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Differentiation Is Key To Machine Learning And Science

• Computing derivatives is key to many algorithms


• Machine learning (back-propagation, Bayesian inference, uncertainty quantification)


• Scientific computing (modeling, simulation)


• When working with large codebases or dynamically-generated programs, manually writing 
derivative functions becomes intractable


• Community has developed tools to create derivatives automatically
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Existing AD Approaches

• Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)


• Provide a new language designed to be differentiated


• Requires rewriting everything in the DSL and the DSL must support all operations in original code


• Fast if DSL matches original code well


• Operator overloading (Adept, JAX)


• Provide differentiable versions of existing language constructs (double => adouble, np.sum => 
jax.sum)


• May require writing to use non-standard utilities


• Often dynamic: storing instructions/values to later be interpreted



Existing AD Approaches

• Source rewriting


• Statically analyze program to produce a new gradient function in the source language


• Re-implement parsing and semantics of given language


• Requires all code to be available ahead of time


• Difficult to use with external libraries



Existing Automatic Differentiation Pipelines
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Case Study: Vector Normalization

//Compute magnitude in O(n) 
double mag(double[] x); 

//Compute norm in O(n^2) 
void norm(double[] out, double[] in) { 

  for (int i=0; i<n; i++) { 
    out[i] = in[i] / mag(in); 
  } 
}

7



Case Study: Vector Normalization

//Compute magnitude in O(n) 
double mag(double[] x); 

//Compute norm in O(n) 
void norm(double[] out, double[] in) { 
  double res = mag(in); 
  for (int i=0; i<n; i++) { 
    out[i] = in[i] / res; 
  } 
}
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Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
res = mag(in) 
for i=0..n { 
  out[i] /= res 
}

d_res = 0.0  
for i=n..0 { 
  d_res += d_out[i]… 
} 
∇mag(d_in, d_res)

O (n)
for i=0..n { 
  out[i] /= mag(in) 
}
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Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
for i=0..n { 
  out[i] /= mag(in) 
}

res = mag(in) 
for i=0..n { 
  out[i] /= res 
}

d_res = 0.0  
for i=n..0 { 
  d_res += d_out[i]… 
} 
∇mag(d_in, d_res)

O (n)

O (n2)
for i=0..n { 
  out[i] /= mag(in) 
} AD

for i=n..0 { 
  d_res = d_out[i]… 
  ∇mag(d_in, d_res) 
}

O (n2)
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Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
for i=0..n { 
  out[i] /= mag(in) 
}

res = mag(in) 
for i=0..n { 
  out[i] /= res 
}

d_res = 0.0  
for i=n..0 { 
  d_res += d_out[i]… 
} 
∇mag(d_in, d_res)

O (n)

O (n2)O (n2)
for i=0..n { 
  out[i] /= mag(in) 
} AD

for i=n..0 { 
  d_res = d_out[i]… 
  ∇mag(d_in, d_res) 
}

O (n2)
for i=n..0 { 
  d_res = d_out[i]… 
  ∇mag(d_in, d_res) 
}

Optimize
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Optimization & Automatic Differentiation

Differentiating after optimization can create asymptotically faster gradients!

Optimize

O (n2) O (n)

AD
for i=0..n { 
  out[i] /= mag(in) 
}

res = mag(in) 
for i=0..n { 
  out[i] /= res 
}

d_res = 0.0  
for i=n..0 { 
  d_res += d_out[i]… 
} 
∇mag(d_in, d_res)

O (n)

O (n2)O (n2)
for i=0..n { 
  out[i] /= mag(in) 
} AD

for i=n..0 { 
  d_res = d_out[i]… 
  ∇mag(d_in, d_res) 
}

O (n2)
Optimize

for i=n..0 { 
  d_res = d_out[i]… 
  ∇mag(d_in, d_res) 
}
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Lower Enzyme   .

Optimize

CodeGen

Optimize

       Enzyme Approach

Performing AD at low-level lets us work on optimized code!
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Why Does Enzyme Use LLVM?

• Generic low-level compiler infrastructure with many 
frontends


• “Cross platform assembly”


• Many backends (CPU, CUDA, AMDGPU, etc)


• Well-defined semantics


• Large collection of optimizations and analyses
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Case Study: ReLU3

entry

cond.true

%result = phi [%call, cond.true], [0, entry] 
ret %resultcond.end

%cmp = %x > 0 
br %cmp, cond.true, cond.end

%call = pow(%x, 3) 
br cond.end

double relu3(double x) { 
  double result; 
  if (x > 0) 
    result = pow(x, 3); 
  else 
    result = 0; 
  return result; 
}

define double @relu3(double %x)

double diffe_relu3(double x) { 
  return __enzyme_autodiff(relu3, x); 
}

C Source LLVM 

Enzyme Usage
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Case Study: ReLU3

entry

cond.true

%result = phi [%call, cond.true], [0, entry] 
ret %result

cond.end

%cmp = %x > 0 
br %cmp, cond.true, cond.end

%call = pow(%x, 3) 
br cond.end

define double @relu3(double %x)

Active Instructions
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entry

cond.true

%result = phi [%call, cond.true], [0, entry] 

; deleted return 

%result’ = 1.0 
br reverse_cond.end

cond.end

alloca %result’ = 0.0 
alloca %call’   = 0.0 
alloca %x’      = 0.0 
%cmp = %x > 0 
br %cmp, cond.true, cond.end

%call = pow(%x, 3) 
br cond.end

define double @diffe_relu3(double %x, double %differet)

Allocate & zero 
shadow memory for 

active values
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entry

cond.true

%result = phi [%call, cond.true], [0, entry] 

; deleted return 

%result’ = 1.0 
br reverse_cond.end

cond.end

alloca %result’ = 0.0 
alloca %call’   = 0.0 
alloca %x’      = 0.0 
%cmp = %x > 0 
br %cmp, cond.true, cond.end

%call = pow(%x, 3) 
br cond.end

define double @diffe_relu3(double %x, double %differet)

%tmp_res’ = load %result’ 
%call’ += if %x > 0 then %tmp_res’ else 0 
store %result’ = 0.0 
br %cmp, reverse_cond.true, reverse_entry

reverse_cond.end%df = 3 * pow(%x, 2) 
%tmp_call’ = load %call 
%x’ += %df * %tmp_call’ 
store %call’ = 0.0 
br reverse_entry

%0 = load %x’ 
ret %0

reverse_entry

reverse_cond.true

Compute adjoints 
for active instructions
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entry

cond.true

%result = phi [%call, cond.true], [0, entry] 

; deleted return 

%result’ = 1.0 
br reverse_cond.end

cond.end

alloca %result’ = 0.0 
alloca %call’   = 0.0 
alloca %x’      = 0.0 
%cmp = %x > 0 
br %cmp, cond.true, cond.end

%call = pow(%x, 3) 
br cond.end

define double @diffe_relu3(double %x, double %differet)

%tmp_res’ = load %result’ 
%call’ += if %x > 0 then %tmp_res’ else 0 
store %result’ = 0.0 
br %cmp, reverse_cond.true, reverse_entry

reverse_cond.end%df = 3 * pow(%x, 2) 
%tmp_call’ = load %call 
%x’ += %df * %tmp_call’ 
store %call’ = 0.0 
br reverse_entry

%0 = load %x’ 
ret %0

reverse_entry

reverse_cond.true

Compute adjoints 
for active instructions
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entry %cmp = %x > 0 
br %cmp, reverse_cond.true, reverse_entry

define double @diffe_relu3(double %x)

%3 = 3 * pow(%x, 2) 
br reverse_entry

%0 = phi [%3, reverse_cond.true], [0, entry] 
ret %0

reverse_entry
reverse_cond.true

Essentially the optimal hand-written gradient!

double diffe_relu3(double x) { 
  double result; 
  if (x > 0) 
    result = 3 * pow(x, 2); 
  else 
    result = 0; 
  return result; 
}

Post 
Optimization
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Challenges of Low-Level AD

• Low-level code lacks information necessary to compute adjoints

8: Pointer 0: Integer
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void f(void* dst, void* src) { 
  memcpy(dst, src, 8); 
}

void grad_f(double* dst, double* dst’, 
            double* src, double* src’) { 
  // Forward Pass 
  memcpy(dst, src, 8); 

  // Reverse Pass 
  src’[0] += dst’[0]; 
  dst’[0] = 0; 
}

void grad_f(float* dst, float* dst’, 
            float* src, float* src’) { 
  // Forward Pass 
  memcpy(dst, src, 8); 

  // Reverse Pass 
  src’[0] += dst’[0]; 
  dst’[0] = 0; 
  src’[1] += dst’[1]; 
  dst’[1] = 0; 
}



Type Analysis

struct MyType { 
  double; 
  int*; 
} 

x = MyType*;

0: Pointer
x

0: Double
8: Pointer

MyType

0: Integer
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• New interprocedural dataflow analysis that detects the underlying type of data


• Each value has a set of memory offsets : type


• Perform series of fixed-point updates through instructions

types(x) = {[0]:Pointer, [0,0]:Double, [0,8]:Pointer, [0,8,0]:Integer}



Cache

• Adjoint instructions may require values from the forward pass


• e.g. ∇(x * y) => x dy + y dx


• For all values needed in the reverse, allocate memory in the forward pass to store the value


• Values computed inside loops are stored in an array indexed by the loop induction variable


• Array allocated statically if possible; otherwise dynamically realloc’d



Experimental Setup

Enzyme:

Ref:

Tapenade:

Adept: -O2

Enzyme      .

Tapenade

Adept

• Collection of benchmarks from Microsoft’s ADBench suite and of technical interest

-O2

-O2-O2

-O2-O2

-O2 Enzyme      . -O2
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Speedup of Enzyme 
H

ig
he

r i
s 

Be
tte

r

Enzyme is 4.2x faster than Reference!
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Automatic Differentiation & GPUs

• Prior work has not explored reverse mode AD of existing GPU kernels


• Reversing parallel control flow can lead to incorrect results


• Complex performance characteristics make it difficult to synthesize efficient code


• Resource limitations can prevent kernels from running at all
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Challenges of Parallel AD

• The adjoint of an instruction increments the derivative of its input


• Benign read race in forward pass => Write race in reverse pass (undefined behavior)
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void set(double* ar, double val) { 

  parallel_for(int i=0; i<10; i++) 
    ar[i] = val; 
}

double gradient_set(double* ar, double* d_ar, 
                    double val) { 
  double d_val = 0.0; 

  parallel_for(int i=0; i<10; i++) 
    ar[i] = val; 

  parallel_for(int i=0; i<10; i++) { 
    d_val += d_ar[i]; 
    d_ar[i] = 0.0; 
  } 

  return d_val; 
}

Read Race
Write Race



GPU Memory Hierarchy
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Slower, larger amount of memory

Per Thread Per Block Per GPU

~Bytes ~KBs ~GBs

Register Shared Memory Global Memory

Use Limits Parallelism Use Limits Parallelism



Correct and Efficient Derivative Accumulation

Thread-local memory 

• Non-atomic load/store
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__device__ 
void f(…) { 

  // Thread-local var 
  double y; 
 
  … 

  d_y += val; 
}

Same memory location across 
all threads (some shared mem)


• Parallel Reduction

Others [always legal fallback] 

• Atomic increment

// Same var for all threads 
double y; 
 
__device__ 
void f(…) { 
 
  … 

  reduce_add(&d_y, val); 
}

 
__device__ 
// Unknown thread-aliasing 
void f(double* y) { 
 
  … 

  atomic { d_y += val; } 
} 
 

Slower



Synchronization Primitives
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codeA(); 

sync_threads; 

codeB(); 

• Synchronization (sync_threads) ensures all threads finish executing 
codeA before executing codeB


• Sync is only necessary if A and B may access to the same memory


• Assuming the original program is race-free, performing a sync at the 
corresponding location in the reverse ensures correctness


• Prove correctness of algorithm by cases



Case 1: Store, Sync, Load
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codeA(); // store %ptr 

sync_threads; 

codeB(); // load %ptr 

… 

diffe_codeB(); // atomicAdd %d_ptr 

sync_threads; 

diffe_codeA(); // load %d_ptr 
               // store %d_ptr = 0 

          Correct


• Load of d_ptr must happen after 
all atomicAdds have completed




CUDA Example
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__device__ void inner(float* a, float* x, float* y) { 
  y[threadIdx.x] = a[0] * x[threadIdx.x]; 
} 
__device__ void __enzyme_autodiff(void*, …); 

__global__ void daxpy(float* a, float* da, float* x, float* dx, float* y, float* dy) { 
  __enzyme_autodiff((void*)inner, a, da, x, dx, y, dy); 
}

__device__ void diffe_inner(float* a, float* da, float* x, float* dx, float* y, float* dy) { 
  y[threadIdx.x] = a[0] * x[threadIdx.x]; 

  float dy = dy[threadIdx.x]; 
  dy[threadIdx.x] = 0.0f; 

  float dx_tmp = a[0] * dy; 
  atomic { dx[threadIdx.x] += dx_tmp; } 

  float da_tmp = x[threadIdx.x] * dy; 
  atomic { da[0] += da_tmp; } 
} 



Efficient GPU Code
• Without optimization, GPU gradients must cache a large number of values


• The complexity of GPU memory means large caches slow down the program by several 
orders of magnitude, if it even fits at all


• Like the CPU, existing LLVM optimizations can reduce the overhead


• Unlike the CPU, existing LLVM optimizations aren’t sufficient


• Novel GPU and AD-specific optimizations can speedup by several orders of magnitude
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When LLVM Doesn’t Cut It
• Enzyme relies on optimizations 

such as LICM and CSE to eliminate 
redundant loads, and thus 
redundant caches.


• Since we instead need to preserve 
values for the reverse pass, these 
optimizations may not apply
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for(int i=0; i<N; i++) { 
  for(int j=0; j<M; j++) { 
    use(array[i]); 
  } 
} 

overwrite(array);

for(int i=0; i<N; i++) { 
  for(int j=0; j<M; j++) { 
    
    use(array[j]); 
  } 
} 

overwrite(array); 

   



When LLVM Doesn’t Cut It
• Enzyme relies on optimizations 

such as LICM and CSE to eliminate 
redundant loads, and thus 
redundant caches.


• Since we instead need to preserve 
values for the reverse pass, these 
optimizations may not apply


• This requires far more caching than 
necessary
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double* cache = new double[N*M]; 

for(int i=0; i<N; i++) { 
  for(int j=0; j<M; j++) { 
    cache[i*M+j] = array[j]; 
    use(array[j]); 
  } 
} 

overwrite(array); 
grad_overwrite(array); 

for(int i=0; i<N; i++) { 
  for(int j=M-1; i<M; i++) { 
    grad_use(cache[i*M+j], d_array[j]); 
  } 
} 



When LLVM Doesn’t Cut It
• Enzyme relies on optimizations 

such as LICM and CSE to eliminate 
redundant loads, and thus 
redundant caches.


• Since we instead need to preserve 
values for the reverse pass, these 
optimizations may not apply


• This requires far more caching than 
necessary


• By analyzing the read/write 
structure, we can hoist the cache.
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double* cache = new double[M]; 
memcpy(cache, array, sizeof(double)*M); 
for(int i=0; i<N; i++) { 
  for(int j=0; j<M; j++) { 

    use(array[j]); 
  } 
} 

overwrite(array); 
grad_overwrite(array); 

for(int i=0; i<N; i++) { 
  for(int j=M-1; i<M; i++) { 
    grad_use(cache[j], d_array[j]); 
  } 
} 



AD-Specific Cache
• Some optimizations require 

domain-specific knowledge


• Not all values are needed for the 
reverse pass. By considering the 
dataflow graph we can perform a 
min-cut to approximate smaller 
cache sizes.


• Not all (loop) sizes are known at 
compile-time, so this must be a 
heuristic
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double x_cache=x[0]; 
double y_cache=y[0]; 

use(x[0] + y[0]); 

overwrite(x, y); 
grad_overwrite(x, y); 

grad_use(x_cache + y_cache); 



AD-Specific Cache
• Some optimizations require 

domain-specific knowledge


• Not all values are needed for the 
reverse pass. By considering the 
dataflow graph we can perform a 
min-cut to approximate smaller 
cache sizes.


• Not all (loop) sizes are known at 
compile-time, so this must be a 
heuristic
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double xy_cache=x[0] + y[0]; 

use(x[0] + y[0]); 

overwrite(x, y); 
grad_overwrite(x, y); 

grad_use(xy_cache); 



GPU Gradient Overhead
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• Evaluation of both original code and gradient


• DG: Discontinuous-Galerkin integral (Julia)


• LBM: particle-based fluid dynamics 
simulation


• LULESH: unstructured explicit shock 
hydrodynamics solver


• XSBench & RSBench: Monte Carlo 
simulations of particle transport 
algorithms (memory & compute bound, 
respectively)

XSBench

RSBench

LULESH

LBM (Parboil)

DG (CUDA)

DG (ROCm)

3.2

4.2

2.01

6.3

18.35

5.4
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Forward (1x) 10x 100x 1000x OOM

XSBench

RSBench

LULESH

LBM

DG (CUDA)

DG (ROCm)
5.4⇥
o

1378.3⇥
o

116.6⇥
o

17.8⇥
o

19.87⇥
o

8.7⇥
o

6.4⇥
o

2979.1⇥
o

2.4⇥
o

2.0⇥
o

6372.2⇥
o

9.5⇥
o

4.7⇥
o

25.9⇥
o

16.3⇥
o

9.5⇥
o

3.2⇥
o

Overhead above Forward Pass

Unrolling

Unrolling MallocCoalescing PreOptimization

Allocator Recompute InlineCacheABI

SpecPHI PreOptimization

CacheLICM Inlining PreOpt

Templating PHI LoopBound PreOptimization

Ablation Analysis of Optimizations
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CacheLICM Inlining PreOpt

Templating PHI LoopBound PreOptimization

Ablation Analysis of Optimizations

GPU AD is Intractable Without Optimization!



Scalability Analysis (Fixed Work Per Thread)

44

0 2 4 6 8 10 12

5

10

15

20

Relative Problem Size

A
D

O
ve
rh
ea
d
(f
ac
to
r)

Discontinuous Galerkin (Julia & CUDA)
Discontinuous Galerkin (Julia & ROCm)

LULESH (C++ & CUDA)
RSBench (C & CUDA)
XSBench (C & CUDA)

0 2 4 6 8 10 12

5

10

15

20

Relative Problem Size

A
D

O
ve
rh
ea
d
(f
ac
to
r)

Discontinuous Galerkin (Julia & CUDA)
Discontinuous Galerkin (Julia & ROCm)

LULESH (C++ & CUDA)
RSBench (C & CUDA)
XSBench (C & CUDA)



• Caching within automatic differentiation requires solving a data availability problem for 
maximum performance


• Enzyme contains utilities to analyze both the serial and parallel dependency structure of the 
program and contains several optimizations to locally reduce cache sizes


• Presently, Enzyme keeps the schedule for the original program and for both the augmented 
forward and reverse pass


• Can we leverage Legion to analyze the dependence structure, develop a minimum cache using 
domain-specific information, and provide high performance (and perhaps distinct) mappings 
for the forward and reverse pass?


       Enzyme + Legion
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• Tool for performing reverse-mode AD of statically analyzable LLVM IR


• Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)


• 4.2x speedup over AD before optimization on CPU


• State-of-the art performance with existing tools


• First general purpose reverse-mode GPU AD


• Novel GPU and AD-specific optimizations improve runtime by several orders of magnitude


• PyTorch-Enzyme & TensorFlow-Enzyme lets researchers use foreign code in ML workflow


       Enzyme
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• Caching within automatic differentiation requires solving a data availability problem for 
maximum performance


• Enzyme contains utilities to analyze both the serial and parallel dependency structure of the 
program and contains several optimizations to locally reduce cache sizes


• Presently, Enzyme keeps the schedule for the original program and for both the augmented 
forward and reverse pass


• Can we leverage Legion to analyze the dependence structure, develop a minimum cache using 
domain-specific information, and provide high performance (and perhaps distinct) mappings 
for the forward and reverse pass?


       Enzyme + Legion
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• Tool for performing reverse-mode AD of statically analyzable LLVM IR


• Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)


• 4.2x speedup over AD before optimization on CPU


• State-of-the art performance with existing tools


• First general purpose reverse-mode GPU AD


• Novel GPU and AD-specific optimizations improve runtime by several orders of magnitude


• PyTorch-Enzyme & TensorFlow-Enzyme lets researchers use foreign code in ML workflow


       Enzyme

49



       Enzyme
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Scalability Analysis (Fixed Thread Count)
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PyTorch-Enzyme & TensorFlow-Enzyme

import torch 
from torch_enzyme import enzyme  

# Create some initial tensor 
inp = … 

# Apply foreign function to tensor 
out = enzyme("test.c", “f").apply(inp) 

# Derive gradient 
out.backward() 
print(inp.grad)

import tensorflow as tf 
from tf_enzyme import enzyme 

# Create some initial tensor 
inp = tf.Variable(…) 

# Use external C code as a regular TF op  
out = enzyme(inp, filename=“test.c", 
                  function=“f”) 

# Results is a TF tensor 
out = tf.sigmoid(out)

// Input tensor + size, and output tensor  
void f(float* inp, size_t n, float* out); 

// diffe_dupnoneed specifies not recomputing the output 
void diffef(float* inp, float* d_inp, size_t n, float* d_out) {  
  __enzyme_autodiff(f, diffe_dup, inp, d_inp, n, diffe_dupnoneed, (float*)0, d_out); 
}
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Case Study: Read Sum

entry

for.body

%result = phi [ %call, cond.true], [0, entry] 
ret %resultfor.cleanup

br for.body

  %i = phi [ 0, entry ], [ %i.next, for.body ] 
  %total = phi [ 0.0, %entry ], [ %add, for.body ] 
  %call = @read() 
  %0 = load %x[%i] 
  %mul = %0 * %call 
  %add = %mul + %total 
  %i.next = %i + 1 
  %exitcond = %i.next == 10 
  br %exitcond, for.cleanup, for.body

double sum(double* x) { 
  double total = 0; 

  for(int i=0; i<10; i++) 
    total += read() * x[i]; 

  return total; 
}

define double @sum(double* %x)

void diffe_sum(double* x, double* xp) { 
  return __enzyme_autodiff(sum, x, xp); 
}



Case Study: Read Sum

entry

for.body

%result = phi [%call, cond.true], [0, entry] 
ret %resultfor.cleanup

br for.body

  %i = phi [ 0, entry ], [ %i.next, for.body ] 
  %total = phi [ 0.0, %entry ], [ %add, for.body ] 
  %call = @read() 
  %0 = load %x[%i] 
  %mul = %0 * %call 
  %add = %mul + %total 
  %i.next = %i + 1 
  %exitcond = %i.next == 10 
  br %exitcond, for.cleanup, for.body

define double @sum(double* %x)

Active Variables



Case Study: Read Sum

entry

for.body

%result = phi [%call, cond.true], [0, entry] 
ret %resultfor.cleanup

br for.body

  %i = phi [ 0, entry ], [ %i.next, for.body ] 
  %total = phi [ 0.0, %entry ], [ %add, for.body ] 
  %call = @read() 
  %0 = load %x[%i] 
  %mul = %0 * %call 
  %add = %mul + %total 
  %i.next = %i + 1 
  %exitcond = %i.next == 10 
  br %exitcond, for.cleanup, for.body

define double @sum(double* %x)

Each register in the 
for loop represents a 
distinct active variable 

every iteration



entry

for.body

%result = phi [ %call, cond.true], [0, entry] 
ret %resultfor.cleanup

alloca %x’      = 0.0 
alloca %total’  = 0.0 
alloca %0’      = 0.0 
alloca %mul’    = 0.0 
alloca %add’    = 0.0 
alloca %result’ = 0.0 
 
br for.body

  %i = phi [ 0, entry ], [ %i.next, for.body ] 
  %total = phi [ 0.0, %entry ], [ %add, for.body ] 
  %call = @read() 
  %0 = load %x[%i] 
  %mul = %0 * %call 
  %add = %mul + %total 
  %i.next = %i + 1 
  %exitcond = %i.next == 10 
  br %exitcond, for.cleanup, for.body

define double @diffe_sum(double* %x, double* %xp)

Allocate & zero  
shadow memory 
per active value



entry

for.body

%result = phi [ %call, cond.true], [0, entry] 
@free(%cache) 
ret %result

for.cleanup

alloca %x’      = 0.0 
alloca %total’  = 0.0 
alloca %0’      = 0.0 
alloca %mul’    = 0.0 
alloca %add’    = 0.0 
alloca %result’ = 0.0 
%call_cache = @malloc(10 x double) 
br for.body

  %i = phi [ 0, entry ], [ %i.next, for.body ] 
  %total = phi [ 0.0, %entry ], [ %add, for.body ] 
  %call = @read() 
  store %call_cache[%i] = %call 
  %0 = load %x[%i] 
  %mul = %0 * %call 
  %add = %mul + %total 
  %i.next = %i + 1 
  %exitcond = %i.next == 10 
  br %exitcond, for.cleanup, for.body

define double @diffe_sum(double* %x, double* %xp)

Cache forward pass 
variables for use in 

reverse



entry

for.body

@free(%cache) 
ret

exit

%call_cache = @malloc(10 x double) 
br for.body

  %i = phi [ 0, entry ], [ %i.next, for.body ] 
  %total = phi [ 0.0, %entry ], [ %add, for.body ] 
  %call = @read() 
  store %call_cache[%i] = %call 
  %i.next = %i + 1 
  %exitcond = %i.next == 10 
  br %exitcond, reversefor.body, for.body

define void @diffe_sum(double* %x, double* %xp)

  %i' = phi [ 9, for.body ], [ %i’.next, reversefor.body ] 
  %i’.next = %i' - 1 
  %cached_read = load %call_cache[%i’] 
  store %xp[%i’] = %cached_read + %xp[%i’] 
  %exit2 = %i = 0 
  br %exitcond, %exit2, reversefor.body

reversefor.body

After lowering & 
some optimizations 



Case Study: Read Sum

entry  %call0 = @read() 
 store %xp[0] = %call0 
 %call1 = @read() 
 store %xp[1] = %call1 
 %call2 = @read() 
 store %xp[2] = %call2 
 %call3 = @read() 
 store %xp[3] = %call3 
 %call4 = @read() 
 store %xp[4] = %call4 
 %call5 = @read() 
 store %xp[5] = %call5 
 %call6 = @read() 
 store %xp[6] = %call6 
 %call7 = @read() 
 store %xp[7] = %call7 
 %call8 = @read() 
 store %xp[8] = %call8 
 %call9 = @read() 
 store %xp[9] = %call9 
 ret

define void @diffe_sum(double* %x, double* %xp)

void diffe_sum(double* x, double* xp) { 
   xp[0] = read(); 
   xp[1] = read(); 
   xp[2] = read(); 
   xp[3] = read(); 
   xp[4] = read(); 
   xp[5] = read(); 
   xp[6] = read(); 
   xp[7] = read(); 
   xp[8] = read(); 
   xp[9] = read(); 
}

After more 
optimizations 



Enzyme on the GPU 
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• Care must be taken to both ensure 
correctness and maintain parallelism. 


• GPU programs have much lower memory 
limits. Performance is highly dependent on the 
number of memory transfers.


• Without first running optimizations reverse-
mode AD of large kernels is intractable (OOM).


• Novel GPU and AD-specific optimizations can 
make a difference of several orders of 
magnitude when computing gradients.



CUDA Automatic Differentiation

• Enzyme enables differentiation of CPU programs without rewriting them in a DSL.


• Similarly, GPU programs cannot currently be differentiated without being rewritten in a 
differentiable language (e.g. PyTorch).


• Enzyme enables reverse-mode AD of general existing GPU programs by:


• Resolving potential data race issues


• Differentiating parallel control (syncthreads)


• Differentiating CUDA intrinsics (e.g. threadIdx.x /llvm.nvvm.read.ptx.sreg.tid.x)


• Handling shared memory
61



CUDA Automatic Differentiation

• Most CUDA intrinsics [e.g. threadIdx.x] are inactive and recomputable and thus are 
incorporated into Enzyme without any special handling


• Derivative of syncthreads is a syncthreads at the corresponding place in reverse pass


• Shared memory is handled by making a second shared memory allocation to act as the 
shadow for any potentially active uses
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       Enzyme

63

• Tool for performing reverse-mode AD of statically analyzable LLVM IR


• Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)


• 4.2x speedup over AD before optimization


• State-of-the art performance with existing tools


• Differentiate GPU kernels


• Open Source (enzyme.mit.edu / github.com/wsmoses/Enzyme)


• PyTorch-Enzyme & TensorFlow-Enzyme imports foreign code in ML workflow

http://enzyme.mit.edu
https://github.com/wsmoses/Enzyme


CUDA Automatic Differentiation
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%res = load %ptr

  %tmp = load %d_res 
  store %d_res = 0 
  atomic %d_ptr += %tmp

store %ptr = %val

  %tmp = load %d_ptr 
  store %d_ptr = 0 
  load/store %d_val += %tmp

• Shadow Registers %d_res and 
%d_val are thread-local as they 
shadow thread-local registers.


• No risk of races and no special 
handling required.


• Both %ptr and shadow %d_ptr might 
be raced upon and require analysis.



GPU Automatic Differentiation

• Prior work has not explored reverse mode AD of GPU kernels


• Similarly, GPU programs cannot currently be differentiated without being rewritten in a differentiable 
language (e.g. PyTorch).


• Enzyme enables reverse-mode AD of general existing GPU programs by:


• Resolving potential data race issues


• Differentiating parallel control (syncthreads)


• Differentiating CUDA intrinsics (e.g. threadIdx.x /llvm.nvvm.read.ptx.sreg.tid.x)


• Handling shared memory
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       Enzyme
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• Tool for performing reverse-mode AD of statically analyzable LLVM IR


• Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)


• 4.2x speedup over AD before optimization


• State-of-the art performance with existing tools


• Differentiate GPU kernels


• Open Source (enzyme.mit.edu / github.com/wsmoses/Enzyme)


• PyTorch-Enzyme & TensorFlow-Enzyme imports foreign code in ML workflow

http://enzyme.mit.edu
https://github.com/wsmoses/Enzyme


Custom Derivatives & Multisource

• One can specify custom forward/reverse passes of functions by attaching metadata 
 
 

• Enzyme leverages LLVM’s link-time optimization (LTO) & “fat libraries” to ensure that LLVM 
bitcode is available for all potential differentiated functions before AD

__attribute__((enzyme("augment", augment_func))) 
__attribute__((enzyme("gradient", gradient_func))) 
double func(double n);
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CUDA Performance Improvements

• Introduce optimizations to reduce the use of memory


• Alias Analysis to determine legality of recomputing an instruction


• More aggressive alias analysis properties of syncthreads


• Don’t cache unnecessary values


• Move cache outside of loops when possible


• Heap-to-stack [and to register]


• Don’t cache memory itself acting as a cache [such as shared memory]
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Enzyme Differentiation Algorithm

• Type Analysis


• Activity Analysis


• Synthesize derivatives


• Forward pass that mirrors original code


• Reverse pass inverts instructions in forward pass (adjoints) to compute derivatives


• Optimize



Activity Analysis

• Determines what instructions could impact derivative computation


• Avoids taking meaningless or unnecessary derivatives (e.g. d/dx cpuid)


• Instruction is active iff it can propagate a differential value to its return or memory


• Build off of alias analysis & type analysis


• E.g. all read-only function that returns an integer are inactive since they cannot propagate 
adjoints through the return or to any memory location



Compiler Analyses Better Optimize AD

• Existing 


• Alias analysis results that prove a function does not write to memory, we can prove that 
additional function calls do not need to be differentiated since they cannot impact the output


• Don’t cache equivalent values


• Statically allocate caches when a loop’s bounds can be determined in advance
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Decomposing the “Tape”

• Performing AD on a function requires data structures to compute 


• All values necessary to compute adjoints are available [cache]


• Place to store adjoints [shadow memory]


• Record instructions [we are static]


• Creating these directly in LLVM allows us to explicitly specify their behavior for optimization, 
unlike approaches that call out to a library


• For more details look in paper
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Conventional Wisdom: AD Only Feasible at High-Level

• Automatic Differentiation requires high level semantics to produce gradients


• Lack of high-level information can hinder performance of low-level AD


• “AD is more effective in high-level compiled languages (e.g. Julia, Swift, Rust, Nim) than 
traditional ones such as C/C++, Fortran and LLVM IR […]” -Innes[1]


 

[1] Michael Innes. Don’t Unroll Adjoint: Differentiating SSA-Form Programs. arXiv preprint arXiv:1810.07951, 2018
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Differentiation Is Key To Machine Learning

• Hinders application of ML to new domains


• Synthesizing gradients aims to close this gap

// PyTorch rewrite of nbody simulator 
import torch 

def step(bodies, dt): 
  acc = [] 
  for i in range(len(bodies)): 
    acc.push(torch.zeros([3])) 
    for j in range(len(bodies)): 
      if i == j: continue 
      acc[i] += force(bodies[i], bodies[j]) / 
                         bodies[i].mass 

  for i, body in enumerate(bodies): 
    body.vel += acc[i] * dt 
    body.pos += body.vel * dt 

// C++ nbody simulator 

void step(std::array<Planet> bodies, double dt) { 
  vec3 acc[bodies.size()]; 
  for (size_t i=0; i<bodies.size(); i++) { 
    acc[i] = vec3(0, 0, 0); 
    for (size_t j=0; j<bodies.size(); j++) { 
      if (i == j) continue; 
      acc[i] += force(bodies[i], bodies[j]) /      
                         bodies[i].mass; 
    } 
  } 
  for (size_t i=0; i<bodies.size(); i++) { 
    bodies[i].vel += acc[i] * dt; 
    bodies[i].pos += bodies[i].vel * dt; 
  } 
}
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Lower Enzyme   .

Optimize

CodeGen

Optimize

       Enzyme Overturns Conventional Wisdom

• As fast or faster than state-of-the-art tools


• Running after optimization enables a 4.2x speedup 

• Necessary semantics for AD derived at low-level (with potential cooperation of frontend)
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Parallel Memory Detection

• Thread-local memory


• Non-atomic load/store


• Same memory location across all threads


• Parallel Reduction


• Others [always legal fallback]


• Atomic increment
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  %tmp = load %d_res 
  store %d_res = 0 
  atomic %d_ptr += %tmp



Differentiation of SyncThreads

77

codeA(); // store %ptr 

sync_threads; 

codeB(); // store %ptr 

… 

diffe_codeB(); // load %d_ptr 
               // store %d_ptr = 0 

sync_threads; 

diffe_codeA(); // load %d_ptr 
               // store %d_ptr = 0 

Case 3 [write sync write]

All uses of stores to d_ptr in diffe_B will 
correctly complete prior to diffe_A

codeA(); // load %ptr 

sync_threads; 

codeB(); // load %ptr 

… 

diffe_codeB(); // atomicAdd %d_ptr 

sync_threads; 

diffe_codeA(); // atomicAdd %d_ptr 

Case 4 [read sync read]

Original and differential sync unnecessary and 
legal to include



CUDA Performance Improvements

• Introduce optimizations to reduce the use of memory


• Alias Analysis to determine legality of recomputing an instruction


• More aggressive alias analysis properties of syncthreads


• Don’t cache unnecessary values


• Move cache outside of loops when possible


• Heap-to-stack [and to register]


• Don’t cache memory itself acting as a cache [such as shared memory]


• PHI Node unwrapping
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Case 2: Load, Sync, Store

79

codeA(); // load %ptr 

sync_threads; 

codeB(); // store %ptr 

… 

diffe_codeB(); // load %d_ptr 
               // store %d_ptr = 0 

sync_threads; 

diffe_codeA(); // atomicAdd %d_ptr 

          Correct


• All of the stores of d_ptr will 
complete prior to any atomicAdds

No cross-thread race here since 
that’s equivalent to a write race in B



Case 3: Store, Sync, Store
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codeA(); // store %ptr 

sync_threads; 

codeB(); // store %ptr 

… 

diffe_codeB(); // load %d_ptr 
               // store %d_ptr = 0 

sync_threads; 

diffe_codeA(); // load %d_ptr 
               // store %d_ptr = 0 

          Correct


• All stores to d_ptr in diffe_B will 
complete prior to diffe_A, ensuring 
only the clobbering store has its 
derivative incremented


