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Differentiation Is Key To Machine Learning And Science

Computing derivatives is key to many algorithms
Machine learning (back-propagation, Bayesian inference, uncertainty quantification)
Scientific computing (modeling, simulation)

When working with large codebases or dynamically-generated programs, manually writing
derivative functions becomes intractable

Community has developed tools to create derivatives automatically




Existing AD Approaches

Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)
Provide a new language designed to be differentiated
Requires rewriting everything in the DSL and the DSL must support all operations in original code
Fast if DSL matches original code well

Operator overloading (Adept, JAX)

Provide differentiable versions of existing language constructs (double => adouble, np.sum =>
jax.sum)

May require writing to use non-standard utilities

Often dynamic: storing instructions/values to later be interpreted
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Existing AD Approaches

Source rewriting
Statically analyze program to produce a new gradient function in the source language
Re-implement parsing and semantics of given language
Requires all code to be available ahead of time

Difficult to use with external libraries




Existing Automatic Differentiation Pipelines

Optimize

CodeGen




Case Study: Vector Normalization

//Compute magnitude in O(n)
double mag(double[ ] x);

//Compute norm in 0(n*2)
vold norm(double[ ] out, double[] in) {

for (int i=0; i<n; i++) {
out[i] = in[i] / mag(in);
}
}




Case Study: Vector Normalization

//Compute magnitude in O(n)
double mag(double[ ] x);

//Compute norm in O(n)
vold norm(double[ ] out, double[] in) {

double res = mag(in);
for (int 1=0; 1i<n; 1++) { :>
out[i] = in[i] / res;

)
)




Optimization & Automatic Differentiation

0 () a0 a0
for i=0..n { Ootin ] = gag( {) . - QéQ{
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} [1] mag(in) 9 [i] /= AD += [1]
— — ) }




Optimization & Automatic Differentiation

0O (nZ) O (n) O (n)
for i=0. . C_paeC) .y
% [i] 9={mag( ) Optimize or Egj.9={ AD " _n.ﬁ ; -
) - } )
- . vmag ( )
0, (nz) O (”2)
for 1=0..n { ror =n.;® { [1]
} [1] /= mag(in) AD } vmag ( )

- — e
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Optimization & Automatic Differentiation

0 (n?) O (n) O (n)
f =0. . ~_maglin) _= o
o (i 9={mag( ) Optimize for E@j°9={ AD for _n°£ ; [
} - - } )
- — vmag ( )
2

0 (n?) 0 (n) 0 (n)

for 1=0. . { for =n.;® { i for 1=n..0 {
_ = - d_ _

} [i] /= mag(in) AD }Vmag( ) Optimize onilig d_Eeg)

— — ¥
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Optimization & Automatic Differentiation

Differentiating after optimization can create asymptotically faster gradients!

O ( n2) O (n) O (n)
£ -0 = mag(in) _= 0.0
Coutli] 9={mag< ) Optimize o E®j°9={ AD i res e ¢ [i]..
: o S } }

— vmag ( )
2

0 () 0 (1) 0 ()

for 1i=0..n { for =n.;® { b for i=n..0 {
_ B . d_ . [i].

) L1 /= mag(in) AD : vmag ( ) Optimize Vmggi d_res)

— — ¥




% Enzyme Approach

Performing AD at low-level lets us work on optimized code!

Optimize Optimize

CodeGen

Enzyme a>
LIVM
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Why Does Enzyme Use LLVM?

Generic low-level compiler infrastructure with many

frontends

“Cross platform assembly”

Many backends (CPU, CUDA, AMDGPU, etc)

d analyses

IONS an
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Well-defined semantics
Large collection of opt



Case Study: RelLU3
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LLVM

C Source
double relu3(double x) {
double result; define double @relu3(double %x)
if (x > 0)
result = pow(x, 3);
else
Eesult = ?”c entry %BCcmp = %X > 0
return resuit; br %cmp, cond.true, cond.end

J cond. true
~ \/

%call = pow(%x, 3)
br cond.end

\_ AL\ﬁ‘
%result = phi [%call, cond.truel, [0, entry]
ret %result

cond. end

Enzyme Usage

double diffe_relu3(double x) {
return __enzyme_autodiff(relu3, x);

: _




Case Study: ReLU3
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Active Instructions

define double @relu3(double %x)

—

BCmMp = %X > 0 entr
br %cmp, cond.true, cond.end y

cond. true “/////,

4 )
%call = pow(%x, 3)
br cond.end

- /

cond.end

%result = phi [%call, cond.truel], [0, entryl]
ret %result




define double @diffe_relu3(double %x, double %differet)

~
(a1loca %result’ = 0.0 _ A\\Oca’[e & 7ero
entry alloca %call’ = 0.0 _
alloca %x’ = 0.0 shadow memory for
BCmMp = %X > 0 .
br %cmp, cond.true, cond.end
-
scall = pow(%x, 3) (;;esult = phi [%call, cond.truel, [0, entry] ) cond. end
br cond.end
- : deleted return

%result’ = 1.0
\Ei reverse_cond. end J}
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define double @diffe_relu3(double %x, double %differet)

~
(;lloca %result’ = 0.0
entry alloca %call’ = 0.0

alloca %x’ = 0.0

br %cmp, cond.true, cond.end y

cond. true \-
A(/ \\\g

~

%call = pow(%x, 3)
br cond.end

: deleted return
wresult’ = 1.0

Or reverse_cond.end

%result = phi [%call, cond.truel, [0, entry]

store %result’ = 0.0
reverse._cond

%df = 3 * pow(%x, 2)
%htmp_call’ = load %call Or %Cmp,

reverse_cond. true %tmp_res’ = load %result’
%call’ += 1f %x > 0 then %tmp_res’ else 0

.true,

reverse_entry

%X’ += %df * %tmp_call’

store %call’ = 0.0 /
O reverse_entry J)

%0 = load %x’
ret %0

)

reverse_entry

Compute adjoints
Gemp = %x > 0 for active instructions

\\ cond.end

reverse_cond.end
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define double @diffe_relu3(double %x, double %differet)

~

alloca %resul
alloca %call’
alloca %x’

BCmMp = %X > 0

entry

-

w0 =

br %cmp, cond.true, cond.end Py

~

S © ©

0
0.
0

cond. true

%call = pow(%x, 3)
br cond.end

o

)

reverse_cond. true

%df = 3 * pow(%x, 2)
%tmp_call’ = load %call
%X’ += %df * %tmp_call’
store %call’ = 0.0

o reverse_entry J}

N

- deleted return

%result’ = 1.0
r reverse_cond.end

l

G;;np_res’ = load %result’ ﬁ\\
%call’ += 1f %x > 0 then %tmp_res’ else 0

store %result’ = 0.0
\Ei %cmp, reverse_cond.true, reverse_entry 4//

/

%0 = load %X reverse_entry
ret %0

Compute adjoints
for active instructions

> D

/;;esult = phi [%call, cond.truel, [0, entry]

cond.end

reverse_cond.end
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define double @diffe_relu3(double %x)

Post
@ o ) Optimizati
entry |CmP = %X > 0 otimization

br %cmp, reverse_cond.true, reverse_entry

= _J

%3 = 3 * pow(%x, 2)
br reverse_entry

reverse_cond.t::;\\\\“as

[%@ = phi [%3, reverse_cond.true], [0, entry] j) reverse_entry
ret %0

Essentially the optimal hand-written gradient!

double diffe_relu3(double x) {
double result;
if (x > 0)
result = 3 * pow(x, 2);
else
result = 0;
return result;




Challenges of Low-Level AD
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Low-level code lacks information necessary to compute adjoints

volid f(void* dst, void* src) {
memcpy (dst, src, 8);

J
void grad_f(double* dst, double* dst’, void grad_f(float* dst, float* dst’,
double* src, doublex src’) { floatx src, float* src’) {
// Forward Pass // Forward Pass
memcpy(dst, src, 8); memcpy(dst, src, 8);
// Reverse Pass // Reverse Pass
src’[@] += dst’[0]; src’[0] += dst’[0];
dst’[0] = 0; dst’[0] = 0;
) src’[1] += dst’[1];
B— — dst’[1] = 0;




Type Analysis
New interprocedural dataflow analysis that detects the underlying type of data

Each value has a set of memory offsets : type

Perform series of fixed-point updates through instructions

struct MyType { X My Type

e 0: Pointer ——[0: Double
) 8: Pointer —>|0: Integer
X = MyTypex*;

S

types(x) = {[0]:Pointer, [0,0]:Double, [0,8]:Pointer, [0,8,0]:Integer} %

22



Cache

Adjoint instructions may require values from the forward pass

e.g. V(x "y) => x dy + y dx
For all values needed in the reverse, allocate memory in the forward pass to store the value
Values computed inside loops are stored in an array indexed by the loop induction variable

Array allocated statically if possible; otherwise dynamically realloc’d

0,



Case Study: Read Sum

define double @sum(double* %x)

double sum(double* x) {

double total = 0;
Gr for.body ]
for(int i=0; i<10; i++) entry
total += read() * x[1]; ‘l
return total; a )
} %1 = phi [ 0, entry 1, [ %1.next, for.body ]
— —— %total = phi [ 0.0, %entry 1, [ %add, for.body ]

for.body ncall = @read()
%0 = load %x[%1]
%mul = %0 * %call
%add = %mul + %total
%l.next = %1 + 1
void diffe_sum(double* x, doublex xp) { %nexitcond = %1i.next == 10
return __enzyme_autodiff(sum, x, xp); br %exitcond, for.cleanup, for.body

} \_ J

T T l

%result = phi [ %call, cond.true], [0, entry]

for.cleanup ot Yresult




Case Study: Read Sum

define double @sum(double* %x)

br for.body

Active Variables l
~ R

%1 = phi [ 0, entry 1, [ %1.next, for.body ]
%total = phi [ 0.0, %entry 1, [ %add, for.body ]
for.body ncall = @read()

%0 = load %x[%1]

%mul = %0 * %call

%add = %mul + %total

%l.next = %1 + 1

%exitcond = %1.next == 10

br %exitcond, for.cleanup, for.body

\_ J

l

%result = phi [%call, cond.truel, [0, entry]
ret %result

for.cleanup




Case Study: Read Sum

Each reqister in the
for loop represents a
distinct active variable

every Iteration

define double @sum(double* %x)

entry Er for.body j

~

for.body

—

\_

%1 = phi [ 0, entry 1, [ %1.next, for.body ] A
%total = phi [ 0.0, %entry 1, [ %add, for.body ]
%call = @read()

%0 = load %x[%1i]

%mul = %0 * %call

%add = %mul + %total

%l.next = %1 + 1

%exitcond = %1.next == 10

br %exitcond, for.cleanup, for.body

J

l

ret %result

(%result = phi [%call, cond.truel], [0, entry] :)
for.cleanup




define double @diffe_sum(doublex %x, double* %xp)

4 )
alloca %x’

alloca %total’
alloca %0’
alloca %mul’

entry
alloca %add’
"”””,,,,—ff””’,””*alloca %result’
br for.bod
Allocate & zero C ’ y

shadow memory l

- R
F)EBF Eﬂ(:t]\/f} \/Ei‘LJE} /k%d = phi [ 0, entry 1, [ %i.next, for.body ]

%total = phi [ 0.0, %entry ], [ %add, for.body ]
%call = @read()

%0 = load %x[%1]

for.body %smul = %0 * %call

%add = %mul + %total

%l.next = %1 + 1

I
©O OO OO O
O OO OO0

%exitcond = %1.next == 10
br %exitcond, for.cleanup, for.body
\_ W,
v

%result = phi [ %call, cond.truel], [0, entry]

for.cleanup et Yresylt




define double @diffe_sum(doublex %x, double* %xp)

entry ~ ~

alloca %x’
alloca %total’
alloca %0’
alloca %mul’ —
alloca %add’ =
alloca %result’ = 0.0

CaChe fOrward paSS > |%call_cache = @mallc;c(1® X double)

br for.body

variables for use In N l y
reverse s ~

%1 = phi [ 0, entry 1, [ %1.next, for.body ]
%total = phi [ 0.0, %entry 1, [ %add, for.body ]
%call = @read()

store %call_cache[%1i] = %call

%0 = load %x[%1]

%smul = %0 * %call

%add = %mul + %total

%1.next = %1 + 1

Il
S © © © O
S © © © O

for.body

%exitcond = %1.next == 10
br %exitcond, for.cleanup, for.body
\_ W,
v
/%}esult = phi [ %call, cond.true], [0, entry] ‘\\
for.cleanup @free(%cache)

\E?t %result J)




define void @diffe_sum(doublex %x, double* %xp)

g N After lowering &

entry %call_cache = @malloc(10 x double) ' ' '
br for.body SOlme OptlmlzathﬂS
\_ i, W,
for.bod g : : -
or.body %1 = phi [ @, entry 1, [ %i.next, for.body ]

%total = phi [ 0.0, %entry ], [ %add, for.body ]
%call = @read()

store %call_cache[%1] = %call
%l.next = %1 + 1

%exitcond = %i.next == 10
br %exitcond, reversefor.body, for.body

\_ I )

%1'" = phi [ 9, for.body ], [ %1’.next, reversefor.body ]
%1’ .next = %1' - 1

%cached_read = load %call_cachel[%1’ ]

store %xpl[%i’] = %cached_read + %xp[%i’ ]

%exit2 = %1 = 0

br %exitcond, %exit2, reversefor.body

l

exit @free(%cache)
ret

~

reversefor.body




Case Study: Read Sum

define void @diffe_sum(doublex %x, double* %xp)

After more
- N IV
%calld = @read() C)F)T]fTWIZZEitI()FWES

store %xpl@] = %call@

%calll = @read()
store %xp[1] = %calll

entry

%call2 = @Qread() vold diffe_sum(double* x, double* xp) {
store %xpl2] = %call2 xpL0] = read();
%call3 = @read() xpl1] = read();
store %xp[3] = %call3 xpl2] = read();
%calld = @read() xpL3] = read();
store %xp[4] = %call4 XpL4. ] read();
%call5 = @read() XpLS 1 = read();
store %xp[5] = %call5 XpIo - read();
xpL7] = read();
%calle = @read() xp[8]1 = read():
store %xp[6] = %callb6 «p[9] = read():
%call7 = @read() 1
store %xpl7] = %call7 — —

%call8 = @read()
store %xpl[8] = %call8

%call9 = @read()
store %xp[9] = %call9

ret

\_ J
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Experimental Setup

Collection of benchmarks from Microsoft’s ADBench suite and of technical interest

Enzyme; -02 —Nzyme % -02
Ref: | Enzyme % 0?2 09
Tapenade: Tapenade -02 -02

Adept: Adept -02 -02




Speedup of Enzyme

B Enzyme
I Ref
B Tapenade
B Adept

Higher Is Better

X

LSTM BA GMM Euler RK4 FFT Bruss

/\

0.0-

Enzyme Is 4.2x faster than Reference!

0,
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PyTorch-Enzyme & TensorFlow-Enzyme

import torch import tensorflow as tf

from torch_enzyme import enzyme from tf_enzyme import enzyme

# Create some initial tensor # Create some initial tensor

inp = .. inp = tf.Variable(..)

# Apply foreign function to tensor # Use external C code as a regular TF op
out = enzyme("test.c", “f").apply(inp) out = enzyme(inp, filename=“test.c",

function=“f")
# Derive gradient

out.backward() # Results 1s a TF tensor
print(inp.grad) out = tf.sigmoid(out)

// Input tensor + size, and output tensor
void f(float* inp, size_t n, float* out);

// diffe_dupnoneed specifies not recomputing the output
void diffef(float* inp, float* d_inp, size_t n, float* d_out) {
__enzyme_autodiff(f, diffe_dup, inp, d_inp, n, diffe_dupnoneed, (float*)@, d_out);

}

33




Automatic Differentiation & GPUs

Prior work has not explored reverse mode AD of existing GPU kernels
Reversing parallel control flow can lead to incorrect results
Complex performance characteristics make it difficult to synthesize efficient code

Resource limitations can prevent kernels from running at all

34




Challenges of Parallel AD

The adjoint of an instruction increments the derivative of its input

Benign read race in forward pass => Write race in reverse pass (undefined behavior)

double gradient_set(doublex* , doublex :
double ) {
double = 0.0;

vold set(doublex , double ) {

parallel_for(int 1=0; 1<10; 1++)

L1103 ; parallel_for(int 1=0; 1<10; 1++)
) R \ — [1] = ;
parallel_for(int 1=0; 1<10; 1i++) {
Read Race / SRR
. J
Write Race
return X

| —
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GPU Memory Hierarchy

Per Thread Per Block Per GPU
Register Shared Memory Global Memory
~Bytes ~KBs ~GBs

Use Limits Parallelism Use Limits Parallelism

_— - —_—
Slower, larger amount of memory

0,



Correct and Efficient Derivative Accumulation

Same memory location across  Others [always legal fallback]

all threads (some shared mem)

Thread-local memory

Non-atomic load/store

Parallel Reduction

Atomic increment

__device__
void f(..) {

// Thread-local var
double vy;

// Same var for all threads
double vy;

__device__
void f(..) {

reduce_add (& : );
J

__device__
// Unknown thread-aliasing
void f(double* y) {

atomic { += ;)

37
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Synchronization Primitives

Synchronization (sync_threads) ensures all threads finish executing
codeA before executing codeB

Sync is only necessary if A and B may access to the same memory

Assuming the original program is race-free, performing a sync at the
corresponding location in the reverse ensures correctness

Prove correctness of algorithm by cases

38

codeA();
sync_threads;

codeB();




Case 1: Store, Sync, Load

codeA(); // store %ptr
sync_threads;

codeB(); // load %ptr

diffe_codeB(); // atomicAdd %d_ptr
sync_threads;

diffe_codeA(); // load %d_ptr
// store %d_ptr = 0

39

V Correct

+ Load of d_ptr must happen after

all atomicAdds have completed




CUDA Example

__device__ void inner(float* a, float* x, floatx y) {
y[threadldx.x] = al0] * x[threadIdx.x];

}

__device__ void __enzyme_autodiff(void*, ..);

__global__ void daxpy(float* a, float* da, float* x, float* dx, float* y, floatx dy) {
__enzyme_autodiff((void*)inner, a, da, x, dx, vy, dy);

¥

__device__ void diffe_inner(float*x a, floatx da, float* x, float* dx, float* y, float* dy) {
y[threadIdx.x] = a[0] * x[threadIdx.x];

float dy = dy[threadIdx.xI;
dy[threadIdx.x] = 0.0f;

float dx_tmp = a[@] * dy;
atomic { dx[threadIdx.x] += dx_tmp; }

float da_tmp = x[threadIdx.x] * dy;
atomic { dal[@] += da_tmp; }

40
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Efficient GPU Code

Without optimization, GPU gradients must cache a large number of values

The complexity of GPU memory means large caches slow down the program by several
orders of magnitude, if it even fits at all

Like the CPU, existing LLVM optimizations can reduce the overhead
Unlike the CPU, existing LLVM optimizations aren’t sufficient

Novel GPU and AD-specific optimizations can speedup by several orders of magnitude

0,



GPU Gradient Overhead

Evaluation of both original code and gradient
DG (ROCm)

DG: Discontinuous-Galerkin integral (Julia)
DG (CUDA)

18.35

LBM: particle-based fluid dynamics

simulation LBM (Parboil)
LULESH: unstructured explicit shock LULESH 2.01
hydrodynamics solver

RSBench
XSBench & RSBench: Monte Carlo

simulations of particle transport

algorithms (memory & compute bound, X5Bench
respectively)




Ablation Analysis of Optimizations

\ \ Unrolling \ \
DG (ROCm) 0
5.4 X
Unrolling MallocCoalescing PreOptimization
17.8% 116.6 X% 1378.3%
Allocator Recompute InlineCacheABI
LBM O e e P
6.4% 8.7X 19.87 -
SpecPHI PreOptimization
LULESH AP 7o Y ESSSSSSEEEEE—————— ‘
2.0x 2.4% 2979.1 X )
CacheLICM Inlining PreOpt
4.7% 9.5X% 6372.2%
Templating  PHI LoopBound PreOptimization
XSBench 8 A § B A B A B R EEEEEEEEEE——————mmm,
3.2 X 9.5 X% 16.3x 25.9%
| | | |
Forward (1x) 10x 100x 1000x OOM

Overhead above Forward Pass
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Ablation Analysis of Optimizations

\ \ Unrolling \ \
DG (ROCm) 0
i 5.4 %
Unrolling MallocCoalescing PreOptimization
DG (CUDA) O(—O(—O_
i 17.8% 116.6 X 1378.3 X
Allocator Recompute InlineCacheABI
LBM O €= €O
i 6.4x 8.7X 19.87 % )
SpecPHI PreOptimization

LULESH Oéo_

i 2.0x 2.4% 2979.1x )

CacheLICM Inlining P1eOpt

RSBench O () OL

i 4.7 X 9.5 % 06372.2X

Templating  PHI LoopBoun PreOptimization
XSBench O e () G ) s )
3.2X 9.9 X 16.3x  25.9%
[ | | | |
Forward (1x) 10x 100x 1000x OOM

44
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Ablation Analysis of Optimizations

Unrolling
DG (ROCm) 0
B 5.4 X
Unrolling MallocCoalescing PreOptimization
DG (CUDA) O_O_O_ <
B 17.8 % 116.6 % 1378.3 %
Allocator Recompute InlineCacheABI
LBM 0
i 6.4x 8.7 19.87x )
SpecPHI PreOptimization
LULESH
i 2.0x 2.4x% 2979.1% )
CagheLICM Inlining PreOpt
RSBenCh &O—OL
i 4.7% 9.5 X 6372.2 %
mplating PHI LoopBoun PreOptimization
XSBench O
3.2X 9.5 16.3x 25.9%
- \ \ \ \
Forward (1x) 10x 100x 1000x OOM

45

Overhead above Forward Pass



Ablation Analysis of Optimizations

Unrolling
DG (ROCm) 0
i 5.4%
Unrolling MallocCoalescing PreOptimization
DG (CUDA) O_O_O_ <
i 17.8% 116.6 % 1378.3 %
Allocator Recompute InlineCacheABI
LBM 0
i 6.4x 8.7 19.87 % )
SpecPHI PreOptimization
LULESH
i 2.0x 2.4x% 2979.1% )
CagheLICM Inlining PreOpt
RSBenCh &O—OL
i 4.7 9.5 X 6372.2X%
mplating  PHI LoopBoun PreOptimization
XSBench O
3.2 X 9.5 % 16.3x 25.9x%
[ \ \ \ \
Forward (1x) 10x 100x 1000x OOM

Overhead above Forward Pass

GPU AD is Intractable Without Optimization!
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Scalability Analysis (Fixed Work Per Thread)

20 F | | | | | |

ek
Ot
|

AD Overhead (factor)
=
|

Bl #
s
t
;
i
t
i
t
s

|
0 2 4 0 8 10 12
Relative Problem Size
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Discontinuous Galerkin (Julia & CUDA)
Discontinuous Galerkin (Julia & ROCm)
LULESH (C++ & CUDA)
RSBench (C & CUDA)
XSBench (C & CUDA)




% Enzyme

Tool for performing reverse-mode AD of statically analyzable LLVM IR

Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)

4.2x speedup over AD before optimization on CPU

State-of-the art performance with existing tools

First general purpose reverse-mode GPU AD

Novel GPU and AD-specific optimizations improve runtime by several orders of magnitude

PyTorch-Enzyme & TensorFlow-Enzyme lets researchers use foreign code in ML workflow

48
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% Enzyme

Tool for performing reverse-mode AD of statically analyzable LLVM IR

Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)

4.2x speedup over AD before optimization on CPU

State-of-the art performance with existing tools

First general purpose reverse-mode GPU AD

Novel GPU and AD-specific optimizations improve runtime by several orders of magnitude

PyTorch-Enzyme & TensorFlow-Enzyme lets researchers use foreign code in ML workflow
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% Enzyme
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Scalability Analysis (Fixed Thread Count)
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Enzyme on the GPU

Care must be taken to both ensure
correctness and maintain parallelism.

GPU programs have much lower memory
limits. Performance is highly dependent on the
number of memory transfers.

Without first running optimizations reverse-
mode AD of large kernels is intractable (OOM).

Novel GPU and AD-specific optimizations can
make a difference of several orders of
magnitude when computing gradients.

Test Overhead
Forward | 1
AD, Optimized 4.4
AD, No CacheLICM 343.7
AD, Bad Recompute Heuristic 1275.6
AD, No Inlining 6372.2
AD, No PreOptimization OOM




CUDA Automatic Differentiation

Enzyme enables differentiation of CPU programs without rewriting them in a DSL.

Similarly, GPU programs cannot currently be differentiated without being rewritten in a
differentiable language (e.g. PyTorch).

Enzyme enables reverse-mode AD of general existing GPU programs by:
Resolving potential data race issues
Differentiating parallel control (syncthreads)
Differentiating CUDA intrinsics (e.g. threadldx.x /llvm.nvvm.read.ptx.sreg.tid.x)

Handling shared memory
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CUDA Automatic Differentiation

Most CUDA intrinsics [e.g. threadldx.x] are inactive and recomputable and thus are
incorporated into Enzyme without any special handling

Derivative of syncthreads is a syncthreads at the corresponding place in reverse pass

Shared memory is handled by making a second shared memory allocation to act as the
shadow for any potentially active uses
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% Enzyme

Tool for performing reverse-mode AD of statically analyzable LLVM IR

Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)
4.2x speedup over AD before optimization

State-of-the art performance with existing tools

Differentiate GPU kernels

Open Source (enzyme.mit.edu / github.com/wsmoses/Enzyme)

PyTorch-Enzyme & TensorFlow-Enzyme imports foreign code in ML workflow
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http://enzyme.mit.edu
https://github.com/wsmoses/Enzyme

CUDA Automatic Differentiation

wres = load %ptr store %ptr = %val Shadow Registers %d_res and
%d_val are thread-local as they
shadow thread-local registers.
l * No risk of races and no special
handling required.
%tmp = load %d_res %tmp = load %d_ptr ) |
store %d res = 0 store %d_ptr = 0 -+ Both %ptr and shadow %d_ptr might
atomic %d_ptr += %tmp load/store %d_val += %tmp be raced upon and require analysis.

0
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GPU Automatic Differentiation

Prior work has not explored reverse mode AD of GPU kernels

Similarly, GPU programs cannot currently be differentiated without being rewritten in a differentiable
language (e.g. PyTorch).

Enzyme enables reverse-mode AD of general existing GPU programs by:

Resolving potential data race issues
Differentiating parallel control (syncthreads)
Differentiating CUDA intrinsics (e.g. threadldx.x /llvm.nvvm.read.ptx.sreg.tid.x)

Handling shared memory
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% Enzyme

Tool for performing reverse-mode AD of statically analyzable LLVM IR

Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)
4.2x speedup over AD before optimization

State-of-the art performance with existing tools

Differentiate GPU kernels

Open Source (enzyme.mit.edu / github.com/wsmoses/Enzyme)

PyTorch-Enzyme & TensorFlow-Enzyme imports foreign code in ML workflow
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http://enzyme.mit.edu
https://github.com/wsmoses/Enzyme

Custom Derivatives & Multisource

One can specify custom forward/reverse passes of functions by attaching metadata

__attribute_ ((enzyme("augment", augment func)))
__attribute  ((enzyme("gradient", gradient func)))
double func(double n);

Enzyme leverages LLVM'’s link-time optimization (LTO) & “fat libraries” to ensure that LLVM
bitcode is available for all potential differentiated functions before AD
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CUDA Performance Improvements

Introduce optimizations to reduce the use of memory
Alias Analysis to determine legality of recomputing an instruction
More aggressive alias analysis properties of syncthreads
Don’t cache unnecessary values
Move cache outside of loops when possible
Heap-to-stack [and to register]

Don’t cache memory itself acting as a cache [such as shared memory]

0,



Enzyme Differentiation Algorithm

Type Analysis
Activity Analysis
Synthesize derivatives
Forward pass that mirrors original code
Reverse pass inverts instructions in forward pass (adjoints) to compute derivatives

Optimize




Activity Analysis
Determines what instructions could impact derivative computation
Avoids taking meaningless or unnecessary derivatives (e.g. d/dx cpuid)
Instruction is active Iiff it can propagate a differential value to its return or memory
Build off of alias analysis & type analysis

E.g. all read-only function that returns an integer are inactive since they cannot propagate
adjoints through the return or to any memory location

0,
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Compiler Analyses Better Optimize AD

Existing

Alias analysis results that prove a function does not write to memory, we can prove that
additional function calls do not need to be differentiated since they cannot impact the output

Don’t cache equivalent values

Statically allocate caches when a loop’s bounds can be determined in advance




Decomposing the “Tape”

Performing AD on a function requires data structures to compute
All values necessary to compute adjoints are available [cache]
Place to store adjoints [shadow memory]j
Record instructions [we are static]

Creating these directly in LLVM allows us to explicitly specify their behavior for optimization,
unlike approaches that call out to a library

For more detalls look in paper

65

0,



Conventional Wisdom: AD Only Feasible at High-Level

- Automatic Differentiation requires high level semantics to produce gradients
- Lack of high-level information can hinder performance of low-level AD

“AD is more effective in high-level compiled languages (e.g. Julia, Swift, Rust, Nim) than
traditional ones such as C/C++, Fortran and LLVM IR [...]” -Innesl]

[1] Michael Innes. Don’t Unroll Adjoint: Differentiating SSA-Form Programs. arXiv preprint arXiv:1810.07951, 2018

0,
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Differentiation Is Key To Machine Learning

// C++ nbody simulator

void step(std::array<Planet> , double dt) {
vec3 [ .size() ];
for (size_t 1=0; i< .size(); 1++) {
acc[i] = vec3(0, 0, 0);
for (size_t j=0; j< .size(); j++) {
1f (1 == j) continue;
[i] += force( [1], (11 /
[1]. ;
3
J
for (size_t 1=0; i< .size(); 1i++) {
[1]. += [1] * dt;
[1]. = [1]. * dt;
J
J

- Hinders application of ML to nhew domains

Synthesizing gradients aims to close this gap
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// PyTorch rewrite of nbody simulator
import torch

def step(bodies, dt):
acc = []
for 1 in range(len(bodies)):
acc.push(torch.zeros([3]))
for j in range(len(bodies)):
1f 1 == j: continue
acc[i] += force(bodies[i], bodies[j]) /
bodies[1].mass

for 1, body in enumerate(bodies):
body.vel += accl[i] * dt
body.pos += body.vel * dt




% Enzyme Overturns Conventional Wisdom

- As fast or faster than state-of-the-art tools
Running after optimization enables a 4.2x speedup

+ Necessary semantics for AD derived at low-level (with potential cooperation of frontend)

Optimize Optimize
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Parallel Memory Detection

Thread-local memory
Non-atomic load/store

Same memory location across all threads
Parallel Reduction

Others [always legal fallback]

Atomic iIncrement

%tmp = load %d_res

store %d_res = 0
atomic %d_ptr += %tmp
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Differentiation of SyncThreads

Case 3 [write sync write] Case 4 [read sync read]

codeA(); // store %ptr

codeA(); // load %ptr
sync_threads;

sync_threads;
codeB(); // store %ptr
codeB(); // load %ptr

diffe_codeB(); // load %d_ptr

// store %d_ptr = 0 diffe_codeB(); // atomicAdd %d_ptr
sync_threads; sync_threads;
diffe_codeA(); // load %d_ptr diffe_codeA(); // atomicAdd %d_ptr
// store %d_ptr = 0
All uses of stores to d_ptr in diffe_B will Original and differential sync unnecessary and
correctly complete prior to diffe_A legal to include 8
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CUDA Performance Improvements

Introduce optimizations to reduce the use of memory
Alias Analysis to determine legality of recomputing an instruction
More aggressive alias analysis properties of syncthreads
Don’t cache unnecessary values
Move cache outside of loops when possible
Heap-to-stack [and to register]
Don’t cache memory itself acting as a cache [such as shared memory]

PHI Node unwrapping

0,



Case 2: Load, Sync, Store

codeA(); // load %ptr
« Correct
sync_threads;
codeB(); // store %ptr - All of the stores of d_ptr will
complete prior to any atomicAdds

diffe_codeB(); // load %d_ptr

// store %d_ptr = 0
sync_threads; \
No cross-thread race here since

diffe_codeA(); // atomicAdd %d_ptr that’s equivalent to a write race in B
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Case 3: Store, Sync, Store

codeA(); // store Z%ptr
sync_threads;

codeB(); // store Z%ptr

diffe_codeB(); // load %d_ptr

// store %d_ptr = 0
sync_threads;
diffe_codeA(); // load %d_ptr

// store %d_ptr = 0
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« Correct

» All stores to d_ptr in diffe_B will

complete prior to diffe_A, ensuring
only the clobbering store has its
derivative incremented

0,



