
wmoses@mit.edu 
CESMIX Group

May 18, 2021

William S. Moses Valentin Churavy

1

Enzyme: High-Performance Automatic
Differentiation

William S. Moses Valentin Churavy

2

Ludger Paehler Johannes Doerfert

Jan Hückelheim Sri Hari Krishna 
Narayanan Michel Schanen Paul Hovland

Differentiation Is Key To Machine Learning And Science

• Computing derivatives is key to many algorithms

• Machine learning (back-propagation, Bayesian inference, uncertainty quantification)

• Scientific computing (modeling, simulation)

• When working with large codebases or dynamically-generated programs, manually writing
derivative functions becomes intractable

• Community has developed tools to create derivatives automatically

3

Existing AD Approaches

• Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)

• Provide a new language designed to be differentiated

• Requires rewriting everything in the DSL and the DSL must support all operations in original code

• Fast if DSL matches original code well

• Operator overloading (Adept, JAX)

• Provide differentiable versions of existing language constructs (double => adouble, np.sum =>
jax.sum)

• May require writing to use non-standard utilities

• Often dynamic: storing instructions/values to later be interpreted

Existing AD Approaches

• Source rewriting

• Statically analyze program to produce a new gradient function in the source language

• Re-implement parsing and semantics of given language

• Requires all code to be available ahead of time

• Difficult to use with external libraries

Existing Automatic Differentiation Pipelines

AD

CodeGen

Optimize

Lower

AD

AD

AD

6

Case Study: Vector Normalization

//Compute magnitude in O(n)

double mag(double[] x);

//Compute norm in O(n^2)

void norm(double[] out, double[] in) {

 for (int i=0; i<n; i++) {

 out[i] = in[i] / mag(in);

 }

}

7

Case Study: Vector Normalization

//Compute magnitude in O(n)

double mag(double[] x);

//Compute norm in O(n)

void norm(double[] out, double[] in) {

 double res = mag(in);

 for (int i=0; i<n; i++) {

 out[i] = in[i] / res;

 }

}

8

Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
res = mag(in)

for i=0..n {

 out[i] /= res

}

d_res = 0.0

for i=n..0 {

 d_res += d_out[i]…

}

∇mag(d_in, d_res)

O (n)
for i=0..n {

 out[i] /= mag(in)

}

9

Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
for i=0..n {

 out[i] /= mag(in)

}

res = mag(in)

for i=0..n {

 out[i] /= res

}

d_res = 0.0

for i=n..0 {

 d_res += d_out[i]…

}

∇mag(d_in, d_res)

O (n)

O (n2)
for i=0..n {

 out[i] /= mag(in)

} AD

for i=n..0 {

 d_res = d_out[i]…

 ∇mag(d_in, d_res)

}

O (n2)

10

Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
for i=0..n {

 out[i] /= mag(in)

}

res = mag(in)

for i=0..n {

 out[i] /= res

}

d_res = 0.0

for i=n..0 {

 d_res += d_out[i]…

}

∇mag(d_in, d_res)

O (n)

O (n2)O (n2)
for i=0..n {

 out[i] /= mag(in)

} AD

for i=n..0 {

 d_res = d_out[i]…

 ∇mag(d_in, d_res)

}

O (n2)
for i=n..0 {

 d_res = d_out[i]…

 ∇mag(d_in, d_res)

}

Optimize

11

Optimization & Automatic Differentiation

Differentiating after optimization can create asymptotically faster gradients!

Optimize

O (n2) O (n)

AD
for i=0..n {

 out[i] /= mag(in)

}

res = mag(in)

for i=0..n {

 out[i] /= res

}

d_res = 0.0

for i=n..0 {

 d_res += d_out[i]…

}

∇mag(d_in, d_res)

O (n)

O (n2)O (n2)
for i=0..n {

 out[i] /= mag(in)

} AD

for i=n..0 {

 d_res = d_out[i]…

 ∇mag(d_in, d_res)

}

O (n2)
Optimize

for i=n..0 {

 d_res = d_out[i]…

 ∇mag(d_in, d_res)

}

12

Lower Enzyme .

Optimize

CodeGen

Optimize

 Enzyme Approach

Performing AD at low-level lets us work on optimized code!

13

Why Does Enzyme Use LLVM?

• Generic low-level compiler infrastructure with many
frontends

• “Cross platform assembly”

• Many backends (CPU, CUDA, AMDGPU, etc)

• Well-defined semantics

• Large collection of optimizations and analyses

14

Case Study: ReLU3

entry

cond.true

%result = phi [%call, cond.true], [0, entry]

ret %resultcond.end

%cmp = %x > 0

br %cmp, cond.true, cond.end

%call = pow(%x, 3)

br cond.end

double relu3(double x) {

 double result;

 if (x > 0)

 result = pow(x, 3);

 else

 result = 0;

 return result;

}

define double @relu3(double %x)

double diffe_relu3(double x) {

 return __enzyme_autodiff(relu3, x);

}

C Source LLVM

Enzyme Usage

15

Case Study: ReLU3

entry

cond.true

%result = phi [%call, cond.true], [0, entry]

ret %result

cond.end

%cmp = %x > 0

br %cmp, cond.true, cond.end

%call = pow(%x, 3)

br cond.end

define double @relu3(double %x)

Active Instructions

16

entry

cond.true

%result = phi [%call, cond.true], [0, entry]

; deleted return

%result’ = 1.0

br reverse_cond.end

cond.end

alloca %result’ = 0.0

alloca %call’ = 0.0

alloca %x’ = 0.0

%cmp = %x > 0

br %cmp, cond.true, cond.end

%call = pow(%x, 3)

br cond.end

define double @diffe_relu3(double %x, double %differet)

Allocate & zero 
shadow memory for 

active values

17

entry

cond.true

%result = phi [%call, cond.true], [0, entry]

; deleted return

%result’ = 1.0

br reverse_cond.end

cond.end

alloca %result’ = 0.0

alloca %call’ = 0.0

alloca %x’ = 0.0

%cmp = %x > 0

br %cmp, cond.true, cond.end

%call = pow(%x, 3)

br cond.end

define double @diffe_relu3(double %x, double %differet)

%tmp_res’ = load %result’

%call’ += if %x > 0 then %tmp_res’ else 0

store %result’ = 0.0

br %cmp, reverse_cond.true, reverse_entry

reverse_cond.end%df = 3 * pow(%x, 2)

%tmp_call’ = load %call

%x’ += %df * %tmp_call’

store %call’ = 0.0

br reverse_entry

%0 = load %x’

ret %0

reverse_entry

reverse_cond.true

Compute adjoints 
for active instructions

18

entry

cond.true

%result = phi [%call, cond.true], [0, entry]

; deleted return

%result’ = 1.0

br reverse_cond.end

cond.end

alloca %result’ = 0.0

alloca %call’ = 0.0

alloca %x’ = 0.0

%cmp = %x > 0

br %cmp, cond.true, cond.end

%call = pow(%x, 3)

br cond.end

define double @diffe_relu3(double %x, double %differet)

%tmp_res’ = load %result’

%call’ += if %x > 0 then %tmp_res’ else 0

store %result’ = 0.0

br %cmp, reverse_cond.true, reverse_entry

reverse_cond.end%df = 3 * pow(%x, 2)

%tmp_call’ = load %call

%x’ += %df * %tmp_call’

store %call’ = 0.0

br reverse_entry

%0 = load %x’

ret %0

reverse_entry

reverse_cond.true

Compute adjoints 
for active instructions

19

entry %cmp = %x > 0

br %cmp, reverse_cond.true, reverse_entry

define double @diffe_relu3(double %x)

%3 = 3 * pow(%x, 2)

br reverse_entry

%0 = phi [%3, reverse_cond.true], [0, entry]

ret %0

reverse_entry
reverse_cond.true

Essentially the optimal hand-written gradient!

double diffe_relu3(double x) {

 double result;

 if (x > 0)

 result = 3 * pow(x, 2);

 else

 result = 0;

 return result;

}

Post 
Optimization

20

Challenges of Low-Level AD

• Low-level code lacks information necessary to compute adjoints

8: Pointer 0: Integer

21

void f(void* dst, void* src) {

 memcpy(dst, src, 8);

}

void grad_f(double* dst, double* dst’,

 double* src, double* src’) {

 // Forward Pass

 memcpy(dst, src, 8);

 // Reverse Pass

 src’[0] += dst’[0];

 dst’[0] = 0;

}

void grad_f(float* dst, float* dst’,

 float* src, float* src’) {

 // Forward Pass

 memcpy(dst, src, 8);

 // Reverse Pass

 src’[0] += dst’[0];

 dst’[0] = 0;

 src’[1] += dst’[1];

 dst’[1] = 0;

}

Challenges of Low-Level AD

struct Type {

 double;

 int*;

}

x = Type*;

0: Pointer
x

0: Double
8: Pointer

Type

0: Integer

22

• New interprocedural dataflow analysis that detects the underlying type of data

• Each value has a set of memory offsets : type

• Perform series of fixed-point updates through instructions

types(x) = {[0]:Pointer, [0,0]:Double, [0,8]:Pointer, [0,8,0]:Integer}

Experimental Setup

Enzyme:

Ref:

Tapenade:

Adept: -O2

Enzyme .

Tapenade

Adept

• Collection of benchmarks from Microsoft’s ADBench suite and of technical interest

-O2

-O2-O2

-O2-O2

-O2 Enzyme . -O2

23

Speedup of Enzyme
H

ig
he

r i
s

Be
tte

r

Enzyme is 4.2x faster than Reference!
24

PyTorch-Enzyme & TensorFlow-Enzyme

import torch

from torch_enzyme import enzyme

Create some initial tensor

inp = …

Apply foreign function to tensor

out = enzyme("test.c", “f").apply(inp)

Derive gradient

out.backward()

print(inp.grad)

import tensorflow as tf

from tf_enzyme import enzyme

Create some initial tensor

inp = tf.Variable(…) 

Use external C code as a regular TF op

out = enzyme(inp, filename=“test.c",

 function=“f”)

Results is a TF tensor

out = tf.sigmoid(out)

// Input tensor + size, and output tensor

void f(float* inp, size_t n, float* out);

// diffe_dupnoneed specifies not recomputing the output

void diffef(float* inp, float* d_inp, size_t n, float* d_out) {

 __enzyme_autodiff(f, diffe_dup, inp, d_inp, n, diffe_dupnoneed, (float*)0, d_out);

}

25

• Tool for performing reverse-mode AD of statically analyzable LLVM IR

• Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)

• 4.2x speedup over AD before optimization on CPU

• State-of-the art performance with existing tools

• First general purpose reverse-mode GPU AD

• Novel GPU and AD-specific optimizations improve runtime by several orders of magnitude

• PyTorch-Enzyme & TensorFlow-Enzyme lets researchers use foreign code in ML workflow

 Enzyme

26

 Enzyme

27

Enzyme on the GPU

28

• Care must be taken to both ensure
correctness and maintain parallelism.

• GPU programs have much lower memory
limits. Performance is highly dependent on the
number of memory transfers.

• Without first running optimizations reverse-
mode AD of large kernels is intractable (OOM).

• Novel GPU and AD-specific optimizations can
make a difference of several orders of
magnitude when computing gradients.

GPU Gradient Overhead

29

• Evaluation of both original code and derivative of all
inputs (forward or numeric differentiation requires 1
evaluation per input):

• DG: discontinuous-galerkin (DG) volume integral
(Julia)

• LBM: particle-based fluid dynamics simulation

• LULESH: unstructured explicit shock
hydrodynamics solver

• XSBench & RSBench: Monte Carlo simulations
of particle transport algorithms (memory &
compute bound, respectively)

CUDA Automatic Differentiation

• Enzyme enables differentiation of CPU programs without rewriting them in a DSL.

• Similarly, GPU programs cannot currently be differentiated without being rewritten in a
differentiable language (e.g. PyTorch).

• Enzyme enables reverse-mode AD of general existing GPU programs by:

• Resolving potential data race issues

• Differentiating parallel control (syncthreads)

• Differentiating CUDA intrinsics (e.g. threadIdx.x /llvm.nvvm.read.ptx.sreg.tid.x)

• Handling shared memory
30

Challenges of Parallel AD

• Benign read race in forward pass => Write race in reverse pass (undefined behavior)

31

void set(double* ar, double val) {

 parallel_for(int i=0; i<10; i++)

 ar[i] = val;

}

double gradient_set(double* ar, double val) {

 double d_val = 0.0; 

 parallel_for(int i=0; i<10; i++)

 ar[i] = val;

 parallel_for(int i=0; i<10; i++) {

 d_val += d_ar[i];

 d_ar[i] = 0.0;

 }

 return d_val;

}

Read Race
Write Race

Parallel Memory Detection

Thread-local memory 

• Non-atomic load/store

32

__device__ 
void f(…) { 

 // Thread-local var 
 double y; 
 
 … 

 d_y += val; 
}

Same memory location across
all threads

• Parallel Reduction

Others [always legal fallback] 

• Atomic increment

// Same var for all threads 
double y; 
 
__device__ 
void f(…) { 
 
 … 

 reduce_add(&d_y, val); 
}

 
__device__ 
// Unknown thread-aliasing 
void f(double* y) { 
 
 … 

 atomic { d_y += val; } 
} 
 

CUDA Automatic Differentiation

33

%res = load %ptr

 %tmp = load %d_res

 store %d_res = 0 
 atomic %d_ptr += %tmp

store %ptr = %val

 %tmp = load %d_ptr

 store %d_ptr = 0

 load/store %d_val += %tmp

• Shadow Registers %d_res and
%d_val are thread-local as they
shadow thread-local registers.

• No risk of races and no special
handling required.

• Both %ptr and shadow %d_ptr might
be raced upon and require analysis.

Differentiation of SyncThreads

34

codeA();

sync_threads;

codeB();

• Sync is only necessary if A and B may write to the same memory

• Four cases for what sync could represent:

1. All stores in A must complete prior to a load in B

2. All loads in A must complete prior to a store in B

3. All stores in A must complete prior to a stores in B [clobber]

4. All load in A must complete prior to a load in B [unnecessary sync]

CUDA Performance Improvements
• Enzyme may need to cache values

from the forward pass for later use in a
reverse pass computation

• When a value needs caching,
Enzyme allocates memory (via
malloc inside kernel)

• Potentially quite slow

• May overwhelm the amount of GPU
heap memory

35

void f(float* in, float* out) {

 float tmp;

 for (int i=0; i<N; i++) {

 tmp = compute(in, i);

 out[i] = tmp * tmp + …;

 }

}

void diffe_f(float* in, float* out) {

 float* tmp_cache = malloc(…);

 for (int i=0; i<N; i++) {

 … 
 tmp_cache[i] = tmp;

 }

 for (int i=N-1; i>=0; i--) {

 …

 d_tmp[0] = 2 * tmp_cache[0] * d_out[i];

 d_compute(…);

 } 
 
 free(tmp_cache);

}

Value tmp is overwritten every 
iteration and must be cached

Case 1: Store, Sync, Load

36

codeA(); // store %ptr

sync_threads;

codeB(); // load %ptr

…

diffe_codeB(); // atomicAdd %d_ptr

sync_threads;

diffe_codeA(); // load %d_ptr 
 // store %d_ptr = 0

 Correct

• Load of d_ptr must happen after
all atomicAdds have completed

Case 2: Load, Sync, Store

37

codeA(); // load %ptr

sync_threads;

codeB(); // store %ptr

…

diffe_codeB(); // load %d_ptr 
 // store %d_ptr = 0

sync_threads;

diffe_codeA(); // atomicAdd %d_ptr

 Correct

• All of the stores of d_ptr will
complete prior to any atomicAdds

No cross-thread race here since
that’s equivalent to a write race in B

Case 3: Store, Sync, Store

38

codeA(); // store %ptr

sync_threads;

codeB(); // store %ptr

…

diffe_codeB(); // load %d_ptr 
 // store %d_ptr = 0

sync_threads;

diffe_codeA(); // load %d_ptr 
 // store %d_ptr = 0

 Correct

• All stores to d_ptr in diffe_B will
complete prior to diffe_A, ensuring
only the clobbering store has its
derivative incremented

CUDA Automatic Differentiation

• Most CUDA intrinsics [e.g. threadIdx.x] are inactive and recomputable and thus are
incorporated into Enzyme without any special handling

• Derivative of syncthreads is a syncthreads at the corresponding place in reverse pass

• Shared memory is handled by making a second shared memory allocation to act as the
shadow for any potentially active uses

39

CUDA Example

40

__device__ void inner(float* a, float* x, float* y) {

 y[threadIdx.x] = a[0] * x[threadIdx.x];

}

__device__ void __enzyme_autodiff(void*, …);

__global__ void daxpy(float* a, float* da, float* x, float* dx, float* y, float* dy) {

 __enzyme_autodiff((void*)inner, a, da, x, dx, y, dy);

}

__device__ void diffe_inner(float* a, float* da, float* x, float* dx, float* y, float* dy) {

 y[threadIdx.x] = a[0] * x[threadIdx.x];

 float dy = dy[threadIdx.x];

 dy[threadIdx.x] = 0.0f;

 float dx_tmp = a[0] * dy;

 atomic { dx[threadIdx.x] += dx_tmp; }

 float da_tmp = x[threadIdx.x] * dy;

 atomic { da[0] += da_tmp; }

}

CUDA Performance Improvements

• Introduce optimizations to reduce the use of memory

• Alias Analysis to determine legality of recomputing an instruction

• More aggressive alias analysis properties of syncthreads

• Don’t cache unnecessary values

• Move cache outside of loops when possible

• Heap-to-stack [and to register]

• Don’t cache memory itself acting as a cache [such as shared memory]

41

CUDA Evaluation

42

Forward 
Pass

Gradient 
No Opt

+ Standard 
Opts + Cache Opts

XSBench-
CUDA 1.0s OOM 20.1s 5.0s

RSBench-
CUDA 1.9s OOM >540s 7.8s

Evaluated on a 2080 Super FE

 Enzyme

43

• Tool for performing reverse-mode AD of statically analyzable LLVM IR

• Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)

• 4.2x speedup over AD before optimization

• State-of-the art performance with existing tools

• Differentiate GPU kernels

• Open Source (enzyme.mit.edu / github.com/wsmoses/Enzyme)

• PyTorch-Enzyme & TensorFlow-Enzyme imports foreign code in ML workflow

http://enzyme.mit.edu
https://github.com/wsmoses/Enzyme

Acknowledgements

• Thanks to James Bradbury, Alex Chernyakhovsky, Hal Finkel, Laurent Hascoet, Mike Innes, Tim
Kaler, Charles Leiserson, Yingbo Ma, Chris Rackauckas, TB Schardl, Lizhou Sha, Yo Shavit, Dhash
Shrivathsa, Nalini Singh, Miguel Young de la Sota, and Alex Zinenko

• William S. Moses was supported in part by a DOE Computational Sciences Graduate Fellowship
DESC0019323.

• Valentin Churavy was supported in part by the Defense Advanced Research Projects Agency
(DARPA) under Agreement No. HR0011-20-9-0016, and in part by NSF Grant OAC-1835443.

• This research was supported in part by LANL grant 531711. Research was sponsored by the United
States Air Force Research Laboratory and was accomplished under Cooperative Agreement
Number FA8750-19-2-1000.

• The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the United States Air
Force or the U.S. Government.44

 Enzyme

45

• Tool for performing reverse-mode AD of statically analyzable LLVM IR

• Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)

• 4.2x speedup over AD before optimization

• State-of-the art performance with existing tools

• Differentiate GPU kernels

• Open Source (enzyme.mit.edu / github.com/wsmoses/Enzyme)

• PyTorch-Enzyme & TensorFlow-Enzyme imports foreign code in ML workflow

http://enzyme.mit.edu
https://github.com/wsmoses/Enzyme

END

46

Compiler Analyses Better Optimize AD

• Existing

• Alias analysis results that prove a function does not write to memory, we can prove that
additional function calls do not need to be differentiated since they cannot impact the output

• Don’t cache equivalent values

• Statically allocate caches when a loop’s bounds can be determined in advance

47

Decomposing the “Tape”

• Performing AD on a function requires data structures to compute

• All values necessary to compute adjoints are available [cache]

• Place to store adjoints [shadow memory]

• Record instructions [we are static]

• Creating these directly in LLVM allows us to explicitly specify their behavior for optimization,
unlike approaches that call out to a library

• For more details look in paper

48

Conventional Wisdom: AD Only Feasible at High-Level

• Automatic Differentiation requires high level semantics to produce gradients

• Lack of high-level information can hinder performance of low-level AD

• “AD is more effective in high-level compiled languages (e.g. Julia, Swift, Rust, Nim) than
traditional ones such as C/C++, Fortran and LLVM IR […]” -Innes[1]

 

[1] Michael Innes. Don’t Unroll Adjoint: Differentiating SSA-Form Programs. arXiv preprint arXiv:1810.07951, 2018

49

Differentiation Is Key To Machine Learning

• Hinders application of ML to new domains

• Synthesizing gradients aims to close this gap

// PyTorch rewrite of nbody simulator

import torch

def step(bodies, dt):

 acc = []

 for i in range(len(bodies)):

 acc.push(torch.zeros([3]))

 for j in range(len(bodies)):

 if i == j: continue

 acc[i] += force(bodies[i], bodies[j]) /

 bodies[i].mass

 for i, body in enumerate(bodies):

 body.vel += acc[i] * dt

 body.pos += body.vel * dt

// C++ nbody simulator

void step(std::array<Planet> bodies, double dt) {

 vec3 acc[bodies.size()]; 
 for (size_t i=0; i<bodies.size(); i++) {

 acc[i] = vec3(0, 0, 0);

 for (size_t j=0; j<bodies.size(); j++) {

 if (i == j) continue;

 acc[i] += force(bodies[i], bodies[j]) /

 bodies[i].mass;

 }

 }

 for (size_t i=0; i<bodies.size(); i++) { 
 bodies[i].vel += acc[i] * dt; 
 bodies[i].pos += bodies[i].vel * dt; 
 } 
}

50

Lower Enzyme .

Optimize

CodeGen

Optimize

 Enzyme Overturns Conventional Wisdom

• As fast or faster than state-of-the-art tools

• Running after optimization enables a 4.2x speedup

• Necessary semantics for AD derived at low-level (with potential cooperation of frontend)

51

Parallel Memory Detection

• Thread-local memory

• Non-atomic load/store

• Same memory location across all threads

• Parallel Reduction

• Others [always legal fallback]

• Atomic increment

52

 %tmp = load %d_res

 store %d_res = 0 
 atomic %d_ptr += %tmp

Differentiation of SyncThreads

53

codeA(); // store %ptr

sync_threads;

codeB(); // store %ptr

…

diffe_codeB(); // load %d_ptr 
 // store %d_ptr = 0

sync_threads;

diffe_codeA(); // load %d_ptr 
 // store %d_ptr = 0

Case 3 [write sync write]

All uses of stores to d_ptr in diffe_B will
correctly complete prior to diffe_A

codeA(); // load %ptr

sync_threads;

codeB(); // load %ptr

…

diffe_codeB(); // atomicAdd %d_ptr

sync_threads;

diffe_codeA(); // atomicAdd %d_ptr

Case 4 [read sync read]

Original and differential sync unnecessary and
legal to include

CUDA Performance Improvements

• Introduce optimizations to reduce the use of memory

• Alias Analysis to determine legality of recomputing an instruction

• More aggressive alias analysis properties of syncthreads

• Don’t cache unnecessary values

• Move cache outside of loops when possible

• Heap-to-stack [and to register]

• Don’t cache memory itself acting as a cache [such as shared memory]

• PHI Node unwrapping
54

Custom Derivatives & Multisource

• One can specify custom forward/reverse passes of functions by attaching metadata 
 
 

• Enzyme leverages LLVM’s link-time optimization (LTO) & “fat libraries” to ensure that LLVM
bitcode is available for all potential differentiated functions before AD

__attribute__((enzyme("augment", augment_func)))

__attribute__((enzyme("gradient", gradient_func)))

double func(double n);

55

