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A tale of many layers

cudnnConvolutionForward()
...

torch.nn.conv2d()
...

caffe2.python.brew.conv()
...

tf.contrib.layers.conv2d()
...

Input

ConvW1

AddB1

ReLU

…

dnnConvolutionCreateForwa
rd_F32()
...

*

* TF also can compile via XLA, discussed later



• Suppose a ML researcher invents a new layer: hconv

• He/she can implements it two ways:

• Inefficiently cobbling together existing operators [slow]

• Write optimized GPU/CPU kernel [difficult, time-consuming]

• Even when the operator exists, it often misses peak-

performance, lacking cross-operator-optimization and 

data-shape/size tuning [1]

Someone has a clever idea

[1] Fast Convolutional Nets With fbfft : A GPU Performance Evaluation, ICLR, 2015



• To make development efficient, we need abstractions 
that provide productivity without sacrificing performance
• Given the enormous number of potential kernels, 

suggests a dynamic-code-generation approach

“Abstraction without regret”



• “Direct generation” such as active library [2] or built-to-order 
(BTO) [3] provide usability, but miss optimization
• DSLs such as Halide [4] provide usability, and permit 

scheduling transformations, though manually specify.
• Compilers like XLA [5] or Latte [6] optimize and fuse 

operators, though performance lacking as the language can’t 
represent complex schedules crucial to GPU/others.

Prior work

[2] Run-time code generation in C++ as a foundation for domain-specific optimization, 2003
[3] Automating the generation of composed linear algebra kernels, 2009
[4] Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines, 2013
[5] Xla:domain-specific compiler for linear algebra to optimizes tensorflow computations, 2017
[6] Latte: A language, compiler, and runtime for elegant and efficient deep neural networks, 2016



• High-level DSL to express tensor computations by 
extending Einstein-notation.
• End-to-End compilation flow capable of lowering tensor 

comprehensions to efficient GPU code (CPU in progress)
• Collection of polyhedral compilation algorithms with a 

specific domain and target orientation
• Autotuning framework built off JIT compilation and caching
• Integration into ML Frameworks (Caffe2, Pytorch)

Tensor Comprehensions
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• High-level polyhedral: broader scheduling optimizations 
(mapping, tiling, fusion, etc)
• Halide: Expression simplification / optimizations
• Tapir/LLVM [7]  <-> Polly [8]: Runtime-level 

optimization/scheduling (coarsening, vectorization), 
instruction-level optimization (i.e. LICM, fuse instructions)

Optimizations at the appropriate time

[7] Tapir: Embedding Fork-Join Parallelism into LLVM's Intermediate Representation, 2017
https://github.com/wsmoses/Tapir-LLVM

[8] Polly - Performing polyhedral optimizations on a low-level intermediate representation, 2012  
https://github.com/wsmoses/Tapir-Polly

https://github.com/wsmoses/Tapir-LLVM
https://github.com/wsmoses/Tapir-Polly


TC language

def mv(float(M,K) A, float(K) x) -> (C) {
C(i) +=! A(i,k) * x(k)

}

def conv3(float(N,C,H,W) I, float(O,C,H,W) W1, float(D,O,H,W) W2, float(E,D,H,W) W3) -> (O1, O2, O3) {
O1(n, o, h, w) +=! I(n, c, h + kh, w + kw) * W1(o, c, kh, kw)
O1(n, o, h, w) = fmax(O1(n, o, h, w), 0) // relu
O2(n, d, h, w) +=! O1(n, d, h + kh, w + kw) * W2(d, o, kh, kw)
O2(n, d, h, w) = fmax(O2(n, d, h, w), 0)
O3(n, e, h, w) +=! O2(n, c, h + kh, w + kw) * W3(e, d, kh, kw)
O3(n, e, h, w) = fmax(O3(n, e, h, w), 0)

}

Iteration bounds inferred

Variables only on one side are reduced

Concise, emits 1000’s of optimized LOC



Polyhedral + TC

• High Level Polyhedral IR (ISL) =>

Easy Transformations

• Schedule heuristic folds into a single kernel

• Schedule tiled to facilitate the mapping and reuse of 

memory hierarchy of GPU/CPU

• GPU mapping borrows from PPCG, with extensions for 

more complex/imperfectly nested structures

• Memory promotion into shared cache



ISL scheduling
def sgemm(float a, float b float(N,M) A, float(M,K) B) -> (C) {
C(i,j)  = b //S(i,j)
C(i,j) += a * A(i,k) * B(k,j)  //T(i,j,k)

}

Fuse

Band node: (partial) execution

Filter node: partition iteration space

Sequence node: order-dependent collection of nodes



ISL scheduling
• ISL’s scheduling algorithm
•Works by solving a linear program
• Uses affine clustering, computing schedule for each strongly-

connected components then scheduling those together



Extending ISL scheduling
• Extended ISL’s scheduler to allow additional constraints
• Affine constraint added to the LP
• Supply clustering decision for graph component combining
• Clustering allows for conventional minimum and maximum 

fusion targets AND maximum fusion that preserves at least 
three nested parallel loops (i.e. for mapping to CUDA 
blocks / threads)



Memory promotion
• Cache indirectly accessed arrays

• Only done when O and Idx are only read (not written)

• Promote directly accesses if tile of fixed size, elements 
reused, and >= 1 access without memory coalescing
• Promote indirectly accessed arrays in same way (ignore 

coalescing)

O[l+Idx[i][j]][k] => shared_O[l][i][j][k]



Autotuning
• Even with heuristics, there’s a large space of options
• Derive schedule (and other parameters) by searching via 

genetic algorithm with fixed search-time.



How well does it work?



Baseline CUDA 8.0, CUBLAS 8.0, CUDNN 6.0, CUB recent

End-to-end benchmarks

8 Pascal nodes with 2 socket, 14 core Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz, with 8 Tesla P100-SXM2 GPUs and 16GB of memory each.
Median runtime out of a batch of 1000
Autotuning time out O(hours)



TC overview

• Productive environment to develop ML
• Comparable or better than hand-coded operators
• Perform true kernel fusion, with optimization
• Specialize to specific architecture and sizes
• Autotuning “unlocks” much of polyhedral benefits

“Natural ML math running faster than libraries”



Future work

• Share best implementations, for any architecture
• Port to more architectures & accelerators, leveraging 

highly optimized primitives
• Implement symbolic automatic differentiation directly
• Allow sparse, vector and mixed- precision types
• Support more dynamic control flow and ML architectures
• Integrate with other frameworks



TC overview

• Available stand-alone and in Caffe2/PyTorch bindings 
[public in a few days]
• Open source: 

https://github.com/facebookresearch/tensorcomprehensions

• Paper:
https://arxiv.org/abs/1802.04730

“Natural ML math running faster than libraries”

https://github.com/facebookresearch/tensorcomprehensions
https://arxiv.org/abs/1802.04730


Questions?



Backup Slides



TC in Practice


