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Quantum Circuits
❖ Functional near-term quantum computing will require 

learning how to make effective use of noisy error-
prone hardware.

❖ Makes things difficult for quantum algorithm 
designers as they must simultaneously deeply 
understand the hardware and how to best map to it.

❖ Practically, often means “try to  
use the less noisy qubits more”



Error-Based Synthesis
❖ There are many types of potential quantum errors

❖ (P.S. Hardware folks please tell me what you see 
happens in practice.)

❖ We can understand errors as modifications to gates in 
our original circuit

❖ Rx(theta) => Rx(theta) U(phi)

❖ CNOT => if rand() < .2 then CNOT CZ else CNOT

❖ U => u ~ Distribution(U)



Idea: Synthesize With Errors
❖ When synthesizing a desired circuit to run on 

hardware, consider build with error-prone rather than 
theoretical gates

❖ Synthesis should find the physical circuit that closest 
matches the desired circuit in expectation (over gate 
error models)

❖ Should be able to estimate the error of the circuit 
ahead-of-time 

❖ Let’s see some examples!



Simple Example

Desired Circuit:

Rx(π)   

Error Model:

Rx(θ)   

T

Rx(θ)   Rx(0.1)  
TT

❖ We found that running a theoretical rotation gate on 
the hardware results in an overrotation of 0.1

❖ We should submit our desired circuit underrotated by 
0.1 to compensate for the hardware mapping

Rx(π-0.1)   Rx(π-0.1)   Rx(0.1)  
TT

=

Rx(π)   
T



More Complex Example
Desired Circuit:

Rx(π)   

Error Model:T

T

H  

T

Rx(θ)   Rx(θ)   

T

H  

Rz(θ)   Rz(θ)   
T

H  
Rz(π)   

≈

Submitted Circuit

T

TT



{               if rand() < 7
10

               else

Expectation Example
Desired Circuit:

Error Model:

Rx(θ)   
Rx(θ)   

T

Rx(θ)   
T

1   
T

{               if rand() < 99
100

               else
Rz(θ)   

Rz(θ)   
T

1   
T

{               if rand() < 99
100

               else
H   

H   

1   

T

T



Expectation Example

Submitted Circuit

Rz(θ)   H  H  Rx(θ)   

Suboptimal Circuit

97% 
chance of exactly correct

70% 
chance of exactly correct



Importance of Error Modeling
❖ Error-corrective synthesis requires good 

approximations of gate error behavior to produce 
reasonable circuits / estimates

❖ This requires the ability to estimate the error 
distributions



A Puzzle
❖ Which circuit produced these results?

|1⟩

a) |0⟩ Measure(Z)   {               if rand() < 99
100

               else1    

X  

|0⟩

b) |0⟩ Measure(Z)   {               if rand() < 99
100

               else1    

H  

600 400



A Puzzle
|1⟩

a) |0⟩ Measure(Z)   {               if rand() < 99
100

               else1    

X  

|0⟩

b) |0⟩ Measure(Z)   {               if rand() < 99
100

               else1    

H  

600 400

|1⟩|0⟩1% 99%

|1⟩|0⟩50.5% 49.5%



A Slightly Harder Puzzle
❖ Which parameter θ produced these results?

|1⟩|0⟩

|0⟩ Measure(Z)   
1    

H  

600 400

{               if rand() < θ
               else



A Slightly Harder Puzzle
❖ Which parameter θ produced these results?

|0⟩ Measure(Z)   {               if rand() < θ
               else1    

H  

p(data |θ) = (1000
data) ( θ

2
+ (1 − θ))

data

( θ
2 )

1000-data

p(θ |data) =
p(data |θ)p(θ)

p(data)

θ* = arg max
θ

p(data |θ)p(θ)



A Slightly Harder Puzzle
❖ Which parameter θ produced these results?

|0⟩ Measure(Z)   {               if rand() < θ
               else1    

H  

θ* = arg max
θ

p(data |θ)p(θ)

0.2 0.4 0.6 0.8 1.0
θ

0.005

0.010

0.015

0.020

0.025

P[θ]

θ* = 0.8



A Much Harder Puzzle
❖ Which parameters θ, φ produced these results?

{               if rand() < θ
               else

U  
U  

1   

{               if rand() < ϕ
               else

H   
H   

1   



Methodology
❖ Run a number of unaltered circuits on hardware

❖ Build a version of the circuits using a parameterized 
error model and solve for the most likely parameters

❖ Use those parameterized error models to synthesize 
better circuits

❖ (Optional) repeat using that new data to find better error 
models



Case Study: Random Unitary
U3(θ, φ, λ)   Rz(φ+3π)   = Rx(π/2)   Rz(θ+3π)   Rx(π/2)   Rz(λ)   

Sample many θ, φ, λ and run on IBM quantum hardware



Case Study: Random Unitary

Manually estimate measurement error using above experiment

|0⟩ Measure(Z)   X  |0⟩ Measure(Z)   



Case Study: Random Unitary
Instead: derive most probable error rates from data

@gen function scopeU3(scope)
    θ = @trace(uniform(0, 2*pi), (scope,:θ))
    φ = @trace(uniform(0, 2*pi), (scope,:φ))
    λ = @trace(uniform(0, 2*pi), (scope,:λ))
    u3(θ, φ, λ)
end

@gen function vectormaker(samples::Int, points::Int)
    data = Float64[];
    zeroToOne = @trace(Gen.beta(2, 5), (:measure, :zeroToOne))
    oneToZero = @trace(Gen.beta(2, 5), (:measure, :oneToZero))
    for i in 1:points
        u1 = @trace(scopeU3(i))
        state = zero_state(1)
        prob0 = probs(Yao.apply!(state, u1))[1]
        prob2 = prob0 * (1-zeroToOne) + (1-prob0) * oneToZero
        z0 = @trace(binomial(prob2, samples), (i, :z0))
        push!(data, prob2)
    end
    data
end

observations = Gen.choicemap()
for i in 1:size(data, 1)
    observations[(i, :θ)] = data[i,1]
    observations[(i, :φ)] = data[i,2]
    observations[(i, :λ)] = data[i,3]
    observations[(i, :z0)] = datag[i,1]
end

(trace, lml_est) = Gen.importance_resampling(vectormaker, (datag[1,1]+datag[1,2],size(data, 1)), observations, 1);



Case Study: Shifted Unitary
U3(θ, φ, λ)   Rz(φ+3π)   = Rx(π/2)   Rz(θ+3π)   Rx(π/2)   Rz(λ)   

Sample θ and run on IBM quantum hardware, found shift



Future Directions
❖ More experiments!

❖ Derive over-correction parameters

❖ Derive std dev of errors

❖ Derive random Pauli probability


