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Differentiation Is Key To Machine Learning And Science

• Computing derivatives is key to many algorithms


• Machine learning (back-propagation, Bayesian inference, uncertainty quantification)


• Scientific computing (modeling, simulation)


• When working with large codebases or dynamically-generated programs, manually writing 
derivative functions becomes intractable


• Community has developed tools to create derivatives automatically
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Existing AD Approaches

• Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)


• Provide a new language designed to be differentiated


• Requires rewriting everything in the DSL and the DSL must support all operations in original code


• Fast if DSL matches original code well


• Operator overloading (Adept, JAX)


• Provide differentiable versions of existing language constructs (double => adouble, np.sum => 
jax.sum)


• May require writing to use non-standard utilities


• Often dynamic: storing instructions/values to later be interpreted



Existing AD Approaches

• Source rewriting


• Statically analyze program to produce a new gradient function in the source language


• Re-implement parsing and semantics of given language


• Requires all code to be available ahead of time


• Difficult to use with external libraries



Existing Automatic Differentiation Pipelines
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Case Study: Vector Normalization

//Compute magnitude in O(n)

double mag(double[] x);


//Compute norm in O(n^2)

void norm(double[] out, double[] in) {


  for (int i=0; i<n; i++) {

    out[i] = in[i] / mag(in);

  }

}
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Case Study: Vector Normalization

//Compute magnitude in O(n)

double mag(double[] x);


//Compute norm in O(n)

void norm(double[] out, double[] in) {

  double res = mag(in);

  for (int i=0; i<n; i++) {

    out[i] = in[i] / res;

  }

}
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Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
res = mag(in)

for i=0..n {

  out[i] /= res

}

d_res = 0.0 

for i=n..0 {

  d_res += d_out[i]…

}

∇mag(d_in, d_res)

O (n)
for i=0..n {

  out[i] /= mag(in)

}
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Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
for i=0..n {

  out[i] /= mag(in)

}

res = mag(in)

for i=0..n {

  out[i] /= res

}

d_res = 0.0 

for i=n..0 {

  d_res += d_out[i]…

}

∇mag(d_in, d_res)

O (n)

O (n2)
for i=0..n {

  out[i] /= mag(in)

} AD

for i=n..0 {

  d_res = d_out[i]…

  ∇mag(d_in, d_res)

}

O (n2)
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Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
for i=0..n {

  out[i] /= mag(in)

}

res = mag(in)

for i=0..n {

  out[i] /= res

}

d_res = 0.0 

for i=n..0 {

  d_res += d_out[i]…

}

∇mag(d_in, d_res)

O (n)

O (n2)O (n2)
for i=0..n {

  out[i] /= mag(in)

} AD

for i=n..0 {

  d_res = d_out[i]…

  ∇mag(d_in, d_res)

}

O (n2)
for i=n..0 {

  d_res = d_out[i]…

  ∇mag(d_in, d_res)

}

Optimize
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Optimization & Automatic Differentiation

Differentiating after optimization can create asymptotically faster gradients!

Optimize

O (n2) O (n)

AD
for i=0..n {

  out[i] /= mag(in)

}

res = mag(in)

for i=0..n {

  out[i] /= res

}

d_res = 0.0 

for i=n..0 {

  d_res += d_out[i]…

}

∇mag(d_in, d_res)

O (n)

O (n2)O (n2)
for i=0..n {

  out[i] /= mag(in)

} AD

for i=n..0 {

  d_res = d_out[i]…

  ∇mag(d_in, d_res)

}

O (n2)
Optimize

for i=n..0 {

  d_res = d_out[i]…

  ∇mag(d_in, d_res)

}
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Lower Enzyme   .

Optimize

CodeGen

Optimize

       Enzyme Approach

Performing AD at low-level lets us work on optimized code!
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Why Does Enzyme Use LLVM?

• Generic low-level compiler infrastructure with many 
frontends


• “Cross platform assembly”


• Many backends (CPU, CUDA, AMDGPU, etc)


• Well-defined semantics


• Large collection of optimizations and analyses
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Case Study: ReLU3

entry

cond.true

%result = phi [%call, cond.true], [0, entry]

ret %resultcond.end

%cmp = %x > 0

br %cmp, cond.true, cond.end

%call = pow(%x, 3)

br cond.end

double relu3(double x) {

  double result;

  if (x > 0)

    result = pow(x, 3);

  else

    result = 0;

  return result;

}

define double @relu3(double %x)

double diffe_relu3(double x) {

  return __enzyme_autodiff(relu3, x);

}

C Source LLVM 

Enzyme Usage
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Case Study: ReLU3

entry

cond.true

%result = phi [%call, cond.true], [0, entry]

ret %result

cond.end

%cmp = %x > 0

br %cmp, cond.true, cond.end

%call = pow(%x, 3)

br cond.end

define double @relu3(double %x)

Active Instructions
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entry

cond.true

%result = phi [%call, cond.true], [0, entry]


; deleted return


%result’ = 1.0

br reverse_cond.end

cond.end

alloca %result’ = 0.0

alloca %call’   = 0.0

alloca %x’      = 0.0

%cmp = %x > 0

br %cmp, cond.true, cond.end

%call = pow(%x, 3)

br cond.end

define double @diffe_relu3(double %x, double %differet)

Allocate & zero 
shadow memory for 

active values
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entry

cond.true

%result = phi [%call, cond.true], [0, entry]


; deleted return


%result’ = 1.0

br reverse_cond.end

cond.end

alloca %result’ = 0.0

alloca %call’   = 0.0

alloca %x’      = 0.0

%cmp = %x > 0

br %cmp, cond.true, cond.end

%call = pow(%x, 3)

br cond.end

define double @diffe_relu3(double %x, double %differet)

%tmp_res’ = load %result’

%call’ += if %x > 0 then %tmp_res’ else 0

store %result’ = 0.0

br %cmp, reverse_cond.true, reverse_entry

reverse_cond.end%df = 3 * pow(%x, 2)

%tmp_call’ = load %call

%x’ += %df * %tmp_call’

store %call’ = 0.0

br reverse_entry

%0 = load %x’

ret %0

reverse_entry

reverse_cond.true

Compute adjoints 
for active instructions
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entry

cond.true

%result = phi [%call, cond.true], [0, entry]


; deleted return


%result’ = 1.0

br reverse_cond.end

cond.end

alloca %result’ = 0.0

alloca %call’   = 0.0

alloca %x’      = 0.0

%cmp = %x > 0

br %cmp, cond.true, cond.end

%call = pow(%x, 3)

br cond.end

define double @diffe_relu3(double %x, double %differet)

%tmp_res’ = load %result’

%call’ += if %x > 0 then %tmp_res’ else 0

store %result’ = 0.0

br %cmp, reverse_cond.true, reverse_entry

reverse_cond.end%df = 3 * pow(%x, 2)

%tmp_call’ = load %call

%x’ += %df * %tmp_call’

store %call’ = 0.0

br reverse_entry

%0 = load %x’

ret %0

reverse_entry

reverse_cond.true

Compute adjoints 
for active instructions
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entry %cmp = %x > 0

br %cmp, reverse_cond.true, reverse_entry

define double @diffe_relu3(double %x)

%3 = 3 * pow(%x, 2)

br reverse_entry

%0 = phi [%3, reverse_cond.true], [0, entry]

ret %0

reverse_entry
reverse_cond.true

Essentially the optimal hand-written gradient!

double diffe_relu3(double x) {

  double result;

  if (x > 0)

    result = 3 * pow(x, 2);

  else

    result = 0;

  return result;

}

Post 
Optimization
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Challenges of Low-Level AD

• Low-level code lacks information necessary to compute adjoints

8: Pointer 0: Integer

21

void f(void* dst, void* src) {

  memcpy(dst, src, 8);

}

void grad_f(double* dst, double* dst’,

            double* src, double* src’) {

  // Forward Pass

  memcpy(dst, src, 8);


  // Reverse Pass

  src’[0] += dst’[0];

  dst’[0] = 0;

}

void grad_f(float* dst, float* dst’,

            float* src, float* src’) {

  // Forward Pass

  memcpy(dst, src, 8);


  // Reverse Pass

  src’[0] += dst’[0];

  dst’[0] = 0;

  src’[1] += dst’[1];

  dst’[1] = 0;

}



Challenges of Low-Level AD

struct Type {

  double;

  int*;

}


x = Type*;

0: Pointer
x

0: Double
8: Pointer

Type

0: Integer
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• New interprocedural dataflow analysis that detects the underlying type of data


• Each value has a set of memory offsets : type


• Perform series of fixed-point updates through instructions

types(x) = {[0]:Pointer, [0,0]:Double, [0,8]:Pointer, [0,8,0]:Integer}



Experimental Setup

Enzyme:

Ref:

Tapenade:

Adept: -O2

Enzyme      .

Tapenade

Adept

• Collection of benchmarks from Microsoft’s ADBench suite and of technical interest

-O2

-O2-O2

-O2-O2

-O2 Enzyme      . -O2
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Speedup of Enzyme 
H

ig
he

r i
s 

Be
tte

r

Enzyme is 4.2x faster than Reference!
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PyTorch-Enzyme & TensorFlow-Enzyme

import torch

from torch_enzyme import enzyme 


# Create some initial tensor

inp = …


# Apply foreign function to tensor

out = enzyme("test.c", “f").apply(inp)


# Derive gradient

out.backward()

print(inp.grad)

import tensorflow as tf

from tf_enzyme import enzyme


# Create some initial tensor

inp = tf.Variable(…) 

# Use external C code as a regular TF op 

out = enzyme(inp, filename=“test.c",

                  function=“f”)


# Results is a TF tensor

out = tf.sigmoid(out)

// Input tensor + size, and output tensor 

void f(float* inp, size_t n, float* out);


// diffe_dupnoneed specifies not recomputing the output

void diffef(float* inp, float* d_inp, size_t n, float* d_out) { 

  __enzyme_autodiff(f, diffe_dup, inp, d_inp, n, diffe_dupnoneed, (float*)0, d_out);

}
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• Tool for performing reverse-mode AD of statically analyzable LLVM IR


• Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)


• 4.2x speedup over AD before optimization on CPU


• State-of-the art performance with existing tools


• First general purpose reverse-mode GPU AD


• Novel GPU and AD-specific optimizations improve runtime by several orders of magnitude


• PyTorch-Enzyme & TensorFlow-Enzyme lets researchers use foreign code in ML workflow


       Enzyme
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       Enzyme
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Enzyme on the GPU 

28

• Care must be taken to both ensure 
correctness and maintain parallelism. 


• GPU programs have much lower memory 
limits. Performance is highly dependent on the 
number of memory transfers.


• Without first running optimizations reverse-
mode AD of large kernels is intractable (OOM).


• Novel GPU and AD-specific optimizations can 
make a difference of several orders of 
magnitude when computing gradients.



GPU Gradient Overhead
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• Evaluation of both original code and derivative of all 
inputs (forward or numeric differentiation requires 1 
evaluation per input):


• DG: discontinuous-galerkin (DG) volume integral 
(Julia)


• LBM: particle-based fluid dynamics simulation


• LULESH: unstructured explicit shock 
hydrodynamics solver


• XSBench & RSBench: Monte Carlo simulations 
of particle transport algorithms (memory & 
compute bound, respectively)



CUDA Automatic Differentiation

• Enzyme enables differentiation of CPU programs without rewriting them in a DSL.


• Similarly, GPU programs cannot currently be differentiated without being rewritten in a 
differentiable language (e.g. PyTorch).


• Enzyme enables reverse-mode AD of general existing GPU programs by:


• Resolving potential data race issues


• Differentiating parallel control (syncthreads)


• Differentiating CUDA intrinsics (e.g. threadIdx.x /llvm.nvvm.read.ptx.sreg.tid.x)


• Handling shared memory
30



Challenges of Parallel AD

• Benign read race in forward pass => Write race in reverse pass (undefined behavior)

31

void set(double* ar, double val) {


  parallel_for(int i=0; i<10; i++)

    ar[i] = val;

}

double gradient_set(double* ar, double val) {

  double d_val = 0.0; 

  parallel_for(int i=0; i<10; i++)

    ar[i] = val;


  parallel_for(int i=0; i<10; i++) {

    d_val += d_ar[i];

    d_ar[i] = 0.0;

  }


  return d_val;

}

Read Race
Write Race



Parallel Memory Detection

Thread-local memory 

• Non-atomic load/store

32

__device__ 
void f(…) { 

  // Thread-local var 
  double y; 
 
  … 

  d_y += val; 
}

Same memory location across 
all threads


• Parallel Reduction

Others [always legal fallback] 

• Atomic increment

// Same var for all threads 
double y; 
 
__device__ 
void f(…) { 
 
  … 

  reduce_add(&d_y, val); 
}

 
__device__ 
// Unknown thread-aliasing 
void f(double* y) { 
 
  … 

  atomic { d_y += val; } 
} 
 



CUDA Automatic Differentiation

33

%res = load %ptr

  %tmp = load %d_res

  store %d_res = 0 
  atomic %d_ptr += %tmp

store %ptr = %val

  %tmp = load %d_ptr

  store %d_ptr = 0

  load/store %d_val += %tmp

• Shadow Registers %d_res and 
%d_val are thread-local as they 
shadow thread-local registers.


• No risk of races and no special 
handling required.


• Both %ptr and shadow %d_ptr might 
be raced upon and require analysis.



Differentiation of SyncThreads

34

codeA();


sync_threads;


codeB();


• Sync is only necessary if A and B may write to the same memory


• Four cases for what sync could represent:


1. All stores in A must complete prior to a load in B


2. All loads in A must complete prior to a store in B


3. All stores in A must complete prior to a stores in B [clobber]


4. All load in A must complete prior to a load in B [unnecessary sync]



CUDA Performance Improvements
• Enzyme may need to cache values 

from the forward pass for later use in a 
reverse pass computation


• When a value needs caching, 
Enzyme allocates memory (via 
malloc inside kernel)


• Potentially quite slow


• May overwhelm the amount of GPU 
heap memory
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void f(float* in, float* out) {

  float tmp;

  for (int i=0; i<N; i++) {

    tmp = compute(in, i);

    out[i] = tmp * tmp + …;

  }

}

void diffe_f(float* in, float* out) {

  float* tmp_cache = malloc(…);


  for (int i=0; i<N; i++) {

    … 
    tmp_cache[i] = tmp;

  }


  for (int i=N-1; i>=0; i--) {

    …

    d_tmp[0] = 2 * tmp_cache[0] * d_out[i];

    d_compute(…);

  } 
 
  free(tmp_cache);

}

Value tmp is overwritten every 
iteration and must be cached



Case 1: Store, Sync, Load

36

codeA(); // store %ptr


sync_threads;


codeB(); // load %ptr


…


diffe_codeB(); // atomicAdd %d_ptr


sync_threads;


diffe_codeA(); // load %d_ptr 
               // store %d_ptr = 0


          Correct


• Load of d_ptr must happen after 
all atomicAdds have completed




Case 2: Load, Sync, Store

37

codeA(); // load %ptr


sync_threads;


codeB(); // store %ptr


…


diffe_codeB(); // load %d_ptr 
               // store %d_ptr = 0


sync_threads;


diffe_codeA(); // atomicAdd %d_ptr


          Correct


• All of the stores of d_ptr will 
complete prior to any atomicAdds

No cross-thread race here since 
that’s equivalent to a write race in B



Case 3: Store, Sync, Store

38

codeA(); // store %ptr


sync_threads;


codeB(); // store %ptr


…


diffe_codeB(); // load %d_ptr 
               // store %d_ptr = 0


sync_threads;


diffe_codeA(); // load %d_ptr 
               // store %d_ptr = 0


          Correct


• All stores to d_ptr in diffe_B will 
complete prior to diffe_A, ensuring 
only the clobbering store has its 
derivative incremented



CUDA Automatic Differentiation

• Most CUDA intrinsics [e.g. threadIdx.x] are inactive and recomputable and thus are 
incorporated into Enzyme without any special handling


• Derivative of syncthreads is a syncthreads at the corresponding place in reverse pass


• Shared memory is handled by making a second shared memory allocation to act as the 
shadow for any potentially active uses

39



CUDA Example

40

__device__ void inner(float* a, float* x, float* y) {

  y[threadIdx.x] = a[0] * x[threadIdx.x];

}

__device__ void __enzyme_autodiff(void*, …);


__global__ void daxpy(float* a, float* da, float* x, float* dx, float* y, float* dy) {

  __enzyme_autodiff((void*)inner, a, da, x, dx, y, dy);

}

__device__ void diffe_inner(float* a, float* da, float* x, float* dx, float* y, float* dy) {

  y[threadIdx.x] = a[0] * x[threadIdx.x];


  float dy = dy[threadIdx.x];

  dy[threadIdx.x] = 0.0f;


  float dx_tmp = a[0] * dy;

  atomic { dx[threadIdx.x] += dx_tmp; }


  float da_tmp = x[threadIdx.x] * dy;

  atomic { da[0] += da_tmp; }

}




CUDA Performance Improvements

• Introduce optimizations to reduce the use of memory


• Alias Analysis to determine legality of recomputing an instruction


• More aggressive alias analysis properties of syncthreads


• Don’t cache unnecessary values


• Move cache outside of loops when possible


• Heap-to-stack [and to register]


• Don’t cache memory itself acting as a cache [such as shared memory]

41



CUDA Evaluation

42

Forward 
Pass

Gradient 
No Opt

+ Standard 
Opts + Cache Opts

XSBench-
CUDA 1.0s OOM 20.1s 5.0s

RSBench-
CUDA 1.9s OOM >540s 7.8s

Evaluated on a 2080 Super FE



       Enzyme
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• Tool for performing reverse-mode AD of statically analyzable LLVM IR


• Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)


• 4.2x speedup over AD before optimization


• State-of-the art performance with existing tools


• Differentiate GPU kernels


• Open Source (enzyme.mit.edu / github.com/wsmoses/Enzyme)


• PyTorch-Enzyme & TensorFlow-Enzyme imports foreign code in ML workflow

http://enzyme.mit.edu
https://github.com/wsmoses/Enzyme
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       Enzyme
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• Tool for performing reverse-mode AD of statically analyzable LLVM IR


• Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)


• 4.2x speedup over AD before optimization


• State-of-the art performance with existing tools


• Differentiate GPU kernels


• Open Source (enzyme.mit.edu / github.com/wsmoses/Enzyme)


• PyTorch-Enzyme & TensorFlow-Enzyme imports foreign code in ML workflow

http://enzyme.mit.edu
https://github.com/wsmoses/Enzyme


END
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Compiler Analyses Better Optimize AD

• Existing 


• Alias analysis results that prove a function does not write to memory, we can prove that 
additional function calls do not need to be differentiated since they cannot impact the output


• Don’t cache equivalent values


• Statically allocate caches when a loop’s bounds can be determined in advance
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Decomposing the “Tape”

• Performing AD on a function requires data structures to compute 


• All values necessary to compute adjoints are available [cache]


• Place to store adjoints [shadow memory]


• Record instructions [we are static]


• Creating these directly in LLVM allows us to explicitly specify their behavior for optimization, 
unlike approaches that call out to a library


• For more details look in paper
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Conventional Wisdom: AD Only Feasible at High-Level

• Automatic Differentiation requires high level semantics to produce gradients


• Lack of high-level information can hinder performance of low-level AD


• “AD is more effective in high-level compiled languages (e.g. Julia, Swift, Rust, Nim) than 
traditional ones such as C/C++, Fortran and LLVM IR […]” -Innes[1]


 

[1] Michael Innes. Don’t Unroll Adjoint: Differentiating SSA-Form Programs. arXiv preprint arXiv:1810.07951, 2018
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Differentiation Is Key To Machine Learning

• Hinders application of ML to new domains


• Synthesizing gradients aims to close this gap

// PyTorch rewrite of nbody simulator

import torch


def step(bodies, dt):

  acc = []

  for i in range(len(bodies)):

    acc.push(torch.zeros([3]))

    for j in range(len(bodies)):

      if i == j: continue

      acc[i] += force(bodies[i], bodies[j]) /

                         bodies[i].mass


  for i, body in enumerate(bodies):

    body.vel += acc[i] * dt

    body.pos += body.vel * dt


// C++ nbody simulator


void step(std::array<Planet> bodies, double dt) {

  vec3 acc[bodies.size()]; 
  for (size_t i=0; i<bodies.size(); i++) {

    acc[i] = vec3(0, 0, 0);

    for (size_t j=0; j<bodies.size(); j++) {

      if (i == j) continue;

      acc[i] += force(bodies[i], bodies[j]) /     

                         bodies[i].mass;

    }

  }

  for (size_t i=0; i<bodies.size(); i++) { 
    bodies[i].vel += acc[i] * dt; 
    bodies[i].pos += bodies[i].vel * dt; 
  } 
}
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Lower Enzyme   .

Optimize

CodeGen

Optimize

       Enzyme Overturns Conventional Wisdom

• As fast or faster than state-of-the-art tools


• Running after optimization enables a 4.2x speedup 

• Necessary semantics for AD derived at low-level (with potential cooperation of frontend)
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Parallel Memory Detection

• Thread-local memory


• Non-atomic load/store


• Same memory location across all threads


• Parallel Reduction


• Others [always legal fallback]


• Atomic increment

52

  %tmp = load %d_res

  store %d_res = 0 
  atomic %d_ptr += %tmp



Differentiation of SyncThreads

53

codeA(); // store %ptr


sync_threads;


codeB(); // store %ptr


…


diffe_codeB(); // load %d_ptr 
               // store %d_ptr = 0


sync_threads;


diffe_codeA(); // load %d_ptr 
               // store %d_ptr = 0


Case 3 [write sync write]

All uses of stores to d_ptr in diffe_B will 
correctly complete prior to diffe_A

codeA(); // load %ptr


sync_threads;


codeB(); // load %ptr


…


diffe_codeB(); // atomicAdd %d_ptr


sync_threads;


diffe_codeA(); // atomicAdd %d_ptr


Case 4 [read sync read]

Original and differential sync unnecessary and 
legal to include



CUDA Performance Improvements

• Introduce optimizations to reduce the use of memory


• Alias Analysis to determine legality of recomputing an instruction


• More aggressive alias analysis properties of syncthreads


• Don’t cache unnecessary values


• Move cache outside of loops when possible


• Heap-to-stack [and to register]


• Don’t cache memory itself acting as a cache [such as shared memory]


• PHI Node unwrapping
54



Custom Derivatives & Multisource

• One can specify custom forward/reverse passes of functions by attaching metadata 
 
 

• Enzyme leverages LLVM’s link-time optimization (LTO) & “fat libraries” to ensure that LLVM 
bitcode is available for all potential differentiated functions before AD

__attribute__((enzyme("augment", augment_func)))

__attribute__((enzyme("gradient", gradient_func)))

double func(double n);
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