Instead of Rewriting Foreign Code for Machine Learning, Automatically Synthesize Fast Gradients

William S. Moses
Valentin Churavy

wmoses@mit.edu
NeurIPS ’20 Spotlight Talk
December 2020
Differentiation Is Key To Machine Learning

• Computing derivatives is key to many machine learning algorithms

• Existing approaches:
 • Rewrite all code in a differentiable DSL (PyTorch, TensorFlow, Taichi, etc)
 • Manually write gradient functions
Differentiation Is Key To Machine Learning

- Hinders application of ML to new domains
- Synthesizing gradients aims to close this gap

// C++ nbody simulator
void step(std::array<Planet> bodies, double dt) {
 vec3 acc[bodies.size()];
 for (size_t i=0; i<bodies.size(); i++) {
 acc[i] = vec3(0, 0, 0);
 for (size_t j=0; j<bodies.size(); j++) {
 if (i == j) continue;
 acc[i] += force(bodies[i], bodies[j]) / bodies[i].mass;
 }
 }
 for (size_t i=0; i<bodies.size(); i++) {
 bodies[i].vel += acc[i] * dt;
 bodies[i].pos += bodies[i].vel * dt;
 }
}

// PyTorch rewrite of nbody simulator
import torch

def step(bodies, dt):
 acc = []
 for i in range(len(bodies)):
 acc.push(torch.zeros([3]))
 for j in range(len(bodies)):
 if i == j:
 continue
 acc[i] += force(bodies[i], bodies[j]) / bodies[i].mass
 for i, body in enumerate(bodies):
 body.vel += acc[i] * dt
 body.pos += body.vel * dt
Conventional Wisdom: AD Only Feasible at High-Level

- Automatic Differentiation requires high level semantics to produce gradients
- Lack of high-level information can hinder performance of low-level AD
 - “AD is more effective in high-level compiled languages (e.g. Julia, Swift, Rust, Nim) than traditional ones such as C/C++, Fortran and LLVM IR […]” -Innes[1]

Existing Automatic Differentiation Pipelines

- C++ → AD → C++
- Julia → AD → Julia
- R → AD → R
- AD → Lower → LLVM → CodeGen → EXE
- Optimize

5
Enzyme Overturns Conventional Wisdom

- As fast or faster than state-of-the-art tools
 - Running after optimization enables a **4.2x speedup**
- Necessary semantics for AD derived at low-level (with potential cooperation of frontend)
Why Does Enzyme Use LLVM?

- Generic low-level compiler infrastructure with many frontends
 - “Cross platform assembly”
- Well-defined semantics
- Large collection of optimizations and analyses
Case Study: Vector Normalization

```c
//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n^2)
void norm(double[] out, double[] in) {
    for (int i=0; i<n; i++) {
        out[i] = in[i] / mag(in);
    }
}
```
Case Study: Vector Normalization

```c
// Compute magnitude in O(n)
double mag(double[] x);

// Compute norm in O(n)
void norm(double[] out, double[] in) {
    double res = mag(in);
    for (int i=0; i<n; i++) {
        out[i] = in[i] / res;
    }
}
```
Optimization & Automatic Differentiation

\[O(n^2) \]

\[
\text{for } i=0..n \{ \\
\quad \text{out}[i] /= \text{mag}(\text{in}) \\
\}
\]

Optimize

\[O(n) \]

\[
\text{res} = \text{mag}(\text{in}) \\
\text{for } i=0..n \{ \\
\quad \text{out}[i] /= \text{res} \\
\}
\]

AD

\[O(n) \]

\[
\text{d_res} = 0.0 \\
\text{for } i=n..0 \{ \\
\quad \text{d_res} += \text{d_out}[i] \\
\}
\]

\[\nabla \text{mag}(\text{d_in}, \text{d_res}) \]
Optimization & Automatic Differentiation

$O(n^2)$

for $i=0..n$ {
 out[i] /= mag(in)
}

$O(n)$

res = mag(in)
for $i=0..n$ {
 out[i] /= res
}

AD

d_res = 0.0
for $i=n..0$ {
 d_res += d_out[i]...
}
∇mag(d_in, d_res)

$O(n^2)$

for $i=0..n$ {
 out[i] /= mag(in)
}

$O(n^2)$

for $i=n..0$ {
 d_res = d_out[i]...
 ∇mag(d_in, d_res)
}
Optimization & Automatic Differentiation

\[O(n^2) \]

\begin{align*}
& \text{for } i=0..n \{ \\
& \quad \text{out}[i] /= \text{mag}(\text{in}) \\
& \} \\
& \text{Optimize}
\end{align*}

\[O(n) \]

\begin{align*}
& \text{res} = \text{mag}(\text{in}) \\
& \text{for } i=0..n \{ \\
& \quad \text{out}[i] /= \text{res} \\
& \} \\
& \text{AD}
\end{align*}

\[O(n^2) \]

\begin{align*}
& \text{for } i=0..n \{ \\
& \quad \text{out}[i] /= \text{mag}(\text{in}) \\
& \} \\
& \text{AD}
\end{align*}

\[O(n^2) \]

\begin{align*}
& \text{for } i=n..0 \{ \\
& \quad \text{d_res} = \text{d_out}[i]... \\
& \quad \nabla \text{mag}(\text{d_in}, \text{d_res}) \\
& \} \\
& \text{Optimize}
\end{align*}

\[O(n^2) \]

\begin{align*}
& \text{for } i=n..0 \{ \\
& \quad \text{d_res} = \text{d_out}[i]... \\
& \quad \nabla \text{mag}(\text{d_in}, \text{d_res}) \\
& \} \\
& \text{Optimize}
\end{align*}

\[O(n) \]

\begin{align*}
& \text{d_res} = 0.0 \\
& \text{for } i=n..0 \{ \\
& \quad \text{d_res} += \text{d_out}[i]... \\
& \} \\
& \nabla \text{mag}(\text{d_in}, \text{d_res})
\end{align*}
Differentiating after optimization can create \textit{asymptotically faster} gradients!

\[O(n^2) \quad \text{for } i=0..n \{ \text{out}[i] /= \text{mag}(\text{in}) \} \]

\[O(n) \quad \text{for } i=0..n \{ \text{out}[i] /= \text{res} \} \]

\[O(n^2) \quad \text{for } i=n..0 \{ \text{d_res} = \text{d_out}[i]... \neg \text{mag}(\text{d_in}, \text{d_res}) \} \]

\[O(n) \quad \text{for } i=n..0 \{ \text{d_res} = 0.0 \text{ for } i=n..0 \{ \text{d_res} += \text{d_out}[i]... \} \neg \text{mag}(\text{d_in}, \text{d_res}) \} \]
Enzyme Approach

Performing AD at low-level lets us work on optimized code!
Challenges of Low-Level AD

- Low-level code lacks information necessary to compute adjoints

- **Solution:** Created new interprocedural analyses to derive information and optimize

```c
struct Type {
    double;
    int*;
}
x = Type*;
```
Case Study: ReLU3

C Source

```c
double relu3(double x) {
    double result;
    if (x > 0)
        result = pow(x, 3);
    else
        result = 0;
    return result;
}
```

Enzyme Usage

```c
double diffe_relu3(double x) {
    return __enzyme_autodiff(relu3, x);
}
```

LLVM

```llvm
define double @relu3(double %x)
{
    entry:
        %cmp = %x > 0
        br %cmp, cond.true, cond.end
    cond.true:
        %call = pow(%x, 3)
        br cond.end
    cond.end:
        %result = phi [%call, cond.true], [0, entry]
        ret %result
}
```
Case Study: ReLU3

```assembly
define double @relu3(double %x)

%cmp = %x > 0
br %cmp, cond.true, cond.end

%call = pow(%x, 3)
br cond.end

%result = phi [%call, cond.true], [0, entry]
ret %result
```
define double @diffe_relu3(double %x, double %differet)

Allocate & zero shadow memory for active values

entry

cond.true

%call = pow(%x, 3)
br cond.end

%result = phi [%call, cond.true], [0, entry]

; deleted return

%result' = 1.0
br reverse_cond.end

cond.end
Compute adjoints for active instructions

define double @diffe_relu3(double %x, double %differet)

alloca %result' = 0.0
alloca %call' = 0.0
alloca %x' = 0.0
%cmp = %x > 0
br %cmp, cond.true, cond.end

%call = pow(%x, 3)
br cond.end

%result = phi [%call, cond.true], [0, entry]
; deleted return
%result' = 1.0
br reverse_cond.end

alloca %tmp_res'
%tmp_res' = load %result'
%call' += if %x > 0 then %tmp_res' else 0
store %result' = 0.0
br %cmp, reverse_cond.true, reverse_entry

%df = 3 * pow(%x, 2)
%tmp_call' = load %call
%x' += %df * %tmp_call'
store %call' = 0.0
br reverse_entry

%0 = load %x'
ret %0

reverse_cond.true

reverse_cond.end

reverse_entry
define double @diffe_relu3(double %x, double %differet)

alloca %result' = 0.0
alloca %call' = 0.0
alloca %x' = 0.0
%cmp = %x > 0
br %cmp, cond.true, cond.end

%result = phi [%call, cond.true], [0, entry]
; deleted return
%result' = 1.0
br reverse_cond.end

%call = pow(%x, 3)
br cond.end

alloca %x'
alloca %call'
alloca %result'

%df = 3 * pow(%x, 2)
%tmp_call' = load %call
%x' += %df * %tmp_call'
store %call' = 0.0
br reverse_entry

%0 = load %x'
ret %0

%tmp_res' = load %result'
%call' += if %x > 0 then %tmp_res' else 0
store %result' = 0.0
br %cmp, reverse_cond.true, reverse_entry

reverse_entry

reverse_cond.true

reverse_cond.end

cond.end

cond.true

entry

Compute adjoints
for active instructions
Essentially the optimal hand-written gradient!

define double @diffe_relu3(double %x)

double diffe_relu3(double x) {
 double result;
 if (x > 0)
 result = 3 * pow(x, 2);
 else
 result = 0;
 return result;
}
PyTorch-Enzyme & TensorFlow-Enzyme

```python
import torch
from torch_enzyme import enzyme

# Create some initial tensor
inp = ...

# Apply foreign function to tensor
out = enzyme("test.c", "f").apply(inp)

# Derive gradient
out.backward()
print(inp.grad)

import tensorflow as tf
from tf_enzyme import enzyme

inp = tf.Variable(…)

# Use external C code as a regular TF op
out = enzyme(inp, filename="test.c", function="f")

# Results is a TF tensor
out = tf.sigmoid(out)
```

```c
// Input tensor + size, and output tensor
void f(float* inp, size_t n, float* out);

// diffe_dupnoneed specifies not recomputing the output
void diffe(float* inp, float* d_inp, size_t n, float* d_out) {
    __enzyme_autodiff(f, diffe_dup, inp, d_inp, n, diffe_dupnoneed, (float*)0, d_out);
}
```
Custom Derivatives & Multisource

• One can specify custom forward/reverse passes of functions by attaching metadata

```c
__attribute__((enzyme("augment", augment_func)))
__attribute__((enzyme("gradient", gradient_func)))
double func(double n);
```

• Enzyme leverages LLVM’s link-time optimization (LTO) & “fat libraries” to ensure that LLVM bitcode is available for all potential differentiated functions before AD.
Experimental Setup

- Collection of benchmarks from Microsoft’s ADBench suite and of technically interest
Speedup of Enzyme

Enzyme is **4.2x faster** than Reference!
• Tool for performing reverse-mode AD of statically analyzable LLVM IR

• Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)

• 4.2x speedup over AD before optimization

• State-of-the art performance with existing tools

• PyTorch-Enzyme & TensorFlow-Enzyme lets researchers use foreign code in ML workflow

• Open source (enzyme.mit.edu & join our mailing list)

• For more information come to our poster!
Acknowledgements

• Thanks to James Bradbury, Alex Chernyakhovsky, Hal Finkel, Laurent Hascoet, Paul Hovland, Jan Hueckelheim, Mike Innes, Tim Kaler, Charles Leiserson, Yingbo Ma, Chris Rackauckas, TB Schardl, Lizhou Sha, Yo Shavit, Dhash Shrivathsa, Nalini Singh, Miguel Young de la Sota, and Alex Zinenko.

• William S. Moses was supported in part by a DOE Computational Sciences Graduate Fellowship DESC0019323.

• Valentin Churavy was supported in part by the Defense Advanced Research Projects Agency (DARPA) under Agreement No. HR0011-20-9-0016, and in part by NSF Grant OAC-1835443.

• This research was supported in part by LANL grant 531711. Research was sponsored by the United States Air Force Research Laboratory and was accomplished under Cooperative Agreement Number FA8750-19-2-1000.

• The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the United States Air Force or the U.S. Government.
Enzyme

- Tool for performing reverse-mode AD of statically analyzable LLVM IR
- Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)
- 4.2x speedup over AD before optimization
- State-of-the art performance with existing tools
- PyTorch-Enzyme & TensorFlow-Enzyme lets researchers use foreign code in ML workflow
- Open source (enzyme.mit.edu & join our mailing list)
- For more information come to our poster!
END
Compiler Analyses Better Optimize AD

- Existing

- Alias analysis results that prove a function does not write to memory, we can prove that additional function calls do not need to be differentiated since they cannot impact the output

- Don’t cache equivalent values

- Statically allocate caches when a loop’s bounds can be determined in advance
Decomposing the “Tape”

- Performing AD on a function requires data structures to compute
 - All values necessary to compute adjoints are available [cache]
 - Place to store adjoints [shadow memory]
 - Record instructions [we are static]
- Creating these directly in LLVM allows us to explicitly specify their behavior for optimization, unlike approaches that call out to a library
- For more details look in paper
The “memcpy” Problem

```c
void f(void* dst, void* src) {
    memcpy(dst, src, 8);
}
```

```c
void grad_f(double* dst, double* dst', double* src, double* src') {
    // Forward Pass
    memcpy(dst, src, 8);

    // Reverse Pass
    src'[0] += dst'[0];
    dst'[0] = 0;
}
```

```c
void grad_f(float* dst, float* dst', float* src, float* src') {
    // Forward Pass
    memcpy(dst, src, 8);

    // Reverse Pass
    src'[0] += dst'[0];
    dst'[0] = 0;
    src'[1] += dst'[1];
    dst'[1] = 0;
}
```