Scalable Automatic Differentiation of Multiple Parallel Paradigms through Compiler Augmentation

William S. Moses, Sri Hari Krishna Narayanan, Ludger Paehler, Valentin Churavy, Jan Hückelheim, Michel Schanen, Johannes Doerfert, and Paul Hovland
AP Calculus: Revisited

• Derivatives compute the rate of change of a function’s output with respect to input(s)

\[
 f'(x) = \lim_{{h \to 0}} \frac{f(a + h) - f(a)}{h}
\]

• Derivatives (& generalizations like gradients) used widely across science

• Machine learning (back-propagation, Bayesian inference, uncertainty quantification)

• Scientific computing (modeling, simulation)
Automatic Derivative Generation

- Derivatives can be generated automatically from definitions within programs

```cpp
double relu3(double x) {
    if (x > 0)
        return pow(x,3)
    else
        return 0;
}
```

```cpp
double grad_relu3(double x) {
    if (x > 0)
        return 3 * pow(x,2)
    else
        return 0;
}
```

- Unlike numerical approaches, automatic differentiation (AD) can compute the derivative of ALL inputs (or outputs) at once, without approximation error!

```cpp
// Numeric differentiation
// f'(x) approx [f(x+epsilon) - f(x)] / epsilon
double grad_input[100];
for (int i=0; i<100; i++) {
    double input2[100] = input;
    input2[i] += 0.01;
    grad_input[i] = (f(input2) - f(input))/0.001;
}
```

```cpp
// Automatic differentiation
double grad_input[100];
grad_f(input, grad_input)
```
Case Study: ReLU3

C Source

double relu3(double x) {
 double result;
 if (x > 0)
 result = pow(x, 3);
 else
 result = 0;
 return result;
}

double diffe_relu3(double x) {
 return __enzyme_autodiff(relu3, x);
}

LLVM

define double @relu3(double %x)

entry
%cmp = %x > 0
br %cmp, cond.true, cond.end

cond.true
%call = pow(%x, 3)
br cond.end

cond.end
%result = phi [%call, cond.true], [0, entry]
ret %result
Case Study: ReLU3

Active Instructions

```c
define double @relu3(double %x)

%cmp = %x > 0
br %cmp, cond.true, cond.end

%call = pow(%x, 3)
br cond.end

%result = phi [%call, cond.true], [0, entry]
ret %result
```
Allocate & zero shadow memory for active values

```c
define double @diffe_relu3(double %x, double %differet)

alloca %result' = 0.0
alloca %call' = 0.0
alloca %x' = 0.0
%cmp = %x > 0
br %cmp, cond.true, cond.end

%call = pow(%x, 3)
br cond.end

%result = phi [%call, cond.true], [0, entry]
; deleted return
%result' = 1.0
br reverse_cond.end
```

Define double function `diffe_relu3` with inputs `%x` and `%differet`. Allocate memory for `%result'`, `%call'`, and `%x'`. Check condition `%x > 0` and branch accordingly. Calculate `%call` using `pow` function. Return `%result'` with a constant value of `1.0`.
Compute adjoints for active instructions

```
define double @diffe_relu3(double %x, double %differet)
  alloca %result' = 0.0
  alloca %call' = 0.0
  alloca %x' = 0.0
  %cmp = %x > 0
  br %cmp, cond.true, cond.end

  %call = pow(%x, 3)
  br cond.end

  %result = phi [%call, cond.true], [0, entry]

  ; deleted return

  %result' = 1.0
  br reverse_cond.end

  %df = 3 * pow(%x, 2)
  %tmp_call' = load %call
  %x' += %df * %tmp_call'
  store %call' = 0.0
  br reverse_entry

  %tmp_res' = load %result'
  %call' += if %x > 0 then %tmp_res' else 0
  store %result' = 0.0
  br %cmp, reverse_cond.true, reverse_entry

reverse_cond.true

%df = 3 * pow(%x, 2)
%tmp_call' = load %call
%x' += %df * %tmp_call'
store %call' = 0.0
br reverse_entry

reverse_cond.end

%0 = load %x'
ret %0
```

8
Compute adjoints for active instructions

```plaintext
define double @diffe_relu3(double %x, double %differet)

alloca %result' = 0.0
alloca %call'   = 0.0
alloca %x'     = 0.0
%cmp = %x > 0
br %cmp, cond.true, cond.end

%call = pow(%x, 3)
br cond.end

%result = phi [%call, cond.true], [0, entry]
; deleted return
%result' = 1.0
br reverse_cond.end

alloca %result' = 0.0
alloca %call'   = 0.0
alloca %x'     = 0.0
%cmp = %x > 0
br %cmp, reverse_cond.true, reverse_entry

%tmp_res' = load %result'
%call' += if %x > 0 then %tmp_res' else 0
store %result' = 0.0
br %cmp, reverse_cond.true, reverse_entry

%df = 3 * pow(%x, 2)
%tmp_call' = load %call
%x' += %df * %tmp_call'
store %call' = 0.0
br reverse_entry

%0 = load %x'
ret %0
```
define double @diffe_relu3(double %x)

 Essential the optimal hand-written gradient!

double diffe_relu3(double x) {
 double result;
 if (x > 0)
 result = 3 * pow(x, 2);
 else
 result = 0;
 return result;
}
The HPC Landscape Today

- Cutting-edge scientific computing depends on our ability to leverage *many forms of parallelism*
 - Multicore chips
 - Distributed clusters
 - Accelerators (e.g. GPUs, TPUs)
History of Parallel AD

- Prior AD tools are built with a single language and parallel framework in mind
- Differentiating code using multiple parallel frameworks is difficult or impossible!
- Require AD-specific rewriting to specify extra information
- Run at a source-level, preventing optimizations from being applied

```c++
void send(double* data, int size) {
  MPI_Isend(data, val);
}
```

```c++
void send(ADdouble* data, int size, void* buffer) {
  AD_MPI_Isend(data, val, buffer);
}
```
Challenges of Parallel AD

- The adjoint of an instruction increments the derivative of its input
- Benign read race in forward pass => Write race in reverse pass (undefined behavior)

```c
void set(double* ar, double val) {
    parallel_for(int i=0; i<10; i++)
    ar[i] = val;
}
```

```c
double gradient_set(double* ar, double* d_ar, double val) {
    double d_val = 0.0;
    parallel_for(int i=0; i<10; i++)
    ar[i] = val;
    parallel_for(int i=0; i<10; i++) {
        d_val += d_ar[i];
        d_ar[i] = 0.0;
    }
    return d_val;
}
```
Optimizations on Parallel AD

- Prior work on AD for GPU’s demonstrated importance of combining optimizations with AD for performance
 “Reverse-Mode Automatic Differentiation and Optimization of GPU Kernels via Enzyme” @ SC’21

- E.g. determining memory to be thread-local lets us use a faster non-atomic add

Thread-local memory

- Non-atomic load/store

Others [always legal fallback]

- Atomic increment

```cpp
__device__
void f(...) {
    // Thread-local var
double y;
    ...
d_y += val;
}
```

```cpp
__device__
// Unknown thread-aliasing
void f(double* y) {
    ...
    atomic { d_y += val; }
}
```

Slower
Performing AD in the compiler lets us build a common tool to differentiate & optimize multiple parallel frameworks simultaneously!
General Parallel Differentiation Framework

- Algorithm for fast and efficient AD of arbitrary DAG-style parallelism
- Interface for detecting and using parallel constructs in arbitrary frameworks
- General parallel-specific optimizations that improve the performance
Parallelism-Preserving Differentiation

• Computing the adjoint of an instruction in the reverse pass updates the derivative of the operands it used.

• Reversing the parallel dependency structure ensures that for a given value all derivative updates are performed before its definition.
Data Caching

• Differentiation requires some values from the original program for correctness

• Overwriting a value required for the derivative requires it to be cached

• Recomputing a value can significantly reduce both memory overhead and runtimes, if legal

• Parallel constructs (closures, thread-local vs global memory) hinder such optimizations

• Remedy via novel parallel analyses and optimizations

// Forward Pass

out[i] = x[i] * x[i];

x[i] = 0.0f;

// Reverse (gradient) Pass

...grad_x[i] += 2 * x[i] * grad_out[i];

...
Parallel Value Hoisting

```c
#pragma omp parallel for
for(int i=0; i<10; i++) {
    out[i] = in[i] * in[i];
}
```

```c
void closure(double** outp, double** inp) {
    // Unknown aliasing between out/in
    double* out = *outp;
    double* in = *inp;
    int i = threadid();
    out[i] = in[i] * in[i];
}
```

```c
void closure(double* restrict out2, double* restrict in2) {
    // out/in known to not overlap
    out2[i] = in2[i] * in2[i];
}
```

```c
double** outp = &out;
double** inp = &in;
kmpc_fork(closure, outp, inp);
```
Parallel Value Hoisting

```c
#include <omp.h>

#pragma omp parallel for
for(int i=0; i<10; i++) {
    out[i] = in[i] * in[i];
}

void closure(double** out, double** inp) {
    // Unknown aliasing between out/in
    double* out = *outp;
    double* in = *inp;
    int i = threadid();
    out[i] = in[i] * in[i];
}

... double** outp = &out;
... double** inp = &in;
kmvc_fork(closure, outp, inp);
```

```c
#include <omp.h>

void closure(double* restrict out2, double* restrict in2) {
    // out/in known to not overlap
    out2[i] = in2[i] * in2[i];
}

... double* out2 = *outp;
... double* in2 = *inp;
kmvc_fork(closure, out2, in2);
```
Framework Generality

• Implemented hooks for several parallel frameworks:
 • OpenMP
 • MPI
 • Julia Tasks
 • existing GPU support (ROCM, CUDA)
• Supports any higher-level framework built off these primitives
 • RAJA
 • MPI.jl
 • Julia @parallel
 • ...
Construct Generality

• Higher-level parallel utilities are automatically handled by existing support for parallelism

• Both source-level or manually written utilities are lowered to common form.

• If optimizations exist for higher-level utilities, Enzyme supports overriding

• E.g. faster OpenMP parallel for, rather than differentiating via separate support for OpenMP parallel and work sharing loop

```c
double min_per_thread[num_threads()];
#pragma omp parallel
{
    double min_value = 0;
    #pragma omp for
    for(int i = 0; i < N; i++)
        min_value = min(data[i], min_value);
    min_per_thread[omp_get_thread_num()] = min_value;
}
double final_val = 0;
for(int i = 1; i < omp_get_num_threads(); i++)
    final_val = min(final_val, min_per_thread[i]);
```
Evaluation

• Differentiated nine distinct versions of LULESH and miniBUDE applications, in a variety of parallel frameworks, and in both C++ and Julia

 • LULESH: unstructured hydrodynamics solver

 • miniBUDE: computational kernels of a molecular docking engine

• Compare performance and scalability against non-differentiated code, as well as a state of the art MPI AD tool (CoDiPack)

• Benchmarks available at: https://github.com/EnzymeAD/Enzyme-sc22
Evaluation Highlights: Strong Scaling (BUDE)

- Parallel optimizations enable Enzyme to keep the same scalability as the original program
Evaluation Highlights: Runtime Overhead (LULESH)

- Overhead is stable and small, independent of number of MPI nodes, or language/framework.
Enzyme

- Tool for performing reverse-mode (and forward mode) AD of statically analyzable LLVM IR

- Differentiates code in a variety of parallel frameworks (OpenMP, MPI, Julia Tasks, GPU), and languages (C, C++, Fortran, Julia, Rust, Swift, etc)

- Parallel and AD-specific optimizations crucial for performance

- Keep similar scalability as non-differentiated code

- Open source (enzyme.mit.edu & join our mailing list)!

- Ongoing work to support Mixed Mode, Batching, Checkpointing, and more
Acknowledgements

- Thanks to James Bradbury, Alex Chernyakhovsky, Lilly Chin, Hal Finkel, Marco Foco, Laurent Hascoet, Mike Innes, Tim Kaler, Charles Leiserson, Yingbo Ma, Chris Rackauckas, TB Schardl, Lizhou Sha, Yo Shavit, Dhash Shrivathsa, Nalini Singh, Vassil Vassilev, and Alex Zinenko

- William S. Moses was supported in part by a DOE Computational Sciences Graduate Fellowship DESC0019323. Valentin Churavy was supported in part by the Defense Advanced Research Projects Agency (DARPA) under Agreement No. HR0011-20-9-0016, and in part by NSF Grant OAC-1835443. Ludger Paehler was supported in part by the German Research Council (DFG) under grant agreement No. 326472365.

- This research was supported in part by LANL grant 531711; in part by the Applied Mathematics activity within the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research Program, under contract number DE-AC02-06CH11357; in part by the Exascale Computing Project (17-SC-20-SC). Research was sponsored by the United States Air Force Research Laboratory and was accomplished under Cooperative Agreement Number FA8750-19-2-1000.

- The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the United States Air Force or the U.S. Government.
Enzyme

- Tool for performing reverse-mode (and forward mode) AD of statically analyzable LLVM IR

- Differentiates code in a variety of parallel frameworks (OpenMP, MPI, Julia Tasks, GPU), and languages (C, C++, Fortran, Julia, Rust, Swift, etc)

- Parallel and AD-specific optimizations crucial for performance

- Keep similar scalability as non-differentiated code

- Open source (enzyme.mit.edu & join our mailing list)!

- Ongoing work to support Mixed Mode, Batching, Checkpointing, and more
Existing AD Approaches (1/3)

- Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)
 - Provide a new language designed to be differentiated
 - Requires rewriting everything in the DSL and the DSL must support all operations in original code
 - Fast if DSL matches original code well

```python
import tensorflow as tf

x = tf.Variable(3.14)

with tf.GradientTape() as tape:
    out = tf.cond(x > 0,
                  lambda: tf.math.pow(x, 3),
                  lambda: 0)

print(tape.gradient(out, x).numpy())
```

```c
double relu3(double val) {
    if (x > 0) {
        return pow(x, 3);
    } else {
        return 0;
    }
}
```
Existing AD Approaches (2/3)

- Operator overloading (Adept, JAX)
- Differentiable versions of existing language constructs (double => adouble, np.sum => jax.sum)
- May require writing to use non-standard utilities
- Often dynamic: storing instructions/values to later be interpreted

```cpp
// Rewrite to accept either double or adouble
template<typename T>
T relu3(T val) {
    if (x > 0)
        return pow(x, 3)
    else
        return 0;
}

adept::Stack stack;
adept::adouble inp = 3.14;

// Store all instructions into stack
adept::adouble out(relu3(inp));
out.set_gradient(1.00);

// Interpret all stack instructions
double res = inp.get_gradient(3.14);
```
Existing AD Approaches (3/3)

- Source rewriting
 - Statically analyze program to produce a new gradient function in the source language
 - Re-implement parsing and semantics of given language
 - Requires all code to be available ahead of time => hard to use with external libraries

```c
// myfile.h

// myfile.c
double relu3(double x) {
    if (x > 0)
        return pow(x, 3)
    else
        return 0;
}

// grad_myfile.h

// grad_myfile.c
double grad_relu3(double x) {
    if (x > 0)
        return 3 * pow(x, 2)
    else
        return 0;
}
```
Existing Automatic Differentiation Pipelines

[Diagram showing existing automatic differentiation pipelines for different programming languages and tools, including C++, Julia, R, and LLVM, with stages labeled as AD (Automatic Differentiation), Optimize, Lower, CodeGen, and EXE.]
Case Study: Vector Normalization

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n^2)
void norm(double[] out, double[] in) {
 for (int i=0; i<n; i++) {
 out[i] = in[i] / mag(in);
 }
}
Case Study: Vector Normalization

```c
//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n)
void norm(double[] out, double[] in) {
    double res = mag(in);
    for (int i=0; i<n; i++) {
        out[i] = in[i] / res;
    }
}
```
Optimization & Automatic Differentiation

\[O(n^2) \]

\[
\text{for } i=0..n \{ \\
\quad \text{out}[i] /= \text{mag}(\text{in}) \\
\}\]

\[O(n) \]

\[
\text{res} = \text{mag}(\text{in}) \\
\text{for } i=0..n \{ \\
\quad \text{out}[i] /= \text{res} \\
\}\]

\[O(n) \]

\[
\text{d_res} = 0.0 \\
\text{for } i=n..0 \{ \\
\quad \text{d_res} += \text{d_out}[i] \\
\}\]

\[\nabla \text{mag}(d_{\text{in}}, d_{\text{res}}) \]
Optimization & Automatic Differentiation

\[O(n^2) \]

for\ i=0..n\{
 out[i] /= \text{mag}(in)
}\}

\[O(n) \]

res = \text{mag}(in)

for\ i=0..n\{
 out[i] /= res
}\}

\[O(n) \]

d_res = 0.0

for\ i=n..0\{
 d_res += d_{out}[i]...
}\}

\[\nabla \text{mag}(d_{in}, d_{res}) \]

\[O(n^2) \]

for\ i=0..n\{
 out[i] /= \text{mag}(in)
}\}

\[O(n^2) \]

for\ i=n..0\{
 d_res = d_{out}[i]...
 \nabla \text{mag}(d_{in}, d_{res})
}\}

37
Optimization & Automatic Differentiation

\[O(n^2) \]

For \(i = 0 \ldots n \) {
 \text{out}[i] /= \text{mag}(\text{in})
}

\[O(n) \]

\[\text{res} = \text{mag}(\text{in}) \]

For \(i = 0 \ldots n \) {
 \text{out}[i] /= \text{res}
}

\[O(n) \]

\[d_{\text{res}} = 0.0 \]

For \(i = n \ldots 0 \) {
 \text{d_res} += \text{d_out}[i]
}

\[\nabla \text{mag}(d_{\text{in}}, \text{d_res}) \]

\[O(n^2) \]

\[\text{d_res} = 0.0 \]

For \(i = n \ldots 0 \) {
 \text{d_res} += \text{d_out}[i]
}

\[\nabla \text{mag}(d_{\text{in}}, \text{d_res}) \]
Optimization & Automatic Differentiation

Differentiating after optimization can create *asymptotically faster* gradients!

\[O\left(n^2\right) \]

- \text{for} i=0..n \{
 \text{out}[i] /= \text{mag}(\text{in})
\}

- \text{for} i=0..n \{
 \text{out}[i] /= \text{res}
\}

\[O\left(n\right) \]

- \text{res} = \text{mag}(\text{in})
- \text{d}_{\text{res}} = 0.0
- \text{for} i=n..0 \{
 \text{d}_{\text{res}} += \text{d}_{\text{out}}[i]...
\}
- \nabla \text{mag}(\text{d}_{\text{in}}, \text{d}_{\text{res}})

\[O\left(n\right) \]

- \text{for} i=0..n \{
 \text{out}[i] /= \text{res}
\}

\[O\left(n^2\right) \]

- \text{for} i=n..0 \{
 \text{d}_{\text{res}} = \text{d}_{\text{out}}[i]...
\}

\[O\left(n^2\right) \]
Why Does Enzyme Use LLVM?

- Generic low-level compiler infrastructure with many frontends
 - “Cross platform assembly”
- Many backends (CPU, CUDA, AMDGPU, etc)
- Well-defined semantics
- Large collection of optimizations and analyses
Challenges of Low-Level AD

- Low-level code lacks information necessary to compute adjoints

```c
void f(void* dst, void* src) {
    memcpy(dst, src, 8);
}
```

```c
void grad_f(double* dst, double* dst', double* src, double* src') {
    // Forward Pass
    memcpy(dst, src, 8);

    // Reverse Pass
    src'[0] += dst'[0];
    dst'[0] = 0;
}
```

```c
void grad_f(float* dst, float* dst', float* src, float* src') {
    // Forward Pass
    memcpy(dst, src, 8);

    // Reverse Pass
    src'[0] += dst'[0];
    dst'[0] = 0;
    src'[1] += dst'[1];
    dst'[1] = 0;
}
```
Type Analysis

- New interprocedural dataflow analysis that detects the underlying type of data
- Each value has a set of memory offsets: type
- Perform series of fixed-point updates through instructions

```
struct MyType {
    double;
    int*;
}
x = MyType*;
```

\[
\text{types}(x) = \{[0]:\text{Pointer}, [0,0]:\text{Double}, [0,8]:\text{Pointer}, [0,8,0]:\text{Integer}\}
\]
Experimental Setup

- Collection of benchmarks from Microsoft’s ADBench suite and of technical interest

Enzyme: -O2

Ref: Enzyme \(\frac{\partial}{\partial x}\)

Tapenade: Tapenade

Adept: Adept
Enzyme is **4.2x faster** than Reference!
Automatic Differentiation & GPUs

- Prior work has not explored reverse mode AD of existing GPU kernels

 1. Reversing parallel control flow can lead to incorrect results

 2. Complex performance characteristics make it difficult to synthesize efficient code

 3. Resource limitations can prevent kernels from running at all
GPU Memory Hierarchy

Per Thread
- Register
 ~Bytes
 Use Limits Parallelism

Per Block
- Shared Memory
 ~KBs
 Use Limits Parallelism

Per GPU
- Global Memory
 ~GBs

Slower, larger amount of memory
Parallel Enzyme Design

- Algorithm for fast and efficient AD of arbitrary DAG-style parallelism
- Interface for detecting and using parallel constructs in arbitrary frameworks
- General parallel-specific optimizations that improve the performance
- Implemented for various parallel frameworks on CPU (OpenMP, Julia Tasks, RAJA), Distributed (MPI, MPI.jl), and more
Correct and Efficient Derivative Accumulation

Thread-local memory

- Non-atomic load/store

Same memory location across all threads (some shared mem)

- Parallel Reduction

Others [always legal fallback]

- Atomic increment

```c
__device__
void f(...) {
    // Thread-local var
do double y;
    ... 
d_y += val;
}
```

```c
// Same var for all threads
do double y;

__device__
void f(...) {
    ... 
    reduce_add(&d_y, val);
}
```

```c
__device__
// Unknown thread-aliasing
void f(double* y) {
    ... 
    atomic { d_y += val; }
}
```

Slower
Synchronization Primitives

- Synchronization (sync_threads) ensures all threads finish executing codeA before executing codeB

- Sync is only necessary if A and B may access to the same memory

- Assuming the original program is race-free, performing a sync at the corresponding location in the reverse ensures correctness

- Prove correctness of algorithm by cases
Case 1: Store, Sync, Load

```c
codeA(); // store %ptr
sync_threads;

codeB(); // load %ptr
...
diffe_codeB(); // atomicAdd %d_ptr
sync_threads;

diffe_codeA(); // load %d_ptr
    // store %d_ptr = 0
```

- Load of `d_ptr` must happen after all atomicAdds have completed
CUDA Example

```c
__device__
void inner(float* a, float* x, float* y) {
    y[threadIdx.x] = a[0] * x[threadIdx.x];
}

__device__
void __enzyme_autodiff(void*, ...);

__global__
void daxpy(float* a, float* da, float* x, float* dx, float* y, float* dy) {
    __enzyme_autodiff((void*)inner,
        a, da, x, dx, y, dy);
}

__device__
void diffe_inner(float* a, float* da, float* x, float* dx, float* y, float* dy) {
    // Forward Pass
    y[threadIdx.x] = a[0] * x[threadIdx.x];
    // Reverse Pass
    float dy = dy[threadIdx.x];
    dy[threadIdx.x] = 0.0f;
    float dx_tmp = a[0] * dy;
    atomic { dx[threadIdx.x] += dx_tmp; }
    float da_tmp = x[threadIdx.x] * dy;
    atomic { da[0] += da_tmp; }
}
```
CUDA Example

__device__
void inner(float* a, float* x, float* y) {
 y[threadIdx.x] = a[0] * x[threadIdx.x];
}

__device__
void __enzyme_autodiff(void*, ...);

__global__
void daxpy(float* a, float* da, float* x, float* dx, float* y, float* dy) {
 __enzyme_autodiff(((void*)inner, a, da, x, dx, y, dy);
}

__device__
void diff_inner(float* a, float* da, float* x, float* dx, float* y, float* dy) {
 // Forward Pass
 y[threadIdx.x] = a[0] * x[threadIdx.x];

 // Reverse Pass
 float dy = dy[threadIdx.x];
 dy[threadIdx.x] = 0.0f;
 float dx_tmp = a[0] * dy;
 dx[threadIdx.x] += dx_tmp;
 float da_tmp = x[threadIdx.x] * dy;
 reduce_accumulate(&da[0], da_tmp);
}
CUDA.jl / AMDGPU.jl Example

```julia
function compute!(inp, out)
    s_D = @cuStaticSharedMem eltype(inp) (10, 10)
    ...
end

function grad_compute!(inp, out)
    Enzyme.autodiff_deferred(compute!, inp, out)
    return nothing
end

@cuda grad_compute!(Duplicated(inp, d_inp),
    Duplicated(out, d_out))
```

```julia
function compute!(inp, out)
    s_D = AMDGPU.alloc_special(…)
    ...
end

function grad_compute!(inp, out)
    Enzyme.autodiff_deferred(compute!, inp, out)
    return nothing
end

@rocm grad_compute!(Duplicated(inp, d_inp),
    Duplicated(out, d_out))
```

See Below For Full Code Examples

Efficient GPU Code

• For correctness, Enzyme may need to cache values in order to compute the gradient

 • The complexity of GPU memory means large caches slow down the program by several orders of magnitude, if it even fits at all

• Like the CPU, existing optimizations reduce the overhead

• Unlike the CPU, existing optimizations aren’t sufficient

• Novel GPU and AD-specific optimizations can speedup by several orders of magnitude

// Forward Pass
out[i] = x[i] * x[i];
x[i] = 0.0f;

// Reverse (gradient) Pass
...
grad_x[i] += 2 * x[i] * grad_out[i];
...
Efficient Correct GPU Code

- For correctness, Enzyme may need to cache values in order to compute the gradient

- The complexity of GPU memory means large caches slow down the program by several orders of magnitude, if it even fits at all

- Like the CPU, existing optimizations reduce the overhead

- Unlike the CPU, existing optimizations aren’t sufficient

- Novel GPU and AD-specific optimizations can speedup by several orders of magnitude

```cpp
double* x_cache = new double[...];

// Forward Pass
out[i] = x[i] * x[i];
x_cache[i] = x[i];
x[i] = 0.0f;

// Reverse (gradient) Pass
...
grad_x[i] += 2 * x_cache[i] * grad_out[i];
...
delete[] x_cache;
```
Cache Reduction Example

- By considering the dataflow graph we can perform a min-cut to approximate smaller cache sizes.

```java
for(int i=0; i<10; i++) {
    double sum = x[i] + y[i];
    use(sum);
}
overwrite(x, y);
ggrad_overwrite(x, y);
for(int i=9; i>=0; i--) {
    ... 
ggrad_use(sum);
}
```
Cache Reduction Example

- By considering the dataflow graph we can perform a min-cut to approximate smaller cache sizes.

```java
double* x_cache = new double[10];
double* y_cache = new double[10];

for(int i=0; i<10; i++) {
    double sum = x[i] + y[i];
    x_cache[i] = x[i];
    y_cache[i] = y[i];
    use(sum);
}

overwrite(x, y);
grad_overwrite(x, y);

for(int i=9; i>=0; i--) {
    double sum = x_cache[i] + y_cache[i];
    grad_use(sum);
}
```

By considering the dataflow graph, we can perform a min-cut to approximate smaller cache sizes.
Cache Reduction Example

- By considering the dataflow graph we can perform a min-cut to approximate smaller cache sizes.

```c
double* sum_cache = new double[10];

for(int i=0; i<10; i++) {
    double sum = x[i] + y[i];
    sum_cache[i] = sum;
    use(sum);
}

overwrite(x, y);
grad_overwrite(x, y);

for(int i=9; i>=0; i--) {
    grad_use(sum_cache[i]);
}
```
Allocation Merging

- Allocations (and any calls) on the GPU are expensive
- Given two allocations in the same scope, replace uses with a single allocation
- Beneficial for not just AD, but any GPU programs!

```cpp
double* var1 = new double[N];
double* var2 = new double[M];
use(var1, var2);
delete[] var1;
delete[] var2;
```

```cpp
double* var1 = new double[N + M];
double* var2 = var1 + N;
use(var1, var2);
delete[] var1;
```
Novel AD + GPU Optimizations

- [AD] Cache LICM/CSE

- [AD] Min-Cut Cache Reduction

- [AD] Cache Forwarding

- [GPU] Merge Allocations

- [GPU] Heap-to-stack (and register)

- [GPU] Alias Analysis Properties of SyncThreads

- ...
GPU Gradient Overhead

- Evaluation of both original code and gradient
- DG: Discontinuous-Galerkin integral (Julia)
- LBM: particle-based fluid dynamics simulation
- LULESH: unstructured explicit shock hydrodynamics solver
- XSBench & RSBench: Monte Carlo simulations of particle transport algorithms (memory & compute bound, respectively)
GPU Gradient Overhead

- Evaluation of both original code and gradient
- DG: Discontinuous-Galerkin integral (Julia)
- LBM: particle-based fluid dynamics simulation
- LULESH: unstructured explicit shock hydrodynamics solver
- XSBench & RSBench: Monte Carlo simulations of particle transport algorithms (memory & compute bound, respectively)

![Bar chart showing gradient overhead for different benchmarks.]

- DG (ROCm): 5.4
- DG (CUDA): 18.35
- LBM (Parboil): 6.3
- LULESH: 2.01
- RSBench: 4.2
- XSBench: 3.2

Bug in CUDA Register Allocator
Ablation Analysis of Optimizations

- DG (ROCm)
 - Unrolling: 5.4x
 - Unrolling: 17.8x
 - MallocCoalescing: 116.6x
 - PreOptimization: 1378.3x

- DG (CUDA)
 - Unrolling: 10x
 - MallocCoalescing: 100x
 - PreOptimization: 1000x

- LBM
 - Allocator: 6.4x
 - Recompute: 8.7x
 - InlineCacheABI: 19.87x

- LULESH
 - SpecPHI: 2.0x
 - PreOptimization: 2.4x
 - PreOptimization: 2979.1x

- RSbench
 - CacheLICM: 4.7x
 - Inlining: 9.5x
 - PreOptimization: 6372.2x

- XSBench
 - Templating: 3.2x
 - PHI: 9.5x
 - LoopBound: 16.3x
 - PreOptimization: 25.9x

Overhead above Forward Pass

Forward (1x) 10x 100x 1000x OOM
Ablation Analysis of Optimizations

DG (ROCm) DG (CUDA) LBM LULESH RSbench XSBench

Forward (1x) 10x 100x 1000x OOM

Unrolling Unrolling MallcCoalescing PreOptimization

10x 100x 1000x

Allocator Recompute InlineCacheABI

17.8x 116.6x 1378.3x

DG (CUDA) DG (ROCm) LBM LULESH RSbench XSBench

SpecPHI CacheLICM PreOptimization PreOpt PreOpt

2.0x 2.4x 4.7x 9.5x 16.3x 25.9x 3.2x 9.5x 16.3x 25.9x 3.2x

2979.1x 6372.2x

Overhead above Forward Pass
Ablation Analysis of Optimizations

DG (ROCm)
- Unrolling: 5.4x
- PreOptimization: 1378.3x

DG (CUDA)
- Unrolling: 17.8x
- MallocCoalescing: 116.6x
- PreOptimization: 2979.1x

LBM
- Allocator: 6.4x
- Recompute: 8.7x
- InlineCacheABI: 19.87x

LULESH
- SpecPHI: 2.0x
- PreOptimization: 2979.1x

RSBench
- CacheLICM: 4.7x
- Inlining: 9.5x
- PreOpt: 6372.2x

XSbench
- Templating: 3.2x
- PHI: 9.5x
- LoopBound: 16.3x
- PreOptimization: 25.9x

Forward (1x) 10x 100x 1000x

Overhead above Forward Pass

OOM
Ablation Analysis of Optimizations

GPU AD is Intractable Without Optimization!
Common Framework for Parallel AD (Ongoing, To Be Published)

- Common infrastructure for supporting parallel AD (caching, race-resolution, gradient accumulation) enables parallel differentiation independent of framework or language.

- Enables differentiation of a combination of GPU (e.g. CUDA, ROCm), CPU (OpenMP, Julia Tasks, RAJA), Distributed (MPI, MPI.jl), and more
Enzyme

- Tool for performing forward and reverse-mode AD of statically analyzable LLVM IR
- Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)
- 4.2x speedup over AD before optimization on CPU
- State-of-the art performance with existing tools
- First general purpose reverse-mode GPU AD
- Novel GPU and AD-specific optimizations improve runtime by several orders of magnitude
- Open source (enzyme.mit.edu & join our mailing list)!
- Ongoing work to support Mixed Mode, Batching, Checkpointing
Acknowledgements

- Thanks to James Bradbury, Alex Chernyakhovsky, Lilly Chin, Hal Finkel, Marco Foco, Laurent Hascoet, Mike Innes, Tim Kaler, Charles Leiserson, Yingbo Ma, Chris Rackauckas, TB Schardl, Lizhou Sha, Yo Shavit, Dhash Shrivathsa, Nalini Singh, Vassil Vassilev, and Alex Zinenko

- William S. Moses was supported in part by a DOE Computational Sciences Graduate Fellowship DESC0019323. Valentin Churavy was supported in part by the Defense Advanced Research Projects Agency (DARPA) under Agreement No. HR0011-20-9-0016, and in part by NSF Grant OAC-1835443. Ludger Paehler was supported in part by the German Research Council (DFG) under grant agreement No. 326472365.

- This research was supported in part by LANL grant 531711; in part by the Applied Mathematics activity within the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research Program, under contract number DE-AC02-06CH11357; in part by the Exascale Computing Project (17-SC-20-SC). Research was sponsored by the United States Air Force Research Laboratory and was accomplished under Cooperative Agreement Number FA8750-19-2-1000.

- The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the United States Air Force or the U.S. Government.
Enzyme

• Tool for performing forward and reverse-mode AD of statically analyzable LLVM IR

• Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)

• 4.2x speedup over AD before optimization on CPU

• State-of-the art performance with existing tools

• First general purpose reverse-mode GPU AD

• Novel GPU and AD-specific optimizations improve runtime by several orders of magnitude

• Open source (enzyme.mit.edu & join our mailing list)!

• Ongoing work to support Mixed Mode, Batching, Checkpointing/Scheduling
Enzyme
import torch
from torch_enzyme import enzyme

Create some initial tensor
inp = ...

Apply foreign function to tensor
out = enzyme("test.c", "f").apply(inp)

Derive gradient
out.backward()
print(inp.grad)

import tensorflow as tf
from tf_enzyme import enzyme

Create some initial tensor
inp = tf.Variable(…)

Use external C code as a regular TF op
out = enzyme(inp, filename="test.c", function="f")

Results is a TF tensor
out = tf.sigmoid(out)

// Input tensor + size, and output tensor
void f(float* inp, size_t n, float* out);

// diffe_dupnoneed specifies not recomputing the output
void diffef(float* inp, float* d_inp, size_t n, float* d_out) {
 __enzyme_autodiff(f, diffe_dup, inp, d_inp, n, diffe_dupnoneed, (float*)0, d_out);
}
Cache

- Adjoint instructions may require values from the forward pass

 - e.g. $\nabla(x \times y) \Rightarrow x \, dy + y \, dx$

- For all values needed in the reverse, allocate memory in the forward pass to store the value

- Values computed inside loops are stored in an array indexed by the loop induction variable

 - Array allocated statically if possible; otherwise dynamically realloc’ed
When LLVM Doesn’t Cut It

- Enzyme relies on optimizations such as LICM and CSE to eliminate redundant loads, and thus redundant caches.

- Since we instead need to preserve values for the reverse pass, these optimizations may not apply.

```c
for(int i=0; i<N; i++) {
    for(int j=0; j<M; j++) {
        use(array[j]);
    }
}
overwrite(array);
```
When LLVM Doesn’t Cut It

• Enzyme relies on optimizations such as LICM and CSE to eliminate redundant loads, and thus redundant caches.

• Since we instead need to preserve values for the reverse pass, these optimizations may not apply.

• This requires far more caching than necessary.

double* cache = new double[N*M];

for(int i=0; i<N; i++) {
 for(int j=0; j<M; j++) {
 cache[i*M+j] = array[j];
 use(array[j]);
 }
}

overwrite(array);
grad_overwrite(array);

for(int i=0; i<N; i++) {
 for(int j=M-1; i<M; i++) {
 grad_use(cache[i*M+j], d_array[j]);
 }
}
When LLVM Doesn’t Cut It

• Enzyme relies on optimizations such as LICM and CSE to eliminate redundant loads, and thus redundant caches.

• Since we instead need to preserve values for the reverse pass, these optimizations may not apply.

• This requires far more caching than necessary.

• By analyzing the read/write structure, we can hoist the cache.

```c
double* cache = new double[M];
memcpy(cache, array, sizeof(double)*M);
for(int i=0; i<N; i++) {
    for(int j=0; j<M; j++) {
        use(array[j]);
    }
}
overwrite(array);
grad_overwrite(array);
for(int i=0; i<N; i++) {
    for(int j=M-1; i<M; i++) {
        grad_use(cache[j], d_array[j]);
    }
}
```
Cache

- Adjoint instructions may require values from the forward pass
 - e.g. $\nabla (x * y) \Rightarrow x \ dy + y \ dx$
- For all values needed in the reverse, allocate memory in the forward pass to store the value
- Values computed inside loops are stored in an array indexed by the loop induction variable
 - Array allocated statically if possible; otherwise dynamically realloc’d
Case Study: Read Sum

define double @sum(double* %x)

for.body

%i = phi [0, entry], [%i.next, for.body]
%total = phi [0.0, %entry], [%add, for.body]
%call = @read()
%0 = load %x[%i]
%mul = %0 * %call
%add = %mul + %total
%i.next = %i + 1
%exitcond = %i.next == 10
br %exitcond, for.cleanup, for.body

double sum(double* x) {
 double total = 0;
 for(int i=0; i<10; i++)
 total += read() * x[i];
 return total;
}

void diffe_sum(double* x, double* xp) {
 return __enzyme_autodiff(sum, x, xp);
}
Case Study: Read Sum

Active Variables

```
define double @sum(double* %x)

%i = phi [ 0, entry ], [ %i.next, for.body ]
%total = phi [ 0.0, %entry ], [ %add, for.body ]
%call = @read()
%0 = load %x[%i]
%mul = %0 * %call
%add = %mul + %total
%i.next = %i + 1
%exitcond = %i.next == 10
br %exitcond, for.cleanup, for.body

%result = phi [%call, cond.true], [0, entry]
ret %result
```
Each register in the for loop represents a distinct active variable every iteration.
Allocate & zero shadow memory per active value

```
define double @diffe_sum(double* %x, double* %xp)

alloca %x' = 0.0
alloca %total' = 0.0
alloca %0' = 0.0
alloca %mul' = 0.0
alloca %add' = 0.0
alloca %result' = 0.0
br for.body

%call = @read()  
%0 = load %x[%i]  
%mul = %0 * %call  
%add = %mul + %total  
%result = phi [ %call, cond.true], [0, entry]  
ret %result
```
define double @diffe_sum(double* %x, double* %xp)

cache forward pass variables for use in reverse

for.body

for.cleanup

entry

alloca %x' = 0.0
alloca %total' = 0.0
alloca %0' = 0.0
alloca %mul' = 0.0
alloca %add' = 0.0
alloca %result' = 0.0
%call_cache = @malloc(10 x double)
br for.body

%i = phi [0, entry], [%i.next, for.body]
%total = phi [0.0, %entry], [%add, for.body]
%call = @read()
store %call_cache[%i] = %call
%0 = load %x[%i]
%mul = %0 * %call
%add = %mul + %total
%i.next = %i + 1
%exitcond = %i.next == 10
br %exitcond, for.cleanup, for.body

%result = phi [%call, cond.true], [0, entry]
@free(%cache)
ret %result
define void @diffe_sum(double* %x, double* %xp)

entry
%call_cache = @malloc(10 x double)
br for.body

for.body
%i = phi [0, entry], [%i.next, for.body]
%total = phi [0.0, %entry], [%add, for.body]
%call = @read()
store %call_cache[%i] = %call
%i.next = %i + 1
%exitcond = %i.next == 10
br %exitcond, reversefor.body, for.body

reversefor.body
%i' = phi [9, for.body], [%i'.next, reversefor.body]
%i'.next = %i' - 1
%cached_read = load %call_cache[%i']
store %xp[%i'] = %cached_read + %xp[%i']
%exit2 = %i = 0
br %exitcond, %exit2, reversefor.body

exit
@free(%cache)
ret

After lowering &
some optimizations
After more optimizations
Enzyme on the GPU

- Care must be taken to both ensure correctness and maintain parallelism.

- GPU programs have much lower memory limits. Performance is highly dependent on the number of memory transfers.

- Without first running optimizations reverse-mode AD of large kernels is intractable (OOM).

- Novel GPU and AD-specific optimizations can make a difference of several orders of magnitude when computing gradients.

<table>
<thead>
<tr>
<th>Test</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>1</td>
</tr>
<tr>
<td>AD, Optimized</td>
<td>4.4</td>
</tr>
<tr>
<td>AD, No CacheLICM</td>
<td>343.7</td>
</tr>
<tr>
<td>AD, Bad Recompute Heuristic</td>
<td>1275.6</td>
</tr>
<tr>
<td>AD, No Inlining</td>
<td>6372.2</td>
</tr>
<tr>
<td>AD, No PreOptimization</td>
<td>OOM</td>
</tr>
</tbody>
</table>
CUDA Automatic Differentiation

- Enzyme enables differentiation of CPU programs without rewriting them in a DSL.

- Similarly, GPU programs cannot currently be differentiated without being rewritten in a differentiable language (e.g. PyTorch).

- Enzyme enables reverse-mode AD of general existing GPU programs by:
 - Resolving potential data race issues
 - Differentiating parallel control (syncthreads)
 - Differentiating CUDA intrinsics (e.g. threadIdx.x /llvm.nvvm.read.ptx.sreg.tid.x)
 - Handling shared memory
CUDA Automatic Differentiation

- Most CUDA intrinsics [e.g. threadIdx.x] are inactive and recomputable and thus are incorporated into Enzyme without any special handling.

- Derivative of syncthreads is a syncthreads at the corresponding place in reverse pass.

- Shared memory is handled by making a second shared memory allocation to act as the shadow for any potentially active uses.
Enzyme

- Tool for performing reverse-mode AD of statically analyzable LLVM IR
- Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)
- 4.2x speedup over AD before optimization
- State-of-the art performance with existing tools
- Differentiate GPU kernels
- Open Source (enzyme.mit.edu / github.com/wsmoses/Enzyme)
- PyTorch-Enzyme & TensorFlow-Enzyme imports foreign code in ML workflow
GPU Automatic Differentiation

- Prior work has not explored reverse mode AD of GPU kernels

- Similarly, GPU programs cannot currently be differentiated without being rewritten in a differentiable language (e.g. PyTorch).

- Enzyme enables reverse-mode AD of general existing GPU programs by:
 - Resolving potential data race issues
 - Differentiating parallel control (syncthreads)
 - Differentiating CUDA intrinsics (e.g. threadIdx.x /llvm.nvvm.read.ptx.sreg.tid.x)
 - Handling shared memory
Enzyme

- Tool for performing reverse-mode AD of statically analyzable LLVM IR
- Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)
- 4.2x speedup over AD before optimization
- State-of-the art performance with existing tools
- Differentiate GPU kernels
- Open Source (enzyme.mit.edu / github.com/wsmoses/Enzyme)
- PyTorch-Enzyme & TensorFlow-Enzyme imports foreign code in ML workflow
Custom Derivatives & Multisource

• One can specify custom forward/reverse passes of functions by attaching metadata

```c
__attribute__((enzyme("augment", augment_func)))
__attribute__((enzyme("gradient", gradient_func)))
double func(double n);
```

• Enzyme leverages LLVM’s link-time optimization (LTO) & “fat libraries” to ensure that LLVM bitcode is available for all potential differentiated functions before AD
CUDA Performance Improvements

- Introduce optimizations to reduce the use of memory
 - Alias Analysis to determine legality of recomputing an instruction
 - More aggressive alias analysis properties of syncthreads
 - Don’t cache unnecessary values
 - Move cache outside of loops when possible
 - Heap-to-stack [and to register]
 - Don’t cache memory itself acting as a cache [such as shared memory]
Enzyme Differentiation Algorithm

- Type Analysis
- Activity Analysis
- Synthesize derivatives
 - Forward pass that mirrors original code
 - Reverse pass inverts instructions in forward pass (adjoints) to compute derivatives
- Optimize
Activity Analysis

- Determines what instructions could impact derivative computation
- Avoids taking meaningless or unnecessary derivatives (e.g. d/dx cpuid)
- Instruction is active iff it can propagate a differential value to its return or memory
- Build off of alias analysis & type analysis
 - E.g. all read-only function that returns an integer are inactive since they cannot propagate adjoints through the return or to any memory location
Compiler Analyses Better Optimize AD

- Existing

- Alias analysis results that prove a function does not write to memory, we can prove that additional function calls do not need to be differentiated since they cannot impact the output

- Don’t cache equivalent values

- Statically allocate caches when a loop’s bounds can be determined in advance
Decomposing the “Tape”

- Performing AD on a function requires data structures to compute
 - All values necessary to compute adjoints are available [cache]
 - Place to store adjoints [shadow memory]
 - Record instructions [we are static]

- Creating these directly in LLVM allows us to explicitly specify their behavior for optimization, unlike approaches that call out to a library

- For more details look in paper
Conventional Wisdom: AD Only Feasible at High-Level

- Automatic Differentiation requires high level semantics to produce gradients
- Lack of high-level information can hinder performance of low-level AD
 - “AD is more effective in high-level compiled languages (e.g. Julia, Swift, Rust, Nim) than traditional ones such as C/C++, Fortran and LLVM IR […]” -Innes[1]

Differentiation Is Key To Machine Learning

- Hinders application of ML to new domains
- Synthesizing gradients aims to close this gap
Enzyme Overturns Conventional Wisdom

• As fast or faster than state-of-the-art tools

 • Running after optimization enables a **4.2x speedup**

• Necessary semantics for AD derived at low-level (with potential cooperation of frontend)
Parallel Memory Detection

- Thread-local memory
 - Non-atomic load/store
 - Same memory location across all threads
- Parallel Reduction
- Others [always legal fallback]
 - Atomic increment

```assembly
%tmp = load %d_res
store %d_res = 0
atomic %d_ptr += %tmp
```
AD-Specific Cache

- Some optimizations require domain-specific knowledge

- Not all values are needed for the reverse pass. By considering the dataflow graph we can perform a min-cut to approximate smaller cache sizes.

 - Not all (loop) sizes are known at compile-time, so this must be a heuristic

```c
double xy_cache=x[0] + y[0];
use(x[0] + y[0]);
overwrite(x, y);
grad_overwrite(x, y);
grad_use(xy_cache);
```
AD-Specific Cache

- Some optimizations require domain-specific knowledge

- Not all values are needed for the reverse pass. By considering the dataflow graph we can perform a min-cut to approximate smaller cache sizes.

- Not all (loop) sizes are known at compile-time, so this must be a heuristic

```c
double x_cache=x[0];
double y_cache=y[0];
use(x[0] + y[0]);
overwrite(x, y);
grad_overwrite(x, y);
grad_use(x_cache + y_cache);
```
AD-Specific Cache

- Some optimizations require domain-specific knowledge

- Not all values are needed for the reverse pass. By considering the dataflow graph we can perform a min-cut to approximate smaller cache sizes.

 - Not all (loop) sizes are known at compile-time, so this must be a heuristic

```plaintext
double xy_cache=x[0] + y[0];
use(x[0] + y[0]);
overwrite(x, y);
grd_overwrite(x, y);
grd_use(xy_cache);
```
Differentiation Is Key To Machine Learning And Science

- Computing derivatives is key to many algorithms
 - Machine learning (back-propagation, Bayesian inference, uncertainty quantification)
 - Scientific computing (modeling, simulation)
- When working with large codebases or dynamically-generated programs, manually writing derivative functions becomes intractable
- Community has developed tools to create derivatives automatically
Existing AD Approaches

- Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)
 - Provide a new language designed to be differentiated
 - Requires rewriting everything in the DSL and the DSL must support all operations in original code
 - Fast if DSL matches original code well

- Operator overloading (Adept, JAX)
 - Provide differentiable versions of existing language constructs (double => adouble, np.sum => jax.sum)
 - May require writing to use non-standard utilities
 - Often dynamic: storing instructions/values to later be interpreted
Existing AD Approaches

- Source rewriting
 - Statically analyze program to produce a new gradient function in the source language
 - Re-implement parsing and semantics of given language
 - Requires all code to be available ahead of time
 - Difficult to use with external libraries
Case Study: ReLU3

C Source

double relu3(double x) {
 double result;
 if (x > 0)
 result = pow(x, 3);
 else
 result = 0;
 return result;
}

Enzyme Usage

double diffe_relu3(double x) {
 return __enzyme_autodiff(relu3, x);
}

LLVM

define double @relu3(double %x)

entry
%cmp = %x > 0
br %cmp, cond.true, cond.end

cond.true
%call = pow(%x, 3)
br cond.end

cond.end
%result = phi [%call, cond.true], [0, entry]
ret %result
Case Study: ReLU3

define double @relu3(double %x)

%cmp = %x > 0
br %cmp, cond.true, cond.end

%call = pow(%x, 3)
br cond.end

%result = phi [%call, cond.true], [0, entry]
ret %result
Allocate & zero shadow memory for active values

```c
define double @diffe_relu3(double %x, double %differet)

alloca %result' = 0.0
alloca %call' = 0.0
alloca %x' = 0.0
%cmp = %x > 0
br %cmp, cond.true, cond.end
%call = pow(%x, 3)
br cond.end

%result = phi [%call, cond.true], [0, entry]
; deleted return
%result' = 1.0
br reverse_cond.end
```

entry

cond.true

cond.end
Compute adjoints for active instructions

```
define double @diffe_relu3(double %x, double %differet)

alloca %result’ = 0.0
alloca %call’ = 0.0
alloca %x’ = 0.0
%cmp = %x > 0
br %cmp, cond.true, cond.end

%call = pow(%x, 3)
br cond.end

%result = phi [%call, cond.true], [0, entry]
; deleted return
%result’ = 1.0
br reverse_cond.end

alloca %call’ = 0.0
alloca %x’ = 0.0
%cmp = %x > 0
br %cmp, reverse_cond.true, reverse_entry

%df = 3 * pow(%x, 2)
%tmp_call’ = load %call
%x’ += %df * %tmp_call’
store %call’ = 0.0
br reverse_entry

%tmp_res’ = load %result’
%call’ += if %x > 0 then %tmp_res’ else 0
store %result’ = 0.0
br %cmp, reverse_cond.true, reverse_entry

%0 = load %x’
ret %0
```

reverse_entry

reverse_cond.true

reverse_cond.end

cond.end

cond.true

entry
Compute adjoints for active instructions

```c
define double @diffe_relu3(double %x, double %differet)

%result' = 0.0
alloca %result' = 0.0
alloca %call' = 0.0
alloca %x' = 0.0
%cmp = %x > 0
br %cmp, cond.true, cond.end

%result = phi [%call, cond.true], [0, entry]
; deleted return
%result' = 1.0
br reverse_cond.end

%call = pow(%x, 3)
br cond.end

%df = 3 * pow(%x, 2)
%tmp_call' = load %call
%x' += %df * %tmp_call'
store %call' = 0.0
br reverse_entry

%0 = load %x'
ret %0
```

Reverse conditional block:

```c
reverse_cond.true
%tmp_res' = load %result'
%call' += if %x > 0 then %tmp_res' else 0
store %result' = 0.0
br %cmp, reverse_cond.true, reverse_entry
```

Reverse entry:

```c
reverse_entry
%0 = load %x'
ret %0
```
Essentially the optimal hand-written gradient!

double diffe_relu3(double x) {
 double result;
 if (x > 0)
 result = 3 * pow(x, 2);
 else
 result = 0;
 return result;
}
Challenges of Low-Level AD

- Low-level code lacks information necessary to compute adjoints

```c
void f(void* dst, void* src) {
    memcpy(dst, src, 8);
}
```

```c
void grad_f(double* dst, double* dst',
            double* src, double* src') {
    // Forward Pass
    memcpy(dst, src, 8);
    // Reverse Pass
    src'[0] += dst'[0];
    dst'[0] = 0;
}
```

```c
void grad_f(float* dst, float* dst',
            float* src, float* src') {
    // Forward Pass
    memcpy(dst, src, 8);
    // Reverse Pass
    src'[0] += dst'[0];
    dst'[0] = 0;
    src'[1] += dst'[1];
    dst'[1] = 0;
}
```
Type Analysis

- New interprocedural dataflow analysis that detects the underlying type of data
- Each value has a set of memory offsets: type
- Perform series of fixed-point updates through instructions

```
struct MyType {
    double;
    int*;
}
x = MyType*;
```

types(x) = {[0]:Pointer, [0,0]:Double, [0,8]:Pointer, [0,8,0]:Integer}
Case 3: Store, Sync, Store

codeA(); // store %ptr
sync_threads;

codeB(); // store %ptr
...

diffe_codeB(); // load %d_ptr
 // store %d_ptr = 0
sync_threads;

diffe_codeA(); // load %d_ptr
 // store %d_ptr = 0

Correct

- All stores to d_ptr in diffe_B will complete prior to diffe_A, ensuring only the clobbering store has its derivative incremented.
Scalability Analysis (Fixed Thread Count)

![Graph showing AD Overhead (factor) vs Iterations for LBM – Parboil (C & CUDA).]
CUDA Example

```c
__device__ void inner(float* a, float* x, float* y) {
    y[threadIdx.x] = a[0] * x[threadIdx.x];
}

__device__ void __enzyme_autodiff(void*, ...);

__global__ void daxpy(float* a, float* da, float* x, float* dx, float* y, float* dy) {
    __enzyme_autodiff((void*)inner, a, da, x, dx, y, dy);
}

__device__ void diffe_inner(float* a, float* da, float* x, float* dx, float* y, float* dy) {
    y[threadIdx.x] = a[0] * x[threadIdx.x];

    float dy = dy[threadIdx.x];
    dy[threadIdx.x] = 0.0f;

    float dx_tmp = a[0] * dy;
    atomic { dx[threadIdx.x] += dx_tmp; }

    float da_tmp = x[threadIdx.x] * dy;
    atomic { da[0] += da_tmp; }
}
```
Existing AD Approaches (1/3)

- Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)
 - Provide a new language designed to be differentiated
 - Requires rewriting everything in the DSL and the DSL must support all operations in original code
 - Fast if DSL matches original code well

```python
import tensorflow as tf
def double_square(val):
    return val * val;

x = tf.Variable(3.14)
with tf.GradientTape() as tape:
    out = tf.math.square(x)
print(tape.gradient(out, x).numpy())
```
Existing AD Approaches (3/3)

- Source rewriting
 - Statically analyze program to produce a new gradient function in the source language
 - Re-implement parsing and semantics of given language
 - Requires all code to be available ahead of time => hard to use with external libraries

```c
double square(double val) {
    return val * val;
}
```

$ tapenade -b -o out.c -head "square(val)/(out)" square.c

```c
double grad_square(double val) {
    return 2 * val;
}
```
Parallel Automatic Differentiation in LLVM

- Shadow Registers %d_res and %d_val are thread-local as they shadow thread-local registers.
- No risk of races and no special handling required.
- Both %ptr and shadow %d_ptr might be raced upon and require analysis.
Case 2: Load, Sync, Store

```
codeA(); // load %ptr
sync_threads;
codeB(); // store %ptr
...
diffe_codeB(); // load %d_ptr
    // store %d_ptr = 0
sync_threads;
diffe_codeA(); // atomicAdd %d_ptr
```

Correct

- All of the stores of \(d_ptr \) will complete prior to any atomicAdds

No cross-thread race here since that’s equivalent to a write race in B
Differentiation of SyncThreads

Case 3 [write sync write]

codeA(); // store %ptr
sync_threads;
codeB(); // store %ptr
...
diffe_codeB(); // load %d_ptr
 // store %d_ptr = 0
sync_threads;
diffe_codeA(); // load %d_ptr
 // store %d_ptr = 0

All uses of stores to d_ptr in diffe_B will correctly complete prior to diffe_A

Case 4 [read sync read]

codeA(); // load %ptr
sync_threads;
codeB(); // load %ptr
...
diffe_codeB(); // atomicAdd %d_ptr
sync_threads;
diffe_codeA(); // atomicAdd %d_ptr

Original and differential sync unnecessary and legal to include
Scalability Analysis (Fixed Work Per Thread)
Parallel Optimization: Loop Indexing

• Allocations (and any calls) on the GPU are expensive

• Given two allocations in the same scope, replace uses with a single allocation

• Beneficial for not just AD, but any GPU programs!

```cpp
double* var1 = new double[N];
double* var2 = new double[M];
use(var1, var2);
delete[] var1;
delete[] var2;
```

```cpp
double* var1 = new double[N + M];
double* var2 = var1 + N;
use(var1, var2);
delete[] var1;
```