
LLVM Workshop at CGO 2018

February 24, 2018

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal,
Zach DeVito, William S. Moses, Sven Verdoolaege, Andrew Adams, Albert Cohen

The Tensor Comprehensions Team

A tale of many layers

cudnnConvolutionForward()
...

torch.nn.conv2d()
...

caffe2.python.brew.conv()
...

tf.contrib.layers.conv2d()
...

Input

ConvW1

AddB1

ReLU

…

dnnConvolutionCreateForwa
rd_F32()
...

*

* TF also can compile via XLA, discussed later

• Suppose a ML researcher invents a new layer: hconv

• He/she can implements it two ways:

• Inefficiently cobbling together existing operators [slow]

• Write optimized GPU/CPU kernel [difficult, time-consuming]

• Even when the operator exists, it often misses peak-

performance, lacking cross-operator-optimization and

data-shape/size tuning [1]

Someone has a clever idea

[1] Fast Convolutional Nets With fbfft : A GPU Performance Evaluation, ICLR, 2015

• To make development efficient, we need abstractions
that provide productivity without sacrificing performance
• Given the enormous number of potential kernels,

suggests a dynamic-code-generation approach

“Abstraction without regret”

• “Direct generation” such as active library [2] or built-to-order
(BTO) [3] provide usability, but miss optimization
• DSLs such as Halide [4] provide usability, and permit

scheduling transformations, though manually specify.
• Compilers like XLA [5] or Latte [6] optimize and fuse

operators, though performance lacking as the language can’t
represent complex schedules crucial to GPU/others.

Prior work

[2] Run-time code generation in C++ as a foundation for domain-specific optimization, 2003
[3] Automating the generation of composed linear algebra kernels, 2009
[4] Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines, 2013
[5] Xla:domain-specific compiler for linear algebra to optimizes tensorflow computations, 2017
[6] Latte: A language, compiler, and runtime for elegant and efficient deep neural networks, 2016

• High-level DSL to express tensor computations by
extending Einstein-notation.
• End-to-End compilation flow capable of lowering tensor

comprehensions to efficient GPU code (CPU in progress)
• Collection of polyhedral compilation algorithms with a

specific domain and target orientation
• Autotuning framework built off JIT compilation and caching
• Integration into ML Frameworks (Caffe2, Pytorch)

Tensor Comprehensions

Tensor Comprehensions

Cilk/OpenMP

Exec

libTHC.so

ATen

CUDA Module

CUDA KernelTapir/LLVM

Polyhedral IR (ISL)

Halide IR
Range Inference

and Specialization

Polyhedral
Transformations

Polly

Tensor Comprehensions

Cilk/OpenMP

Exec

libTHC.so

ATen

CUDA Module

CUDA KernelTapir/LLVM

Polyhedral IR (ISL)

Halide IR
Range Inference

and Specialization

Polyhedral
Transformations

Polly

In Progress

• High-level polyhedral: broader scheduling optimizations
(mapping, tiling, fusion, etc)
• Halide: Expression simplification / optimizations
• Tapir/LLVM [7] <-> Polly [8]: Runtime-level

optimization/scheduling (coarsening, vectorization),
instruction-level optimization (i.e. LICM, fuse instructions)

Optimizations at the appropriate time

[7] Tapir: Embedding Fork-Join Parallelism into LLVM's Intermediate Representation, 2017
https://github.com/wsmoses/Tapir-LLVM

[8] Polly - Performing polyhedral optimizations on a low-level intermediate representation, 2012
https://github.com/wsmoses/Tapir-Polly

https://github.com/wsmoses/Tapir-LLVM
https://github.com/wsmoses/Tapir-Polly

TC language

def mv(float(M,K) A, float(K) x) -> (C) {
C(i) +=! A(i,k) * x(k)

}

def conv3(float(N,C,H,W) I, float(O,C,H,W) W1, float(D,O,H,W) W2, float(E,D,H,W) W3) -> (O1, O2, O3) {
O1(n, o, h, w) +=! I(n, c, h + kh, w + kw) * W1(o, c, kh, kw)
O1(n, o, h, w) = fmax(O1(n, o, h, w), 0) // relu
O2(n, d, h, w) +=! O1(n, d, h + kh, w + kw) * W2(d, o, kh, kw)
O2(n, d, h, w) = fmax(O2(n, d, h, w), 0)
O3(n, e, h, w) +=! O2(n, c, h + kh, w + kw) * W3(e, d, kh, kw)
O3(n, e, h, w) = fmax(O3(n, e, h, w), 0)

}

Iteration bounds inferred

Variables only on one side are reduced

Concise, emits 1000’s of optimized LOC

Polyhedral + TC

• High Level Polyhedral IR (ISL) =>

Easy Transformations

• Schedule heuristic folds into a single kernel

• Schedule tiled to facilitate the mapping and reuse of

memory hierarchy of GPU/CPU

• GPU mapping borrows from PPCG, with extensions for

more complex/imperfectly nested structures

• Memory promotion into shared cache

ISL scheduling
def sgemm(float a, float b float(N,M) A, float(M,K) B) -> (C) {
C(i,j) = b //S(i,j)
C(i,j) += a * A(i,k) * B(k,j) //T(i,j,k)

}

Fuse

Band node: (partial) execution

Filter node: partition iteration space

Sequence node: order-dependent collection of nodes

ISL scheduling
• ISL’s scheduling algorithm
•Works by solving a linear program
• Uses affine clustering, computing schedule for each strongly-

connected components then scheduling those together

Extending ISL scheduling
• Extended ISL’s scheduler to allow additional constraints
• Affine constraint added to the LP
• Supply clustering decision for graph component combining
• Clustering allows for conventional minimum and maximum

fusion targets AND maximum fusion that preserves at least
three nested parallel loops (i.e. for mapping to CUDA
blocks / threads)

Memory promotion
• Cache indirectly accessed arrays

• Only done when O and Idx are only read (not written)

• Promote directly accesses if tile of fixed size, elements
reused, and >= 1 access without memory coalescing
• Promote indirectly accessed arrays in same way (ignore

coalescing)

O[l+Idx[i][j]][k] => shared_O[l][i][j][k]

Autotuning
• Even with heuristics, there’s a large space of options
• Derive schedule (and other parameters) by searching via

genetic algorithm with fixed search-time.

How well does it work?

Baseline CUDA 8.0, CUBLAS 8.0, CUDNN 6.0, CUB recent

End-to-end benchmarks

8 Pascal nodes with 2 socket, 14 core Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz, with 8 Tesla P100-SXM2 GPUs and 16GB of memory each.
Median runtime out of a batch of 1000
Autotuning time out O(hours)

TC overview

• Productive environment to develop ML
• Comparable or better than hand-coded operators
• Perform true kernel fusion, with optimization
• Specialize to specific architecture and sizes
• Autotuning “unlocks” much of polyhedral benefits

“Natural ML math running faster than libraries”

Future work

• Share best implementations, for any architecture
• Port to more architectures & accelerators, leveraging

highly optimized primitives
• Implement symbolic automatic differentiation directly
• Allow sparse, vector and mixed- precision types
• Support more dynamic control flow and ML architectures
• Integrate with other frameworks

TC overview

• Available stand-alone and in Caffe2/PyTorch bindings
[public in a few days]
• Open source:

https://github.com/facebookresearch/tensorcomprehensions

• Paper:
https://arxiv.org/abs/1802.04730

“Natural ML math running faster than libraries”

https://github.com/facebookresearch/tensorcomprehensions
https://arxiv.org/abs/1802.04730

Questions?

Backup Slides

TC in Practice

