
Bayesian Estimation of Error Models
for Improving Circuit Compilation

1

wmoses@mit.edu  
August 1, 2019

William S. Moses

Quantum Circuits
❖ Functional near-term quantum computing will require

learning how to make effective use of noisy error-
prone hardware.

❖ Makes things difficult for quantum algorithm
designers as they must simultaneously deeply
understand the hardware and how to best map to it.

❖ Practically, often means “try to  
use the less noisy qubits more”

Error-Based Synthesis
❖ There are many types of potential quantum errors

❖ (P.S. Hardware folks please tell me what you see
happens in practice.)

❖ We can understand errors as modifications to gates in
our original circuit

❖ Rx(theta) => Rx(theta) U(phi)

❖ CNOT => if rand() < .2 then CNOT CZ else CNOT

❖ U => u ~ Distribution(U)

Idea: Synthesize With Errors
❖ When synthesizing a desired circuit to run on

hardware, consider build with error-prone rather than
theoretical gates

❖ Synthesis should find the physical circuit that closest
matches the desired circuit in expectation (over gate
error models)

❖ Should be able to estimate the error of the circuit
ahead-of-time

❖ Let’s see some examples!

Simple Example

Desired Circuit:

Rx(π)

Error Model:

Rx(θ)

T

Rx(θ) Rx(0.1)
TT

❖ We found that running a theoretical rotation gate on
the hardware results in an overrotation of 0.1

❖ We should submit our desired circuit underrotated by
0.1 to compensate for the hardware mapping

Rx(π-0.1) Rx(π-0.1) Rx(0.1)
TT

=

Rx(π)
T

More Complex Example
Desired Circuit:

Rx(π)

Error Model:T

T

H

T

Rx(θ) Rx(θ)

T

H

Rz(θ) Rz(θ)
T

H
Rz(π)

≈

Submitted Circuit

T

TT

{ if rand() < 7
10

 else

Expectation Example
Desired Circuit:

Error Model:

Rx(θ)
Rx(θ)

T

Rx(θ)
T

1
T

{ if rand() < 99
100

 else
Rz(θ)

Rz(θ)
T

1
T

{ if rand() < 99
100

 else
H

H

1

T

T

Expectation Example

Submitted Circuit

Rz(θ) H H Rx(θ)

Suboptimal Circuit

97% 
chance of exactly correct

70% 
chance of exactly correct

Importance of Error Modeling
❖ Error-corrective synthesis requires good

approximations of gate error behavior to produce
reasonable circuits / estimates

❖ This requires the ability to estimate the error
distributions

A Puzzle
❖ Which circuit produced these results?

|1⟩

a) |0⟩ Measure(Z) { if rand() < 99
100

 else1

X

|0⟩

b) |0⟩ Measure(Z) { if rand() < 99
100

 else1

H

600 400

A Puzzle
|1⟩

a) |0⟩ Measure(Z) { if rand() < 99
100

 else1

X

|0⟩

b) |0⟩ Measure(Z) { if rand() < 99
100

 else1

H

600 400

|1⟩|0⟩1% 99%

|1⟩|0⟩50.5% 49.5%

A Slightly Harder Puzzle
❖ Which parameter θ produced these results?

|1⟩|0⟩

|0⟩ Measure(Z)
1

H

600 400

{ if rand() < θ
 else

A Slightly Harder Puzzle
❖ Which parameter θ produced these results?

|0⟩ Measure(Z) { if rand() < θ
 else1

H

p(data |θ) = (1000
data) (θ

2
+ (1 − θ))

data

(θ
2)

1000-data

p(θ |data) =
p(data |θ)p(θ)

p(data)

θ* = arg max
θ

p(data |θ)p(θ)

A Slightly Harder Puzzle
❖ Which parameter θ produced these results?

|0⟩ Measure(Z) { if rand() < θ
 else1

H

θ* = arg max
θ

p(data |θ)p(θ)

0.2 0.4 0.6 0.8 1.0
θ

0.005

0.010

0.015

0.020

0.025

P[θ]

θ* = 0.8

A Much Harder Puzzle
❖ Which parameters θ, φ produced these results?

{ if rand() < θ
 else

U
U

1

{ if rand() < ϕ
 else

H
H

1

Methodology
❖ Run a number of unaltered circuits on hardware

❖ Build a version of the circuits using a parameterized
error model and solve for the most likely parameters

❖ Use those parameterized error models to synthesize
better circuits

❖ (Optional) repeat using that new data to find better error
models

Case Study: Random Unitary
U3(θ, φ, λ) Rz(φ+3π) = Rx(π/2) Rz(θ+3π) Rx(π/2) Rz(λ)

Sample many θ, φ, λ and run on IBM quantum hardware

Case Study: Random Unitary

Manually estimate measurement error using above experiment

|0⟩ Measure(Z) X |0⟩ Measure(Z)

Case Study: Random Unitary
Instead: derive most probable error rates from data

@gen function scopeU3(scope)
 θ = @trace(uniform(0, 2*pi), (scope,:θ))
 φ = @trace(uniform(0, 2*pi), (scope,:φ))
 λ = @trace(uniform(0, 2*pi), (scope,:λ))
 u3(θ, φ, λ)
end

@gen function vectormaker(samples::Int, points::Int)
 data = Float64[];
 zeroToOne = @trace(Gen.beta(2, 5), (:measure, :zeroToOne))
 oneToZero = @trace(Gen.beta(2, 5), (:measure, :oneToZero))
 for i in 1:points
 u1 = @trace(scopeU3(i))
 state = zero_state(1)
 prob0 = probs(Yao.apply!(state, u1))[1]
 prob2 = prob0 * (1-zeroToOne) + (1-prob0) * oneToZero
 z0 = @trace(binomial(prob2, samples), (i, :z0))
 push!(data, prob2)
 end
 data
end

observations = Gen.choicemap()
for i in 1:size(data, 1)
 observations[(i, :θ)] = data[i,1]
 observations[(i, :φ)] = data[i,2]
 observations[(i, :λ)] = data[i,3]
 observations[(i, :z0)] = datag[i,1]
end

(trace, lml_est) = Gen.importance_resampling(vectormaker, (datag[1,1]+datag[1,2],size(data, 1)), observations, 1);

Case Study: Shifted Unitary
U3(θ, φ, λ) Rz(φ+3π) = Rx(π/2) Rz(θ+3π) Rx(π/2) Rz(λ)

Sample θ and run on IBM quantum hardware, found shift

Future Directions
❖ More experiments!

❖ Derive over-correction parameters

❖ Derive std dev of errors

❖ Derive random Pauli probability

