cymbl: To -jinfinity & Beyond

o~
>~
William S. Moses Kevin Kwok

% wmoses@mit.edu
June 3, 2021

CSAIL




Compilation Bottlenecks

As software proliferates in all parts of life, the amount of code in the world has grown
exponentially

As of the 2015, Google alone had more than 9 million source code files (>2 billion LOC)!]
Compiling code is a bottleneck for development, testing, and publication of software

Most compilation tasks are highly parallel (many individual files) but practically limited by the
number of cores on your machine

Most builds unnecessarily repeat existing work
Everyone building the same existing package

Development is incremental — typically few files are modified in a given patch

[1] Rachel Potvin and Josh Levenberg. 2016. Why Google stores billions of lines of code in a single repository. Commun. ACM 59, 7 (July 2016), 78-87. DOIl:https://doi.org/10.1145/2854146



Ideal Remote Compilation

Drop in replacement without rewriting the codebase (e.g. “it just works™)
Infinite parallelism by offloading compilation to remote machines

Cache equivalent compilation tasks rather than recomputing



Existing Remote Compilation Tools

Compatibility Parallelism Caching
Bazel x x
Must use build system Requires user cluster® | Per-codebase caching
DistCC | | x o x |
Models compile command | Requires user cluster | Limited or no caching
Goma x |
Models compile command | Requires user cluster | Per-codebase caching
09 X v

Models all build commands

On-demand compute

Per-invocation caching



cymbl
ldea: Integrate remote execution into the compiller itself

Usable in any existing build system & “model” will always be perfect

Much more effective cache as the compiler has all the relevant information to normalize
builds

Merging remote execution and the compiler results in much more efficient execution,
reducing both latency and total build time

Leverages cloud functions to provide infinite parallelism without requiring the user to maintain
infrastructure and without gg’s requirement to model all commands

Reduces 21-hour Chrome build down to a few minutes



Drop-in Replacement

After downloading Cymbl, change the default compiler to use Cymbl instead of default

- When building, set desired parallelism and let it run!

ubuntu@ip-172-31-71-66: ~/chromium/src

XX
ubuntu@®ip-172-31-71-66:~/chromium/src$ ~/cymbldl/bin/cymbld

Running daemon

ubuntu@ip-172-31-71-66:~/chromium/src$ autoninja -C out/Default chrome -j 8000

22:11:09 M




Cymbl Design

- Client

output binary

original

source code

normalized

®_I'I arguments

unique

gatekeeper

compilation cache

content-addressed
storage



Cymbl Daemon (cymbld)

Many compilation tasks share the same cymbld

dependencies, so to avoid duplicate uploads, file pathg Q :?j

file uploading is handled by a shared daemon : — |=|

process (cymbld) source code
unique j \L

clang and lld processes send dependency file gatekeeper
paths to cymbld through IPC.

cymbld hashes, dedups, and batches before
querying the server for cache misses 5 \L

content-addressed

cymbld uploads files and notifies clang/lld storage

when dependencies have been uploaded and
provides credentials for invoking lambdas




Caching

Ensure Deterministic Builds compile & link jobs
Rewrite all “time of build” macros to be a ”Orma“Zid
. . arguments
fixed constant for determinism —_— —_—\ %
———————

All files used are explicitly passed by hash compilation cache

Normalize tasks for better cache hits

When executing a task, first check it exists inside the cache and if so immediately return the
result



Task Normalization by Preprocessing Source

clang -x objective-c -target armé64-apple-i0s10.0 -DDEBUG=1 . " .

-DOBJC_OLD_DISPATCH_PROTOTYPES=0 -DBUILD_ID=fadb4cal84dcb4680 -isysroot / . Identlfy reqUIred arguments & |ﬂpUtS (purple)
Applications/Xcode.app/Contents/Developer/Platforms/iPhone0S.platform/

Developer/SDKs/iPhone0S14.2.sdk -iquote /Users/wmoses/Library/Developer/Xcode/

DerivedData/UIViewPropertyAnimatorObjCSample-gmyxiqyigqtmgfbeggqiuwfodewt/

Build/Intermediates.noindex/UIViewPropertyAnimatorObjCSample.build/Debug-

iphoneos/UIViewPropertyAnimatorObjCSample.build/ .

UIViewPropertyAnimatorObjCSample-generated-files.hmap -I/Users/wmoses/Library/ * Remove Unused deflneS (blue)
Developer/Xcode/DerivedData/UIViewPropertyAnimatorObjCSample-

gmyxiqyiqqtmgfbeqgqiuwfodewt/Build/Intermediates.noindex/

UIViewPropertyAnimatorObjCSample.build/Debug-iphoneos/

UIViewPropertyAnimatorObjCSample.build/UIViewPropertyAnimatorObjCSample-own-

target-headers.hmap -I/Users/wmoses/Library/Developer/Xcode/DerivedData/ ° " " (j

UIViewPropertyAnimatorObjCSample-gmyxiqyiqgqtmgfbeggqiuwfodewt/Build/ NOrmallze InCIu e paths (green)
Intermediates.noindex/UIViewPropertyAnimatorObjCSample.build/Debug-iphoneos/

UIViewPropertyAnimatorObjCSample.build/UIViewPropertyAnimatorObjCSample-all-

target-headers.hmap -iquote /Users/wmoses/Library/Developer/Xcode/DerivedData/

UIViewPropertyAnimatorObjCSample-gmyxiqyiqgqtmgfbeggqiuwfodewt/Build/ F:) . I r] _I . r] r1 .
Intermediates.noindex/UIViewPropertyAnimatorObjCSample.build/Debug-iphoneos/ ° d p f y f d
UIViewPropertyAnimatorObjCSample.build/UIViewPropertyAnimatorObjCSample- rOVI e ma O exaCt W at I eS are use Wlt t elr
project-headers.hmap -I/Users/wmoses/Library/Developer/Xcode/DerivedData/ . .
UIViewPropertyAnimatorObjCSample-gmyxiqyigqtmgfbeggqiuwfodewt/Build/Products/ CorreSpOndlng haSh In Content-addressable Storage (red)
Debug-iphoneos/include -I/Users/wmoses/Library/Developer/Xcode/DerivedData/

UIViewPropertyAnimatorObjCSample-gmyxiqyiqgqtmgfbeggqiuwfodewt/Build/

Intermediates.noindex/UIViewPropertyAnimatorObjCSample.build/Debug-iphoneos/

UIViewPrgpertyAnimatorObjCSample.bgild/Derivedsources—norma}/arm64 —.I/Users/ args: [" -cc1" : I —trj_p]_e" : "arm64—app]_e—j_os‘| 0.0.0" :
wmoses/Library/Developer/Xcode/DerivedData/UIViewPropertyAnimatorObjCSample- o - . o o - o . B .
gmyxiqyiqgtmgfbegggiuwfodewt/Build/Intermediates.noindex/ -0, 00 y -X, ObJeCtlve_C ’
UIViewPropertyAnimatorObjCSample.build/Debug-iphoneos/ "P rope rtyAnj_mato rViewController.m" ,

UIViewPropertyAnimatorObjCSample.build/DerivedSources/arm64 -I/Users/wmoses/
Library/Developer/Xcode/DerivedData/UIViewPropertyAnimatorObjCSample-
gmyxiqyiqqtmgfbeqgqiuwfodewt/Build/Intermediates.noindex/
UIViewPropertyAnimatorObjCSample.build/Debug-iphoneos/
UIViewPropertyAnimatorObjCSample.build/DerivedSources -F/Users/wmoses/Library/
Developer/Xcode/DerivedData/UIViewPropertyAnimatorObjCSample-
gmyxiqyiqqtmgfbeqggiuwfodewt/Build/Products/Debug-iphoneos /Users/wmoses/apple/

"-internal-isystem", "/fakeroot-s"],
inputs: {
"/fakeroot-s/UIKit.framework/Headers/UIKit.h":
"WFrlpQYtbT2X041sYCr+rKR3FfJUGhvy9Xw8sIYcGG4=",

: : n
10S-10-Sampler/UIViewPropertyAnimator/UIViewPropertyAnimatorObjCSample/ "P rope rtyAn imatorViewController.h":
UIViewPropertyAnimatorObjCSample/PropertyAnimatorViewController.m -o /Users/ i fkegyluU] f/H55VrnLK3x0zubyv r/3h24VjBSW8aZC+Q=" :
wmoses/Library/Developer/Xcode/DerivedData/UIViewPropertyAnimatorObjCSample- " . . T
gmyxiqyiqqtmgfbeqgqiuwfodewt/Build/Intermediates.noindex/ P rope rtyAn imatorViewController.m":
UIV@ewPropertyAn%matorObjCSample.bu%ld/Delgug—iphoneos/ L uanMKT] 6anZIj F erth4VH@th1 NB+Nz8Vc82nuc="
UIViewPropertyAnimatorObjCSample.build/Objects-normal/armé4/

PropertyAnimatorViewController.o }




Cross-Platform & Cross-Architecture

- When client binaries are run it identifies the desired target platform and architecture which are

later passed to the lambda compilation task

- Every Raspberry Pi is secretly a thousand-core compiling supercomputer!

- Compile for ARM i0S/macOS on x86 Linux cluster (or other)

iewPropertyAnimatorObjCSample ) Billy iPhone 6s Clean Finished | Today at 6:11 PM A3

B & UIViewProp...le.xcodeproj B Build target...ample - Log

B Build target...ample - Log B Build target...ample  ([4

@ UlViewPropertyAnimatorObjCSample <A>

] General Signing & Capabilities Resource Tags Info Build Settings Build Phases Build Rules

PROJECT Basic Customized All Combined Levels -+ Q-
@ UlViewPropertyAni...

TARGETS

UlViewPropertyAni... . .
. perty P> Asset Catalog Compiler - Options

V¥ User-Defined
Setting
CcC /Users/wmoses/git/cloudclang/build/bin/clang

CLANG_ENABLE_MODULES No
CXX /Users/wmoses/git/cloudclang/build/bin/clang++

iewPropertyAnimatorObjCSample ) Billy iPhone 6s Running UlViewPropertyAnimatorObjCSample on Billy iPhone 6s

Ba < B ulviewProp...le.xcodeproj 7’ Build UlVie...ample - Log

= Build target...ample - Log = Build target...

. UlViewPropertyAnimatorObjCSample > 7" Build

All  Recent All Messages All Issues  Errors Only Export... S)
V¥ @ Compile main.m (arm64) 0.8 seconds A

CompileC /Users/wmoses/Library/Developer/Xcode/DerivedData/UIViewPropertyAnimatorObjCSample-
gmyxiqyiqqtmgfbeqgqiuwfodewt/Build/Intermediates.noindex/UIViewPropertyAnimatorObjCSample.build/Debug-iphoneos/
UIViewPropertyAnimatorObjCSample.build/Objects—-normal/armé64/main.o /Users/wmoses/apple/i0S-10-Sampler/
UIViewPropertyAnimator/UIViewPropertyAnimatorObjCSample/UIViewPropertyAnimatorObjCSample/main.m normal armé64
objective-c com.apple.compilers.llvm.clang.1l_0.compiler (in target 'UIViewPropertyAnimatorObjCSample' from project
'UIViewPropertyAnimatorObjCSample"')

cd /Users/wmoses/apple/i0S-10-Sampler/UIViewPropertyAnimator/UIViewPropertyAnimatorObjCSample

export LANG\=en_US.US-ASCII

/Users/wmoses/git/cloudclang/build/bin/clang -x objective-c -target arm64-apple-ios10.0 -fmessage-length\=0
-fdiagnostics—-show-note-include-stack —-fmacro-backtrace-1imit\=0 -std\=gnu99 -fobjc-arc -Wno-trigraphs -fpascal-
strings -00 -fno—-common -Wno-missing-field-initializers -Wno-missing-prototypes -Werror\=return-type
-Wdocumentation -Wunreachable-code -Wno-implicit-atomic-properties -Werror\=deprecated-objc-isa-usage -Wno-objc-
interface-ivars -Werror\=objc-root-class -Wno-arc-repeated-use-of-weak -Wduplicate-method-match -Wno-missing-
braces -Wparentheses -Wswitch -Wunused-function -Wno-unused-label -Wno-unused-parameter -Wunused-variable
-Wunused-value -Wempty-body -Wuninitialized -Wconditional-uninitialized -Wno-unknown-praagmas -Wno-shadow -Wno-

il M o & </ | @ uviewPropertyAnimatorObjCSample



Performance Optimizations

Three primary components of Cymbl compilation time:

1. File Transfer (upload inputs / download results)

2. Communication Latency

3. Remote Task Execution (clang/lld jobs)
Time = Money and Shared among everyone
Full link time optimization (libc, libc++, DNS resolver, boringssl, curl, libclang, ...)
Statically link everything

Bonus: Binaries are very portable (no dependencies)



File Transfer

Biggest (initial) bottleneck for clients is transferring inputs/results
Daemon serves as a single point to optimize transfers (rather than per process)
Staged existence caching (with invalidation)
Local concurrent map (fastest); Batched remote check (mid speed); (potential) re-upload (slowest)
Limit the number of concurrent uploads/connections (per network performance)

Assuming cluster network is much faster than one’s ISP, batch upload many files together for later split by remote
upload processing lambda

Storage with weaker properties (non-atomic) is vastly faster than that with stronger properties
Design invalidation-safe idempotent upload process

Retry compilation task if file has not been propagated to storage where needed



Latency

Reducing the latency of file existence checks and already-cached tasks is key to performance
of large workloads

1000 —

500

~300ms : “Standard” lambda function

100 —

so-  ~50ms : FullLTO + statically linked everything
Latency reduced both by time optimization and reduction in file size

10—

s ~dms  : Handwritten AWS API, persistent connection, fine tuning flags




Evaluation

FFmMmpeg

InkScape

Clang

Chrome

1-Core  96-Core ~ Cymbl %aycr?]g?
9.43 0.48 0.53 0.04 0.73"
39.96 1.06 1.12 0.25 1.45%
183.55 4.32 2.42 0.36
1302.65 25.71 6.99 4.42 18.92*

*gg results taken from paper, due to inability to reproduce results



Relative Speed-up (vs Single Core)

FFmpeg

InkScape

Clang

Chrome

B 96-Core Cymbl Cached Cymbl _ elol

—
—
—

150 300 450

*gg results taken from paper, due to inabllity to reproduce results

600



Costs & Other Analysis

- Costs computed for initial ram budget (3GB) Chrome Chrome

Uncached Cached

-+ 90k file compilation task
clang $8.478 $0.184
- 96-core cost $4.08/hour (need the hour)
Id $0.047 $0.002
+ ~2X more expensive uncached [3.5x speed]
» ~22X cheaper when cached [and 300x exists $0.014 $0.000
speed]
upload $0.026 $0.000
- 47 hours of compute for uncached; 1 hour of
compute for cached Total $8.565 $0.186




Optimized Costs

- As >99.996% tasks use <1.5GB (can half Chrome Chrome
the cost) Uncached  Cached
- 50k file compilation task clang $4.240 $0.092
- 96-core cost $4.08/hour (need the hour) s $0.047 $0.002
+ ~0On par when uncached [3.5x speed] evists $0.014 $0.000
+  ~43x cheaper when cached [and 300x
speed] upload $0.026 $0.000
47 hours of compute for uncached; 1 hour of Total $4.326 $0.094

compute for cached




Security

All accesses to any cloud data are mediated by a Gatekeeper
Gatekeeper only grants downloads of results of tasks submitted by that user
Cannot download another’s source

Cannot download another’s artifacts without a compilation job that would result in
that artifact anyways

Remaining attack vector: brute force timing attack of existence queries for source code
/ compilation jobs to attempt to identify another user’s source:

Intractable space size (all programs) and only can work once (since all brute forced
jobs will be subsequently cached)



Potential Additional Security Extensions

Increasingly Paranoid Threat Model
e ————————————————

No Artifact Timing Attacks No Input Timing Attacks Distrust service provider
Solution: Per user / + Solution: Per user / + Solution: User / company
company cache, or disable company content- hosted task executors
compilation cache addressable storage
Cost: Reduction or loss of < Cost: Reduction of file- + Cost: Maximum parallelism
caching speedups upload speedups AND IS limited to the size of the

costs to the left cluster, cost of maintaining

a cluster, AND costs to the
left



° local build
ccccc g -O- 5ce6c55

Status & Limitations

on: push succeeded on Sep 5 in 1Th 29m 35s
v Build Release ubuntu-18.04 > @ Setupjob

> @ add dependencies

> @ setup cymbl
Built on top of LLVM version 11 P ———

> @ mkdir

> @ cmake

> @ build

Tool can (and has been) rebased across LLVM
Versions

> @ Post Run actions/checkout@v2

Build Release ubuntu-18.04

> @ Complete job

succeeded on Sep 51n 1Th 29m 35s

LLD only supports ELF not MACH targets
(cymbl mach target works but LLVM proper 3 wsmoses MLIR-GPU
doesn’t handle frameworks) oo Dlmos® 1 rlleasse®  Onotors [l Hekt | 5lsoory @

0 Drop dead code in 'VisitDeclRefExpr'

Does not yet support caching with modules (falling \
back to caching with headers) EY i) 2

> @ add dependencies
> @ setup cymbl

> @ Run actions/checkout@v2

Use as compile-tool and CI| for MIT projects Build Release ubu:iiu-18.04 o o

succeeded 11 days ago in 5m 44s > @ cmake

> @ build

Accepting beta users for SAAS . © s

> @ Post Run actions/checkout@v2

> @ Complete job



Future Work

Global Scale Compilation
Super-optimization
Profile-guided optimization database
Language Extension (Swift, Rust, Go)

Fine-Granularity Caching



Conclusions

Raspberry Pi + Cymbl Cloud = Compiling Supercomputer!
Compiler-level integration enables significantly better caching and compatibility
State-of-the-art performance without the cost of a cluster

Sign up for our beta! https://cymbl.dev/

William S. Moses was supported in part by a DOE Computational Sciences Graduate
Fellowship DE-SC0019323.


https://cymbl.dev/

Questions?

- Client

output binary

original

source code

normalized

®_I'I arguments

unique

gatekeeper

compilation cache

content-addressed
storage



Backup Slides



Usage
Same compiler binaries can be used for either local or remote builds

Environmental variable enables or disables (CYMBL=0n by default)



Existing Techniques

Compatibility
Build-System Based (Bazel)
Requires rewriting all code to use the given build system, which handles remote task execution
- Substitution-Based (Goma, DistCC, IlceCC, gg)
-+ Create fake “cc” compiler scripts to intercept tasks and execute remotely

* g9 builds a static graph of all computations ahead of time (potentially faster) at the cost of requiring all
commands in the build process to be perfectly modeled

+ Requires maintaining an accurate model of all potential flags / behaviors for all tools, quickly becoming out of
date and unlikely to align with a given system

- Excluding gg, all tools require a user-maintained cluster, limiting parallelism and increasing cost

+ Caches at best recognize files in the same codebase being compiled in the same way



Potential Additional Security Extensions

Per user / company cache, or disable entirely (request no cache)
Pro: Eliminate any compilation-job cache timing attacks
Con: Reduction or loss of caching speedups
Per user / company content-addressable storage
Pro: Eliminate any input file cache timing attacks
Con: Above and reduction of file-upload speedups
User / company-hosted job executors
Pro: No need to trust service provider (e.g. AWS)

Con: Above and maximum parallelism is limited to size of cluster which must be always on



