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Learning Quantum Error Models

« Error models are crucial for characterizing hardware,
synthesizing robust circuits, predicting the likelihood your
computation will succeed, and much more.

* Deriving error models from circuits remains an error-prone
and often manual process.

* We present a framework for automatically deriving error
models from experimental data.

* Technique: Formulate error models as parameterized
distributions over quantum operations, calculating the
most likely model by automatic differentiation through the
circuit
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Practical Quantum Computing & Error Models

Automatic Workflow

Noisy Intermediate-Scale Quantum (NISQ)

= Current quantum computers have relatively few qubits, high error rates, and
limited connectivity.

= Near-term quantum computing will require low-level optimization to take
advantage of all the performance of relatively limited hardware.

= Key desire: separate quantum algorithm design from optimization. Resolve the need
for both high-level algorithm design with low level optimization by automatic
tools for optimization.

Quantum Error Models

= Serve as a way to validate and compare the effectiveness of hardware to
theoretical gate models.

= Incorporating error models into low-level optimization/circuit synthesis allows us
to generate circuits that are more likely to produce desired results in practice.

= There exist many types of quantum error models in the literature (operator
fidelity, readout errors, depolarizing error, thermal relaxation, random operators,
etc), which are almost all parameterized in some way.

Solving for these parameters as well as the relevant error models is itself a difficult

and error-prone process that is desirable to automate for its use in circuit design and
hardware verification.

Building quantum error models

In its most general form a quantum error model can be described as a probability
distribution over potential outcomes of a circuit.

To build a distribution of circuit behavior, let's start by describing a model for how
individual operands behave. We can then create a distribution for possible physical
circuits by composing the operators of a theoretical circuit.

Example error model distributions:

= Over Rotation:

= Noisy Rotation:

= [rw6.)]
= Gate Leakage: — .

()

We can further compose error models or even consider an ensemble of error models
by specifying that we use error model 1 with some probability p and error model 2
with probability 1 — p.

Bayesian Error Learning

Given the results of a circuit, we can derive the most likely error model by applying
Bayes' rule to the circuit. Take the following as an example

if random() < 6
otherwise

ng = 400
ny = 600

Figure 1. Circuit whose Hadamard gate works only some fraction @ of the time. Actual measured
counts are 400 and 600 for |0) and |1) respectively.

We can derive the most likely error parameter @ by applying Bayes rule to the cal-
culation of the circuit's end state.
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Future Work: Integration

Given the workflow in Figure 2, we are able to both derive accurate error models
from experimental data as well as accurately simulate further data.

The next step in this project is to integrate this workflow into quantum synthesizers
and therefore find the best circuit in expectation, accounting for errors, rather than
simply the shortest circuit.

While the example in Figure 1 can be computed by hand, handling arbitrary and
complex circuits becomes quite cumbersome. As such, we present an automatic
workflow for deriving error models from experimental data.

// Specifying a noisy rotation model of a U3 gate
@gen function errorRx(6, stddev)
return Rx(@trace(normal(@, stddev)))

Specify operators as [

probability distributions
over outcomes using
Gen [2].

=2

// specifying an error model of a Hadamard gate
@gen function errorH(thres)

return (@trace(uniform(0, 1)) < thres) 2 H() : I()
end

//sample circuit, simply executing a Hadamard gate
@gen function mycircuit(nsamples::Integer)
thres = @trace(uniform(e, 1), :thres)
circuit = errorH(thres)
probs = Yao.probs(circuit)
@trace(multinomial(probs, nsamples), :counts)

Describe and simulate
the circuit being run us-
ing Yao,jl [3]. Can also
import/call QisKit [1].
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// Assert our measurements are given by the data
observations = choicemap(:counts => data)

Assert that we mea-
sured the given data
3) and find the most prob

// Find the most probable parameter settings
able error parameters

(trace, _) = importance_resampling(circuit,

by running importance — (size(data,1),), observations, 400);
sampling then gradient trace = adam_optimize(trace, 1000)
ascent. println(get_choices(trace)[:thres])

Figure 2. Three-part workflow for automatically deriving error models from data.

Validation Experiments

To validate that our error-model learning technique derives a correct/proper error
model, we ran the following two experiments:

= Run Qiskit's simulator with random noise models and rederive the parameters of
said noise model.

* Run a circuit on IBM quantum computer, train the error model on a subset of the
data, and see how it generalizes to the rest of the dataset.

Error Model Comparison (Repeated U3)

Eror Modsl Comparison (Repeated U3)

Figure 3. Left: the probability of measuring |0) after running two U3 gates, as predicted by theory
{orange), accounting for readout error correction (green), accounting for over rotation and gate bias
(orange), and in experimental data (blue). Right: the log likelihood that learned error models match
experimental data from the right.

In Figure 3, we run 512 random circuits and use the workflow in Figure 2 to derive
powerful error models. As we provide more powerful models (integrating first only
readout error, then overrotation and bias) we are able to more closely match the
experimental data without overfitting.
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Specify operators as
probability  distribu-
tions over outcomes
using Gen [2].

Describe and simu-
late the circuit being
run using Yao.jl [3].
Can also import/call

QisKit [1].

Assert that we mea-
sured the given data
and find the most
probable error pa-
rameters by running
importance sampling
then gradient ascent.

Appendix

// Specifying a noisy rotation model of a U3 gate
@gen function errorRx (6, stddev)

return Rx(@trace(normal(6, stddev)))
end

// Specifying an error model of a Hadamard gate
@gen function errorH(thres)
return (@trace(uniform(0, 1)) < thres) ? H()

: I0)

end

//Sample circuit, simply executing a Hadamard gate
@gen function mycircuit(nsamples: :Integer)

thres = @trace(uniform(0, 1), :thres)
circuit = errorH(thres)
probs = Yao.probs(circuit)

@trace(multinomial(probs, nsamples), :counts)

end

// Assert our measurements are given by the data
observations = choicemap(:counts => data)

// Find the most probable parameter settings
(trace, _) = importance_resampling(circuit,
— (size(data,l),), observations, 400);
trace = adam_optimize(trace, 1000)
println(get_choices(trace)[:thres])




