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Enzyme: High-Performance Automatic 
Differentiation of LLVM



Differentiation Is Key To Machine Learning

• Computing derivatives is key to many algorithms


• Machine learning (back-propagation, Bayesian inference, uncertainty quantification)


• Scientific computing (modeling, simulation)


• When working with large codebases or dynamically-generated programs, manually writing 
derivative functions becomes intractable


• Community has developed tools to create derivatives automatically
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Existing AD Approaches

• Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)


• Provide a new language where all functions are differentiable


• Requires rewriting everything in the DSL and the DSL must support all operations in original code


• Fast if DSL matches original code well


• Operator overloading (Adept, JAX)


• Provide differentiable versions of existing language constructs (double => adouble, np.sum => 
jax.sum)


• May require writing to use non-standard utilities


• Often dynamic: storing instructions/values to later be interpreted



Existing AD Approaches

• Source rewriting


• Statically analyze program to produce a new gradient function in the source language


• Re-implement parsing and semantics of given language


• Requires all code to be available ahead of time


• Difficult to use with external libraries



Existing Automatic Differentiation Pipelines
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Case Study: Vector Normalization

//Compute magnitude in O(n) 
double mag(double[] x); 

//Compute norm in O(n^2) 
void norm(double[] out, double[] in) { 

  for (int i=0; i<n; i++) { 
    out[i] = in[i] / mag(in); 
  } 
}
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Case Study: Vector Normalization

//Compute magnitude in O(n) 
double mag(double[] x); 

//Compute norm in O(n) 
void norm(double[] out, double[] in) { 
  double res = mag(in); 
  for (int i=0; i<n; i++) { 
    out[i] = in[i] / res; 
  } 
}
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Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
res = mag(in) 
for i=0..n { 
  out[i] /= res 
}

d_res = 0.0  
for i=n..0 { 
  d_res += d_out[i]… 
} 
∇mag(d_in, d_res)

O (n)
for i=0..n { 
  out[i] /= mag(in) 
}
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Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
for i=0..n { 
  out[i] /= mag(in) 
}

res = mag(in) 
for i=0..n { 
  out[i] /= res 
}

d_res = 0.0  
for i=n..0 { 
  d_res += d_out[i]… 
} 
∇mag(d_in, d_res)

O (n)

O (n2)
for i=0..n { 
  out[i] /= mag(in) 
} AD

for i=n..0 { 
  d_res = d_out[i]… 
  ∇mag(d_in, d_res) 
}

O (n2)
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Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
for i=0..n { 
  out[i] /= mag(in) 
}

res = mag(in) 
for i=0..n { 
  out[i] /= res 
}

d_res = 0.0  
for i=n..0 { 
  d_res += d_out[i]… 
} 
∇mag(d_in, d_res)

O (n)

O (n2)O (n2)
for i=0..n { 
  out[i] /= mag(in) 
} AD

for i=n..0 { 
  d_res = d_out[i]… 
  ∇mag(d_in, d_res) 
}

O (n2)
for i=n..0 { 
  d_res = d_out[i]… 
  ∇mag(d_in, d_res) 
}

Optimize
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Optimization & Automatic Differentiation

Differentiating after optimization can create asymptotically faster gradients!

Optimize

O (n2) O (n)

AD
for i=0..n { 
  out[i] /= mag(in) 
}

res = mag(in) 
for i=0..n { 
  out[i] /= res 
}

d_res = 0.0  
for i=n..0 { 
  d_res += d_out[i]… 
} 
∇mag(d_in, d_res)

O (n)

O (n2)O (n2)
for i=0..n { 
  out[i] /= mag(in) 
} AD

for i=n..0 { 
  d_res = d_out[i]… 
  ∇mag(d_in, d_res) 
}

O (n2)
Optimize

for i=n..0 { 
  d_res = d_out[i]… 
  ∇mag(d_in, d_res) 
}
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Lower Enzyme   .

Optimize

CodeGen

Optimize

       Enzyme Approach

Performing AD at low-level lets us work on optimized code!
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Why Does Enzyme Use LLVM?

• Generic low-level compiler infrastructure with many frontends


• “Cross platform assembly”


• Well-defined semantics


• Large collection of optimizations and analyses
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Case Study: ReLU3

entry

cond.true

%result = phi [%call, cond.true], [0, entry] 
ret %resultcond.end

%cmp = %x > 0 
br %cmp, cond.true, cond.end

%call = pow(%x, 3) 
br cond.end

double relu3(double x) { 
  double result; 
  if (x > 0) 
    result = pow(x, 3); 
  else 
    result = 0; 
  return result; 
}

define double @relu3(double %x)

double diffe_relu3(double x) { 
  return __enzyme_autodiff(relu3, x); 
}

C Source LLVM 

Enzyme Usage
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Case Study: ReLU3

entry

cond.true

%result = phi [%call, cond.true], [0, entry] 
ret %result

cond.end

%cmp = %x > 0 
br %cmp, cond.true, cond.end

%call = pow(%x, 3) 
br cond.end

define double @relu3(double %x)

Active Instructions
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entry

cond.true

%result = phi [%call, cond.true], [0, entry] 

; deleted return 

%result’ = 1.0 
br reverse_cond.end

cond.end

alloca %result’ = 0.0 
alloca %call’   = 0.0 
alloca %x’      = 0.0 
%cmp = %x > 0 
br %cmp, cond.true, cond.end

%call = pow(%x, 3) 
br cond.end

define double @diffe_relu3(double %x, double %differet)

Allocate & zero 
shadow memory for 

active values
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entry

cond.true

%result = phi [%call, cond.true], [0, entry] 

; deleted return 

%result’ = 1.0 
br reverse_cond.end

cond.end

alloca %result’ = 0.0 
alloca %call’   = 0.0 
alloca %x’      = 0.0 
%cmp = %x > 0 
br %cmp, cond.true, cond.end

%call = pow(%x, 3) 
br cond.end

define double @diffe_relu3(double %x, double %differet)

%tmp_res’ = load %result’ 
%call’ += if %x > 0 then %tmp_res’ else 0 
store %result’ = 0.0 
br %cmp, reverse_cond.true, reverse_entry

reverse_cond.end%df = 3 * pow(%x, 2) 
%tmp_call’ = load %call 
%x’ += %df * %tmp_call’ 
store %call’ = 0.0 
br reverse_entry

%0 = load %x’ 
ret %0

reverse_entry

reverse_cond.true

Compute adjoints 
for active instructions
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entry

cond.true

%result = phi [%call, cond.true], [0, entry] 

; deleted return 

%result’ = 1.0 
br reverse_cond.end

cond.end

alloca %result’ = 0.0 
alloca %call’   = 0.0 
alloca %x’      = 0.0 
%cmp = %x > 0 
br %cmp, cond.true, cond.end

%call = pow(%x, 3) 
br cond.end

define double @diffe_relu3(double %x, double %differet)

%tmp_res’ = load %result’ 
%call’ += if %x > 0 then %tmp_res’ else 0 
store %result’ = 0.0 
br %cmp, reverse_cond.true, reverse_entry

reverse_cond.end%df = 3 * pow(%x, 2) 
%tmp_call’ = load %call 
%x’ += %df * %tmp_call’ 
store %call’ = 0.0 
br reverse_entry

%0 = load %x’ 
ret %0

reverse_entry

reverse_cond.true

Compute adjoints 
for active instructions
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entry %cmp = %x > 0 
br %cmp, reverse_cond.true, reverse_entry

define double @diffe_relu3(double %x)

%3 = 3 * pow(%x, 2) 
br reverse_entry

%0 = phi [%3, reverse_cond.true], [0, entry] 
ret %0

reverse_entry
reverse_cond.true

Essentially the optimal hand-written gradient!

double diffe_relu3(double x) { 
  double result; 
  if (x > 0) 
    result = 3 * pow(x, 2); 
  else 
    result = 0; 
  return result; 
}

Post 
Optimization
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Challenges of Low-Level AD

• Low-level code lacks information necessary to compute adjoints

8: Pointer 0: Integer
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void f(void* dst, void* src) { 
  memcpy(dst, src, 8); 
}

void grad_f(double* dst, double* dst’, 
            double* src, double* src’) { 
  // Forward Pass 
  memcpy(dst, src, 8); 

  // Reverse Pass 
  src’[0] += dst’[0]; 
  dst’[0] = 0; 
}

void grad_f(float* dst, float* dst’, 
            float* src, float* src’) { 
  // Forward Pass 
  memcpy(dst, src, 8); 

  // Reverse Pass 
  src’[0] += dst’[0]; 
  dst’[0] = 0; 
  src’[1] += dst’[1]; 
  dst’[1] = 0; 
}



Challenges of Low-Level AD

struct Type { 
  double; 
  int*; 
} 

x = Type*;

0: Pointer
x

0: Double
8: Pointer

Type

0: Integer
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• New interprocedural dataflow analysis that detects the underlying type of data


• Each value has a set of memory offsets : type


• Perform series of fixed-point updates through instructions

types(x) = {[0]:Pointer, [0,0]:Double, [0,8]:Pointer, [0,8,0]:Integer}



Custom Derivatives & Multisource

• One can specify custom forward/reverse passes of functions by attaching metadata 
 
 

• Enzyme leverages LLVM’s link-time optimization (LTO) & “fat libraries” to ensure that LLVM 
bitcode is available for all potential differentiated functions before AD

__attribute__((enzyme("augment", augment_func))) 
__attribute__((enzyme("gradient", gradient_func))) 
double func(double n);
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Experimental Setup

Enzyme:

Ref:

Tapenade:

Adept: -O2

Enzyme      .

Tapenade

Adept

• Collection of benchmarks from Microsoft’s ADBench suite and of technically interest

-O2

-O2-O2

-O2-O2

-O2 Enzyme      . -O2
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Speedup of Enzyme 
H

ig
he
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s 

Be
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r

Enzyme is 4.2x faster than Reference!
24



• Tool for performing reverse-mode AD of statically analyzable LLVM IR


• Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)


• 4.2x speedup over AD before optimization


• State-of-the art performance with existing tools


• PyTorch-Enzyme & TensorFlow-Enzyme lets researchers use foreign code in ML workflow


• Open source (enzyme.mit.edu & join our mailing list)


• Current work: GPU AD, MPI AD


       Enzyme
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http://enzyme.mit.edu


Acknowledgements

• Thanks to James Bradbury, Alex Chernyakhovsky, Hal Finkel, Laurent Hascoet, Paul Hovland, Jan 
Hueckelheim, Mike Innes, Tim Kaler, Charles Leiserson, Yingbo Ma, Chris Rackauckas, TB Schardl, 
Lizhou Sha, Yo Shavit, Dhash Shrivathsa, Nalini Singh, Miguel Young de la Sota, and Alex Zinenko


• William S. Moses was supported in part by a DOE Computational Sciences Graduate Fellowship 
DESC0019323.


• Valentin Churavy was supported in part by the Defense Advanced Research Projects Agency 
(DARPA) under Agreement No. HR0011-20-9-0016, and in part by NSF Grant OAC-1835443.


• This research was supported in part by LANL grant 531711. Research was sponsored by the United 
States Air Force Research Laboratory and was accomplished under Cooperative Agreement 
Number FA8750-19-2-1000.


• The views and conclusions contained in this document are those of the authors and should not be 
interpreted as representing the official policies, either expressed or implied, of the United States Air 
Force or the U.S. Government.26



       Enzyme
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• Tool for performing reverse-mode AD of statically analyzable LLVM IR


• Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)


• 4.2x speedup over AD before optimization


• State-of-the art performance with existing tools


• PyTorch-Enzyme & TensorFlow-Enzyme lets researchers use foreign code in ML workflow


• Open source (enzyme.mit.edu & join our mailing list)


• Current work: GPU AD, MPI AD


http://enzyme.mit.edu


END
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PyTorch-Enzyme & TensorFlow-Enzyme

import torch 
from torch_enzyme import enzyme  

# Create some initial tensor 
inp = … 

# Apply foreign function to tensor 
out = enzyme("test.c", “f").apply(inp) 

# Derive gradient 
out.backward() 
print(inp.grad)

import tensorflow as tf 
from tf_enzyme import enzyme 

inp = tf.Variable(…) 
# Use external C code as a regular TF op  

out = enzyme(inp, filename=“test.c", 
                  function=“f”) 

# Results is a TF tensor 
out = tf.sigmoid(out)

// Input tensor + size, and output tensor  
void f(float* inp, size_t n, float* out); 

// diffe_dupnoneed specifies not recomputing the output 
void diffef(float* inp, float* d_inp, size_t n, float* d_out) {  
  __enzyme_autodiff(f, diffe_dup, inp, d_inp, n, diffe_dupnoneed, (float*)0, d_out); 
}
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Compiler Analyses Better Optimize AD

• Existing 


• Alias analysis results that prove a function does not write to memory, we can prove that 
additional function calls do not need to be differentiated since they cannot impact the output


• Don’t cache equivalent values


• Statically allocate caches when a loop’s bounds can be determined in advance
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Decomposing the “Tape”

• Performing AD on a function requires data structures to compute 


• All values necessary to compute adjoints are available [cache]


• Place to store adjoints [shadow memory]


• Record instructions [we are static]


• Creating these directly in LLVM allows us to explicitly specify their behavior for optimization, 
unlike approaches that call out to a library


• For more details look in paper
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Conventional Wisdom: AD Only Feasible at High-Level

• Automatic Differentiation requires high level semantics to produce gradients


• Lack of high-level information can hinder performance of low-level AD


• “AD is more effective in high-level compiled languages (e.g. Julia, Swift, Rust, Nim) than 
traditional ones such as C/C++, Fortran and LLVM IR […]” -Innes[1]


 

[1] Michael Innes. Don’t Unroll Adjoint: Differentiating SSA-Form Programs. arXiv preprint arXiv:1810.07951, 2018
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Differentiation Is Key To Machine Learning

• Hinders application of ML to new domains


• Synthesizing gradients aims to close this gap

// PyTorch rewrite of nbody simulator 
import torch 

def step(bodies, dt): 
  acc = [] 
  for i in range(len(bodies)): 
    acc.push(torch.zeros([3])) 
    for j in range(len(bodies)): 
      if i == j: continue 
      acc[i] += force(bodies[i], bodies[j]) / 
                         bodies[i].mass 

  for i, body in enumerate(bodies): 
    body.vel += acc[i] * dt 
    body.pos += body.vel * dt 

// C++ nbody simulator 

void step(std::array<Planet> bodies, double dt) { 
  vec3 acc[bodies.size()]; 
  for (size_t i=0; i<bodies.size(); i++) { 
    acc[i] = vec3(0, 0, 0); 
    for (size_t j=0; j<bodies.size(); j++) { 
      if (i == j) continue; 
      acc[i] += force(bodies[i], bodies[j]) /      
                         bodies[i].mass; 
    } 
  } 
  for (size_t i=0; i<bodies.size(); i++) { 
    bodies[i].vel += acc[i] * dt; 
    bodies[i].pos += bodies[i].vel * dt; 
  } 
}
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Activity Analysis

• Determines what instructions could impact derivative computation


• Avoids taking meaningless or unnecessary derivatives (e.g. d/dx cpuid)


• Instruction is active iff it can propagate a differential value to its return or memory


• Build off of alias analysis & type analysis


• E.g. all read-only function that returns an integer are inactive since they cannot propagate 
adjoints through the return or to any memory location



Lower Enzyme   .

Optimize

CodeGen

Optimize

       Enzyme Overturns Conventional Wisdom

• As fast or faster than state-of-the-art tools


• Running after optimization enables a 4.2x speedup 

• Necessary semantics for AD derived at low-level (with potential cooperation of frontend)
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