
 : To -jInfinity & Beyond

wmoses@mit.edu
June 3, 2021

William S. Moses Kevin Kwok

Compilation Bottlenecks

• As software proliferates in all parts of life, the amount of code in the world has grown
exponentially

• As of the 2015, Google alone had more than 9 million source code files (>2 billion LOC)[1]

• Compiling code is a bottleneck for development, testing, and publication of software

• Most compilation tasks are highly parallel (many individual files) but practically limited by the
number of cores on your machine

• Most builds unnecessarily repeat existing work

• Everyone building the same existing package

• Development is incremental — typically few files are modified in a given patch
[1] Rachel Potvin and Josh Levenberg. 2016. Why Google stores billions of lines of code in a single repository. Commun. ACM 59, 7 (July 2016), 78–87. DOI:https://doi.org/10.1145/2854146

Ideal Remote Compilation

• Drop in replacement without rewriting the codebase (e.g. “it just works”)

• Infinite parallelism by offloading compilation to remote machines

• Cache equivalent compilation tasks rather than recomputing

?
Compatibility Parallelism Caching

 Bazel

 DistCC

 Goma

 gg

Must use build system Requires user cluster*

Requires user cluster

Requires user cluster

Limited or no caching

Per-codebase caching

?
Per-codebase caching

?
Per-invocation cachingModels all build commands

Models compile command
?
?

Models compile command

On-demand compute

Existing Remote Compilation Tools

• Idea: Integrate remote execution into the compiler itself

• Usable in any existing build system & “model” will always be perfect

• Much more effective cache as the compiler has all the relevant information to normalize
builds

• Merging remote execution and the compiler results in much more efficient execution,
reducing both latency and total build time

• Leverages cloud functions to provide infinite parallelism without requiring the user to maintain
infrastructure and without gg’s requirement to model all commands

• Reduces 21-hour Chrome build down to a few minutes

Drop-in Replacement

• After downloading Cymbl, change the default compiler to use Cymbl instead of default

• When building, set desired parallelism and let it run! 

Cymbl Design

Cymbl Daemon (cymbld)

• Many compilation tasks share the same
dependencies, so to avoid duplicate uploads,
file uploading is handled by a shared daemon
process (cymbld)

• clang and lld processes send dependency file
paths to cymbld through IPC.

• cymbld hashes, dedups, and batches before
querying the server for cache misses

• cymbld uploads files and notifies clang/lld
when dependencies have been uploaded and
provides credentials for invoking lambdas

Caching
• Ensure Deterministic Builds

• Rewrite all “time of build” macros to be a 
fixed constant for determinism

• All files used are explicitly passed by hash

• Normalize tasks for better cache hits

• When executing a task, first check it exists inside the cache and if so immediately return the
result

Task Normalization by Preprocessing Source

• Identify required arguments & inputs (purple)

• Remove unused defines (blue)

• Normalize include paths (green)

• Provide map of exactly what files are used with their
corresponding hash in content-addressable storage (red)

args: ["-cc1", "-triple", "arm64-apple-ios10.0.0",
 "-o", "o0", "-x", "objective-c",
 "PropertyAnimatorViewController.m",
 "-internal-isystem", "/fakeroot-s"],
inputs: {
 "/fakeroot-s/UIKit.framework/Headers/UIKit.h":
 "wFrlpQYtbT2X04lsYCr+rKR3FfJUGhvy9Xw8sIYcGG4=",
 "PropertyAnimatorViewController.h":
 "fke8yluU1f/H55VrnLK3xOzubvr/3h24VjBSW8aZc+Q=",
 "PropertyAnimatorViewController.m":
 "uqncMKT16aeuzIjFrlwkYh4vH0Wtp1nB+Nz8Vc82nuc="
}

clang -x objective-c -target arm64-apple-ios10.0 -DDEBUG=1
-DOBJC_OLD_DISPATCH_PROTOTYPES=0 -DBUILD_ID=fadb4ca184dcb4680 -isysroot /
Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/
Developer/SDKs/iPhoneOS14.2.sdk -iquote /Users/wmoses/Library/Developer/Xcode/
DerivedData/UIViewPropertyAnimatorObjCSample-gmyxiqyiqqtmgfbeqgqiuwfodewt/
Build/Intermediates.noindex/UIViewPropertyAnimatorObjCSample.build/Debug-
iphoneos/UIViewPropertyAnimatorObjCSample.build/
UIViewPropertyAnimatorObjCSample-generated-files.hmap -I/Users/wmoses/Library/
Developer/Xcode/DerivedData/UIViewPropertyAnimatorObjCSample-
gmyxiqyiqqtmgfbeqgqiuwfodewt/Build/Intermediates.noindex/
UIViewPropertyAnimatorObjCSample.build/Debug-iphoneos/
UIViewPropertyAnimatorObjCSample.build/UIViewPropertyAnimatorObjCSample-own-
target-headers.hmap -I/Users/wmoses/Library/Developer/Xcode/DerivedData/
UIViewPropertyAnimatorObjCSample-gmyxiqyiqqtmgfbeqgqiuwfodewt/Build/
Intermediates.noindex/UIViewPropertyAnimatorObjCSample.build/Debug-iphoneos/
UIViewPropertyAnimatorObjCSample.build/UIViewPropertyAnimatorObjCSample-all-
target-headers.hmap -iquote /Users/wmoses/Library/Developer/Xcode/DerivedData/
UIViewPropertyAnimatorObjCSample-gmyxiqyiqqtmgfbeqgqiuwfodewt/Build/
Intermediates.noindex/UIViewPropertyAnimatorObjCSample.build/Debug-iphoneos/
UIViewPropertyAnimatorObjCSample.build/UIViewPropertyAnimatorObjCSample-
project-headers.hmap -I/Users/wmoses/Library/Developer/Xcode/DerivedData/
UIViewPropertyAnimatorObjCSample-gmyxiqyiqqtmgfbeqgqiuwfodewt/Build/Products/
Debug-iphoneos/include -I/Users/wmoses/Library/Developer/Xcode/DerivedData/
UIViewPropertyAnimatorObjCSample-gmyxiqyiqqtmgfbeqgqiuwfodewt/Build/
Intermediates.noindex/UIViewPropertyAnimatorObjCSample.build/Debug-iphoneos/
UIViewPropertyAnimatorObjCSample.build/DerivedSources-normal/arm64 -I/Users/
wmoses/Library/Developer/Xcode/DerivedData/UIViewPropertyAnimatorObjCSample-
gmyxiqyiqqtmgfbeqgqiuwfodewt/Build/Intermediates.noindex/
UIViewPropertyAnimatorObjCSample.build/Debug-iphoneos/
UIViewPropertyAnimatorObjCSample.build/DerivedSources/arm64 -I/Users/wmoses/
Library/Developer/Xcode/DerivedData/UIViewPropertyAnimatorObjCSample-
gmyxiqyiqqtmgfbeqgqiuwfodewt/Build/Intermediates.noindex/
UIViewPropertyAnimatorObjCSample.build/Debug-iphoneos/
UIViewPropertyAnimatorObjCSample.build/DerivedSources -F/Users/wmoses/Library/
Developer/Xcode/DerivedData/UIViewPropertyAnimatorObjCSample-
gmyxiqyiqqtmgfbeqgqiuwfodewt/Build/Products/Debug-iphoneos /Users/wmoses/apple/
iOS-10-Sampler/UIViewPropertyAnimator/UIViewPropertyAnimatorObjCSample/
UIViewPropertyAnimatorObjCSample/PropertyAnimatorViewController.m -o /Users/
wmoses/Library/Developer/Xcode/DerivedData/UIViewPropertyAnimatorObjCSample-
gmyxiqyiqqtmgfbeqgqiuwfodewt/Build/Intermediates.noindex/
UIViewPropertyAnimatorObjCSample.build/Debug-iphoneos/
UIViewPropertyAnimatorObjCSample.build/Objects-normal/arm64/
PropertyAnimatorViewController.o

Cross-Platform & Cross-Architecture

• When client binaries are run it identifies the desired target platform and architecture which are
later passed to the lambda compilation task

• Every Raspberry Pi is secretly a thousand-core compiling supercomputer!

• Compile for ARM iOS/macOS on x86 Linux cluster (or other)

Performance Optimizations
Three primary components of Cymbl compilation time:

1. File Transfer (upload inputs / download results)

2. Communication Latency

3. Remote Task Execution (clang/lld jobs)

• Time = Money and Shared among everyone

• Full link time optimization (libc, libc++, DNS resolver, boringssl, curl, libclang, …)

• Statically link everything

• Bonus: Binaries are very portable (no dependencies) 

File Transfer
• Biggest (initial) bottleneck for clients is transferring inputs/results

• Daemon serves as a single point to optimize transfers (rather than per process)

• Staged existence caching (with invalidation)

• Local concurrent map (fastest); Batched remote check (mid speed); (potential) re-upload (slowest)

• Limit the number of concurrent uploads/connections (per network performance)

• Assuming cluster network is much faster than one’s ISP, batch upload many files together for later split by remote
upload processing lambda

• Storage with weaker properties (non-atomic) is vastly faster than that with stronger properties

• Design invalidation-safe idempotent upload process

• Retry compilation task if file has not been propagated to storage where needed

Latency

• Reducing the latency of file existence checks and already-cached tasks is key to performance
of large workloads 

~5ms : Handwritten AWS API, persistent connection, fine tuning flags

~300ms : “Standard” lambda function

~50ms : FullLTO + statically linked everything 
 Latency reduced both by time optimization and reduction in file size

1

10

100

1000

50

5

500

Evaluation

1-Core 96-Core Cymbl Cached 
Cymbl gg*

FFmpeg 9.43 0.48 0.53 0.04 0.73*

InkScape 39.96 1.06 1.12 0.25 1.45*

Clang 183.55 4.32 2.42 0.36

Chrome 1302.65 25.71 6.99 4.42 18.92*

*gg results taken from paper, due to inability to reproduce results

Relative Speed-up (vs Single Core)

*gg results taken from paper, due to inability to reproduce results

FFmpeg

InkScape

Clang

Chrome

0 150 300 450 600

96-Core Cymbl Cached Cymbl gg*

Costs & Other Analysis
Chrome 

Uncached
Chrome 
Cached

clang $8.478 $0.184

lld $0.047 $0.002

exists $0.014 $0.000

upload $0.026 $0.000

Total $8.565 $0.186

• Costs computed for initial ram budget (3GB)

• 50k file compilation task

• 96-core cost $4.08/hour (need the hour)

• ~2x more expensive uncached [3.5x speed]

• ~22x cheaper when cached [and 300x
speed]

• 47 hours of compute for uncached; 1 hour of
compute for cached

Optimized Costs
Chrome 

Uncached
Chrome 
Cached

clang $4.240 $0.092

lld $0.047 $0.002

exists $0.014 $0.000

upload $0.026 $0.000

Total $4.326 $0.094

• As >99.996% tasks use <1.5GB (can half
the cost)

• 50k file compilation task

• 96-core cost $4.08/hour (need the hour)

• ~On par when uncached [3.5x speed]

• ~43x cheaper when cached [and 300x
speed]

• 47 hours of compute for uncached; 1 hour of
compute for cached

Security

• All accesses to any cloud data are mediated by a Gatekeeper

• Gatekeeper only grants downloads of results of tasks submitted by that user

• Cannot download another’s source

• Cannot download another’s artifacts without a compilation job that would result in
that artifact anyways

• Remaining attack vector: brute force timing attack of existence queries for source code
/ compilation jobs to attempt to identify another user’s source:

• Intractable space size (all programs) and only can work once (since all brute forced
jobs will be subsequently cached)

Potential Additional Security Extensions

No Artifact Timing Attacks

• Solution: Per user /
company cache, or disable
compilation cache

• Cost: Reduction or loss of
caching speedups

Increasingly Paranoid Threat Model

No Input Timing Attacks

• Solution: Per user /
company content-
addressable storage

• Cost: Reduction of file-
upload speedups AND
costs to the left

Distrust service provider

• Solution: User / company
hosted task executors 

• Cost: Maximum parallelism
is limited to the size of the
cluster, cost of maintaining
a cluster, AND costs to the
left

Status & Limitations

• Built on top of LLVM version 11

• Tool can (and has been) rebased across LLVM
versions

• LLD only supports ELF not MACH targets
(cymbl mach target works but LLVM proper
doesn’t handle frameworks)

• Does not yet support caching with modules (falling
back to caching with headers)

• Use as compile-tool and CI for MIT projects

• Accepting beta users for SAAS

Future Work

• Global Scale Compilation

• Super-optimization

• Profile-guided optimization database

• Language Extension (Swift, Rust, Go)

• Fine-Granularity Caching

Conclusions

• Raspberry Pi + Cymbl Cloud = Compiling Supercomputer!

• Compiler-level integration enables significantly better caching and compatibility

• State-of-the-art performance without the cost of a cluster

• Sign up for our beta! https://cymbl.dev/

• William S. Moses was supported in part by a DOE Computational Sciences Graduate
Fellowship DE-SC0019323.

https://cymbl.dev/

Questions?

Backup Slides

Usage

• Same compiler binaries can be used for either local or remote builds

• Environmental variable enables or disables (CYMBL=On by default)

Existing Techniques
• Compatibility

• Build-System Based (Bazel)

• Requires rewriting all code to use the given build system, which handles remote task execution

• Substitution-Based (Goma, DistCC, IceCC, gg)

• Create fake “cc” compiler scripts to intercept tasks and execute remotely

• gg builds a static graph of all computations ahead of time (potentially faster) at the cost of requiring all
commands in the build process to be perfectly modeled

• Requires maintaining an accurate model of all potential flags / behaviors for all tools, quickly becoming out of
date and unlikely to align with a given system

• Excluding gg, all tools require a user-maintained cluster, limiting parallelism and increasing cost

• Caches at best recognize files in the same codebase being compiled in the same way

Potential Additional Security Extensions
• Per user / company cache, or disable entirely (request no cache)

• Pro: Eliminate any compilation-job cache timing attacks

• Con: Reduction or loss of caching speedups

• Per user / company content-addressable storage

• Pro: Eliminate any input file cache timing attacks

• Con: Above and reduction of file-upload speedups

• User / company-hosted job executors

• Pro: No need to trust service provider (e.g. AWS)

• Con: Above and maximum parallelism is limited to size of cluster which must be always on

