
wmoses@mit.edu
June 23, 2021

William S. Moses Valentin Churavy

1

Instead of Rewriting Foreign Code for Machine
Learning, Automatically Synthesize Fast Gradients!

William S. Moses Valentin Churavy

2

Ludger Paehler Johannes Doerfert

Jan Hückelheim Sri Hari Krishna
Narayanan Michel Schanen Paul Hovland

Differentiation Is Key To Machine Learning And Science

• Computing derivatives is key to many algorithms

• Machine learning (back-propagation, Bayesian inference, uncertainty quantification)

• Scientific computing (modeling, simulation)

• When working with large codebases or dynamically-generated programs, manually writing
derivative functions becomes intractable

• Community has developed tools to create derivatives automatically

3

Existing AD Approaches

• Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)

• Provide a new language designed to be differentiated

• Requires rewriting everything in the DSL and the DSL must support all operations in original code

• Fast if DSL matches original code well

• Operator overloading (Adept, JAX)

• Provide differentiable versions of existing language constructs (double => adouble, np.sum =>
jax.sum)

• May require writing to use non-standard utilities

• Often dynamic: storing instructions/values to later be interpreted

Existing AD Approaches

• Source rewriting

• Statically analyze program to produce a new gradient function in the source language

• Re-implement parsing and semantics of given language

• Requires all code to be available ahead of time

• Difficult to use with external libraries

Existing Automatic Differentiation Pipelines

AD

CodeGen

Optimize

Lower

AD

AD

AD

6

Case Study: Vector Normalization

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n^2)
void norm(double[] out, double[] in) {

 for (int i=0; i<n; i++) {
 out[i] = in[i] / mag(in);
 }
}

7

Case Study: Vector Normalization

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n)
void norm(double[] out, double[] in) {
 double res = mag(in);
 for (int i=0; i<n; i++) {
 out[i] = in[i] / res;
 }
}

8

Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
res = mag(in)
for i=0..n {
 out[i] /= res
}

d_res = 0.0
for i=n..0 {
 d_res += d_out[i]…
}
∇mag(d_in, d_res)

O (n)
for i=0..n {
 out[i] /= mag(in)
}

9

Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
for i=0..n {
 out[i] /= mag(in)
}

res = mag(in)
for i=0..n {
 out[i] /= res
}

d_res = 0.0
for i=n..0 {
 d_res += d_out[i]…
}
∇mag(d_in, d_res)

O (n)

O (n2)
for i=0..n {
 out[i] /= mag(in)
} AD

for i=n..0 {
 d_res = d_out[i]…
 ∇mag(d_in, d_res)
}

O (n2)

10

Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
for i=0..n {
 out[i] /= mag(in)
}

res = mag(in)
for i=0..n {
 out[i] /= res
}

d_res = 0.0
for i=n..0 {
 d_res += d_out[i]…
}
∇mag(d_in, d_res)

O (n)

O (n2)O (n2)
for i=0..n {
 out[i] /= mag(in)
} AD

for i=n..0 {
 d_res = d_out[i]…
 ∇mag(d_in, d_res)
}

O (n2)
for i=n..0 {
 d_res = d_out[i]…
 ∇mag(d_in, d_res)
}

Optimize

11

Optimization & Automatic Differentiation

Differentiating after optimization can create asymptotically faster gradients!

Optimize

O (n2) O (n)

AD
for i=0..n {
 out[i] /= mag(in)
}

res = mag(in)
for i=0..n {
 out[i] /= res
}

d_res = 0.0
for i=n..0 {
 d_res += d_out[i]…
}
∇mag(d_in, d_res)

O (n)

O (n2)O (n2)
for i=0..n {
 out[i] /= mag(in)
} AD

for i=n..0 {
 d_res = d_out[i]…
 ∇mag(d_in, d_res)
}

O (n2)
Optimize

for i=n..0 {
 d_res = d_out[i]…
 ∇mag(d_in, d_res)
}

12

Lower Enzyme .

Optimize

CodeGen

Optimize

 Enzyme Approach

Performing AD at low-level lets us work on optimized code!

13

Why Does Enzyme Use LLVM?

• Generic low-level compiler infrastructure with many
frontends

• “Cross platform assembly”

• Many backends (CPU, CUDA, AMDGPU, etc)

• Well-defined semantics

• Large collection of optimizations and analyses

14

Case Study: ReLU3

entry

cond.true

%result = phi [%call, cond.true], [0, entry]
ret %resultcond.end

%cmp = %x > 0
br %cmp, cond.true, cond.end

%call = pow(%x, 3)
br cond.end

double relu3(double x) {
 double result;
 if (x > 0)
 result = pow(x, 3);
 else
 result = 0;
 return result;
}

define double @relu3(double %x)

double diffe_relu3(double x) {
 return __enzyme_autodiff(relu3, x);
}

C Source LLVM

Enzyme Usage

15

Case Study: ReLU3

entry

cond.true

%result = phi [%call, cond.true], [0, entry]
ret %result

cond.end

%cmp = %x > 0
br %cmp, cond.true, cond.end

%call = pow(%x, 3)
br cond.end

define double @relu3(double %x)

Active Instructions

16

entry

cond.true

%result = phi [%call, cond.true], [0, entry]

; deleted return

%result’ = 1.0
br reverse_cond.end

cond.end

alloca %result’ = 0.0
alloca %call’ = 0.0
alloca %x’ = 0.0
%cmp = %x > 0
br %cmp, cond.true, cond.end

%call = pow(%x, 3)
br cond.end

define double @diffe_relu3(double %x, double %differet)

Allocate & zero
shadow memory for

active values

17

entry

cond.true

%result = phi [%call, cond.true], [0, entry]

; deleted return

%result’ = 1.0
br reverse_cond.end

cond.end

alloca %result’ = 0.0
alloca %call’ = 0.0
alloca %x’ = 0.0
%cmp = %x > 0
br %cmp, cond.true, cond.end

%call = pow(%x, 3)
br cond.end

define double @diffe_relu3(double %x, double %differet)

%tmp_res’ = load %result’
%call’ += if %x > 0 then %tmp_res’ else 0
store %result’ = 0.0
br %cmp, reverse_cond.true, reverse_entry

reverse_cond.end%df = 3 * pow(%x, 2)
%tmp_call’ = load %call
%x’ += %df * %tmp_call’
store %call’ = 0.0
br reverse_entry

%0 = load %x’
ret %0

reverse_entry

reverse_cond.true

Compute adjoints
for active instructions

18

entry

cond.true

%result = phi [%call, cond.true], [0, entry]

; deleted return

%result’ = 1.0
br reverse_cond.end

cond.end

alloca %result’ = 0.0
alloca %call’ = 0.0
alloca %x’ = 0.0
%cmp = %x > 0
br %cmp, cond.true, cond.end

%call = pow(%x, 3)
br cond.end

define double @diffe_relu3(double %x, double %differet)

%tmp_res’ = load %result’
%call’ += if %x > 0 then %tmp_res’ else 0
store %result’ = 0.0
br %cmp, reverse_cond.true, reverse_entry

reverse_cond.end%df = 3 * pow(%x, 2)
%tmp_call’ = load %call
%x’ += %df * %tmp_call’
store %call’ = 0.0
br reverse_entry

%0 = load %x’
ret %0

reverse_entry

reverse_cond.true

Compute adjoints
for active instructions

19

entry %cmp = %x > 0
br %cmp, reverse_cond.true, reverse_entry

define double @diffe_relu3(double %x)

%3 = 3 * pow(%x, 2)
br reverse_entry

%0 = phi [%3, reverse_cond.true], [0, entry]
ret %0

reverse_entry
reverse_cond.true

Essentially the optimal hand-written gradient!

double diffe_relu3(double x) {
 double result;
 if (x > 0)
 result = 3 * pow(x, 2);
 else
 result = 0;
 return result;
}

Post
Optimization

20

Challenges of Low-Level AD

• Low-level code lacks information necessary to compute adjoints

8: Pointer 0: Integer

21

void f(void* dst, void* src) {
 memcpy(dst, src, 8);
}

void grad_f(double* dst, double* dst’,
 double* src, double* src’) {
 // Forward Pass
 memcpy(dst, src, 8);

 // Reverse Pass
 src’[0] += dst’[0];
 dst’[0] = 0;
}

void grad_f(float* dst, float* dst’,
 float* src, float* src’) {
 // Forward Pass
 memcpy(dst, src, 8);

 // Reverse Pass
 src’[0] += dst’[0];
 dst’[0] = 0;
 src’[1] += dst’[1];
 dst’[1] = 0;
}

Type Analysis

struct MyType {
 double;
 int*;
}

x = MyType*;

0: Pointer
x

0: Double
8: Pointer

MyType

0: Integer

22

• New interprocedural dataflow analysis that detects the underlying type of data

• Each value has a set of memory offsets : type

• Perform series of fixed-point updates through instructions

types(x) = {[0]:Pointer, [0,0]:Double, [0,8]:Pointer, [0,8,0]:Integer}

Cache

• Adjoint instructions may require values from the forward pass

• e.g. ∇(x * y) => x dy + y dx

• For all values needed in the reverse, allocate memory in the forward pass to store the value

• Values computed inside loops are stored in an array indexed by the loop induction variable

• Array allocated statically if possible; otherwise dynamically realloc’d

Experimental Setup

Enzyme:

Ref:

Tapenade:

Adept: -O2

Enzyme .

Tapenade

Adept

• Collection of benchmarks from Microsoft’s ADBench suite and of technical interest

-O2

-O2-O2

-O2-O2

-O2 Enzyme . -O2

24

Speedup of Enzyme
H

ig
he

r i
s

Be
tte

r

Enzyme is 4.2x faster than Reference!
25

Automatic Differentiation & GPUs

• Prior work has not explored reverse mode AD of existing GPU kernels

• Reversing parallel control flow can lead to incorrect results

• Complex performance characteristics make it difficult to synthesize efficient code

• Resource limitations can prevent kernels from running at all

26

Challenges of Parallel AD

• The adjoint of an instruction increments the derivative of its input

• Benign read race in forward pass => Write race in reverse pass (undefined behavior)

27

void set(double* ar, double val) {

 parallel_for(int i=0; i<10; i++)
 ar[i] = val;
}

double gradient_set(double* ar, double* d_ar,
 double val) {
 double d_val = 0.0;

 parallel_for(int i=0; i<10; i++)
 ar[i] = val;

 parallel_for(int i=0; i<10; i++) {
 d_val += d_ar[i];
 d_ar[i] = 0.0;
 }

 return d_val;
}

Read Race
Write Race

GPU Memory Hierarchy

28

Slower, larger amount of memory

Per Thread Per Block Per GPU

~Bytes ~KBs ~GBs

Register Shared Memory Global Memory

Use Limits Parallelism Use Limits Parallelism

Correct and Efficient Derivative Accumulation

Thread-local memory 

• Non-atomic load/store

29

__device__
void f(…) {

 // Thread-local var
 double y;

 …

 d_y += val;
}

Same memory location across
all threads (some shared mem)

• Parallel Reduction

Others [always legal fallback] 

• Atomic increment

// Same var for all threads
double y;

__device__
void f(…) {

 …

 reduce_add(&d_y, val);
}

__device__
// Unknown thread-aliasing
void f(double* y) {

 …

 atomic { d_y += val; }
}

Slower

Synchronization Primitives

30

codeA();

sync_threads;

codeB();

• Synchronization (sync_threads) ensures all threads finish executing
codeA before executing codeB

• Sync is only necessary if A and B may access to the same memory

• Assuming the original program is race-free, performing a sync at the
corresponding location in the reverse ensures correctness

• Prove correctness of algorithm by cases

Case 1: Store, Sync, Load

31

codeA(); // store %ptr

sync_threads;

codeB(); // load %ptr

…

diffe_codeB(); // atomicAdd %d_ptr

sync_threads;

diffe_codeA(); // load %d_ptr
 // store %d_ptr = 0

 Correct

• Load of d_ptr must happen after
all atomicAdds have completed

CUDA Example

32

__device__ void inner(float* a, float* x, float* y) {
 y[threadIdx.x] = a[0] * x[threadIdx.x];
}
__device__ void __enzyme_autodiff(void*, …);

__global__ void daxpy(float* a, float* da, float* x, float* dx, float* y, float* dy) {
 __enzyme_autodiff((void*)inner, a, da, x, dx, y, dy);
}

__device__ void diffe_inner(float* a, float* da, float* x, float* dx, float* y, float* dy) {
 y[threadIdx.x] = a[0] * x[threadIdx.x];

 float dy = dy[threadIdx.x];
 dy[threadIdx.x] = 0.0f;

 float dx_tmp = a[0] * dy;
 atomic { dx[threadIdx.x] += dx_tmp; }

 float da_tmp = x[threadIdx.x] * dy;
 atomic { da[0] += da_tmp; }
}

Efficient GPU Code
• Without optimization, GPU gradients must cache a large number of values

• The complexity of GPU memory means large caches slow down the program by several
orders of magnitude, if it even fits at all

• Like the CPU, existing LLVM optimizations can reduce the overhead

• Unlike the CPU, existing LLVM optimizations aren’t sufficient

• Novel GPU and AD-specific optimizations can speedup by several orders of magnitude

33

When LLVM Doesn’t Cut It
• Enzyme relies on optimizations

such as LICM and CSE to eliminate
redundant loads, and thus
redundant caches.

• Since we instead need to preserve
values for the reverse pass, these
optimizations may not apply

34

for(int i=0; i<N; i++) {
 for(int j=0; j<M; j++) {
 use(array[i]);
 }
}

overwrite(array);

for(int i=0; i<N; i++) {
 for(int j=0; j<M; j++) {

 use(array[j]);
 }
}

overwrite(array);

When LLVM Doesn’t Cut It
• Enzyme relies on optimizations

such as LICM and CSE to eliminate
redundant loads, and thus
redundant caches.

• Since we instead need to preserve
values for the reverse pass, these
optimizations may not apply

• This requires far more caching than
necessary

35

double* cache = new double[N*M];

for(int i=0; i<N; i++) {
 for(int j=0; j<M; j++) {
 cache[i*M+j] = array[j];
 use(array[j]);
 }
}

overwrite(array);
grad_overwrite(array);

for(int i=0; i<N; i++) {
 for(int j=M-1; i<M; i++) {
 grad_use(cache[i*M+j], d_array[j]);
 }
}

When LLVM Doesn’t Cut It
• Enzyme relies on optimizations

such as LICM and CSE to eliminate
redundant loads, and thus
redundant caches.

• Since we instead need to preserve
values for the reverse pass, these
optimizations may not apply

• This requires far more caching than
necessary

• By analyzing the read/write
structure, we can hoist the cache.

36

double* cache = new double[M];
memcpy(cache, array, sizeof(double)*M);
for(int i=0; i<N; i++) {
 for(int j=0; j<M; j++) {

 use(array[j]);
 }
}

overwrite(array);
grad_overwrite(array);

for(int i=0; i<N; i++) {
 for(int j=M-1; i<M; i++) {
 grad_use(cache[j], d_array[j]);
 }
}

AD-Specific Cache
• Some optimizations require

domain-specific knowledge

• Not all values are needed for the
reverse pass. By considering the
dataflow graph we can perform a
min-cut to approximate smaller
cache sizes.

• Not all (loop) sizes are known at
compile-time, so this must be a
heuristic

37

double x_cache=x[0];
double y_cache=y[0];

use(x[0] + y[0]);

overwrite(x, y);
grad_overwrite(x, y);

grad_use(x_cache + y_cache);

AD-Specific Cache
• Some optimizations require

domain-specific knowledge

• Not all values are needed for the
reverse pass. By considering the
dataflow graph we can perform a
min-cut to approximate smaller
cache sizes.

• Not all (loop) sizes are known at
compile-time, so this must be a
heuristic

38

double xy_cache=x[0] + y[0];

use(x[0] + y[0]);

overwrite(x, y);
grad_overwrite(x, y);

grad_use(xy_cache);

GPU Gradient Overhead

39

• Evaluation of both original code and gradient

• DG: Discontinuous-Galerkin integral (Julia)

• LBM: particle-based fluid dynamics
simulation

• LULESH: unstructured explicit shock
hydrodynamics solver

• XSBench & RSBench: Monte Carlo
simulations of particle transport
algorithms (memory & compute bound,
respectively)

XSBench

RSBench

LULESH

LBM (Parboil)

DG (CUDA)

DG (ROCm)

3.2

4.2

2.01

6.3

18.35

5.4

40

Forward (1x) 10x 100x 1000x OOM

XSBench

RSBench

LULESH

LBM

DG (CUDA)

DG (ROCm)
5.4⇥
o

1378.3⇥
o

116.6⇥
o

17.8⇥
o

19.87⇥
o

8.7⇥
o

6.4⇥
o

2979.1⇥
o

2.4⇥
o

2.0⇥
o

6372.2⇥
o

9.5⇥
o

4.7⇥
o

25.9⇥
o

16.3⇥
o

9.5⇥
o

3.2⇥
o

Overhead above Forward Pass

Unrolling

Unrolling MallocCoalescing PreOptimization

Allocator Recompute InlineCacheABI

SpecPHI PreOptimization

CacheLICM Inlining PreOpt

Templating PHI LoopBound PreOptimization

Ablation Analysis of Optimizations

41

Forward (1x) 10x 100x 1000x OOM

XSBench

RSBench

LULESH

LBM

DG (CUDA)

DG (ROCm)
5.4⇥
o

1378.3⇥
o

116.6⇥
o

17.8⇥
o

19.87⇥
o

8.7⇥
o

6.4⇥
o

2979.1⇥
o

2.4⇥
o

2.0⇥
o

6372.2⇥
o

9.5⇥
o

4.7⇥
o

25.9⇥
o

16.3⇥
o

9.5⇥
o

3.2⇥
o

Overhead above Forward Pass

Unrolling

Unrolling MallocCoalescing PreOptimization

Allocator Recompute InlineCacheABI

SpecPHI PreOptimization

CacheLICM Inlining PreOpt

Templating PHI LoopBound PreOptimization

Ablation Analysis of Optimizations

42

Forward (1x) 10x 100x 1000x OOM

XSBench

RSBench

LULESH

LBM

DG (CUDA)

DG (ROCm)
5.4⇥
o

1378.3⇥
o

116.6⇥
o

17.8⇥
o

19.87⇥
o

8.7⇥
o

6.4⇥
o

2979.1⇥
o

2.4⇥
o

2.0⇥
o

6372.2⇥
o

9.5⇥
o

4.7⇥
o

25.9⇥
o

16.3⇥
o

9.5⇥
o

3.2⇥
o

Overhead above Forward Pass

Unrolling

Unrolling MallocCoalescing PreOptimization

Allocator Recompute InlineCacheABI

SpecPHI PreOptimization

CacheLICM Inlining PreOpt

Templating PHI LoopBound PreOptimization

Ablation Analysis of Optimizations

43

Forward (1x) 10x 100x 1000x OOM

XSBench

RSBench

LULESH

LBM

DG (CUDA)

DG (ROCm)
5.4⇥
o

1378.3⇥
o

116.6⇥
o

17.8⇥
o

19.87⇥
o

8.7⇥
o

6.4⇥
o

2979.1⇥
o

2.4⇥
o

2.0⇥
o

6372.2⇥
o

9.5⇥
o

4.7⇥
o

25.9⇥
o

16.3⇥
o

9.5⇥
o

3.2⇥
o

Overhead above Forward Pass

Unrolling

Unrolling MallocCoalescing PreOptimization

Allocator Recompute InlineCacheABI

SpecPHI PreOptimization

CacheLICM Inlining PreOpt

Templating PHI LoopBound PreOptimization

Ablation Analysis of Optimizations

GPU AD is Intractable Without Optimization!

Scalability Analysis (Fixed Work Per Thread)

44

0 2 4 6 8 10 12

5

10

15

20

Relative Problem Size

A
D

O
ve
rh
ea
d
(f
ac
to
r)

Discontinuous Galerkin (Julia & CUDA)
Discontinuous Galerkin (Julia & ROCm)

LULESH (C++ & CUDA)
RSBench (C & CUDA)
XSBench (C & CUDA)

0 2 4 6 8 10 12

5

10

15

20

Relative Problem Size

A
D

O
ve
rh
ea
d
(f
ac
to
r)

Discontinuous Galerkin (Julia & CUDA)
Discontinuous Galerkin (Julia & ROCm)

LULESH (C++ & CUDA)
RSBench (C & CUDA)
XSBench (C & CUDA)

• Caching within automatic differentiation requires solving a data availability problem for
maximum performance

• Enzyme contains utilities to analyze both the serial and parallel dependency structure of the
program and contains several optimizations to locally reduce cache sizes

• Presently, Enzyme keeps the schedule for the original program and for both the augmented
forward and reverse pass

• Can we leverage Legion to analyze the dependence structure, develop a minimum cache using
domain-specific information, and provide high performance (and perhaps distinct) mappings
for the forward and reverse pass?

 Enzyme + Legion

45

• Tool for performing reverse-mode AD of statically analyzable LLVM IR

• Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)

• 4.2x speedup over AD before optimization on CPU

• State-of-the art performance with existing tools

• First general purpose reverse-mode GPU AD

• Novel GPU and AD-specific optimizations improve runtime by several orders of magnitude

• PyTorch-Enzyme & TensorFlow-Enzyme lets researchers use foreign code in ML workflow

 Enzyme

46

Acknowledgements

• Thanks to James Bradbury, Alex Chernyakhovsky, Hal Finkel, Laurent Hascoet, Mike Innes, Tim
Kaler, Charles Leiserson, Yingbo Ma, Chris Rackauckas, TB Schardl, Lizhou Sha, Yo Shavit, Dhash
Shrivathsa, Nalini Singh, Miguel Young de la Sota, and Alex Zinenko

• William S. Moses was supported in part by a DOE Computational Sciences Graduate Fellowship
DESC0019323.

• Valentin Churavy was supported in part by the Defense Advanced Research Projects Agency
(DARPA) under Agreement No. HR0011-20-9-0016, and in part by NSF Grant OAC-1835443.

• This research was supported in part by LANL grant 531711. Research was sponsored by the United
States Air Force Research Laboratory and was accomplished under Cooperative Agreement
Number FA8750-19-2-1000.

• The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the United States Air
Force or the U.S. Government.47

• Caching within automatic differentiation requires solving a data availability problem for
maximum performance

• Enzyme contains utilities to analyze both the serial and parallel dependency structure of the
program and contains several optimizations to locally reduce cache sizes

• Presently, Enzyme keeps the schedule for the original program and for both the augmented
forward and reverse pass

• Can we leverage Legion to analyze the dependence structure, develop a minimum cache using
domain-specific information, and provide high performance (and perhaps distinct) mappings
for the forward and reverse pass?

 Enzyme + Legion

48

• Tool for performing reverse-mode AD of statically analyzable LLVM IR

• Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)

• 4.2x speedup over AD before optimization on CPU

• State-of-the art performance with existing tools

• First general purpose reverse-mode GPU AD

• Novel GPU and AD-specific optimizations improve runtime by several orders of magnitude

• PyTorch-Enzyme & TensorFlow-Enzyme lets researchers use foreign code in ML workflow

 Enzyme

49

 Enzyme

50

Scalability Analysis (Fixed Thread Count)

51

0 100 200 300 400 500 600

6.35

6.4

6.45

Iterations

A
D

O
v
e
r
h
e
a
d
(
fa
c
t
o
r
)

LBM – Parboil (C & CUDA)

PyTorch-Enzyme & TensorFlow-Enzyme

import torch
from torch_enzyme import enzyme

Create some initial tensor
inp = …

Apply foreign function to tensor
out = enzyme("test.c", “f").apply(inp)

Derive gradient
out.backward()
print(inp.grad)

import tensorflow as tf
from tf_enzyme import enzyme

Create some initial tensor
inp = tf.Variable(…)

Use external C code as a regular TF op
out = enzyme(inp, filename=“test.c",
 function=“f”)

Results is a TF tensor
out = tf.sigmoid(out)

// Input tensor + size, and output tensor
void f(float* inp, size_t n, float* out);

// diffe_dupnoneed specifies not recomputing the output
void diffef(float* inp, float* d_inp, size_t n, float* d_out) {
 __enzyme_autodiff(f, diffe_dup, inp, d_inp, n, diffe_dupnoneed, (float*)0, d_out);
}

52

Case Study: Read Sum

entry

for.body

%result = phi [%call, cond.true], [0, entry]
ret %resultfor.cleanup

br for.body

 %i = phi [0, entry], [%i.next, for.body]
 %total = phi [0.0, %entry], [%add, for.body]
 %call = @read()
 %0 = load %x[%i]
 %mul = %0 * %call
 %add = %mul + %total
 %i.next = %i + 1
 %exitcond = %i.next == 10
 br %exitcond, for.cleanup, for.body

double sum(double* x) {
 double total = 0;

 for(int i=0; i<10; i++)
 total += read() * x[i];

 return total;
}

define double @sum(double* %x)

void diffe_sum(double* x, double* xp) {
 return __enzyme_autodiff(sum, x, xp);
}

Case Study: Read Sum

entry

for.body

%result = phi [%call, cond.true], [0, entry]
ret %resultfor.cleanup

br for.body

 %i = phi [0, entry], [%i.next, for.body]
 %total = phi [0.0, %entry], [%add, for.body]
 %call = @read()
 %0 = load %x[%i]
 %mul = %0 * %call
 %add = %mul + %total
 %i.next = %i + 1
 %exitcond = %i.next == 10
 br %exitcond, for.cleanup, for.body

define double @sum(double* %x)

Active Variables

Case Study: Read Sum

entry

for.body

%result = phi [%call, cond.true], [0, entry]
ret %resultfor.cleanup

br for.body

 %i = phi [0, entry], [%i.next, for.body]
 %total = phi [0.0, %entry], [%add, for.body]
 %call = @read()
 %0 = load %x[%i]
 %mul = %0 * %call
 %add = %mul + %total
 %i.next = %i + 1
 %exitcond = %i.next == 10
 br %exitcond, for.cleanup, for.body

define double @sum(double* %x)

Each register in the
for loop represents a
distinct active variable

every iteration

entry

for.body

%result = phi [%call, cond.true], [0, entry]
ret %resultfor.cleanup

alloca %x’ = 0.0
alloca %total’ = 0.0
alloca %0’ = 0.0
alloca %mul’ = 0.0
alloca %add’ = 0.0
alloca %result’ = 0.0

br for.body

 %i = phi [0, entry], [%i.next, for.body]
 %total = phi [0.0, %entry], [%add, for.body]
 %call = @read()
 %0 = load %x[%i]
 %mul = %0 * %call
 %add = %mul + %total
 %i.next = %i + 1
 %exitcond = %i.next == 10
 br %exitcond, for.cleanup, for.body

define double @diffe_sum(double* %x, double* %xp)

Allocate & zero
shadow memory
per active value

entry

for.body

%result = phi [%call, cond.true], [0, entry]
@free(%cache)
ret %result

for.cleanup

alloca %x’ = 0.0
alloca %total’ = 0.0
alloca %0’ = 0.0
alloca %mul’ = 0.0
alloca %add’ = 0.0
alloca %result’ = 0.0
%call_cache = @malloc(10 x double)
br for.body

 %i = phi [0, entry], [%i.next, for.body]
 %total = phi [0.0, %entry], [%add, for.body]
 %call = @read()
 store %call_cache[%i] = %call
 %0 = load %x[%i]
 %mul = %0 * %call
 %add = %mul + %total
 %i.next = %i + 1
 %exitcond = %i.next == 10
 br %exitcond, for.cleanup, for.body

define double @diffe_sum(double* %x, double* %xp)

Cache forward pass
variables for use in

reverse

entry

for.body

@free(%cache)
ret

exit

%call_cache = @malloc(10 x double)
br for.body

 %i = phi [0, entry], [%i.next, for.body]
 %total = phi [0.0, %entry], [%add, for.body]
 %call = @read()
 store %call_cache[%i] = %call
 %i.next = %i + 1
 %exitcond = %i.next == 10
 br %exitcond, reversefor.body, for.body

define void @diffe_sum(double* %x, double* %xp)

 %i' = phi [9, for.body], [%i’.next, reversefor.body]
 %i’.next = %i' - 1
 %cached_read = load %call_cache[%i’]
 store %xp[%i’] = %cached_read + %xp[%i’]
 %exit2 = %i = 0
 br %exitcond, %exit2, reversefor.body

reversefor.body

After lowering &
some optimizations

Case Study: Read Sum

entry %call0 = @read()
 store %xp[0] = %call0
 %call1 = @read()
 store %xp[1] = %call1
 %call2 = @read()
 store %xp[2] = %call2
 %call3 = @read()
 store %xp[3] = %call3
 %call4 = @read()
 store %xp[4] = %call4
 %call5 = @read()
 store %xp[5] = %call5
 %call6 = @read()
 store %xp[6] = %call6
 %call7 = @read()
 store %xp[7] = %call7
 %call8 = @read()
 store %xp[8] = %call8
 %call9 = @read()
 store %xp[9] = %call9
 ret

define void @diffe_sum(double* %x, double* %xp)

void diffe_sum(double* x, double* xp) {
 xp[0] = read();
 xp[1] = read();
 xp[2] = read();
 xp[3] = read();
 xp[4] = read();
 xp[5] = read();
 xp[6] = read();
 xp[7] = read();
 xp[8] = read();
 xp[9] = read();
}

After more
optimizations

Enzyme on the GPU

60

• Care must be taken to both ensure
correctness and maintain parallelism.

• GPU programs have much lower memory
limits. Performance is highly dependent on the
number of memory transfers.

• Without first running optimizations reverse-
mode AD of large kernels is intractable (OOM).

• Novel GPU and AD-specific optimizations can
make a difference of several orders of
magnitude when computing gradients.

CUDA Automatic Differentiation

• Enzyme enables differentiation of CPU programs without rewriting them in a DSL.

• Similarly, GPU programs cannot currently be differentiated without being rewritten in a
differentiable language (e.g. PyTorch).

• Enzyme enables reverse-mode AD of general existing GPU programs by:

• Resolving potential data race issues

• Differentiating parallel control (syncthreads)

• Differentiating CUDA intrinsics (e.g. threadIdx.x /llvm.nvvm.read.ptx.sreg.tid.x)

• Handling shared memory
61

CUDA Automatic Differentiation

• Most CUDA intrinsics [e.g. threadIdx.x] are inactive and recomputable and thus are
incorporated into Enzyme without any special handling

• Derivative of syncthreads is a syncthreads at the corresponding place in reverse pass

• Shared memory is handled by making a second shared memory allocation to act as the
shadow for any potentially active uses

62

 Enzyme

63

• Tool for performing reverse-mode AD of statically analyzable LLVM IR

• Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)

• 4.2x speedup over AD before optimization

• State-of-the art performance with existing tools

• Differentiate GPU kernels

• Open Source (enzyme.mit.edu / github.com/wsmoses/Enzyme)

• PyTorch-Enzyme & TensorFlow-Enzyme imports foreign code in ML workflow

http://enzyme.mit.edu
https://github.com/wsmoses/Enzyme

CUDA Automatic Differentiation

64

%res = load %ptr

 %tmp = load %d_res
 store %d_res = 0
 atomic %d_ptr += %tmp

store %ptr = %val

 %tmp = load %d_ptr
 store %d_ptr = 0
 load/store %d_val += %tmp

• Shadow Registers %d_res and
%d_val are thread-local as they
shadow thread-local registers.

• No risk of races and no special
handling required.

• Both %ptr and shadow %d_ptr might
be raced upon and require analysis.

GPU Automatic Differentiation

• Prior work has not explored reverse mode AD of GPU kernels

• Similarly, GPU programs cannot currently be differentiated without being rewritten in a differentiable
language (e.g. PyTorch).

• Enzyme enables reverse-mode AD of general existing GPU programs by:

• Resolving potential data race issues

• Differentiating parallel control (syncthreads)

• Differentiating CUDA intrinsics (e.g. threadIdx.x /llvm.nvvm.read.ptx.sreg.tid.x)

• Handling shared memory
65

 Enzyme

66

• Tool for performing reverse-mode AD of statically analyzable LLVM IR

• Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)

• 4.2x speedup over AD before optimization

• State-of-the art performance with existing tools

• Differentiate GPU kernels

• Open Source (enzyme.mit.edu / github.com/wsmoses/Enzyme)

• PyTorch-Enzyme & TensorFlow-Enzyme imports foreign code in ML workflow

http://enzyme.mit.edu
https://github.com/wsmoses/Enzyme

Custom Derivatives & Multisource

• One can specify custom forward/reverse passes of functions by attaching metadata 
 
 

• Enzyme leverages LLVM’s link-time optimization (LTO) & “fat libraries” to ensure that LLVM
bitcode is available for all potential differentiated functions before AD

__attribute__((enzyme("augment", augment_func)))
__attribute__((enzyme("gradient", gradient_func)))
double func(double n);

67

CUDA Performance Improvements

• Introduce optimizations to reduce the use of memory

• Alias Analysis to determine legality of recomputing an instruction

• More aggressive alias analysis properties of syncthreads

• Don’t cache unnecessary values

• Move cache outside of loops when possible

• Heap-to-stack [and to register]

• Don’t cache memory itself acting as a cache [such as shared memory]

68

Enzyme Differentiation Algorithm

• Type Analysis

• Activity Analysis

• Synthesize derivatives

• Forward pass that mirrors original code

• Reverse pass inverts instructions in forward pass (adjoints) to compute derivatives

• Optimize

Activity Analysis

• Determines what instructions could impact derivative computation

• Avoids taking meaningless or unnecessary derivatives (e.g. d/dx cpuid)

• Instruction is active iff it can propagate a differential value to its return or memory

• Build off of alias analysis & type analysis

• E.g. all read-only function that returns an integer are inactive since they cannot propagate
adjoints through the return or to any memory location

Compiler Analyses Better Optimize AD

• Existing

• Alias analysis results that prove a function does not write to memory, we can prove that
additional function calls do not need to be differentiated since they cannot impact the output

• Don’t cache equivalent values

• Statically allocate caches when a loop’s bounds can be determined in advance

71

Decomposing the “Tape”

• Performing AD on a function requires data structures to compute

• All values necessary to compute adjoints are available [cache]

• Place to store adjoints [shadow memory]

• Record instructions [we are static]

• Creating these directly in LLVM allows us to explicitly specify their behavior for optimization,
unlike approaches that call out to a library

• For more details look in paper

72

Conventional Wisdom: AD Only Feasible at High-Level

• Automatic Differentiation requires high level semantics to produce gradients

• Lack of high-level information can hinder performance of low-level AD

• “AD is more effective in high-level compiled languages (e.g. Julia, Swift, Rust, Nim) than
traditional ones such as C/C++, Fortran and LLVM IR […]” -Innes[1]

 

[1] Michael Innes. Don’t Unroll Adjoint: Differentiating SSA-Form Programs. arXiv preprint arXiv:1810.07951, 2018

73

Differentiation Is Key To Machine Learning

• Hinders application of ML to new domains

• Synthesizing gradients aims to close this gap

// PyTorch rewrite of nbody simulator
import torch

def step(bodies, dt):
 acc = []
 for i in range(len(bodies)):
 acc.push(torch.zeros([3]))
 for j in range(len(bodies)):
 if i == j: continue
 acc[i] += force(bodies[i], bodies[j]) /
 bodies[i].mass

 for i, body in enumerate(bodies):
 body.vel += acc[i] * dt
 body.pos += body.vel * dt

// C++ nbody simulator

void step(std::array<Planet> bodies, double dt) {
 vec3 acc[bodies.size()];
 for (size_t i=0; i<bodies.size(); i++) {
 acc[i] = vec3(0, 0, 0);
 for (size_t j=0; j<bodies.size(); j++) {
 if (i == j) continue;
 acc[i] += force(bodies[i], bodies[j]) /
 bodies[i].mass;
 }
 }
 for (size_t i=0; i<bodies.size(); i++) {
 bodies[i].vel += acc[i] * dt;
 bodies[i].pos += bodies[i].vel * dt;
 }
}

74

Lower Enzyme .

Optimize

CodeGen

Optimize

 Enzyme Overturns Conventional Wisdom

• As fast or faster than state-of-the-art tools

• Running after optimization enables a 4.2x speedup

• Necessary semantics for AD derived at low-level (with potential cooperation of frontend)

75

Parallel Memory Detection

• Thread-local memory

• Non-atomic load/store

• Same memory location across all threads

• Parallel Reduction

• Others [always legal fallback]

• Atomic increment

76

 %tmp = load %d_res
 store %d_res = 0
 atomic %d_ptr += %tmp

Differentiation of SyncThreads

77

codeA(); // store %ptr

sync_threads;

codeB(); // store %ptr

…

diffe_codeB(); // load %d_ptr
 // store %d_ptr = 0

sync_threads;

diffe_codeA(); // load %d_ptr
 // store %d_ptr = 0

Case 3 [write sync write]

All uses of stores to d_ptr in diffe_B will
correctly complete prior to diffe_A

codeA(); // load %ptr

sync_threads;

codeB(); // load %ptr

…

diffe_codeB(); // atomicAdd %d_ptr

sync_threads;

diffe_codeA(); // atomicAdd %d_ptr

Case 4 [read sync read]

Original and differential sync unnecessary and
legal to include

CUDA Performance Improvements

• Introduce optimizations to reduce the use of memory

• Alias Analysis to determine legality of recomputing an instruction

• More aggressive alias analysis properties of syncthreads

• Don’t cache unnecessary values

• Move cache outside of loops when possible

• Heap-to-stack [and to register]

• Don’t cache memory itself acting as a cache [such as shared memory]

• PHI Node unwrapping
78

Case 2: Load, Sync, Store

79

codeA(); // load %ptr

sync_threads;

codeB(); // store %ptr

…

diffe_codeB(); // load %d_ptr
 // store %d_ptr = 0

sync_threads;

diffe_codeA(); // atomicAdd %d_ptr

 Correct

• All of the stores of d_ptr will
complete prior to any atomicAdds

No cross-thread race here since
that’s equivalent to a write race in B

Case 3: Store, Sync, Store

80

codeA(); // store %ptr

sync_threads;

codeB(); // store %ptr

…

diffe_codeB(); // load %d_ptr
 // store %d_ptr = 0

sync_threads;

diffe_codeA(); // load %d_ptr
 // store %d_ptr = 0

 Correct

• All stores to d_ptr in diffe_B will
complete prior to diffe_A, ensuring
only the clobbering store has its
derivative incremented

