0

Enzyme.|l

D~
Willlam S. Moses

° wmoses@mit.edu
JuliaCon ESM MiniSymposium
ArgQTQNQEORATORY JU‘y 25, 2022

&
more

& 3 '

.. SriHari Krishna
Jan Huckelheim Nya n Michel Schanen Paul Hoy?and

: "1.‘ — '

Lella Ghaffari Praytush Das Tim Gymnich Manuel Drehwald

For more detalls see Tim’s talk on Wednesday!!

Tim Gymnich

Fast Forward and Reverse-Mode Differentiation via Enzyme.jl

‘& Valentin Churavy, William Moses, Ludger Paehler, Tim Gymnich
© 07/27/2022, 9:00 AM — 9:30 AM EDT

& Purple

Abstract:

Enzyme is a new LLVM-based differentiation framework capable of creating fast derivatives in a variety of languages. In
this talk we will showcase improvements in Enzyme.jl, the Julia-language bindings for Enzyme that enable us to
differentiate through parallelism (Julia tasks, MPL.jl, etc), mutable memory, JIT-constructs, all while maintaining
performance. Moreover we will also showcase Enzyme's new forward mode capabilities in addition to its existing
reverse-mode features.

Automatic Derivative Generation

Derivatives can be generated automatically from definitions within programs

function relu3(x::Float64) function grad_relu3(x::Float64)
if x > 0 if x > 0
return x*3 return 3*%x”*2
else AD else
return 0 return 0
end end

Unlike numerical approaches, automatic differentiation (AD) can compute the derivative of ALL
inputs (or outputs) at once, without approximation error!

// Numeric differentiation | // Automatic differentiation
// f’(x) approx [f(x+epsilon) - f(x)] / epsilon = zeros()
=[]
| Enzyme.autodiff (f,

for 1 1n 1:100 Duplicated(:)
= copy() — —
[1] += 0.01;

push! (, (f() - f())/0.001)

end

Existing AD Approaches (1/3)

Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)
Provide a new language designed to be differentiated

Requires rewriting everything in the DSL and the DSL must support all operations in original

code
Fast if DSL matches original code well import as
function relu3(x::Float64) = tf.Variable(3.14)
1f x > 0 . .
lreturn A3 Manually with ti.i;ag;ingageé) as
else . . :
~eturn 0 Rewrite lambda: tf.math.pow(x,3),
end lambda: @
end)

. — print(.gradient(;X)) . numpy())

Existing AD Approaches (2/3)

Operator overloading (ReverseDiff.jl, ForwardDiff.j|, Adept, JAX)
Differentiable versions of existing language constructs (Float64 => Dual{Float64})
May require writing to use non-standard utilities

Often dynamic: storing instructions/values to later be interpreted

function relu3(x::TrackedArray) Store all instructions into an
1f x[1] > 0 instruction tape
return x[1]"3 = GradientTape(. (L2.01,))
else
return 0 Interpret instructions on the tape
end to construct derivative
end seeded_reverse_pass! (:)

0,

Existing AD Approaches (3/3)

Source rewriting (Zygote.jl -ish, Tapenade)
Statically analyze program to produce a new gradient function in the source language
Re-implement parsing and semantics of given language

Requires all code to be available ahead of time => hard to use with external libraries

Existing Automatic Differentiation Pipelines

Optimize

CodeGen

Case Study: Vector Normalization

Compute magnhitude in O(n)
function mag(x::Vector{Float64})::Float64

Compute norm in O(n*2)
function norm(out: :Vector{Float64},
in::Vector{Float64}

for 1 = 1:n
outl[i] = in[1] / mag(in)
end
end

Case Study: Vector Normalization

Compute magnhitude in O(n)
function mag(x::Vector{Float64})::Float64

Compute norm in O(n*2)
function norm(out: :Vector{Float64},
in::Vector{Float64}

res = mag(in)
for 1 = 1:n >
out[i] = in[i] / res

end
end

10

11

Optimization & Automatic Differentiation

O (n*) O (n)
for 1 = 1: = mag(in)
[i] /= mag(in) Optimize for i = 1:
end ; [i] /=

en

for

end
Vmag (

Optimization & Automatic Differentiation

12

O (n)
; = mag()
Tagl or = 1
Optimize T
end
O (nz)
for 1 = n:
AD Vmag (]

O (n)
= 0.0
for = n:1
+= [i]
end
Vmag ()

Optimization & Automatic Differentiation

0, (nz) O (n)
for 1 = 1: = mag(1in)

[i] /= mag(in) Optimize for 1 =1: AD
end [] /=

- - end

O (n*) O (n*)
for i = 1 for 1 = :°1 o
o [i] /= mag(in) AD gmag(| Optimize

en

13

T
S
S

Optimization & Automatic Differentiation

14

Differentiating after optimization can create asymptotically faster gradients!

O (nz) O (n)
for 1 = 1: - = mag(in)
[i] /= mag(in) Optimize for 1 =1:
end [1] /=
— B end
O (n*) 0 (n?)
for i = 1 for 1 = :°1 o
[i] /= mag(in) AD Tnaat
end .

Optimize

O (n)

0.0

<
O
©
O
S
o
o

<
o
&
>\
N
-

LL

.x
o el
e TUAT
™ ...».ﬁr\\.
T g T b
et
o T
Calroe A T
G
\n\\“a..n\

d code

CodeGen

mize

I

C

Performing AD at low-level lets us work on opt

15

Speedup of Enzyme [MC @ NeurlPS 2020]

B Enzyme
I Ref
B Tapenade
B Adept

Higher Is Better

X

LSTM BA GMM Euler RK4 FFT Bruss

0.0- /2

Enzyme Is 4.2x faster than Reference!

0,

16

O
&
>,
N
C
LL

Julia bindings for Enzyme AD framework

Bindings built off of GPUCompiler.jl

tal vector mode

ing experimen

Forward and Reverse Mode AD, includ

\nn—.,
—a..r»r_._‘nn‘\r. -,

s LU

e

- -
e
e -

o

3
RASARARRINRY

Rttty
R RS
R
RTR 3)
&

AR
)
Nt

Handles mutation, parallelism, GPU’s (AMD, CUDA, etc), & more!

tion => very, very fast scalar AD

IMmizZa

Static analysis & opt

17

0

- Static analysis & optimization => very, very fast scalar AD

Enzyme.jl

function taylor(x, N) @btime Enzyme.autodiff(Forward, taylor, Duplicated(@.5, 1.0), 10"6)
30 ms (@ bytes)
sum = @ * X
= : @btime Enzyme.autodiff(Reverse, taylor, Active(0.5), 10"6).
or 1 1:N
A . # 30 ms (@ bytes)
sum += x*1 / 1
end @btime ForwardDiff.derivative(x -> taylor(x, 10%6), 0.5)
60 ms (@ bytes)
return sum
end @time Zygote.gradient(taylor, 0.5, 1076)
993 ms (663.56 MiB)

@time Diffractor.gradient(taylor, 0.5, 10"6)
96665 ms (96.37 GiB)

def taylor_jax(x, N): def taylor_lax(x, N):

sum = @ * X return jax.lax.fori_loop(@pytime jax.grad(taylor_jax)(0.5, 10%5)
for 1 in range(1,N): 1, # >183993 ms

sum += x**x1i / 1 N,

t lambda 1, : : :
:e_l_J.T - e— amcui i Xi:; /I, @pytime jax.grad(taylor_lax)(0.5, 10%6)

Q) H 95 ms

C—— S

18

2
.
—
S
£
p
O
=
O
&
N
C
LL

t off
O
t GPUCom
piler;
i

1S
N
Pro
gre

SS

de

, g€

iS S
uppOrted

GP
U-
S1Zy|e ~od

e

3
Nwmn.\.ﬁ:p -
\\.\.\.,,.,Am—.\.

e E z
ST
e
e
T

\\-‘ ’

ooooo
ooooo ooooooo o
oooooooooooooooooooooo
ooooooooooooooooooooooooo
ooooooooooooooooo ooooooo
oooooooooooooooo ooooooooo

ty!

T
ype Stabil
No
Chai
Jles S
uppo
q (p
I
ecursor E
nzym
eRul
es C
omin
g So
On)

Inte
rnal
alloc
ation
S m

pPro
gres
s GC
-sup
port

Onl

y BLA
S

PAC

K currently

sup

porte

d

19

Automatic Differentiation & GPUs [MCPHNSD @ SC’21]

* Prior work has not explored reverse mode AD of existing GPU kernels
1. Reversing parallel control flow can lead to incorrect results

2. Complex performance characteristics make it difficult to synthesize
efficient code

3. Resource limitations can prevent kernels from running at all

20

Challenges of Parallel AD

The adjoint of an instruction increments the derivative of its input

Benign read race in forward pass => Write race in reverse pass (undefined behavior)

function grad_set(ar::Vector{Float64},

function set(ar::Vector{Float64}, ::Vector{Float64},
: :Ref{Float64}) . :Ref{Float64})
@threads for 1=1:10 = Ref(0.0)
[1] = []

end @threads for 1=1:10
end [1] = []
— _— end

Read Race @threads for 1=1:10

[]1 += [1]
/ [i] = 0.0
Write Race ene
return [] j
end ~'£E,g|

22

GPU Memory Hierarchy

Per Thread Per Block Per GPU
Register Shared Memory Global Memory
~Bytes ~KBs ~GBs

Use Limits Parallelism Use Limits Parallelism

— - ——
Slower, larger amount of memory

0,

Correct and Efficient Derivative Accumulation

Thread-local memory

23

Non-atomic load/store

Device function
function f(..)

Thread-local var
. :Float64

Same memory location across
all threads (some shared mem)

Parallel Reduction

// Same var for all threads
const y::Ref{Float64}

Device function
function f(..)

reduce_add(:) ;
end

Slower

Others [always legal fallback]

Atomic increment

Device function with
Unknown thread-aliasing
function f(y::Vector{Float64})

atomic
[..] += :
end
end

Novel AD + GPU Optimizations

Reduce runtime by up to 3 orders of magnitude & not OOM!

-+ See our paper for full list (https://c.wsmoses.com/papers/EnzymeGPU.pdf)
Reverse-Mode Automatic Differentiation and Optimization of GPU Kernels via Enzyme. SC, 2021

[AD] Cache LICM/CSE

| | Unrolling | |

i 5.4%]
Unrolling MallocCoalescing PreOptimization
. .) 17.8 116.6 1378.3%)
[AD] Min-Cut Cache Reduction Allocator Recompute InlineCache B
i 6.4x 8.7x 19.87x)
SpecPHI PreOptimization
i 2.0x 2.4x 2979.1x i
Inlini PreOpt
i 4.7% 9.5% 6372.2% A
Templating PHI LoopBound PreOptimization
XSBench 0 =0 x
3.2 9.5x 16.3x 25.9%
\

|[GPU] Aliasing of SyncThreads Forward (1) B B 0 00N

Overhead above Forward Pass

https://c.wsmoses.com/papers/EnzymeGPU.pdf

CUDA.jl / AMDGPU.jl Example

function compute! (inp, out)
s_D = @cuStaticSharedMem eltype(inp) (19, 10)

end

function grad_compute! (inp, out)
Enzyme.autodiff_deferred(compute!, inp, out)
return nothing

end

@cuda grad_compute! (Duplicated(inp, d_inp),
Duplicated(out, d_out))

function compute! (inp, out)
s_D = AMDGPU.alloc_special(..)

end

function grad_compute! (inp, out)
Enzyme.autodiff_deferred(compute!, inp, out)
return nothing

end

@rocm grad_compute! (Duplicated(inp, d_inp),
Duplicated(out, d_out))

See Below For Full Code Examples

https://github.com/wsmoses/Enzyme-GPU- Tests/blolb/main/DG/

25

Common Framework for Parallel AD [To Appear at SC’22]

Common infrastructure for supporting parallel AD (caching, race-resolution, gradient
accumulation) enables parallel differentiation independent of framework or language.

float y = f(x); <i>
Node 1 MPI_Send(&y, ...); ? ﬁ

of

.l

float y;
Node 2 MPI Recv(&y, ...):

#pragma omp parallel for
for (int 1=0; 1<3; ++1){
yl[i] = f(x[1]);

Compiler
) e
N Bleef
=
@]
~
-
k.,’

}

Threads.@threads for i=1:3
yl[i] = f(x[1])
end

@sync begin L4 . L~
@spawn @sync for i in i:3 Lnf L—j;/7.f Yy

@spawn f(x(1i)) Y\\‘ ’///
end

@spawn g()
end

Code p Compiler IR > Rever.se-l\./lode
Derivative

Enables differentiation of a combination of GPU (e.g. CUDA, ROCm), CPU (OpenMP, Julia
Tasks, RAJA), Distributed (MPI, MPL.jl), and more

26

% Enzyme

Tool for performing reverse and forward-mode AD of statically analyzable LLVM IR

Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc) and parallel
frameworks (OpenMP, MPI, CUDA, ROCm, Julia Threads)

4.2x speedup over AD before optimization on CPU

State-of-the art performance with existing tools

First general purpose reverse-mode GPU AD

Novel GPU and AD-specific optimizations improve runtime by several orders of magnitude

Open source (enzyme.mit.edu & join our mailing list)!

* Ongoing work to support Vector Mode, Mixed Mode, and Checkpointing

http://enzyme.mit.edu

% Enzyme

Tool for performing reverse and forward-mode AD of statically analyzable LLVM IR

Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc) and parallel
frameworks (OpenMP, MPI, CUDA, ROCm, Julia Threads)

4.2x speedup over AD before optimization on CPU

State-of-the art performance with existing tools

First general purpose reverse-mode GPU AD

Novel GPU and AD-specific optimizations improve runtime by several orders of magnitude

Open source (enzyme.mit.edu & join our mailing list)!

** Ongoing work to support Vector Mode, Mixed Mode, and Checkpointing

http://enzyme.mit.edu

Acknowledgements

30

Thanks to James Bradbury, Alex Chernyakhovsky, Lilly Chin, Hal Finkel, Marco Foco, Laurent Hascoet, Mike
Innes, Tim Kaler, Charles Leiserson, Yingbo Ma, Chris Rackauckas, TB Schardl, Lizhou Sha, Yo Shavit, Dhash
Shrivathsa, Nalini Singh, Vassil Vassilev, and Alex Zinenko

William S. Moses was supported in part by a DOE Computational Sciences Graduate Fellowship
DESC0019323. Valentin Churavy was supported in part by the Defense Advanced Research Projects Agency
(DARPA) under Agreement No. HR0011-20-9-0016, and in part by NSF Grant OAC-1835443. Ludger Paehler
was supported in part by the German Research Council (DFG) under grant agreement No. 326472365.

This research was supported in part by LANL grant 531711; in part by the Applied Mathematics activity
within the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research Program,
under contract number DE-AC02-06CH11357; in part by the Exascale Computing Project (17-SC-20-SC).
Research was sponsored by the United States Air Force Research Laboratory and was accomplished under
Cooperative Agreement Number FA8750-19-2-1000.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the United States Air Force or
the U.S. Government. 8

% Enzyme

Tool for performing reverse and forward-mode AD of statically analyzable LLVM IR

Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc) and parallel
frameworks (OpenMP, MPI, CUDA, ROCm, Julia Threads)

4.2x speedup over AD before optimization on CPU

State-of-the art performance with existing tools

First general purpose reverse-mode GPU AD

Novel GPU and AD-specific optimizations improve runtime by several orders of magnitude

Open source (enzyme.mit.edu & join our mailing list)!

*» Ongoing work to support Vector Mode, Mixed Mode, and Checkpointing

http://enzyme.mit.edu

Case 1: Store, Sync, Load

codeA(); // store %ptr
sync_threads;

codeB(); // load %ptr

diffe_codeB(); // atomicAdd %d_ptr
sync_threads;

diffe_codeA(); // load %d_ptr
// store %d_ptr = 0

32

V Correct

- Load of d_ptr must happen after

all atomicAdds have completed

CUDA Example

__device__ __device__
void inner(float* a, floatx x, float* y) { void diffe_inner(floatx a, floatx da,
float* x, float* dx,
y[threadIdx.x] = a[@] * x[threadIdx.x]; floatx y, float* dy) {
// Forward Pass
J
y[threadIdx.x] = al@] * x[threadIldx.x];
__device__
void __enzyme_autodiff(void*, ..); // Reverse Pass
__global__ float dy = dy[threadIdx.x];
void daxpy(float* a, float* da, dy[threadIdx.x] = 0.0f;
floatx x, float* dx,
floatx y, float*x dy) { float dx_tmp = a[@] * dy;

atomic { dx[threadIdx.x] += dx_tmp; }
__enzyme_autodiff ((voidx)inner,
a, da, x, dx, y, dy); float da_tmp = x[threadIdx.x] * dy;
atomic { dal@] += da_tmp; }

33

CUDA Example

__device__ __device__
void inner(float* a, floatx x, float* y) { void diffe_inner(floatx a, floatx da,
float* x, float* dx,
y[threadIdx.x] = a[@] * x[threadIdx.x]; floatx y, float* dy) {
// Forward Pass
J
y[threadIdx.x] = al@] * x[threadIldx.x];
__device__
void __enzyme_autodiff(void*, ..); // Reverse Pass
__global__ float dy = dy[threadIdx.x];
void daxpy(float* a, float* da, dy[threadIdx.x] = 0.0f;
floatx x, float* dx,
floatx y, float*x dy) { float dx_tmp = a[@] * dy;

dx[threadIdx.x] += dx_tmp;
__enzyme_autodiff ((voidx)inner,
a, da, x, dx, y, dy): float da_tmp = x[threadIdx.x] * dy;
reduce_accumulate(&dal[@], da_tmp);

34

Efficient GPU Code

For correctness, Enzyme may need to cache values Iin
order to compute the gradient

// Forward Pass

The complexity of GPU memory means large caches [i] = x[i] * x[i]:
slow down the program by several orders of magnitude,

if it even fits at all [i] = ;

// Reverse (gradient) Pass

Like the CPU, existing optimizations reduce the overhead
[1] += 2 % x[1] * [11;

Unlike the CPU, existing optimizations aren’t sufficient

Novel GPU and AD-specific optimizations can speedup by
several orders of magnitude

35

Efficient Correct GPU Code

36

For correctness, Enzyme may need to cache values Iin
order to compute the gradient

The complexity of GPU memory means large caches
slow down the program by several orders of magnitude,
if it even fits at all

Like the CPU, existing optimizations reduce the overhead
Unlike the CPU, existing optimizations aren’t sufficient

Novel GPU and AD-specific optimizations can speedup by
several orders of magnitude

doublex = new doublel..];

// Forward Pass

[1] [1] * x[i];

[i1 = x[i]:
[1] = :

// Reverse (gradient) Pass

[1] += 2 * [1]
* [1];

deletel[] :

Cache Reduction Example

By considering the dataflow graph
we can perform a min-cut to
approximate smaller cache sizes.

Overwritten: ° °
Required for
Reverse: @

37

for(int 1=0; 1<10; i++) {
double sum = x[i] + y[i];

use(sum);

)

overwrite(x, vy);
grad_overwrite(x, v);

for(int i=9; i>=0; i--) {

grad_use(sum);

¥

Cache Reduction Example

By considering the dataflow graph
we can perform a min-cut to
approximate smaller cache sizes.

Naive Cache

¥ N

Overwritten:

Required for
Reverse: @

38

double* x_cache
double* y_cache

new double[10];
new double[10];

for(int 1=0; 1i<10; i++) {
double sum = x[i] + y[i];
x_cache[i] = x[i];
y_cacheli] = y[i];
use(sum);

¥

overwrite(x, vy);
grad_overwrite(x, v);

for(int i=9; i>=0; i--) {
double sum = x_cacheli] + y_cachel[1i];
grad_use(sum);

¥

Cache Reduction Example

By considering the dataflow graph
we can perform a min-cut to
approximate smaller cache sizes. double* sum_cache = new doublel10];

for(int 1=0; i<10; i++) {
double sum = x[i] + y[i];
sum_cachel1] = sum;

use(sum);

)

Overwritten: ° ° overwrite(x, y);
grad_overwrite(x, vy);

for(int i=9; i>=0; i--) {

grad_use(sum_cachel[i]);

Required for
Reverse:

¥

o

Smallest Cache

39

Allocation Merging

40

Allocations (and any calls) on the
GPU are expensive

Given two allocations in the same
scope, replace uses with a single
allocation

Beneficial for not just AD, but any
GPU programs!

doublex*
doublex*

use(

deletel]
deletel[]

)

new double[N];
new double[M];

)

doublex*
doublex*

use(

deletel[]

)

)

new doublel[

);

+

)

+

1;

41

Novel AD + GPU Optimizations

See our SC paper (Nov 17) for more (https://c.wsmoses.com/papers/EnzymeGPU.pdf)
Reverse-Mode Automatic Differentiation and Optimization of GPU Kernels via Enzyme. SC, 2021

[AD] Cache LICM/CSE

[AD] Min-Cut Cache Reduction
[AD] Cache Forwarding

[GPU] Merge Allocations

[GPU] Heap-to-stack (and register)

[GPU] Alias Analysis Properties of SyncThreads

https://c.wsmoses.com/papers/EnzymeGPU.pdf

GPU Gradient Overhead [MCPHNMJ’21]

42

Evaluation of both original code and gradient
DG (ROCm)

DG: Discontinuous-Galerkin integral (Julia)
DG (CUDA)

18.35

LBM: particle-based fluid dynamics
simulation LBM (Parboil) - 6.3

LULESH: unstructured explicit shock LULESH 2.01
hydrodynamics solver

RSBench | 4.2

XSBench & RSBench: Monte Carlo
simulations of particle transport
algorithms (memory & compute bound, XoBench - 52

respectively)

GPU Gradient Overhead [MCPHNMJ’21]

43

Evaluation of both original code and gradient
DG (ROCm)

DG: Discontinuous-Galerkin integral (Julia)
DG (CUDA)

LBM: particle-based fluid dynamics

simulation LBM (Parboil) - 6.3
LULESH: unstructured explicit shock LULESH 2.01
hydrodynamics solver .
Bug in CUDA
RSBench - 4.2 .
XSBench & RSBench: Monte Carlo Reqgister Allocator
simulations of particle transport
algorithms (memory & compute bound, A5Bench - -

respectively)

0,

Ablation Analysis of Optimizations [MCPHNMJ’21]

\ \ Unrolling \ \
DG (ROCm) 0
i 5.4 X
Unrolling MallocCoalescing PreOptimization
i 17.8% 116.6 X% 1378.3%
Allocator Recompute InlineCacheABI
LBM O €0 €=}
i 6.4% 8.7X 19.87 -
SpecPHI PreOptimization
LULESH AP 7o Y ESSSSSSEEEEE—————— .
i 2.0x 2.4x 2979.1 X)
CacheLICM Inlining PreOpt
i 4.7 X 9.5X% 6372.2 X%
Templating PHI LoopBound PreOptimization
XSBench 8 A § B A B A B R EEEEEEEEEE——————mmm,
3.2 X 9.5 X% 16.3x 25.9%
[| | | |
Forward (1x) 10x 100x 1000x OOM

Overhead above Forward Pass

44

Ablation Analysis of Optimizations [MCPHNMJ’21]

Unrolling
DG (ROCm) 0

5.4 X

116.6 % 1378.3 %

Allocator Recompute InlineCacheABI
LBM O) e O
i 6.4x 8.7X 19.87 %
SpecPHI PreOptimization

LULESH Oéo_

i 2.0x 2.4% 2979.1x

CacheLICM Inlining P1eOpt
RSBench O () OL
4.7 X 9.5 % 06372.2X

Templating PHI LoopBoun PreOptimization
XSBench 0 ——— e ——

3.2 9.56x 16.3x 25.9X
|

Unrolling MallocCoalescing PreOptimization

DG (CUDA) O(—O(—O_
17.8%

| |
Forward (1x) 10x 100x 1000x

Overhead above Forward Pass

45

|
OOM

Ablation Analysis of Optimizations [MCPHNMJ’21]

Unrolling
DG (ROCm) 0
i 5.4%
Unrolling MallocCoalescing PreOptimization
DG (CUDA) O_O_O_ <
i 17.8% 116.6 % 1378.3 %
Allocator Recompute InlineCacheABI
LBM 0
i 6.4x 8.7 19.87 %)
SpecPHI PreOptimization
LULESH
i 2.0x 2.4x% 2979.1%)
CagheLICM Inlining PreOpt
RSBenCh &O—OL
i 4.7 9.5 X 6372.2X%
mplating PHI LoopBoun PreOptimization
XSBench O
3.2 X 9.5 % 16.3x 25.9x%
[\ \ \ \
Forward (1x) 10x 100x 1000x OOM

Overhead above Forward Pass

46

Ablation Analysis of Optimizations [MCPHNMJ’21]

Unrolling
DG (ROCm) 0
i 5.4%
Unrolling MallocCoalescing PreOptimization
DG (CUDA) O_O_O_ <
i 17.8% 116.6 % 1378.3 %
Allocator Recompute InlineCacheABI
LBM 0
i 6.4x 8.7 19.87 %)
SpecPHI PreOptimization
LULESH
i 2.0x 2.4x% 2979.1%)
CagheLICM Inlining PreOpt
RSBenCh &O—OL
i 4.7 9.5 X 6372.2X%
mplating PHI LoopBoun PreOptimization
XSBench O
3.2 X 9.5 % 16.3x 25.9x%
[\ \ \ \
Forward (1x) 10x 100x 1000x OOM

Overhead above Forward Pass

GPU AD is Intractable Without Optimization!

47

% Enzyme

Tool for performing reverse and forward-mode AD of statically analyzable LLVM IR

Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc) and parallel
frameworks (OpenMP, MPI, CUDA, ROCm, Julia Threads)

4.2x speedup over AD before optimization on CPU

State-of-the art performance with existing tools

First general purpose reverse-mode GPU AD

Novel GPU and AD-specific optimizations improve runtime by several orders of magnitude

Open source (enzyme.mit.edu & join our mailing list)!

** Ongoing work to support Vector Mode, Mixed Mode, and Checkpointing

http://enzyme.mit.edu

Acknowledgements

49

Thanks to James Bradbury, Alex Chernyakhovsky, Lilly Chin, Hal Finkel, Marco Foco, Laurent Hascoet, Mike
Innes, Tim Kaler, Charles Leiserson, Yingbo Ma, Chris Rackauckas, TB Schardl, Lizhou Sha, Yo Shavit, Dhash
Shrivathsa, Nalini Singh, Vassil Vassilev, and Alex Zinenko

William S. Moses was supported in part by a DOE Computational Sciences Graduate Fellowship
DESC0019323. Valentin Churavy was supported in part by the Defense Advanced Research Projects Agency
(DARPA) under Agreement No. HR0011-20-9-0016, and in part by NSF Grant OAC-1835443. Ludger Paehler
was supported in part by the German Research Council (DFG) under grant agreement No. 326472365.

This research was supported in part by LANL grant 531711; in part by the Applied Mathematics activity
within the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research Program,
under contract number DE-AC02-06CH11357; in part by the Exascale Computing Project (17-SC-20-SC).
Research was sponsored by the United States Air Force Research Laboratory and was accomplished under
Cooperative Agreement Number FA8750-19-2-1000.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the United States Air Force or
the U.S. Government. 8

% Enzyme

Tool for performing reverse and forward-mode AD of statically analyzable LLVM IR

Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc) and parallel
frameworks (OpenMP, MPI, CUDA, ROCm, Julia Threads)

4.2x speedup over AD before optimization on CPU

State-of-the art performance with existing tools

First general purpose reverse-mode GPU AD

Novel GPU and AD-specific optimizations improve runtime by several orders of magnitude

Open source (enzyme.mit.edu & join our mailing list)!

** Ongoing work to support Vector Mode, Mixed Mode, and Checkpointing

http://enzyme.mit.edu

% Enzyme

PyTorch-Enzyme & TensorFlow-Enzyme

import torch import tensorflow as tf

from torch_enzyme import enzyme from tf_enzyme import enzyme

Create some initial tensor # Create some initial tensor

inp = .. inp = tf.Variable(..)

Apply foreign function to tensor # Use external C code as a regular TF op
out = enzyme("test.c”, “f").apply(inp) out = enzyme(inp, filename=“test.c”,

function=“f")
Derive gradient

out.backward() # Results 1s a TF tensor
print(inp.grad) out = tf.sigmoid(out)

// Input tensor + size, and output tensor
void f(float* inp, size_t n, float* out);

// diffe_dupnoneed specifies not recomputing the output
void diffef(float* inp, floatx d_inp, size_t n, float* d_out) {
__enzyme_autodiff(f, diffe_dup, inp, d_inp, n, diffe_dupnoneed, (floatx)@, d_out);

¥

52

Cache

Adjoint instructions may require values from the forward pass

e.g. V(x "y) => x dy + y dx
For all values needed in the reverse, allocate memory in the forward pass to store the value
Values computed inside loops are stored in an array indexed by the loop induction variable

Array allocated statically if possible; otherwise dynamically realloc’d

0,

When LLVM Doesn’t Cut It

54

Enzyme relies on optimizations
such as LICM and CSE to eliminate
redundant loads, and thus
redundant caches.

Since we instead need to preserve
values for the reverse pass, these
optimizations may not apply

for(int

)

for(int

}

use(

=0; 1<N;

:@, <M:-

[]1);

overwrite();

)

++) {
++) {

When LLVM Doesn’t Cut It

Enzyme relies on optimizations
such as LICM and CSE to eliminate
redundant loads, and thus
redundant caches.

Since we instead need to preserve
values for the reverse pass, these
optimizations may not apply

This requires far more caching than
necessary

55

double* = new double[N*M];
for(int 1=0; i<N; i++) {
for(int j=0; j<M; j++) {
[1*M+]] = [1];
use(REDE
}
)
overwrite();
grad_overwrite();
for(int 1=0; i<N; 1i++) {
for(int j=M-1; i<M; i++) {
grad_use([ixM+3],
}

)

[]1);

When LLVM Doesn’t Cut It

Enzyme relies on optimizations
such as LICM and CSE to eliminate
redundant loads, and thus
redundant caches.

Since we instead need to preserve
values for the reverse pass, these
optimizations may not apply

This requires far more caching than
necessary

By analyzing the read/write
structure, we can hoist the cache.

56

doublex* = new double[M];
memcpy (: , Sizeof (double)*M);
for(int 1=0; i<N; i++) {
for(int j=0; j<M; j++) {
use([11);
}
}
overwrite();
grad_overwrite();
for(int 1=0; i<N; 1i++) {
for(int j=M-1; i<M; 1i++) {
grad_use([3], [11);
}
}

Cache

Adjoint instructions may require values from the forward pass

e.g. V(x "y) => x dy + y dx
For all values needed in the reverse, allocate memory in the forward pass to store the value
Values computed inside loops are stored in an array indexed by the loop induction variable

Array allocated statically if possible; otherwise dynamically realloc’d

0,

Case Study: Read Sum

define double @sum(doublex %x)

double sum(double* x) {

double total = 0@;
ﬁgr for.body j)
for(int 1=0; 1<10; i++) entry
total += read() * x[il]; ‘l
return total; a)
} %1 = phi [0, entry], [%1.next, for.body]
p— ———— %total = phi [0.0, %entry 1, [%add, for.body]

for.body »call = @read()
%0 = load %x[%1]
%mul = %0 * %call
%add = %mul + %total
%l.next = %1 + 1
void diffe_sum(double*x x, doublex xp) { %wexitcond = %1i.next == 10
return __enzyme_autodiff(sum, x, xp); br %exitcond, for.cleanup, for.body

} _ J

T T l

%result = phi [%call, cond.truel, [0, entry]

for.cleanup ot Yresult

Case Study: Read Sum

define double @sum(double* %x)

br for.body

Active Variables l
~ R

%1 = phi [0, entry], [%1.next, for.body]
%total = phi [0.0, %entry 1, [%add, for.body]
for.body »call = @read()

%0 = load %x[%1]

%smul = %0 * %call

%add = %Zmul + %total

%l.next = %1 + 1

%exitcond = %1.next == 10

br %exitcond, for.cleanup, for.body

_ J

l

%result = phi [%call, cond.truel], [0, entryl]
ret %result

for.cleanup

Case Study: Read Sum

define double @sum(double* %x)

Fach register in the crtry [For b0)

for loop represents a |
(jiEStir](3t Ei(:Tj\/EB \/Eir161k)‘63 (/f%i = phi [@, entry 1, [%i.next, for.body] A
63\/63r3/ rte;reatic)r] or bods ZZZIi1:=@22;dE>G.0, %entry 1, [%add, for.body]

%0 = load %x[%i]

—r %mul = %0 * %call

%add = %Zmul + %total

%l.next = %1 + 1

nexitcond = %1.next == 10

br %exitcond, for.cleanup, for.body

_ J

l

%result = phi [%call, cond.truel], [0, entryl]
for.cleanup

ret %result

define double @diffe_sum(doublex %x, double* %xp)

4)

alloca %x’
alloca %total’
alloca %0’
alloca %mul’

entry
alloca %add’
"””’,,,,,—ff””’,”,’* alloca %result’
br for.bod
Allocate & zero C ! y

shadow memory l

- R
per aCtIVG Va‘ue (%i = phi [@, entry 1, [%i.next, for.body]

%total = phi [0.0, %entry 1, [%add, for.body]
%call = @read()

%0 = load %x[%1]

for.body %»mul = %0 * %call

%add = %mul + %total

%l.next = %1 + 1

S OO0 OO C
[B S I B S S T A

%exitcond = %1.next == 10
br %exitcond, for.cleanup, for.body
_ W,
v

wresult = phi [%call, cond.true], [0, entry]

for.cleanup et Yresult

define double @diffe_sum(doublex %x, double* %xp)

entry ~ ~

alloca %x’
alloca %total’
alloca %0’
alloca %mul’ =
alloca %add’ =
alloca %result’ = 0.0

CaChe fOrward paSS > |%call_cache = @ma 1()(:(1@ X double)

[
S OO O
S OO &

. . br for.body
variables for use In - I 7
reverse (/7%1 = phi [@, entry 1, [%i.next, for.body] A
%total = phi [0.0, %entry], [%add, for.body]
%call = @read()
for.body store %call_cache[%i] = %call
%0 = load %x[%1]
%smul = %0 *x %call
%add = %mul + %total
%l.next = %1 + 1
%exitcond = %1.next == 10
br %exitcond, for.cleanup, for.body
_ W,
v
for.cleanup /%}esult = phi [%call, cond.truel, [0, entry] ‘\\
’ @free(%cache)

\E?t %result J)

define void @diffe_sum(doublex %x, double* %xp)

g N After lowering &

entry %call_cache = @malloc(1@ x double) ' ' '
br for.body SOme OptlmlzathﬂS
_ i, J
for.bod g : : -
or.body %1 = phi [@, entry 1, [%i.next, for.body]

%total = phi [0.0, %entry 1, [%add, for.body]
%call = @read()

store %call_cache[%1] = %call
%1.next = %1 + 1

%exitcond = %i.next == 10
br %exitcond, reversefor.body, for.body

_ I)

%1' = phi [9, for.body], [%1’.next, reversefor.body]
%1’ .next = %1’ - 1

%cached_read = load %call_cachel[%1’]

store %xp[%1i’] = %cached_read + %xpl[%i’]

%exit2 = %1 = 0

br %exitcond, %exit2, reversefor.body

l

exit @free(%cache)
ret

~

reversefor.body

Case Study: Read Sum

define void @diffe_sum(doublex %x, double* %xp)

After more
- N L
%calle = @read() optimizations

store %xpl@] = %call@

%calll = @read()
store %xp[1] = %calll

entry

%call?2 = @read() vold diffe_sum(double* x, double* xp) {
store %xpl2] = %call2 xpL0] = read();
%call3 = @read() xpl1] = read();
store %xp[3] = %call3 xpl2] = read();
%calld = @read() xpL3] = read();
store %xp[4] = %call4 xpl4] = read();
%call5 = @read() XpLS] = read();
store %xpl[5] = %call5 XpLo - read();
xpL7] = read();
%calle = @read() xp[8] = read():
store %xpl6] = %call6 xp[9] = read():
%call7 = @read())
store %xpl7] = %call7 e — e—

%call8 = @read()
store %xpl[8] = %call8

%call9 = @read()
store %xp[9] = %call9

ret

_ J

65

Enzyme on the GPU

Care must be taken to both ensure
correctness and maintain parallelism.

GPU programs have much lower memory
limits. Performance is highly dependent on the
number of memory transfers.

Without first running optimizations reverse-
mode AD of large kernels is intractable (OOM).

Novel GPU and AD-specific optimizations can
make a difference of several orders of
magnitude when computing gradients.

Test Overhead
Forward | 1
AD, Optimized 4.4
AD, No CacheLICM 343.7
AD, Bad Recompute Heuristic 1275.6
AD, No Inlining 6372.2
AD, No PreOptimization OOM

CUDA Automatic Differentiation

Enzyme enables differentiation of CPU programs without rewriting them in a DSL.

Similarly, GPU programs cannot currently be differentiated without being rewritten in a
differentiable language (e.g. PyTorch).

Enzyme enables reverse-mode AD of general existing GPU programs by:
Resolving potential data race issues
Differentiating parallel control (syncthreads)
Differentiating CUDA intrinsics (e.g. threadldx.x /llvm.nvvm.read.ptx.sreg.tid.x)

Handling shared memory

66

0,

CUDA Automatic Differentiation

Most CUDA intrinsics [e.g. threadldx.x] are inactive and recomputable and thus are
incorporated into Enzyme without any special handling

Derivative of syncthreads is a syncthreads at the corresponding place in reverse pass

Shared memory is handled by making a second shared memory allocation to act as the
shadow for any potentially active uses

67

% Enzyme

Tool for performing reverse-mode AD of statically analyzable LLVM IR

Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)
4.2x speedup over AD before optimization

State-of-the art performance with existing tools

Differentiate GPU kernels

Open Source (enzyme.mit.edu / github.com/wsmoses/Enzyme)

PyTorch-Enzyme & TensorFlow-Enzyme imports foreign code in ML workflow

68

http://enzyme.mit.edu
https://github.com/wsmoses/Enzyme

GPU Automatic Differentiation

Prior work has not explored reverse mode AD of GPU kernels

Similarly, GPU programs cannot currently be differentiated without being rewritten in a differentiable
language (e.g. PyTorch).

Enzyme enables reverse-mode AD of general existing GPU programs by:

Resolving potential data race issues
Differentiating parallel control (syncthreads)
Differentiating CUDA intrinsics (e.g. threadldx.x /llvm.nvvm.read.ptx.sreg.tid.x)

Handling shared memory

69

% Enzyme

Tool for performing reverse-mode AD of statically analyzable LLVM IR

Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)
4.2x speedup over AD before optimization

State-of-the art performance with existing tools

Differentiate GPU kernels

Open Source (enzyme.mit.edu / github.com/wsmoses/Enzyme)

PyTorch-Enzyme & TensorFlow-Enzyme imports foreign code in ML workflow

70

http://enzyme.mit.edu
https://github.com/wsmoses/Enzyme

/1

Custom Derivatives & Multisource

One can specify custom forward/reverse passes of functions by attaching metadata

__attribute__ ((enzyme("augment”, augment_func)))
__attribute__ ((enzyme("gradient”, gradient_func)))
double func(double n);

Enzyme leverages LLVM'’s link-time optimization (LTO) & “fat libraries” to ensure that LLVM
bitcode is available for all potential differentiated functions before AD

CUDA Performance Improvements

Introduce optimizations to reduce the use of memory
Alias Analysis to determine legality of recomputing an instruction
More aggressive alias analysis properties of syncthreads
Don’t cache unnecessary values
Move cache outside of loops when possible
Heap-to-stack [and to register]

Don’t cache memory itself acting as a cache [such as shared memory]

72

0,

Enzyme Differentiation Algorithm

Type Analysis
Activity Analysis
Synthesize derivatives
Forward pass that mirrors original code
Reverse pass inverts instructions in forward pass (adjoints) to compute derivatives

Optimize

Activity Analysis
Determines what instructions could impact derivative computation
Avoids taking meaningless or unnecessary derivatives (e.g. d/dx cpuid)
Instruction is active Iiff it can propagate a differential value to its return or memory
Build off of alias analysis & type analysis

E.g. all read-only function that returns an integer are inactive since they cannot propagate
adjoints through the return or to any memory location

0,

75

Compiler Analyses Better Optimize AD

Existing

Alias analysis results that prove a function does not write to memory, we can prove that
additional function calls do not need to be differentiated since they cannot impact the output

Don’t cache equivalent values

Statically allocate caches when a loop’s bounds can be determined in advance

Decomposing the “Tape”

Performing AD on a function requires data structures to compute
All values necessary to compute adjoints are available [cache]
Place to store adjoints [shadow memory]j
Record instructions [we are static]

Creating these directly in LLVM allows us to explicitly specify their behavior for optimization,
unlike approaches that call out to a library

For more detalls look in paper

/6

0,

Conventional Wisdom: AD Only Feasible at High-Level

- Automatic Differentiation requires high level semantics to produce gradients
- Lack of high-level information can hinder performance of low-level AD

“AD is more effective in high-level compiled languages (e.g. Julia, Swift, Rust, Nim) than
traditional ones such as C/C++, Fortran and LLVM IR [...]” -Innesl]

[1] Michael Innes. Don’t Unroll Adjoint: Differentiating SSA-Form Programs. arXiv preprint arXiv:1810.07951, 2018

(7

0,

Existing AD Approaches (3/3)

Source rewriting (Zygote.jl -ish, Tapenade)
Statically analyze program to produce a new gradient function in the source language
Re-implement parsing and semantics of given language

Requires all code to be available ahead of time => hard to use with external libraries

// myfile.h // grad_myfile.h

// myfile.c { \\\\\ ////ﬂ // grad_myfile.c

double relu3(double x) { double grad_relu3(double x) {
if (x > 0) — | Tapenade —> if (x > @)

return pow(x, 3) \\\\\ return 3 *x pow(x, 2)
else else
return 0; return 0; \
| D

Differentiation Is Key To Machine Learning

// C++ nbody simulator

void step(std::array<Planet> , double dt) {
vec3 [.size()];
for (size_t 1=0; i< .size(); 1++t) {
accl[i] = vec3(0, 0, 9);
for (size_t j=0; j< .si1ze(); jJ++) {
i1f (1 == j) continue;
[i] += force([1], [J1) /
[1]. ;
J
b
for (size_t 1=0; 1< .size(); 1++) {
[1]. += [i] * dt;
[1]. += [1]. * ;
3
3

- Hinders application of ML to nhew domains

Synthesizing gradients aims to close this gap

79

// PyTorch rewrite of nbody simulator
import torch

def step(bodies, dt):
acc = []
for 1 in range(len(bodies)):
acc.push(torch.zeros([3]))
for j in range(len(bodies)):
i1f 1 == j: continue
acc[i] += force(bodies[i], bodies[j]) /
bodies[1i].mass

for 1, body in enumerate(bodies):
body.vel += accl[i] * dt
body.pos += body.vel * dt

% Enzyme Overturns Conventional Wisdom

- As fast or faster than state-of-the-art tools
Running after optimization enables a 4.2x speedup

+ Necessary semantics for AD derived at low-level (with potential cooperation of frontend)

Optimize Optimize

80

Parallel Memory Detection

Thread-local memory
Non-atomic load/store

Same memory location across all threads
Parallel Reduction

Others [always legal fallback]

Atomic iIncrement

%tmp = load %d_res

store %d_res = 0
atomic %d_ptr += %tmp

81

AD-Specific Cache

82

Some optimizations require
domain-specific knowledge

Not all values are needed for the
reverse pass. By considering the
dataflow graph we can perform a
min-cut to approximate smaller
cache sizes.

Not all (loop) sizes are known at
compile-time, so this must be a
heuristic

double =

use(x[0] + y[o]);

overwrite(x, v);
grad_overwrite(x,

grad_use(

[0] +

);

);

[0];

AD-Specific Cache

83

Some optimizations require
domain-specific knowledge

Not all values are needed for the
reverse pass. By considering the
dataflow graph we can perform a
min-cut to approximate smaller
cache sizes.

Not all (loop) sizes are known at
compile-time, so this must be a
heuristic

double =x[0];
double =y[0];
use(x[0] + y[@]);
overwrite(x, v);
grad_overwrite(x, v);
grad_use(+

AD-Specific Cache

84

Some optimizations require
domain-specific knowledge

Not all values are needed for the
reverse pass. By considering the
dataflow graph we can perform a
min-cut to approximate smaller
cache sizes.

Not all (loop) sizes are known at
compile-time, so this must be a
heuristic

double =

use(x[0] + y[o]);

overwrite(x, v);
grad_overwrite(x,

grad_use(

[0] +

);

);

[0];

Differentiation Is Key To Machine Learning And Science

Computing derivatives is key to many algorithms
Machine learning (back-propagation, Bayesian inference, uncertainty quantification)
Scientific computing (modeling, simulation)

When working with large codebases or dynamically-generated programs, manually writing
derivative functions becomes intractable

Community has developed tools to create derivatives automatically

85

Existing AD Approaches

Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)
Provide a new language designed to be differentiated
Requires rewriting everything in the DSL and the DSL must support all operations in original code
Fast if DSL matches original code well

Operator overloading (Adept, JAX)

Provide differentiable versions of existing language constructs (double => adouble, np.sum =>
jax.sum)

May require writing to use non-standard utilities

Often dynamic: storing instructions/values to later be interpreted

0,

Existing AD Approaches

Source rewriting
Statically analyze program to produce a new gradient function in the source language
Re-implement parsing and semantics of given language
Requires all code to be available ahead of time

Difficult to use with external libraries

Case Study: RelLU3

88

C Source LLVM

double relu3(double x) {
double result; define double @relu3(double %Xx)
if (x > 0)
result = pow(x, 3);
else

result = 9; entry/(%cmp = %X > 0 :J

1 .
return result; br %cmp, cond.true, cond.end

J cond. true
- 4 \f(”’,

%call = pow(%x, 3)
br cond.end

_ AL\ﬁ‘
wresult = phi [%call, cond.truel], [0, entry]
ret %result

cond. end

Enzyme Usage

double diffe_relu3(double x) {
return __enzyme_autodiff(relu3, x);

: _

Case Study: ReLU3

89

Active Instructions

define double @relu3(double %x)

—

%CMp = %X > 0 entr
br %cmp, cond.true, cond.end 4

cond. true “/////,

4)
%call = pow(%x, 3)
br cond.end

_ ;/

cond.end

%result = phi [%call, cond.truel], [0, entryl
ret %result

define double @diffe_relu3(double %x, double %differet)

~
glloca %result’ = 0.0 - A“Ocate & 7ero
entry alloca %call’ = 0.0 _
alloca %x' = 0.0 shadow memory for
%CMPp = %X > 0 .
br %cmp, cond.true, cond.end
o e rx & active values
-
%call = pow(%x, 3) (;;esult = phi [%call, cond.truel, [0, entry]) cond. end
br cond.end
- : deleted return

%result’ = 1.0
\Ei reverse_cond.end J}

define double @diffe_relu3(double %x, double %differet)

4)

alloca %result’
alloca %call’

RSO Compute adjoints
hemp = %x > 0 for active instructions

br %cmp, cond.true, cond.end y

cond. true \-
A(/ \\\g

[
S O
S O

entry

~
»call = pow(%x, 3) %result = phi [%call, cond.truel, [0, entry]) cond. end
br cond.end
: deleted return
Or reverse_cond.end y

reverse_cond. true %tmp_res’ = load %result’
%call’ += 1if %x > @ then %tmp_res’ else 0
reverse_cond.end

%df = 3 * pow(%x, 2) store %result’ = 0.0
stmp_call’ = load %call O _%CMp, reverse_cono
%X’ += %df * %tmp_call’

store %call’ = 0.0 /
Or reverse_entry J)

%0 = load %X reverse_entry
ret %0

.true, reverse_entry

91

define double @diffe_relu3(double %x, double %differet)

4)

alloca %result’
alloca %call’

PO Compute adjoints
hemp = %x > 0 for active instructions

br %cmp, cond.true, cond.end y

cond. true - \\\g
\

[
S O
SO ©

entry

cond.end

»call = pow(%x, 3) /;;esult = phi [%call, cond.truel, [@, entry]
br cond.end

- deleted return

)

%result’ = 1.0
r reverse_cond.end J}

Q |

(o)

reverse_cond. true %tmp_res’ = load %result’
%call’ += 1if %x > @ then %tmp_res’ else 0
%df = 3 * pow(%x, 2) store %result’ = 0.0 reverse_cond. end
stmp_call’ = load %call br %cmp, reverse_cond.true, reverse_entry
%X’ += %df *x %tmp_call’ \\¥ 4//

store %call’ = 0.0 /
Or reverse_entry ,/

%0 = load %X reverse_entry
ret %0

define double @diffe_relu3(double %x)

Post
4 R Toat j
%emp = %x > 0 Optimization

br %cmp, reverse_cond.true, reverse_entry

= _J

%3 = 3 * pow(%x, 2)
br reverse_entry

reverse_cond.t::;\\\\“as

entry

[%@ = phi [%3, reverse_cond.true], [0, entry] j) reverse_entry
ret %0

Essentially the optimal hand-written gradient!

double diffe_relu3(double x) {
double result;

i1f (x > 0)

result = 3 x pow(x, 2);
else

result = 9;

return result;

Challenges of Low-Level AD

94

Low-level code lacks information necessary to compute adjoints

void f(voidx dst, voidx src) {
memcpy (dst, src, 8);

J
void grad_f (double*x dst, double* dst’, void grad_f(float* dst, float*x dst’,
doublex src, doublex src’) { float* src, float* src’) {
// Forward Pass // Forward Pass
memcpy(dst, src, 8); memcpy(dst, src, 8);
// Reverse Pass // Reverse Pass
src’[@] += dst’[0]; src’[@] += dst’[0];
dst’[@] = 0; dst’[0] = 0;
) src’[1] += dst’[1];
B— T —— dst’[1] = 0;

Type Analysis
New interprocedural dataflow analysis that detects the underlying type of data

Each value has a set of memory offsets : type

Perform series of fixed-point updates through instructions

struct MyType { X My Type

e 0: Pointer ——[0: Double
) 8: Pointer —>|0: Integer
X = MyTypex*;

———

types(x) = {[@]:Pointer, [0,0]:Double, [@,8]:Pointer, [0,8,0]:Integer} %

95

Case 3: Store, Sync, Store

codeA(); // store %ptr
sync_threads;

codeB(); // store Z%ptr

diffe_codeB(); // load %d_ptr

// store %d_ptr = 0
sync_threads;
diffe_codeA(); // load %d_ptr

// store %d_ptr = 0

96

« Correct

» All stores to d_ptr in diffe_B will

complete prior to diffe_A, ensuring
only the clobbering store has its
derivative incremented

0,

97

Scalability Analysis (Fixed Thread Count)

3
N
O
|
|

AD Overhead (factor)
o
N
|
|

6.30 | -

| |
0 100 200 300 400 500 600
[terations

LBM — Parboil (C & CUDA)

CUDA Example

__device__ void inner(floatx a, float* x, floatx y) {
y[threadldx.x] = al@] * x[threadIdx.x];

}

__device__ void __enzyme_autodiff(voidx, ..);

__global__ void daxpy(floatx a, float* da, float* x, floatx dx, float* y, floatx dy) {
__enzyme_autodiff((voidx)inner, a, da, x, dx, vy, dy);

)

__device__ void diffe_inner(floatx a, floatx da, float* x, float* dx, floatx y, floatx dy) {
y[threadIdx.x] = al@] * x[threadIldx.x];

float dy = dy[threadIdx.x];
dy[threadIdx.x] = 0.0f;

float dx_tmp = a[@] * dy;
atomic { dx[threadIdx.x] += dx_tmp; }

float da_tmp = x[threadIdx.x] * dy;
atomic { dal[@] += da_tmp; }

98

Existing AD Approaches (1/3)

Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)

double square(double

)

Provide a new language designed to be differentiated

Requires rewriting everything in the DSL and the DSL must support all operations in original

code

Fast if DSL matches original code well

return

x

)

) |

Manually
Rewrite

1mport as
= .Variable(3.14)

with .GradientTape() as
= : .square(x)

print(.gradient(:

>-nU_n_1_py(>v>

Existing AD Approaches (3/3)

Source rewriting

Statically analyze program to produce a new gradient function in the source language

Re-implement parsing and semantics of given language

Requires all code to be available ahead of time => hard to use with external libraries

double square(doubl) {

return

)

T00 double grad_square(double

* . , return 2 % ;
Rewrite)

$ tapenade -b -o out.c -head “square(val)/(out)” square.c

) |

0,

Parallel Automatic Differentiation in LLVM

dres = load %ptr store %ptr = %val Shadow Registers %d_res and
%d_val are thread-local as they
shadow thread-local registers.
l »+ No risk of races and no special
handling required.
»tmp = load %d_res stmp = load %d_ptr . . .
store %d res = 0 store %d_ptr = 0 Both %ptr and shadow /c:d_ptr mlght
atomic %d_ptr += %tmp load/store %d_val += %tmp be raced upon and require analysis.

101

0,

Case 2: Load, Sync, Store

codeA(); // load %ptr
« Correct
sync_threads;
codeB(); // store %ptr - All of the stores of d_ptr will
complete prior to any atomicAdds

diffe_codeB(); // load %d_ptr
// store %d_ptr = 0

sync_threads;

No cross-thread race here since

diffe_codeA(); // atomicAdd %d_ptr that’s equivalent to a write race in B

102

0,

Differentiation of SyncThreads

Case 3 [write sync write] Case 4 [read sync read]

codeA(); // store %ptr

codeA(); // load %ptr
sync_threads;

sync_threads;
codeB(); // store %ptr

codeB(); // load %ptr

diffe_codeB(); // load %d_ptr

// store %d_ptr = 0 diffe_codeB(); // atomicAdd %d_ptr
sync_threads; sync_threads;
diffe_codeA(); // load %d_ptr diffe_codeA(); // atomicAdd %d_ptr
// store %d_ptr = 0

Original and differential sync unnecessary and
legal to include 8

All uses of stores to d_ptr in diffe_B will
correctly complete prior to diffe_A

103

Scalability Analysis (Fixed Work Per Thread)

20 | | | | | .

ek
Ot
|
|

—0— Discontinuous Galerkin (Julia & CUDA)
Discontinuous Galerkin (Julia & ROCm)

AD Overhead (factor)
=
|
|

g
;
:
4
4
:
b
:
t
:

* o LULESH (C++ & CUDA)
‘ll‘llll‘ llllll ‘ lllllllll ‘ llllllllllll ‘ RS:3enCh (C & CUDA)
| | | | | | | L
0 9 A 6 3 10 19 * XSBench (C & CUDA)

Relative Problem Size

104

