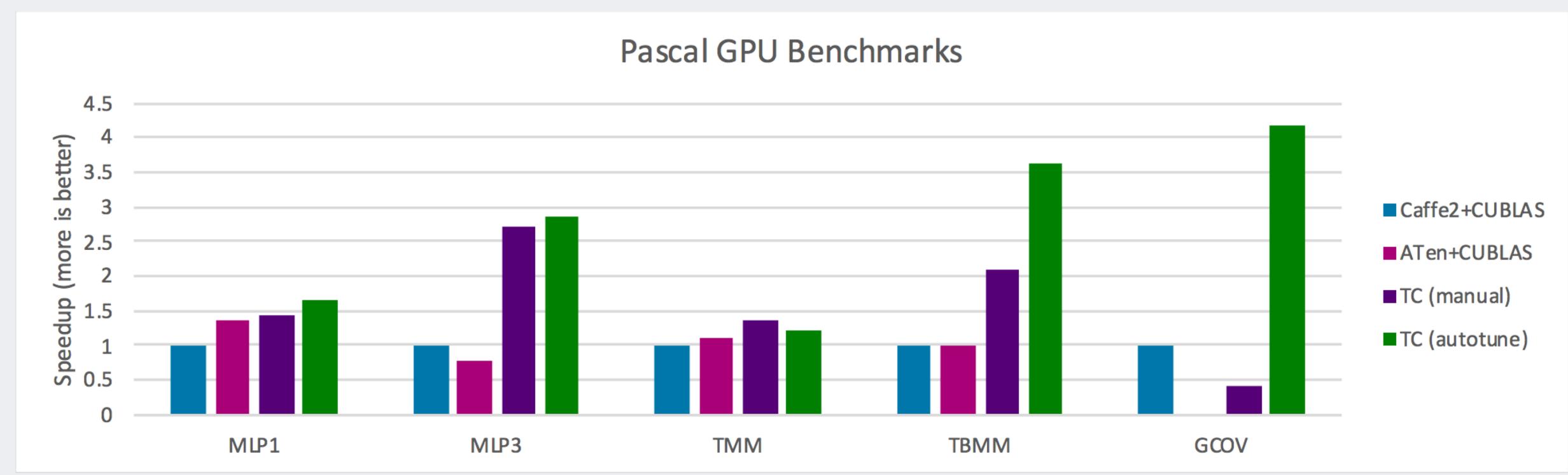
- Even with heuristics, there's a large space of options
- Derive schedule (and other parameters) by searching via genetic algorithm with fixed search-time.



How well does it work?

End-to-end benchmarks

Baseline CUDA 8.0, CUBLAS 8.0, CUDNN 6.0, CUB recent



8 Pascal nodes with 2 socket, 14 core Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz, with 8 Tesla P100-SXM2 GPUs and 16GB of memory each. Median runtime out of a batch of 1000 Autotuning time out O(hours)

Autotuning benchmarks

KRU Research Layer, 2 orders mag. faster than GEMM (90+ % peak)

		p0	p50	p90	p0	p50	p90	p0	p50	p90
MD0D1D2N0N1N2		(256, 16, 16, 16, 32, 32, 32)			(256, 16, 16, 16, 64, 64, 64)			(256, 16, 16, 16, 64, 128, 128)		
KRU3_3	Caffe2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	ATen	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	TC (manual)	1,761	1,778	1,795	3,448	3,465	3,476	3,455	3,470	3,476
	TC (autotuned)	80	83	84	133	140	143	132	135	138
KRU3_3	Caffe2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	ATen	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	TC (manual)	950	958	981	1,856	1,867	1,915	1,852	1,863	1,909
	TC (autotuned)	93	94	95	93	95	97	84	88	89

Figure 5: Wall-clock execution of kernels (in μ s). Each kernel ran 1000 times. The top half of each table is Tesla M40 (Maxwell) and the bottom half is Tesla P100(Pascal). N/A denotes the framework lacked an implementation

TC overview

"Natural ML math running faster than libraries"

- Productive environment to develop ML
- Comparable or better than hand-coded operators
- Perform true kernel fusion, with optimization
- Specialize to specific architecture and sizes
- Autotuning "unlocks" much of polyhedral benefits

Future work

- Share best implementations, for any architecture
- Port to more architectures & accelerators, leveraging highly optimized primitives
- Implement symbolic automatic differentiation directly
- Allow sparse, vector and mixed-precision types
- Support more dynamic control flow and ML architectures
- Integrate with other frameworks

TC overview

"Natural ML math running faster than libraries"

- Available stand-alone and in Caffe2/PyTorch bindings [public in a few days]
- Open source:

https://github.com/facebookresearch/tensorcomprehensions

Paper:

https://arxiv.org/abs/1802.04730

Questions?

Backup Slides

TC in Practice

```
import to
ee = tc.ExecutionEngine()
                                    import torch
ee.define("""
                                    A = torch.randn(3,4)
 def mm(float(M,K) A,
                                    B = torch.randn(4,5)
        float(K,N) B) -> (C) {
                                    C = ee.mm(A, B)
   C(m,n) +=! A(m,kk) * B(kk,n)
                                   Figure 12: JIT compile,
"""
                                    tune, or hit the compi-
Figure 11: Build execution engine lation cache, then run
```

```
def 2LUT(float(E1,D) LUT1, int(B,L1) I1,
        float(E2,D) LUT2, int(B,L2) I2) -> (01,02) {
  01(i,j) +=! LUT1(I1(i,k),j)
 02(i,j) +=! LUT2(I2(i,k),j)
def MLP1(float(B,M) I, float(0,N) W1, float(0) B1) -> (01) {
  01(b,n) = B1(n)
 01(b,n) += I(b,m) * W1(n,m)
 01(b,n) = fmaxf(01(b,n), 0)
def MLP3(float(B,M) I, float(0,N) W2, float(0) B2,
        float(P,0) W3, float(P) B3, float(Q,P) W4,
        float(Q) B4) -> (01,02,03,04) {
  02(b,o) = B2(o)
  02(b,o) += 01(b,n) * W2(o,n)
  02(b,o) = fmaxf(02(b,o), 0)
  03(b,p) = B3(p)
  03(b,p) += 02(b,o) * W3(p,o)
  03(b,p) = fmaxf(03(b,p), 0)
  04(b,q) = B4(q)
  04(b,q) += 03(b,p) * W4(q,p)
  04(b,q) = fmaxf(04(b,q), 0)
def prodModel(float(E1,D) LUT1, int(B,L1) I1,
              float(E2,D) LUT2, int(B,L2) I2,
              float(B,WX) I3, float(WY,WX) W,
              float(N,M) W1, float(N) B1,
              float(0,N) W2, float(0) B2,
              float(P,0) W3, float(P) B3,
              float(Q,P) W4, float(Q) B4)
    -> (C1,C2,C3,I,O1,O2,O3,O4) {
  (C1,C2)
             = 2LUT(LUT1, I1, LUT2, I2)
           += I3(b,wxx) * W(wy,wxx)
             = concat(C1, C2, C3) # not implemented yet
  I(b,m)
             = MLP1(I, W1, B1)
  (02,03,04) = MLP3(01,W2,B2,W3,B3,W4,B4)
 # 04 goes out to binary classifier, omitted here
```

Figure 17: Full production model (pseudo-code)