Enzyme-MLIR: Early Experiments on multi-level
automatic differentiation

0

Martin Eppert Jacob Peng Ludger Paehler Alex Zinenko William S. Moses

McGill
1)

wsmoses@illinois.edu
UNIVERSITY OF MLIR Summit m
ILLINOIS Oct 9. 2023

URBANA-CHAMPAIGN

AP Calculus: Revisited

Derivatives compute the rate of change of a function’s output with respect to input(s)

£ (x) = limf(a + h) — f(a)

h-0 h

Derivatives are used widely across science
Machine learning (back-propagation, Bayesian inference)

Scientific computing (modeling, simulation, uncertainty quantification)

20 = : ; 1 , Target Reconstruction
~~~~ x) =z sin(x) s

e Observations
| — Prediction

164 Image Loss

B 95% confidence interval

0

100 150 200

from Efficient Differentiation of Pixel Reconstruction Filters for Path-Space Differentiable Rendering,
SIGGRAPH Asia 2022, Zihan Yu et al



https://dl.acm.org/doi/pdf/10.1145/3550454.3555500

AD-Powered Applications

Target Reconstruction

1ed Image Loss

from Efficient Differentiation of Pixel Reconstruction Filters for Path-Space Differentiable Rendering,
SIGGRAPH Asia 2022, Zihan Yu et al

from Comrade: High Performance Black-Hole Imaging JuliaCon 2022,
Paul Tiede (Harvard)

from MFEM Team at LLNL

from CLIMA & NSF CSSI. Differentiable programming in Julia for Earth system modeling
(DJ4Earth)

from Center for the Exascale Simulation of Materials in Extreme Environments

from Differential Molecular Simulation with Molly.jl, EnzymeCon 2023,
Joe Greener (Cambridge)



https://dl.acm.org/doi/pdf/10.1145/3550454.3555500
https://live.juliacon.org/talk/3LHDTD
https://clima.caltech.edu/
https://dj4earth.github.io/
https://dj4earth.github.io/
https://computing.mit.edu/cesmix/
https://www.llnl.gov/news/doe-funds-llnl-project-improve-differentiation-extreme-scale-science-applications
https://enzyme.mit.edu/conference

Automatic Derivative Generation

Derivatives can be generated automatically from definitions within programs

double relu3(double x) { double grad_relu3(double x) {
if (x > 0) if (x > 0)
return pow(x, 3) AD return 3 * pow(x,2)
else else
return 0; return 0;
J J

| T— S— | —— P——

Unlike numerical approaches, automatic differentiation (AD) can compute the derivative of ALL
inputs (or outputs) at once, without approximation error!

// Numeric differentiation // Automatic differentiation
// f’(x) approx [f(x+epsilon) - f(x)] / epsilon double [100];
double [100];
grad_f( , )
for (int 1=0; 1<100; 1i++) { S— —
double [100] = ;
[1] += 0.01;
[1] = (f( ) - f( ))/90.001;




Existing AD Approaches (1/3)

Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)
Provide a new language designed to be differentiated

Requires rewriting everything in the DSL and the DSL must support all operations in original

code
Fast if DSL matches original code well import as
double relu3(double ) { = tf.Variable(3.14)
1f (x > 0) . .
return pow(x, 3) Manually W ti.g;ag;ingageé) -
elie . Rewrite lambda: tf.math.pow(x,3),
eturn 0; lambda: ©
J ) '

print( .gradient( ;X)) . numpy())




Existing AD Approaches (2/3)

Operator overloading (Adept, JAX)

Differentiable versions of existing language constructs (double => adouble, np.sum => jax.sum)

May require writing to use non-standard utilities

Often dynamic: storing instructions/values to later be interpreted

// Rewrite to accept either . :Stack :
// double or adouble : adouble = 3.14;
template<typename T>
T relu3(T ) A // Store all instructions i1nto stack
if (x > 0) . :adouble (relu3(inp));
return pow(x, 3) .set_gradient(1.00);
else
return 0; // Interpret all stack instructions

} double = .get_gradient(3.14);




Existing AD Approaches (3/3)

Source rewriting
Statically analyze program to produce a new gradient function in the source language
Re-implement parsing and semantics of given language

Requires all code to be available ahead of time => hard to use with external libraries

// myfile.h // grad_myfile.h
// myfile.c { \\\\\ ////ﬂ // grad_myfile.c
double relu3(double x) { double grad_relu3(double x) {
if (x > 0) —> | lapenade > —> if (x > 0)
return pow(x, 3) ////ﬂ \\\\\ return 3 * pow(x,2)
else else
return 0; return 0;




Existing Automatic Differentiation Pipelines

Optimize

CodeGen




% Enzyme Approach

Performing AD at low-level lets us work on optimized code!

Optimize Optimize

CodeGen

Enzyme a>
LIVM




Accelerated Black Hole Imaging
with Julia & Enzyme

EHT Tools M87 2017 Julia+Enzyme M87 2017 Julia+Enzyme next-generation images

Image Analysis: ~ 1 week (cluster) Image Analysis: 1 hour (1 thread) Image Analysis: 1-2 days (8 threads)
(100x increase in computational complexity)

Simulation

Comrade.jl: Julia Bayesian Black Hole Imaging

Paul Tiede, Harvard & Smithonian | CfA



Case Study: Vector Normalization

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in 0(n”*2)

void norm(doublel ]

for (int 1=0; 1i<n;

, doublel]

++) {

[1] = in[1] / mag(in);

)
}

11

) |



Case Study: Vector Normalization

//Compute magnitude in O(n)

double mag(double[] x):

//Compute norm in O(n)
void norm(doublel ]
double = mag(in);
for (int 1=0; 1i<n;
[1] = 1in[1] /
]
J

)

, doublel]

N>

)

12

)



Optimization & Automatic Differentiation

O (n?) O (n) O (n)
for i=0.. = mag(in) = 0.0
L1 /- magGiy | Optimize > for i=0..n < AD O res e 8 outli]
) - |
_ - } )

13



14

Optimization & Automatic Differentiation

0 (n) 0 (n) 0 (n)
for i=0..n { - = mag(in) = 0.0
[i] /= mag(in) Optimize for i=0..n { AD for i=n..0 {
) [i] /= = [i]
— S } )
— — Vmag ( )
0 (n°) 0 (n)
for 1=0..n { for :”-;Q { -
1 S m maeln) AD } vmag ( )

- — ————




15

Optimization & Automatic Differentiation

0, (nz) O (n)
for i=0.. = mag(in)

or - Dz{mag( ) Optimize for EQj.DZ{
b - }

O (n*) O (n*)
for i=0..n { for :n.;® t ri
) L1] /= mag(in) AD Vmag (

e — }

O (n)
= 0.0
AD for :n.ﬁ { -
J
Vmag ( )
O (nz)
for i=n..0 {
. d_res = [1]..
Optimize vmag ( d_res)




16

Optimization & Automatic Differentiation

Differentiating after optimization can create asymptotically faster gradients!

O (n?) O (n) O (n)
for i=0.. = mag(in) = 0.0
L1 /- magGiy | Optimize > for i=0..n < AD O re e §outlil.
: o S J J

- vmag ( )
2

0 (1) 0 (1) 0 (1)

for i=0. .n { for :n°;® { [ ] for i=n..0 {
_ = - d_res = [i]..

: [1] /= mag(in) AD Vmag ( ) Optimize Vmggs(; d_res)

. . ) )




Enzyme CPU Speedups [NeurlPS’20]

Higher Is Better

X

LSTM BA GMM Euler RK4 FFT

0.0- /2

Enzyme Is 4.2x faster than Reference!

17

Bruss

B Enzyme
I Ref
B Tapenade
B Adept



18

Why MLIR?




Why MLIR?

“Multi-level” coordination of AD and Optimization!




Cache Reduction [from SC’21]

By considering the dataflow graph
we can perform a min-cut to
approximate smaller cache sizes.

Overwritten: ° °
Required for
Reverse: @

20

for(int 1=0; 1<10; i++) {
double sum = x[i] + y[i];

use(sum);

)

overwrite(x, vy);
grad_overwrite(x, v);

for(int i=9; i>=0; i--) {

grad_use(sum);

¥




Cache Reduction [from SC’21]

By considering the dataflow graph
we can perform a min-cut to
approximate smaller cache sizes.

Naive Cache

¥ N

Overwritten:

Required for
Reverse:

21

double* x_cache
double* y_cache

new double[10];
new double[10];

for(int 1=0; 1i<10; i++) {
double sum = x[i] + y[i];
x_cachel[i] = x[i];
y_cachel[1] = y[1];
use(sum);

)

overwrite(x, vy);
grad_overwrite(x, v);

for(int i=9; i>=0; i--) {
double sum = x_cacheli] + y_cachel[1i];
grad_use(sum);

¥




Cache Reduction [from SC’21]

By considering the dataflow graph
we can perform a min-cut to
approximate smaller cache sizes.

Overwritten: ° °

Required for
Reverse:

o

double* sum_cache = new double[10];

for(int 1=0; i<10; i++) {
double sum = x[i] + y[i];
sum_cachel1] = sum;

use(sum);

)

overwrite(x, v);
grad_overwrite(x, vy);

for(int i=9; i>=0; i--) {

grad_use(sum_cachel[i]);

¥

Smallest Cache

22




GPU Speedups [SC’21]

Unrolling
DG (ROCm) 0
B 5.4 X
Unrolling MallocCoalescing PreOptimization
DG (CUDA) O_O_O_ <
B 17.8 % 116.6 % 1378.3 %
Allocator Recompute InlineCacheABI
LBM 0
i 6.4x 8.7 19.87x )
SpecPHI PreOptimization
LULESH
i 2.0x 2.4x% 2979.1% )
CagheLICM Inlining PreOpt
RSBeIlCh &O—OL
i 4.7 9.5 X 6372.2 %
mplating PHI LoopBoun PreOptimization
XSBench O
3.2X 9.5 16.3x 25.9%
- \ \ \ \
Forward (1x) 10x 100x 1000x OOM

23

Overhead above Forward Pass



Multi-Level Differentiation

Z00 of different MLIR dialects for
various domains and optimizations

MLIR

[ Tensorflow J—*[ HLO

—————————————————

C++ }ﬁ CIR

-----------------

Do we really have to write
differentiation for each of the sub- [
abstractions again?

[ Fortran ]—{ FIR
[ Julis H Julia-IR
[ Rust ]—-[ MIR

LLVM IR }»[ Binary ]

24



Multi-Level Differentiation

Z00 of different MLIR dialects for
various domains and optimizations

Do we really have to write

differentiation for each of the sub-

abstractions again?

No! By leveraging deferred/“multi-level”

differentiation

9=

0

Lower >

[ Tensorflow }

MLIR

LLVM IR }

» Binary |




Integrating a Dialect with Enzyme

~ R,




Operation Interfaces

Interface Methods To Implement Example: Float Scalar/Vector Multiplication

- createForwardModeTangent

generates the IR for forward tangent(s) d(res) = addf(mulf(LHS, d(RHS)),
nulf(d(LHS), RHS)):

- createReverseModeAdjoint

generates the IR for backward tangent(s) d(LHS) += mulf(pop(cache[@]), d(res))
d(RHS) += mulf(pop(cachel[1]), d(res))
-CaCheViluiE R to st | ¢ h T push(cachel[0], RHS)
generates the o store values from the prima oush(cache[ 1], LHS)

computation needed for the tangent



Type Interfaces

Interface Methods To Implement Example: Float
[only needed for reverse mode]

- getShadowType memref<f32>
returns mutable type suitable for storing in shadow
memory. If mutable, can return self.
- createNullValue %shadow = memref.alloca()

generates the IR initializing the a null shadow of this ~ %shadowl] = constant(cast<..>(0.0))
type

- createAddToOp
generates the IR adding a value of this type to the %»shadow[] += val

shadow



General MLIR AD Algorithm [Reverse Mode}

Assuming one function.

foreach block in basic-blocks:
foreach operation in block:

createPlaceholderShadowValues(operation) # call shadow zero

foreach block in reverse(topological-sort(basic-blocks)):
foreach argument 1in block-arguments(block):
// uses pre-existing BranchOpInterface
foreach source in potential-predecessor-sources(argument)
argument. type.createAddToOp(shadow(argument), shadow(source))

foreach operation in reverse(block):
operation.cacheValues()
operation.createReverseModeTangent ()

// currently hardcoded, requires generative counterpart to BranchOpInterface
create-switch-to-successors()



Ongoing Work

~ R,




Improved and Inter-Procedural Differentiation Analyses

Classical Pointer Analyses Enzyme Type Analysis AD Activity Analysis
Points-to analysis: which data The underlying type of a value, Whether a value or an
may a value may point to. necessary to compute its operation is needed to produce
Aliasing analysis: whether two derivative, and can also prove a partial derivative of the given
pointer-like values may be an operation inactive. input wrt the given outputs.
pointing to the same memory
location.

N ~ /

Dataflow Analyses
Can be combined in one sweep to reduce overall cost.
Mutually reinforce with range, liveness, etc. analyses.



Combining Differentiation With Program Scheduling

Example: Linear Algebra Elementwise Ops

An operation extends a scalar arithmetic operation
to an arbitrary-dimensional object elementwise:

linalg.elemwise_binary %a, %b {
yield sqrt(%axka + %b*%b) : 32 L L
1 tensor<42x10x16x17xf32>

- Implicit and easily reversible loop nest. &
- Tape footprint computable upfront.
- Can be used to “fuse” computations and avoid

caching temporaries, or “fission” them with

rematerialization.




% Enzyme-MLIR

Tool for performing forward and reverse-mode AD of statically analyzable MLIR (and LLVM)
Combining AD with optimization amplifies the impact of the optimizations!

Multi-level (deferred) differentiation and simple interfaces enable easy integration into dialects
(worst case fall back to Enzyme-LLVM)

Ongoing work for improving analyses and combining with scheduling

Lots of open questions (what level should each op be differentiated, how to fuse, etc)

Open source (enzyme.mit.edu & join our mailing list)!

Weekly open design meetings.

33


http://enzyme.mit.edu

% A Growing Enzyme Community (EnzymeCon 2023)

40 attendees spanning developers, users, and everywhere in between.

17 great talks from AD
iInternals, to algorithms, to
climate science, to physics,
and beyond (https://
enzyme.mit.edu/conference).

Talks live streamed to YouTube
(to be split individually):

Day 1 Link
Day 2 Link



https://enzyme.mit.edu/conference
https://enzyme.mit.edu/conference
https://www.youtube.com/watch?v=ubIDJAbIXAc
https://youtube.com/live/NB7xUHQNox8?feature=share

% Enzyme-MLIR

Tool for performing forward and reverse-mode AD of statically analyzable MLIR (and LLVM)
Combining AD with optimization amplifies the impact of the optimizations!

Multi-level (deferred) differentiation and simple interfaces enable easy integration into dialects
(worst case fall back to Enzyme-LLVM)

Ongoing work for improving analyses and combining with scheduling

Lots of open questions (what level should each op be differentiated, how to fuse, etc)

Open source (enzyme.mit.edu & join our mailing list)!

Weekly open design meetings.

35


http://enzyme.mit.edu

