Enzyme.jl

William S. Moses

wmoses@mit.edu

JuliaCon ESM MiniSymposium
July 25, 2022
Fast Forward and Reverse-Mode Differentiation via Enzyme.jl

Valentin Churavy, William Moses, Ludger Paehler, Tim Gymnich

07/27/2022, 9:00 AM — 9:30 AM EDT

Abstract:
Enzyme is a new LLVM-based differentiation framework capable of creating fast derivatives in a variety of languages. In this talk we will showcase improvements in Enzyme.jl, the Julia-language bindings for Enzyme that enable us to differentiate through parallelism (Julia tasks, MPI.jl, etc), mutable memory, JIT-constructs, all while maintaining performance. Moreover we will also showcase Enzyme's new forward mode capabilities in addition to its existing reverse-mode features.
Automatic Derivative Generation

- Derivatives can be generated automatically from definitions within programs

```
function relu3(x::Float64)
    if x > 0
        return x^3
    else
        return 0
    end
end
```

- Unlike numerical approaches, automatic differentiation (AD) can compute the derivative of ALL inputs (or outputs) at once, without approximation error!

```
// Numeric differentiation
// f'(x) approx [f(x+epsilon) - f(x)] / epsilon
grad_input = []

for i in 1:100
    input2 = copy(input)
    input2[i] += 0.01;
    push!(grad_input, (f(input2) - f(input))/0.001)
end
```

```
// Automatic differentiation
grad_input = zeros(input)
Enzyme.autodiff(f, Duplicated(input, grad_input))
```

```
function grad_relu3(x::Float64)
    if x > 0
        return 3*x^2
    else
        return 0
    end
end
```
Existing AD Approaches (1/3)

- Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)
 - Provide a new language designed to be differentiated
 - Requires rewriting everything in the DSL and the DSL must support all operations in original code
 - Fast if DSL matches original code well

```python
import tensorflow as tf
x = tf.Variable(3.14)
with tf.GradientTape() as tape:
    out = tf.cond(x > 0, lambda: tf.math.pow(x, 3), lambda: 0)
print(tape.gradient(out, x).numpy())
```

Manually Rewrite

```python
function relu3(x::Float64)
    if x > 0
        return x^3
    else
        return 0
    end
end
```
Existing AD Approaches (2/3)

- Operator overloading (ReverseDiff.jl, ForwardDiff.jl, Adept, JAX)
 - Differentiable versions of existing language constructs (Float64 => Dual{Float64})
 - May require writing to use non-standard utilities
 - Often dynamic: storing instructions/values to later be interpreted

```plaintext
function relu3(x::TrackedArray)
    if x[1] > 0
        return x[1]^3
    else
        return 0
    end
end
```

```plaintext
# Store all instructions into an
# instruction tape
gtape = GradientTape(relu3, ([2.0],))
# Interpret instructions on the tape
# to construct derivative
seeded_reverse_pass!(result, gtape)
```
Existing AD Approaches (3/3)

• Source rewriting (Zygote.jl -ish, Tapenade)
 • Statically analyze program to produce a new gradient function in the source language
 • Re-implement parsing and semantics of given language
 • Requires all code to be available ahead of time => hard to use with external libraries
Existing Automatic Differentiation Pipelines

- C++
 - AD
- Julia
 - AD
- R
 - AD
- Swift
 - AD

- Optimize
- Lower
- CodeGen
- EXE
Case Study: Vector Normalization

```plaintext
# Compute magnitude in O(n)
function mag(x::Vector{Float64})::Float64

# Compute norm in O(n^2)
function norm(out::Vector{Float64},
in::Vector{Float64}
    for i = 1:n
        out[i] = in[i] / mag(in)
    end
end
end
```
Case Study: Vector Normalization

Compute magnitude in O(n)
function mag(x::Vector{Float64})::Float64

Compute norm in O(n^2)
function norm(out::Vector{Float64}, in::Vector{Float64})
 res = mag(in)
 for i = 1:n
 out[i] = in[i] / res
 end
end
end
Optimization & Automatic Differentiation

\[O\left(n^2\right) \]

- for \(i = 1:n \)
 - out\[i\] /= mag\(\text{in}\)
- end

Optimize

\[O\left(n\right) \]

- res = mag\(\text{in}\)
- for \(i = 1:n \)
 - out\[i\] /= res
- end

AD

\[O\left(n\right) \]

- d_res = 0.0
- for \(i = n:1 \)
 - d_res += d_out\[i]\]
- end
- \(\nabla \text{mag}(d_{\text{in}}, d_{\text{res}}) \)
Optimization & Automatic Differentiation

\[O(n^2) \]

```
for i = 1:n
    out[i] /= mag(in)
end
```

\[O(n) \]

```
res = mag(in)
for i = 1:n
    out[i] /= res
end
```

```
d_res = 0.0
for i = n:1
    d_res += d_out[i]...
end
∇mag(d_in, d_res)
```

\[O(n^2) \]

```
for i = 1:n
    out[i] /= mag(in)
end
```

\[O(n^2) \]

```
for i = n:1
    d_res = d_out[i]...
∇mag(d_in, d_res)
end
```
Optimization & Automatic Differentiation

\[O(n^2) \]

for \(i = 1:n \)
\[\text{out}[i] /= \text{mag}(\text{in}) \]
end

Optimize

\[O(n) \]

res = \text{mag}(\text{in})
for \(i = 1:n \)
\[\text{out}[i] /= \text{res} \]
end

AD

\[O(n) \]

d_res = 0.0
for \(i = 1:n \)
\[\text{d_res} += \text{d_out}[i] \]
end
\[\nabla \text{mag}(\text{d_in}, \text{d_res}) \]

\[O(n^2) \]

for \(i = 1:n \)
\[\text{out}[i] /= \text{mag}(\text{in}) \]
end

AD

\[O(n^2) \]

for \(i = 1:n \)
\[\text{d_res} = \text{d_out}[i] \]
\[\nabla \text{mag}(\text{d_in}, \text{d_res}) \]
end

Optimize

\[O(n^2) \]

for \(i = 1:n \)
\[\text{d_res} = \text{d_out}[i] \]
\[\nabla \text{mag}(\text{d_in}, \text{d_res}) \]
end

Optimize
Differentiating after optimization can create asymptotically faster gradients!

\[O(n^2) \]

\[O(n) \]

\[O(n) \]
Enzyme Approach

Performing AD at low-level lets us work on *optimized* code!
Enzyme is **4.2x faster** than Reference!
Enzyme.jl

• Julia bindings for Enzyme AD framework

• Bindings built off of GPUCompiler.jl

• Forward and Reverse Mode AD, including experimental vector mode

• Handles mutation, parallelism, GPU’s (AMD, CUDA, etc), & more!

• Static analysis & optimization => very, very fast scalar AD
Enzyme.jl

• Static analysis & optimization => very, very fast scalar AD

```python
def taylor_jax(x, N):
    sum = 0 * x
    for i in range(1, N):
        sum += x**i / i
    return sum

def taylor_lax(x, N):
    return jax.lax.fori_loop(1, N, lambda i, cur:
        cur + x**i / i, 0)
```

```julia
@btime Enzyme.autodiff(Forward, taylor, Duplicated(0.5, 1.0), 10^6)
#      30 ms (0 bytes)

@btime Enzyme.autodiff(Reverse, taylor, Active(0.5), 10^6).
#      30 ms (0 bytes)

@btime ForwardDiff.derivative(x -> taylor(x, 10^6), 0.5)
#      60 ms (0 bytes)

@btime Zygote.gradient(taylor, 0.5, 10^6)
#     993 ms (663.56 MiB)

@btime Diffractor.gradient(taylor, 0.5, 10^6)
#   96665 ms (96.37 GiB)

@pytime jax.grad(taylor_jax)(0.5, 10^5)
# >183993 ms

@pytime jax.grad(taylor_lax)(0.5, 10^6)
#      95 ms
```
Enzyme.jl, the Sharp Bits

- Built off of GPUCompiler.jl
 - GPU-style code is supported, generic code is in progress
 - Type Stability!
- Only BLAS, not LAPACK currently supported
- No ChainRules Support (precursor EnzymeRules coming soon)
- Internal allocations may hit in progress GC-support
Automatic Differentiation & GPUs [MCPHNSD @ SC’21]

- Prior work has not explored reverse mode AD of existing GPU kernels

1. Reversing parallel control flow can lead to incorrect results

2. Complex performance characteristics make it difficult to synthesize efficient code

3. Resource limitations can prevent kernels from running at all
Challenges of Parallel AD

- The adjoint of an instruction increments the derivative of its input
- Benign read race in forward pass => Write race in reverse pass (undefined behavior)

```plaintext
function set(ar::Vector{Float64}, val::Ref{Float64})
    @threads for i=1:10
        ar[i] = val[]
    end
end

function grad_set(ar::Vector{Float64}, grad_ar::Vector{Float64}, val::Ref{Float64})
    d_val = Ref(0.0)
    @threads for i=1:10
        ar[i] = val[]
    end
    @threads for i=1:10
        d_val[] += d_ar[i]
        d_ar[i] = 0.0
    end
    return d_val[]
end
```

Read Race

Write Race
GPU Memory Hierarchy

<table>
<thead>
<tr>
<th>Per Thread</th>
<th>Per Block</th>
<th>Per GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register</td>
<td>Shared Memory</td>
<td>Global Memory</td>
</tr>
<tr>
<td>~Bytes</td>
<td>~KBs</td>
<td>~GBs</td>
</tr>
<tr>
<td>Use Limits Parallelism</td>
<td>Use Limits Parallelism</td>
<td></td>
</tr>
</tbody>
</table>

Slower, larger amount of memory
Correct and Efficient Derivative Accumulation

Thread-local memory
- Non-atomic load/store

Same memory location across all threads (some shared mem)
- Parallel Reduction

Others [always legal fallback]
- Atomic increment

```
# Device function
function f(…)
    # Thread-local var
    y::Float64
    ...
    d_y += val;
end

// Same var for all threads
const y::Ref{Float64}
# Device function
function f(…)
    ...
    reduce_add(d_y, val);
end

# Device function with
# Unknown thread-aliasing
function f(y::Vector{Float64})
    ...
    atomic
d_y[…] += val;
end
end
```

Slower
Novel AD + GPU Optimizations

- Reduce runtime by up to 3 orders of magnitude & not OOM!

- See our paper for full list (https://c.wsmoses.com/papers/EnzymeGPU.pdf)
 Reverse-Mode Automatic Differentiation and Optimization of GPU Kernels via Enzyme. SC, 2021

- [AD] Cache LICM/CSE
- [AD] Min-Cut Cache Reduction
- [GPU] Merge Allocations
- [GPU] Aliasing of SyncThreads

- ...
CUDA.jl / AMDGPU.jl Example

function compute!(inp, out)
 s_D = @cuStaticSharedMem eltype(inp) (10, 10)
 ...
end

function grad_compute!(inp, out)
 Enzyme.autodiff_deferred(compute!, inp, out)
 return nothing
end

@cuda grad_compute!(Duplicated(inp, d_inp), Duplicated(out, d_out))

function compute!(inp, out)
 s_D = AMDGPU.alloc_special(…)
 ...
end

function grad_compute!(inp, out)
 Enzyme.autodiff_deferred(compute!, inp, out)
 return nothing
end

@rocm grad_compute!(Duplicated(inp, d_inp), Duplicated(out, d_out))

See Below For Full Code Examples

Common Framework for Parallel AD [To Appear at SC’22]

- Common infrastructure for supporting parallel AD (caching, race-resolution, gradient accumulation) enables parallel differentiation independent of framework or language.

- Enables differentiation of a combination of GPU (e.g. CUDA, ROCm), CPU (OpenMP, Julia Tasks, RAJA), Distributed (MPI, MPI.jl), and more
Enzyme

- Tool for performing reverse and forward-mode AD of statically analyzable LLVM IR

- Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc) and parallel frameworks (OpenMP, MPI, CUDA, ROCm, Julia Threads)

- 4.2x speedup over AD before optimization on CPU

- State-of-the art performance with existing tools

- First general purpose reverse-mode GPU AD

- Novel GPU and AD-specific optimizations improve runtime by several orders of magnitude

- Open source (enzyme.mit.edu & join our mailing list)!

Ongoing work to support Vector Mode, Mixed Mode, and Checkpointing
Enzyme

- Tool for performing reverse and forward-mode AD of statically analyzable LLVM IR
- Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc) and parallel frameworks (OpenMP, MPI, CUDA, ROCm, Julia Threads)
- 4.2x speedup over AD before optimization on CPU
- State-of-the art performance with existing tools
- First general purpose reverse-mode GPU AD
- Novel GPU and AD-specific optimizations improve runtime by several orders of magnitude
- Open source (enzyme.mit.edu & join our mailing list)!
- Ongoing work to support Vector Mode, Mixed Mode, and Checkpointing
Acknowledgements

• Thanks to James Bradbury, Alex Chernyakhovsky, Lilly Chin, Hal Finkel, Marco Foco, Laurent Hascoet, Mike Innes, Tim Kaler, Charles Leiserson, Yingbo Ma, Chris Rackauckas, TB Schardl, Lizhou Sha, Yo Shavit, Dhash Shrivathsa, Nalini Singh, Vassil Vassilev, and Alex Zinenko

• William S. Moses was supported in part by a DOE Computational Sciences Graduate Fellowship DESC0019323. Valentin Churavy was supported in part by the Defense Advanced Research Projects Agency (DARPA) under Agreement No. HR0011-20-9-0016, and in part by NSF Grant OAC-1835443. Ludger Paehler was supported in part by the German Research Council (DFG) under grant agreement No. 326472365.

• This research was supported in part by LANL grant 531711; in part by the Applied Mathematics activity within the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research Program, under contract number DE-AC02-06CH11357; in part by the Exascale Computing Project (17-SC-20-SC). Research was sponsored by the United States Air Force Research Laboratory and was accomplished under Cooperative Agreement Number FA8750-19-2-1000.

• The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the United States Air Force or the U.S. Government.
Enzyme

- Tool for performing reverse and forward-mode AD of statically analyzable LLVM IR

- Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc) and parallel frameworks (OpenMP, MPI, CUDA, ROCm, Julia Threads)

- 4.2x speedup over AD before optimization on CPU

- State-of-the art performance with existing tools

- First general purpose reverse-mode GPU AD

- Novel GPU and AD-specific optimizations improve runtime by several orders of magnitude

- Open source (enzyme.mit.edu & join our mailing list)!

- Ongoing work to support Vector Mode, Mixed Mode, and Checkpointing
Case 1: Store, Sync, Load

codeA(); // store %ptr
sync_threads;
codeB(); // load %ptr
...
diffe_codeB(); // atomicAdd %d_ptr
sync_threads;
diffe_codeA(); // load %d_ptr
 // store %d_ptr = 0

✓ Correct

• Load of d_ptr must happen after all atomicAdds have completed
CUDA Example

__device__
void inner(float* a, float* x, float* y) {
 y[threadIdx.x] = a[0] * x[threadIdx.x];
}

__device__
void __enzyme_autodiff(void*, ...);

__global__
void daxpy(float* a, float* da, float* x, float* dx, float* y, float* dy) {
 __enzyme_autodiff((void*)inner, a, da, x, dx, y, dy);
}

__device__
void diffe_inner(float* a, float* da, float* x, float* dx, float* y, float* dy) {
 // Forward Pass
 y[threadIdx.x] = a[0] * x[threadIdx.x];

 // Reverse Pass
 float dy = dy[threadIdx.x];
 dy[threadIdx.x] = 0.0f;
 float dx_tmp = a[0] * dy;
 atomic { dx[threadIdx.x] += dx_tmp; }
 float da_tmp = x[threadIdx.x] * dy;
 atomic { da[0] += da_tmp; }
}
CUDA Example

```c
__device__
void inner(float* a, float* x, float* y) {
    y[threadIdx.x] = a[0] * x[threadIdx.x];
}

__device__
void __enzyme_autodiff(\n    void*, ...
);

__global__
void daxpy(float* a, float* da, 
            float* x, float* dx, 
            float* y, float* dy) {
    __enzyme_autodiff((\n        void*)inner, 
        a, da, x, dx, y, dy);
}
```

```c
__device__
void diffe_inner(float* a, float* da, 
                 float* x, float* dx, 
                 float* y, float* dy) {

    // Forward Pass
    y[threadIdx.x] = a[0] * x[threadIdx.x];

    // Reverse Pass
    float dy = dy[threadIdx.x];
    dy[threadIdx.x] = 0.0f;

    float dx_tmp = a[0] * dy;
    dx[threadIdx.x] += dx_tmp;

    float da_tmp = x[threadIdx.x] * dy;
    reduce_accumulate(&da[0], da_tmp);
}
```
Efficient GPU Code

- For correctness, Enzyme may need to cache values in order to compute the gradient
 - The complexity of GPU memory means large caches slow down the program by several orders of magnitude, if it even fits at all
- Like the CPU, existing optimizations reduce the overhead
- Unlike the CPU, existing optimizations aren’t sufficient
- Novel GPU and AD-specific optimizations can speedup by several orders of magnitude

```
// Forward Pass
out[i] = x[i] * x[i];
x[i] = 0.0f;
// Reverse (gradient) Pass
...
grad_x[i] += 2 * x[i] * grad_out[i];
...```
**Efficient Correct GPU Code**

- For correctness, Enzyme may need to cache values in order to compute the gradient

- The complexity of GPU memory means large caches slow down the program by several orders of magnitude, if it even fits at all

- Like the CPU, existing optimizations reduce the overhead

- Unlike the CPU, existing optimizations aren’t sufficient

- Novel GPU and AD-specific optimizations can speedup by several orders of magnitude

```cpp
double* x_cache = new double[...];
// Forward Pass
out[i] = x[i] * x[i];
x_cache[i] = x[i];
x[i] = 0.0f;
// Reverse (gradient) Pass
...
grad_x[i] += 2 * x_cache[i] * grad_out[i];
...
delete[] x_cache;
```
Cache Reduction Example

- By considering the dataflow graph we can perform a min-cut to approximate smaller cache sizes.

```
for(int i=0; i<10; i++) {
 double sum = x[i] + y[i];
 use(sum);
}
overwrite(x, y);
grad_overwrite(x, y);
for(int i=9; i>=0; i--) {
 ...
 grad_use(sum);
}
```
Cache Reduction Example

- By considering the dataflow graph we can perform a min-cut to approximate smaller cache sizes.

```java
double* x_cache = new double[10];
double* y_cache = new double[10];

for(int i=0; i<10; i++) {
 double sum = x[i] + y[i];
 x_cache[i] = x[i];
 y_cache[i] = y[i];
 use(sum);
}

overwrite(x, y);
grad_overwrite(x, y);

for(int i=9; i>=0; i--) {
 double sum = x_cache[i] + y_cache[i];
 grad_use(sum);
}
```
Cache Reduction Example

- By considering the dataflow graph we can perform a min-cut to approximate smaller cache sizes.

```java
double* sum_cache = new double[10];
for(int i=0; i<10; i++) {
 double sum = x[i] + y[i];
 sum_cache[i] = sum;
 use(sum);
}
overwrite(x, y);
grad_overwrite(x, y);
for(int i=9; i>=0; i--) {
 grad_use(sum_cache[i]);
}
```
Allocation Merging

- Allocations (and any calls) on the GPU are expensive
- Given two allocations in the same scope, replace uses with a single allocation
- Beneficial for not just AD, but any GPU programs!

```cpp
double* var1 = new double[N];
double* var2 = new double[M];
use(var1, var2);
delete[] var1;
delete[] var2;
```

```cpp
double* var1 = new double[N + M];
double* var2 = var1 + N;
use(var1, var2);
delete[] var1;
```
Novel AD + GPU Optimizations

- See our SC paper (Nov 17) for more (https://c.wsmoses.com/papers/EnzymeGPU.pdf)
  Reverse-Mode Automatic Differentiation and Optimization of GPU Kernels via Enzyme. SC, 2021

- [AD] Cache LICM/CSE
- [AD] Min-Cut Cache Reduction
- [AD] Cache Forwarding
- [GPU] Merge allocations
- [GPU] Heap-to-stack (and register)
- [GPU] Alias Analysis Properties of SyncThreads
GPU Gradient Overhead [MCPHNMJ’21]

- Evaluation of both original code and gradient
- DG: Discontinuous-Galerkin integral (Julia)
- LBM: particle-based fluid dynamics simulation
- LULESH: unstructured explicit shock hydrodynamics solver
- XSBench & RSBench: Monte Carlo simulations of particle transport algorithms (memory & compute bound, respectively)
GPU Gradient Overhead [MCPHNMJ’21]

- Evaluation of both original code and gradient
- DG: Discontinuous-Galerkin integral (Julia)
- LBM: particle-based fluid dynamics simulation
- LULESH: unstructured explicit shock hydrodynamics solver
- XSBench & RSBench: Monte Carlo simulations of particle transport algorithms (memory & compute bound, respectively)

<table>
<thead>
<tr>
<th></th>
<th>DG (ROCm)</th>
<th>DG (CUDA)</th>
<th>LBM (Parboil)</th>
<th>LULESH</th>
<th>RSBench</th>
<th>XSBench</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPU Gradient Overhead</td>
<td>5.4</td>
<td>18.3</td>
<td>6.3</td>
<td>2.01</td>
<td>4.2</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Bug in CUDA Register Allocator
Ablation Analysis of Optimizations [MCPHNMJ’21]
Ablation Analysis of Optimizations [MCPHNMJ’21]
Ablation Analysis of Optimizations [MCPHNMJ’21]

DG (ROCm)

DG (CUDA)

LBM

LULESH

RSBench

XS Bench

Forward (1x) 10x 100x 1000x OOM

Unrolling 17.8× 116.6× 1378.3×

MallocCoalescing

PreOptimization

Unrolling 5.4×

Allocator 6.4×

Recompute 8.7× 19.87×

InlineCacheABI

PreOptimization

SpecPHI 2.0× 2.4×

PreOptimization 2979.1×

CacheLICM 4.7× 9.5×

Inlining 16.3×

PreOptimization 6372.2×

Templating 3.2×

PHI 9.5×

LoopBound 25.9×

PreOptimization

Overhead above Forward Pass
Ablation Analysis of Optimizations [MCPHNMJ’21]

GPU AD is Intractable Without Optimization!
Enzyme

- Tool for performing reverse and forward-mode AD of statically analyzable LLVM IR
- Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc) and parallel frameworks (OpenMP, MPI, CUDA, ROCm, Julia Threads)
- 4.2x speedup over AD before optimization on CPU
- State-of-the art performance with existing tools
- First general purpose reverse-mode GPU AD
- Novel GPU and AD-specific optimizations improve runtime by several orders of magnitude
- Open source (enzyme.mit.edu & join our mailing list)!

Ongoing work to support Vector Mode, Mixed Mode, and Checkpointing
Acknowledgements

• Thanks to James Bradbury, Alex Chernyakhovsky, Lilly Chin, Hal Finkel, Marco Foco, Laurent Hascoet, Mike Innes, Tim Kaler, Charles Leiserson, Yingbo Ma, Chris Rackauckas, TB Schardl, Lizhou Sha, Yo Shavit, Dhash Shrivathsa, Nalini Singh, Vassil Vassilev, and Alex Zinenko

• William S. Moses was supported in part by a DOE Computational Sciences Graduate Fellowship DESC0019323. Valentin Churavy was supported in part by the Defense Advanced Research Projects Agency (DARPA) under Agreement No. HR0011-20-9-0016, and in part by NSF Grant OAC-1835443. Ludger Paehler was supported in part by the German Research Council (DFG) under grant agreement No. 326472365.

• This research was supported in part by LANL grant 531711; in part by the Applied Mathematics activity within the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research Program, under contract number DE-AC02-06CH11357; in part by the Exascale Computing Project (17-SC-20-SC). Research was sponsored by the United States Air Force Research Laboratory and was accomplished under Cooperative Agreement Number FA8750-19-2-1000.

• The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the United States Air Force or the U.S. Government.
Enzyme

- Tool for performing reverse and forward-mode AD of statically analyzable LLVM IR
- Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc) and parallel frameworks (OpenMP, MPI, CUDA, ROCm, Julia Threads)
- 4.2x speedup over AD before optimization on CPU
- State-of-the-art performance with existing tools
- First general purpose reverse-mode GPU AD
- Novel GPU and AD-specific optimizations improve runtime by several orders of magnitude
- Open source (enzyme.mit.edu & join our mailing list)!
- Ongoing work to support Vector Mode, Mixed Mode, and Checkpointing
import torch
from torch_enzyme import enzyme

# Create some initial tensor
inp = ...

# Apply foreign function to tensor
out = enzyme("test.c", "f").apply(inp)

# Derive gradient
out.backward()
print(inp.grad)

import tensorflow as tf
from tf_enzyme import enzyme

# Create some initial tensor
inp = tf.Variable(…)

# Use external C code as a regular TF op
out = enzyme(inp, filename="test.c", function="f")

# Results is a TF tensor
out = tf.sigmoid(out)

// Input tensor + size, and output tensor
void f(float* inp, size_t n, float* out);

// diffe_dupnoneed specifies not recomputing the output
void diffe(float* inp, float* d_inp, size_t n, float* d_out) {
    __enzyme_autodiff(f, diffe_dup, inp, d_inp, n, diffe_dupnoneed, (float*)0, d_out);
}
Cache

- Adjoint instructions may require values from the forward pass
  - e.g. $\nabla (x \times y) \Rightarrow x \, dy + y \, dx$
- For all values needed in the reverse, allocate memory in the forward pass to store the value
- Values computed inside loops are stored in an array indexed by the loop induction variable
  - Array allocated statically if possible; otherwise dynamically realloc’d
When LLVM Doesn’t Cut It

• Enzyme relies on optimizations such as LICM and CSE to eliminate redundant loads, and thus redundant caches.

• Since we instead need to preserve values for the reverse pass, these optimizations may not apply.

```c
for(int i=0; i<N; i++) {
 for(int j=0; j<M; j++) {
 use(array[j]);
 }
}
overwrite(array);
```
When LLVM Doesn’t Cut It

- Enzyme relies on optimizations such as LICM and CSE to eliminate redundant loads, and thus redundant caches.
- Since we instead need to preserve values for the reverse pass, these optimizations may not apply.
- This requires far more caching than necessary.

```cpp
double* cache = new double[N*M];
for (int i=0; i<N; i++) {
 for (int j=0; j<M; j++) {
 cache[i*M+j] = array[j];
 use(array[j]);
 }
}
overwrite(array);
grad_overwrite(array);
for (int i=0; i<N; i++) {
 for (int j=M-1; i<M; i++) {
 grad_use(cache[i*M+j], d_array[j]);
 }
}
```
Enzyme relies on optimizations such as LICM and CSE to eliminate redundant loads, and thus redundant caches.

Since we instead need to preserve values for the reverse pass, these optimizations may not apply.

This requires far more caching than necessary.

By analyzing the read/write structure, we can hoist the cache.

double* cache = new double[M];
memcpy(cache, array, sizeof(double)*M);
for(int i=0; i<N; i++) {
    for(int j=0; j<M; j++) {
        use(array[j]);
    }
}
overwrite(array);
grad_overwrite(array);
for(int i=0; i<N; i++) {
    for(int j=M-1; i<M; i++) {
        grad_use(cache[j], d_array[j]);
    }
}
Cache

- Adjoint instructions may require values from the forward pass
  - e.g. $\nabla (x \times y) \Rightarrow x \ dy + y \ dx$
- For all values needed in the reverse, allocate memory in the forward pass to store the value
- Values computed inside loops are stored in an array indexed by the loop induction variable
  - Array allocated statically if possible; otherwise dynamically realloc’ed
Case Study: Read Sum

double sum(double* x) {
    double total = 0;
    for(int i=0; i<10; i++)
        total += read() * x[i];
    return total;
}

void diffe_sum(double* x, double* xp) {
    return __enzyme_autodiff(sum, x, xp);
}

#define double @sum(double* %x)

define double __enzyme_autodiff(double *sum, double *x, double *xp) {

    %i = phi [0, entry], [ %i.next, for.body ]
    %total = phi [0.0, %entry], [ %add, for.body ]
    %call = @read()
    %0 = load %x[%i]
    %mul = %0 * %call
    %add = %mul + %total
    %i.next = %i + 1
    %exitcond = %i.next == 10
    br %exitcond, for.cleanup, for.body

    %result = phi [ %call, cond.true], [0, entry]
    ret %result
}
Case Study: Read Sum

Active Variables

```
define double @sum(double* %x)

%result = PHI [%call, cond.true], [0, entry]
ret %result

%i = PHI [0, entry], [%i.next, for.body]
%total = PHI [0.0, %entry], [%add, for.body]
%call = @read()
%0 = load %x[%i]
%mul = %0 * %call
%add = %mul + %total
%i.next = %i + 1
%exitcond = %i.next == 10
br %exitcond, for.cleanup, for.body

%result = PHI [%call, cond.true], [0, entry]
ret %result
```
Case Study: Read Sum

Each register in the for loop represents a distinct active variable every iteration.

```plaintext
define double @sum(double* %x)

entry br for.body

%i = phi [0, entry], [%i.next, for.body]
%total = phi [0.0, %entry], [%add, for.body]
%call = @read()
%0 = load %x[0]
%mul = %0 * %call
%add = %mul + %total
%i.next = %i + 1
%exitcond = %i.next == 10
br %exitcond, for.cleanup, for.body

for.body %result = phi [%call, cond.true], [0, entry]
ret %result
```

Each register in the for loop represents a distinct active variable every iteration.
Allocate & zero shadow memory per active value
define double @diffe_sum(double* %x, double* %xp)

Cache forward pass variables for use in reverse

for.body

for.cleanup

entry

alloca %x' = 0.0
alloca %total' = 0.0
alloca %0' = 0.0
alloca %mul' = 0.0
alloca %add' = 0.0
alloca %result' = 0.0
%call_cache = @malloc(10 x double)
br for.body

%i = phi [ 0, entry ], [ %i.next, for.body ]
%total = phi [ 0.0, %entry ], [ %add, for.body ]
%call = @read()
store %call_cache[ %i ] = %call
%0 = load %x[ %i ]
%mul = %0 * %call
%add = %mul + %total
%i.next = %i + 1
%exitcond = %i.next == 10
br %exitcond, for.cleanup, for.body

%result = phi [ %call, cond.true ], [0, entry]
@free(%cache)
ret %result
define void @diffe_sum(double* %x, double* %xp)

entry
%call_cache = @malloc(10 x double)
br for.body

for.body
%i = phi [ 0, entry ], [ %i.next, for.body ]
%total = phi [ 0.0, entry ], [ %add, for.body ]
%call = @read()
store %call_cache[%i] = %call
%i.next = %i + 1
%exitcond = %i.next == 10
br %exitcond, reversefor.body, for.body

reversefor.body
%i' = phi [ 9, for.body ], [ %i'.next, reversefor.body ]
%i'.next = %i' - 1
%cached_read = load %call_cache[%i']
store %xp[%i'] = %cached_read + %xp[%i']
%exit2 = %i = 0
br %exitcond, %exit2, reversefor.body

exit
@free(%cache)
ret

After lowering & some optimizations
Case Study: Read Sum

```c
#define void @diffe_sum(double* %x, double* %xp)

diffsum:
 %call0 = @read()
 store %xp[0] = %call0
 %call1 = @read()
 store %xp[1] = %call1
 %call2 = @read()
 store %xp[2] = %call2
 %call3 = @read()
 store %xp[3] = %call3
 %call4 = @read()
 store %xp[4] = %call4
 %call5 = @read()
 store %xp[5] = %call5
 %call6 = @read()
 store %xp[6] = %call6
 %call7 = @read()
 store %xp[7] = %call7
 %call8 = @read()
 store %xp[8] = %call8
 %call9 = @read()
 store %xp[9] = %call9
 ret
```

After more optimizations

```c
void diffe_sum(double* x, double* xp) {
 xp[0] = read();
 xp[1] = read();
 xp[2] = read();
 xp[3] = read();
 xp[4] = read();
 xp[5] = read();
 xp[6] = read();
 xp[7] = read();
 xp[8] = read();
 xp[9] = read();
}
```
Enzyme on the GPU

- Care must be taken to both ensure correctness and maintain parallelism.
- GPU programs have much lower memory limits. Performance is highly dependent on the number of memory transfers.
- Without first running optimizations reverse-mode AD of large kernels is intractable (OOM).
- Novel GPU and AD-specific optimizations can make a difference of several orders of magnitude when computing gradients.

<table>
<thead>
<tr>
<th>Test</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>1</td>
</tr>
<tr>
<td>AD, Optimized</td>
<td>4.4</td>
</tr>
<tr>
<td>AD, No CacheLICM</td>
<td>343.7</td>
</tr>
<tr>
<td>AD, Bad Recompute Heuristic</td>
<td>1275.6</td>
</tr>
<tr>
<td>AD, No Inlining</td>
<td>6372.2</td>
</tr>
<tr>
<td>AD, No PreOptimization</td>
<td>OOM</td>
</tr>
</tbody>
</table>
CUDA Automatic Differentiation

- Enzyme enables differentiation of CPU programs without rewriting them in a DSL.

- Similarly, GPU programs cannot currently be differentiated without being rewritten in a differentiable language (e.g. PyTorch).

- Enzyme enables reverse-mode AD of general existing GPU programs by:
  - Resolving potential data race issues
  - Differentiating parallel control (syncthreads)
  - Differentiating CUDA intrinsics (e.g. threadIdx.x /llvm.nvvm.read.ptx.sreg.tid.x)
  - Handling shared memory
CUDA Automatic Differentiation

- Most CUDA intrinsics [e.g. threadIdx.x] are inactive and recomputable and thus are incorporated into Enzyme without any special handling

- Derivative of syncthreads is a syncthreads at the corresponding place in reverse pass

- Shared memory is handled by making a second shared memory allocation to act as the shadow for any potentially active uses
Enzyme

- Tool for performing reverse-mode AD of statically analyzeable LLVM IR
- Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)
- 4.2x speedup over AD before optimization
- State-of-the art performance with existing tools
- Differentiate GPU kernels
- Open Source (enzyme.mit.edu / github.com/wsmoses/Enzyme)
- PyTorch-Enzyme & TensorFlow-Enzyme imports foreign code in ML workflow
GPU Automatic Differentiation

• Prior work has not explored reverse mode AD of GPU kernels

• Similarly, GPU programs cannot currently be differentiated without being rewritten in a differentiable language (e.g. PyTorch).

• Enzyme enables reverse-mode AD of general existing GPU programs by:
  • Resolving potential data race issues
  • Differentiating parallel control (syncthreads)
  • Differentiating CUDA intrinsics (e.g. threadIdx.x /llvm.nvvm.read.ptx.sreg.tid.x)
  • Handling shared memory
Enzyme

- Tool for performing reverse-mode AD of statically analyzable LLVM IR
- Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)
- 4.2x speedup over AD before optimization
- State-of-the art performance with existing tools
- Differentiate GPU kernels
- Open Source (enzyme.mit.edu / github.com/wsmoses/Enzyme)
- PyTorch-Enzyme & TensorFlow-Enzyme imports foreign code in ML workflow
Custom Derivatives & Multisource

- One can specify custom forward/reverse passes of functions by attaching metadata

```c
__attribute__((enzyme("augment", augment_func)))
__attribute__((enzyme("gradient", gradient_func)))
double func(double n);
```

- Enzyme leverages LLVM’s link-time optimization (LTO) & “fat libraries” to ensure that LLVM bitcode is available for all potential differentiated functions before AD
CUDA Performance Improvements

- Introduce optimizations to reduce the use of memory
  - Alias Analysis to determine legality of recomputing an instruction
    - More aggressive alias analysis properties of syncthreads
  - Don’t cache unnecessary values
    - Move cache outside of loops when possible
  - Heap-to-stack [and to register]
  - Don’t cache memory itself acting as a cache [such as shared memory]
Enzyme Differentiation Algorithm

- Type Analysis
- Activity Analysis
- Synthesize derivatives
  - Forward pass that mirrors original code
  - Reverse pass inverts instructions in forward pass (adjoints) to compute derivatives
- Optimize
Activity Analysis

- Determines what instructions could impact derivative computation
- Avoids taking meaningless or unnecessary derivatives (e.g. d/dx cpuid)
- Instruction is active iff it can propagate a differential value to its return or memory
- Build off of alias analysis & type analysis
  - E.g. all read-only function that returns an integer are inactive since they cannot propagate adjoints through the return or to any memory location
Compiler Analyses Better Optimize AD

- Existing

- Alias analysis results that prove a function does not write to memory, we can prove that additional function calls do not need to be differentiated since they cannot impact the output

- Don’t cache equivalent values

- Statically allocate caches when a loop’s bounds can be determined in advance
Decomposing the “Tape”

- Performing AD on a function requires data structures to compute
  - All values necessary to compute adjoints are available [cache]
  - Place to store adjoints [shadow memory]
  - Record instructions [we are static]
- Creating these directly in LLVM allows us to explicitly specify their behavior for optimization, unlike approaches that call out to a library
- For more details look in paper
Conventional Wisdom: AD Only Feasible at High-Level

- Automatic Differentiation requires high level semantics to produce gradients
- Lack of high-level information can hinder performance of low-level AD
  - “AD is more effective in high-level compiled languages (e.g. Julia, Swift, Rust, Nim) than traditional ones such as C/C++, Fortran and LLVM IR [...]” -Innes[1]

Existing AD Approaches (3/3)

- Source rewriting (Zygote.jl -ish, Tapenade)
  - Statically analyze program to produce a new gradient function in the source language
  - Re-implement parsing and semantics of given language
  - Requires all code to be available ahead of time => hard to use with external libraries

```c
// myfile.h
double relu3(double x) {
 if (x > 0)
 return pow(x,3)
 else
 return 0;
}

// myfile.c
double relu3(double x) {
 if (x > 0)
 return pow(x,3)
 else
 return 0;
}

// grad_myfile.h
double grad_relu3(double x) {
 if (x > 0)
 return 3 * pow(x,2)
 else
 return 0;
}

// grad_myfile.c
double grad_relu3(double x) {
 if (x > 0)
 return 3 * pow(x,2)
 else
 return 0;
}
```
Differentiation Is Key To Machine Learning

- Hinders application of ML to new domains
- Synthesizing gradients aims to close this gap

// C++ nbody simulator
void step(std::array<Planet> bodies, double dt) {
  vec3 acc[bodies.size()];
  for (size_t i=0; i<bodies.size(); i++) {
    acc[i] = vec3(0, 0, 0);
    for (size_t j=0; j<bodies.size(); j++) {
      if (i == j) continue;
      acc[i] += force(bodies[i], bodies[j]) / bodies[i].mass;
    }
  }
  for (size_t i=0; i<bodies.size(); i++) {
    bodies[i].vel += acc[i] * dt;
    bodies[i].pos += bodies[i].vel * dt;
  }
}

// PyTorch rewrite of nbody simulator
import torch

def step(bodies, dt):
  acc = []
  for i in range(len(bodies)):
    acc.push(torch.zeros([3]))
    for j in range(len(bodies)):
      if i == j: continue
      acc[i] += force(bodies[i], bodies[j]) / bodies[i].mass
  for i, body in enumerate(bodies):
    body.vel += acc[i] * dt
    body.pos += body.vel * dt
Enzyme Overturns Conventional Wisdom

- As fast or faster than state-of-the-art tools

  - Running after optimization enables a **4.2x speedup**

- Necessary semantics for AD derived at low-level (with potential cooperation of frontend)
Parallel Memory Detection

• Thread-local memory
  • Non-atomic load/store
  • Same memory location across all threads
  • Parallel Reduction
  • Others [always legal fallback]

• Atomic increment

```assembly
%tmp = load %d_res
store %d_res = 0
atomic %d_ptr += %tmp
```
AD-Specific Cache

- Some optimizations require domain-specific knowledge

- Not all values are needed for the reverse pass. By considering the dataflow graph we can perform a min-cut to approximate smaller cache sizes.

- Not all (loop) sizes are known at compile-time, so this must be a heuristic

```c
double xy_cache=x[0] + y[0];
use(x[0] + y[0]);
overwrite(x, y);
grad_overwrite(x, y);
grad_use(xy_cache);
```
AD-Specific Cache

- Some optimizations require domain-specific knowledge

- Not all values are needed for the reverse pass. By considering the dataflow graph we can perform a min-cut to approximate smaller cache sizes.

  - Not all (loop) sizes are known at compile-time, so this must be a heuristic

```c
double x_cache=x[0];
double y_cache=y[0];
use(x[0] + y[0]);
overwrite(x, y);
grd_overwrite(x, y);
grd_use(x_cache + y_cache);
```
AD-Specific Cache

• Some optimizations require domain-specific knowledge

• Not all values are needed for the reverse pass. By considering the dataflow graph we can perform a min-cut to approximate smaller cache sizes.

  • Not all (loop) sizes are known at compile-time, so this must be a heuristic

```plaintext
double xy_cache=x[0] + y[0];
use(x[0] + y[0]);
overwrite(x, y);
grd_overwrite(x, y);
grd_use(xy_cache);
```
Differentiation Is Key To Machine Learning And Science

- Computing derivatives is key to many algorithms
  - Machine learning (back-propagation, Bayesian inference, uncertainty quantification)
  - Scientific computing (modeling, simulation)
- When working with large codebases or dynamically-generated programs, manually writing derivative functions becomes intractable
- Community has developed tools to create derivatives automatically
Existing AD Approaches

• Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)
  • Provide a new language designed to be differentiated
  • Requires rewriting everything in the DSL and the DSL must support all operations in original code
  • Fast if DSL matches original code well

• Operator overloading (Adept, JAX)
  • Provide differentiable versions of existing language constructs (double => adouble, np.sum => jax.sum)
  • May require writing to use non-standard utilities
  • Often dynamic: storing instructions/values to later be interpreted
Existing AD Approaches

- Source rewriting
  - Statically analyze program to produce a new gradient function in the source language
  - Re-implement parsing and semantics of given language
  - Requires all code to be available ahead of time
  - Difficult to use with external libraries
Case Study: ReLU3

C Source

declare double relu3(double x) {
    double result;
    if (x > 0)
        result = pow(x, 3);
    else
        result = 0;
    return result;
}

Enzyme Usage

declare double diffe_relu3(double x) {
    return __enzyme_autodiff(relu3, x);
}

LLVM

declare double @relu3(double %x)

entry
    %cmp = %x > 0
    br %cmp, cond.true, cond.end

cond.true
    %call = pow(%x, 3)
    br cond.end

cond.end
    %result = phi [%call, cond.true], [0, entry]
    ret %result
define double @relu3(double %x)

cmp = %x > 0
br %cmp, cond.true, cond.end

call = pow(%x, 3)
br cond.end

result = phi [%call, cond.true], [0, entry]
ret %result
define double @diffe_relu3(double %x, double %differet)

Allocate & zero shadow memory for active values

entry

cond.true

%call = pow(%x, 3)
br cond.end

cond.end

%result = phi [%call, cond.true], [0, entry]

; deleted return

%result' = 1.0
br reverse_cond.end
Compute adjoints for active instructions

```c
define double @diffe_relu3(double %x, double %differet)

entry

alloca %result' = 0.0
alloca %call' = 0.0
alloca %x' = 0.0
%cmp = %x > 0
br %cmp, cond.true, cond.end

cond.true

%call = pow(%x, 3)
br cond.end

%result = phi [%call, cond.true], [0, entry]
; deleted return
%result' = 1.0
br reverse_cond.end

reverse_cond.true

%df = 3 * pow(%x, 2)
%tmp_call' = load %call
%x' += %df * %tmp_call'
store %call' = 0.0
br reverse_entry

reverse_cond.end

%tmp_res' = load %result'
%call' += if %x > 0 then %tmp_res' else 0
store %result' = 0.0
br %cmp, reverse_cond.true, reverse_entry

reverse_entry

%0 = load %x'
ret %0
```
\begin{itemize}
\item \textbf{entry}:
\begin{verbatim}
define double @diffe_relu3(double %x, double %differet)
\end{verbatim}
\end{itemize}

\begin{itemize}
\item \textbf{cond.true}:
\begin{verbatim}
alloca %result' = 0.0
alloca %call' = 0.0
alloca %x' = 0.0
%cmp = %x > 0
br %cmp, cond.true, cond.end
\end{verbatim}
\end{itemize}

\begin{itemize}
\item \textbf{cond.end}:
\begin{verbatim}
%result = phi [%call, cond.true], [0, entry]
\end{verbatim}
\end{itemize}

\begin{itemize}
\item \textbf{reverse_cond.true}:
\begin{verbatim}
%call = pow(%x, 3)
br cond.end
\end{verbatim}
\end{itemize}

\begin{itemize}
\item \textbf{reverse_cond.end}:
\begin{verbatim}
%df = 3 * pow(%x, 2)
%tmp_call' = load %call
%x' += %df * %tmp_call'
store %call' = 0.0
br reverse_entry
\end{verbatim}
\end{itemize}

\begin{itemize}
\item \textbf{reverse_entry}:
\begin{verbatim}
%0 = load %x'
ret %0
\end{verbatim}
\end{itemize}

\begin{itemize}
\item \textbf{Compute adjoints for active instructions}:
\begin{verbatim}
\end{verbatim}
\end{itemize}
Essentially the optimal hand-written gradient!

define double @diffe_relu3(double %x)

double diffe_relu3(double x) {
    double result;
    if (x > 0)
        result = 3 * pow(x, 2);
    else
        result = 0;
    return result;
}
Challenges of Low-Level AD

- Low-level code lacks information necessary to compute adjoints

```c
void f(void* dst, void* src) {
 memcpy(dst, src, 8);
}
```

```c
void grad_f(double* dst, double* dst', double* src, double* src') {
 // Forward Pass
 memcpy(dst, src, 8);

 // Reverse Pass
 src'[0] += dst'[0];
 dst'[0] = 0;
}
```

```c
void grad_f(float* dst, float* dst', float* src, float* src') {
 // Forward Pass
 memcpy(dst, src, 8);

 // Reverse Pass
 src'[0] += dst'[0];
 dst'[0] = 0;
 src'[1] += dst'[1];
 dst'[1] = 0;
}
```
Type Analysis

- New interprocedural dataflow analysis that detects the underlying type of data
- Each value has a set of memory offsets: type
- Perform series of fixed-point updates through instructions

```c
struct MyType {
 double;
 int*;
}
x = MyType*;
```

\[ \text{types}(x) = \{ [0]: \text{Pointer}, [0,0]: \text{Double}, [0,8]: \text{Pointer}, [0,8,0]: \text{Integer} \} \]
Case 3: Store, Sync, Store

```c
codeA(); // store %ptr
sync_threads;

codeB(); // store %ptr
...
diffe_codeB(); // load %d_ptr
 // store %d_ptr = 0
sync_threads;

diffe_codeA(); // load %d_ptr
 // store %d_ptr = 0
```

- All stores to d_ptr in diffe_B will complete prior to diffe_A, ensuring only the clobbering store has its derivative incremented.
Scalability Analysis (Fixed Thread Count)

![Graph showing AD Overhead (factor) against Iterations for LBM – Parboil (C & CUDA)]
CUDA Example

```c
__device__ void inner(float* a, float* x, float* y)
{
 y[threadIdx.x] = a[0] * x[threadIdx.x];
}

__device__ void __enzyme_autodiff(void*, ...);

__global__ void daxpy(float* a, float* da, float* x, float* dx, float* y, float* dy)
{
 __enzyme_autodiff((void*)inner, a, da, x, dx, y, dy);
}

__device__ void diffe_inner(float* a, float* da, float* x, float* dx, float* y, float* dy)
{
 y[threadIdx.x] = a[0] * x[threadIdx.x];

 float dy = dy[threadIdx.x];
 dy[threadIdx.x] = 0.0f;

 float dx_tmp = a[0] * dy;
 atomic { dx[threadIdx.x] += dx_tmp; }

 float da_tmp = x[threadIdx.x] * dy;
 atomic { da[0] += da_tmp; }
}
```
**Existing AD Approaches (1/3)**

- Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)
  - Provide a new language designed to be differentiated
  - Requires rewriting everything in the DSL and the DSL must support all operations in original code
  - Fast if DSL matches original code well

```python
import tensorflow as tf

x = tf.Variable(3.14)

with tf.GradientTape() as tape:
 out = tf.math.square(x)

print(tape.gradient(out, x).numpy())
```

```c
double square(double val) {
 return val * val;
}
```

Manually Rewrite
Existing AD Approaches (3/3)

- Source rewriting
  - Statically analyze program to produce a new gradient function in the source language
  - Re-implement parsing and semantics of given language
  - Requires all code to be available ahead of time => hard to use with external libraries

```c
double square(double val) {
 return val * val;
}
```

```
$ tapenade -b -o out.c -head "square(val)/(out)" square.c
```

```c
double grad_square(double val) {
 return 2 * val;
}
```
Parallel Automatic Differentiation in LLVM

%res = load %ptr

store %ptr = %val

%tmp = load %d_res
store %d_res = 0
atomic %d_ptr += %tmp

%tmp = load %d_ptr
store %d_ptr = 0
load/store %d_val += %tmp

- Shadow Registers %d_res and %d_val are thread-local as they shadow thread-local registers.
- No risk of races and no special handling required.
- Both %ptr and shadow %d_ptr might be raced upon and require analysis.
Case 2: Load, Sync, Store

codeA();  // load %ptr
sync_threads;

codeB();  // store %ptr
...
diffe_codeB();  // load %d_ptr
    // store %d_ptr = 0
sync_threads;
diffe_codeA();  // atomicAdd %d_ptr

Correct

- All of the stores of d_ptr will complete prior to any atomicAdds

No cross-thread race here since that’s equivalent to a write race in B
Differentiation of SyncThreads

Case 3 [write sync write]

```c
codeA(); // store %ptr
sync_threads;
codeB(); // store %ptr
...
diffe_codeB(); // load %d_ptr
 // store %d_ptr = 0
sync_threads;
diffe_codeA(); // load %d_ptr
 // store %d_ptr = 0
```

All uses of stores to d_ptr in diffe_B will correctly complete prior to diffe_A

Case 4 [read sync read]

```c
codeA(); // load %ptr
sync_threads;
codeB(); // load %ptr
...
diffe_codeB(); // atomicAdd %d_ptr
sync_threads;
diffe_codeA(); // atomicAdd %d_ptr
```

Original and differential sync unnecessary and legal to include
Scalability Analysis (Fixed Work Per Thread)

![Graph showing scalability analysis for different threads and work per thread. The x-axis represents the relative problem size, and the y-axis represents the AD overhead (factor). The graph compares Discontinuous Galerkin (Julia & CUDA), Discontinuous Galerkin (Julia & ROCm), LULESH (C++ & CUDA), RSBench (C & CUDA), and XSBench (C & CUDA).]