Making ML Fast for Arbitrary Code

William S. Moses

Valentin Churavy

wmoses@mit.edu
Secure AI Seminar
July 28, 2020
Automatic Differentiation

- Computing the derivatives of functions is necessary component in machine learning (back-propagation, Bayesian inference, uncertainty quantification), scientific computing (modeling, simulation), and other fields
- Writing derivatives of large codebases is intractable
- Existing solutions:
 - Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)
 - Operator-overloading AD (Adept, ADOL-C, JAX)
 - Source-rewriting (Tapenade, ADIC, Zygote)
Operator Overloading vs Source Writing

❖ Operator overloading
 ❖ Provide differentiable versions of existing language constructs
 ❖ May require rewriting to use non-standard language utilities
 ❖ Often dynamic: storing instructions & values of the forward pass in a tape that is later “interpreted” by the reverse pass

❖ Source rewriting
 ❖ Statically analyze program to produce a new gradient function in the source language
 ❖ Requires all differentiated code ahead of time; difficult to use with external libraries
Existing AD Pipelines
Case Study: Vector Normalization

```c
//Compute magnitude in O(n)
double mag(double* x, size_t n);

//Compute norm in O(n^2)
void norm(double* out, double* in, size_t n) {
    for(int i=0; i<n; i++) {
        out[i] = in[i]/mag(in, n);
    }
}
```
double mag(double* x, size_t n);

void norm(double* out, double* in, size_t n) {
 double res = mag(in, n);
 for(int i=0; i<n; i++) {
 out[i] = in[i]/res;
 }
}

Loop Invariant Code Motion

O (n)

O (n^2)
void dnorm(double* out, double* dout,
 double* in, double* din, size_t n) {
 double res = mag(in, n);

 for(int i=0; i<n; i++) {
 out[i] = in[i]/res;
 }

 double d_res = 0;
 for(int i=0; i<n; i++) {
 dres += -in[i]*in[i]/res * dout[i];
 din[i] += dout[i]/res;
 }

 dmag(in, din, n, dres);
}

LICM then AD

$O(n)$

$O(n)$
void dnorm(double* out, double* dout,
 double* in, double* din, size_t n) {

 for(int i=0; i<n; i++) {
 out[i] = in[i]/mag(in, n);
 }

 for(int i=0; i<n; i++) {
 double dres = -in[i]*in[i]/mag * dout[i];
 din[i] += dout[i]/mag;
 dmag(in, din, n, dres);
 }
}
void dnorm(double* out, double* dout,
 double* in, double* din, size_t n) {

 double res = mag(in, n);
 for(int i=0; i<n; i++) {
 out[i] = in[i]/res;
 }

 for(int i=0; i<n; i++) {
 double dres = -in[i]*in[i]/res * dout[i];
 din[i] += dout[i]/res;
 dmag(in, din, n, dres);
 }
}
Enzyme Approach

Perform AD on *optimized* programs
Challenges of post-optimization AD

- Implement all optimizations in AD system
- Embed a compiler into your AD
- Rewrite all compiler analyzes and optimizations
- Perform AD on low-level post-optimization representation
- Embed AD into your compiler

“AD is more effective in high-level compiled languages (e.g. Julia, Swift, Rust, Nim) than traditional ones such as C/C++, Fortran and LLVM IR [...]” -Innes
Enzyme

- Reverse-mode source-rewriting AD plugin for statically analyzable LLVM IR
- 4.5x speedup over AD before optimization
- State-of-the art performance with existing tools
- Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)
- PyTorch-Enzyme/TensorFlow-Enzyme packages to let researchers use foreign code in their ML workflow
- Multisource AD & library support by leveraging LTO
ML Framework Integration

```python
import torch
from torch_enzyme import enzyme

# Create some initial tensor
inp = ...

# Apply foreign function to tensor
out = enzyme("test.c", "f").apply(inp)

# Derive gradient
out.backward()
print(inp.grad)
```

```python
import tensorflow as tf
from tf_enzyme import enzyme

inp = tf.Variable(...)  # Use external C code as a regular TF op
out = enzyme(inp, filename="test.c", function="f")

# Results is a TF tensor
out = tf.sigmoid(out)
```

```c
// Input tensor + size, and output tensor
void f(float* inp, size_t n, float* out);

// diffe_dupnoneed specifies not recomputing the output
void diffe(float* inp, float* d_inp, size_t n, float* d_out) {
    __enzyme_autodiff(f, diffe_dup, inp, d_inp, n, diffe_dupnoneed, (float*)0, d_out);
}
```
What is LLVM

- Generic low-level compiler infrastructure
- “Cross platform assembly”
- Goal: efficient compilation of arbitrary code
- Well-defined semantics
- Large collection of optimization and analysis passes for handling
LLVM IR

LLVM represents each function as a control-flow graph (CFG) of BasicBlocks, containing lists of Instructions.

```c
int fib(int n) {
    if (n < 2) return n;
    int x, y;
    x = fib(n - 1);
    y = fib(n - 2);
    return x + y;
}
```
Core Algorithm

- Type Analysis
- Activity Analysis
- Synthesize derivatives
 - Forward pass that mirrors original code
 - Reverse pass inverts instructions in forward pass (adjoints)
- Optimize
The “memcpy” Problem

- Taking the derivative of operations such as memcpy
 memcpy depends on the type of the data being copied
 - e.g. one derivative for pointers, one for doubles, another for floats
- LLVM Types != C/C++ types
```c
void f(void* dst, void* src) {
    memcpy(dst, src, 8);
}

void grad_f(double* dst, double* dst', double* src, double* src') {
    // Forward Pass
    memcpy(dst, src, 8);
    // Reverse Pass
    src'[0] += dst'[0];
    dst'[0] = 0;
}

void grad_f(float* dst, float* dst', float* src, float* src') {
    // Forward Pass
    memcpy(dst, src, 8);
    // Reverse Pass
    src'[0] += dst'[0];
    dst'[0] = 0;
    src'[1] += dst'[1];
    dst'[1] = 0;
}
```
Type Analysis

- New interprocedural dataflow analysis that detects the underlying type of data
- Each value has a set of memory offsets : type

\[x = \{[\,]:\text{Pointer}, [0]:\text{Double}, [8]:\text{Pointer}, [8,0]:\text{Integer}\} \]

```
struct Type {
    double;
    int*;
}
```

\[x = \text{Type}*; \]
Type Analysis

- Initialize type trees for values from constant, TBAA, and known instruction information.
- Each instruction has a type propagation rule describing how types flow through.
- Perform series of fixed-point updates propagating type information to uses/users.
- Provide a compile-time error if a necessary type cannot be deduced statically.
Activity Analysis

- Determines what instructions could impact derivative computation
- Avoids taking meaningless or unnecessary derivatives (e.g. $d/dx \text{cpuid}$)
- Instruction is active iff it can propagate a differential value to its return or memory
- Build off of alias analysis & type analysis
 - E.g. all read-only function that returns an integer are inactive since they cannot propagate adjoints through the return or to any memory location
Shadow Memory

- Derivatives of values are stored in shadow allocations
- For all active values, allocate and zero shadow memory to store the derivative of all of its occurrences
- All data structures need to have a shadow data structure created
 - Enzyme will create shadow allocation/stores for structures created inside code being differentiated
 - Data structures passed as arguments will pass shadow arguments
Derivative Synthesis

- Initialize shadow memory
- For each BasicBlock BB:
 - For each Instruction I in reverse(BB):
 - Emit adjoint I, caching and reloading any necessary values from the forward pass
Case Study: ReLU3

define double @relu3(double %x)

double relu3(double x) {
 double result;
 if (x > 0)
 result = pow(x, 3);
 else
 result = 0;
 return result;
}

double diffe_relu3(double x) {
 return __enzyme_autodiff(relu3, x);
}
Case Study: ReLU-f

define double @relu3(double %x)

%cmp = %x > 0
br %cmp, cond.true, cond.end

%call = pow(%x, 3)
br %call, cond.end

%result = phi [%call, cond.true], [0, entry]
ret %result
Allocate & zero shadow memory for active instructions

```c
define double @diffe_relu3(double %x, double %differet)

alloca %result' = 0.0
alloca %call' = 0.0
alloca %x' = 0.0
%cmp = %x > 0
br %cmp, cond.true, cond.end

%call = pow(%x, 3)
br cond.end

%result = phi [%call, cond.true], [0, entry]
; deleted return
%result' = 1.0
br reverse_cond.end
```
Compute adjoints for active instructions

Define double @diffe_relu3(double %x, double %differet)

entry

cond.true

%call = pow(%x, 3)
br cond.end

%result = phi [%call, cond.true], [0, entry]

; deleted return

%result' = 1.0
br reverse_cond.end

reverse_cond.true

%df = 3 *pow(%x, 2)
%tmp_call' = load %call
%x' += %df * %tmp_call'
store %call' = 0.0
br reverse_entry

reverse_cond.end

%tmp_res' = load %result'
%call' += if %x > 0 then %tmp_res' else 0
store %result' = 0.0
br %cmp, reverse_cond.true, reverse_entry

reverse_entry
define double @diffe_relu3(double %x)

%cmp = %x > 0
br %cmp, reverse_cond.true, reverse_entry

%3 = 3 * pow(%x, 2)
br reverse_entry

%0 = phi [%3, reverse_cond.true], [0, entry]
ret %0

Essentially the optimal hand-compiled program!

double diffe_relu3(double x) {
 double result;
 if (x > 0)
 result = 3 * pow(x, 2);
 else
 result = 0;
 return result;
}
Cache

- Adjoint instructions may require values from the forward pass
 - e.g. $\nabla(x \times y) \Rightarrow x \ dy + y \ dx$
- For all such values, allocate memory in the function header to store the value for use in the reverse pass
- Values computed inside loops are stored in an array indexed by the loop induction variable
 - Array allocated statically if possible; otherwise dynamically realloc’d
double sum(double* x) {
 double total = 0;
 for(int i=0; i<10; i++)
 total += read() * x[i];
 return total;
}

void diffe_sum(double* x, double* xp) {
 return __enzyme_autodiff(sum, x, xp);
}

define double @sum(double* %x)

%0 = load %x[%i]
%mul = %0 * %call
%add = %mul + %total
%i.next = %i + 1
%exitcond = %i.next == 10
br %exitcond, for.cleanup, for.body

%result = phi [%call, cond.true], [0, entry]
ret %result

Case Study: Read Sum

```c
define double @sum(double* %x)

%result = phi [%call, cond.true], [0, entry]
ret %result
```

Active Variables:

- `%i`
- `%total`
- `%call`
- `%0`
- `%mul`
- `%add`
- `%exitcond`
- The function `@read()` is used to load the data.

The diagram shows the control flow and data flow of the function, highlighting the variables and operations involved in the read sum process.
Case Study: Read Sum

Each register in the for loop represents a distinct active variable every iteration.
Allocate & zero shadow memory per active value

Define double @diffe_sum(double* %x, double* %xp)

Allocate zeroed memory:

alloca %x' = 0.0
alloca %total' = 0.0
alloca %0' = 0.0
alloca %mul' = 0.0
alloca %add' = 0.0
alloca %result' = 0.0

Branch to for.body

for.body:

%i = phi [0, entry], [%i.next, for.body]
%total = phi [0.0, %entry], [%add, for.body]
%call = @read()
%0 = load %x[%i]
%mul = %0 * %call
%add = %mul + %total
%i.next = %i + 1
%exitcond = %i.next == 10
br %exitcond, for.cleanup, for.body

for.cleanup:

%result = phi [%call, cond.true], [0, entry]
ret %result
```
define double @diffe_sum(double* %x, double* %xp)

entry

alloca %x' = 0.0
alloca %total' = 0.0
alloca %0' = 0.0
alloca %mul' = 0.0
alloca %add' = 0.0
alloca %result' = 0.0
%call_cache = @malloc(10 x double)
br for.body

%i = phi [ 0, entry ], [ %i.next, for.body ]
%total = phi [ 0.0, %entry ], [ %add, for.body ]
%call = @read()
store %call_cache[%i] = %call
%0 = load %x[%i]
%mul = %0 * %call
%add = %mul + %total
%i.next = %i + 1
%exitcond = %i.next == 10
br %exitcond, for.cleanup, for.body

%result = phi [ %call, cond.true], [0, entry]
@free(%cache)
ret %result
```
After lowering & some optimizations

```c
#define void @diffe_sum(double* %x, double* %xp)

%call_cache = @malloc(10 x double)
br for.body

%i = phi [ 0, entry ], [ %i.next, for.body ]
%total = phi [ 0.0, %entry ], [ %add, for.body ]
%call = @read()
store %call_cache[%i] = %call
%i.next = %i + 1
%exitcond = %i.next == 10
br %exitcond, reversefor.body, for.body

%i' = phi [ 9, for.body ], [ %i'.next, reversefor.body ]
%i'.next = %i' - 1
%cached_read = load %call_cache[%i']
store %xp[%i'] = %cached_read + %xp[%i']
%exit2 = %i = 0
br %exitcond, %exit2, reversefor.body

@free(%cache)
ret
```
Case Study: Read Sum

```
#define void @diffe_sum(double* %x, double* %xp)

entry
%call0 = @read()
store %xp[0] = %call0
%call1 = @read()
store %xp[1] = %call1
%call2 = @read()
store %xp[2] = %call2
%call3 = @read()
store %xp[3] = %call3
%call4 = @read()
store %xp[4] = %call4
%call5 = @read()
store %xp[5] = %call5
%call6 = @read()
store %xp[6] = %call6
%call7 = @read()
store %xp[7] = %call7
%call8 = @read()
store %xp[8] = %call8
%call9 = @read()
store %xp[9] = %call9
ret
```

After more optimizations

```
#define void diffe_sum(double* x, double* xp) {
    xp[0] = read();
    xp[1] = read();
    xp[2] = read();
    xp[3] = read();
    xp[4] = read();
    xp[5] = read();
    xp[6] = read();
    xp[7] = read();
    xp[8] = read();
    xp[9] = read();
}
```
Cache Optimizations

- By carefully caching in a form LLVM understands, existing optimization passes can optimize the memory away! [*]

- Further optimizations:
 - Use alias analysis to prove that recomputing an instruction is legal
 - Don’t cache unnecessary values
 - Don’t cache a value that already has already been cached elsewhere

[*] For dynamic loops, requires modification to LLVM memory analyses to understand semantics of realloc.
Function Calls

- Computing both forward and reverse pass in the same function allows further optimization and reduces memory usage.
 - Enzyme uses Alias Analysis to detect legality of computing forward/reverse pass together.
 - Otherwise, Enzyme may need to modify forward pass to cache values needed by reverse pass.
Indirect Function Calls

- Calls to functions that aren’t known at compile time are dealt with by leveraging shadow memory.
- The shadow of function pointers is defined to be a global containing the forward and reverse pass.
- Thus taking the adjoint of an indirect function call simply requires extracting and calling the corresponding shadow callee.
Custom Derivatives & Multisource

- One can specify custom forward/reverse passes of functions by attaching metadata

```c
__attribute__((enzyme("augment", augment_func)))
__attribute__((enzyme("gradient", gradient_func)))
double func(double n);
```

- Enzyme leverages LLVM’s link-time optimization (LTO) & “fat libraries” to ensure that LLVM bitcode is available for all potential differentiated functions before AD
Evaluation

- Collection of benchmarks from Microsoft’s ADBench suite and of technically interest
- Evaluated Enzyme, Reference, and the two fastest AD systems from ADBench (Tapenade, Adept)
- All programs run serially
- Quiesed Amazon c4.8xlarge (disabled turbo-boost; hyper-threading)
Reference Pipeline

Enzyme:
- O2
 AD
- O2

Ref:
 AD
- O2
- O2
Relative Speedup

Higher is Better

Speedup of 0.5 denotes program took twice as long as Speedup of 1.0
Runtime

<table>
<thead>
<tr>
<th>Method</th>
<th>Enzyme</th>
<th>Ref</th>
<th>Tapenade</th>
<th>Adept</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM</td>
<td>2.353</td>
<td>4.458</td>
<td>4.042</td>
<td>7.645</td>
</tr>
<tr>
<td>BA</td>
<td>0.424</td>
<td>0.778</td>
<td>0.680</td>
<td>2.334</td>
</tr>
<tr>
<td>GMM</td>
<td>0.073</td>
<td>0.462</td>
<td>0.124</td>
<td>1.544</td>
</tr>
<tr>
<td>Euler</td>
<td>0.161</td>
<td>36.723</td>
<td>nan</td>
<td>6.851</td>
</tr>
<tr>
<td>RK4</td>
<td>3.397</td>
<td>23.442</td>
<td>nan</td>
<td>6.371</td>
</tr>
<tr>
<td>FFT</td>
<td>0.183</td>
<td>0.182</td>
<td>nan</td>
<td>2.538</td>
</tr>
<tr>
<td>Bruss</td>
<td>0.181</td>
<td>0.182</td>
<td>0.518</td>
<td>3.457</td>
</tr>
</tbody>
</table>

Enzyme is 4.5x faster than Ref!
Conclusions

❖ AD on low-level IR can be performant
❖ Optimization before AD is crucial
❖ Enzyme provides high-performance cross-language AD
❖ Open-sourcing late summer (email for beta access!)
❖ Future Work:
 ❖ Parallelism, GPU AD
 ❖ AD-specific optimizations
Acknowledgements

❖ Thanks to James Bradbury, Tim Kaler, Charles Leiserson, Yingbo Ma, Chris Rackauckas, TB Schardl, Dhash Shrivathsa, Nalini Singh, and Alex Zinenko for their invaluable feedback and advice.

❖ William S. Moses was supported in part by a DOE Computational Sciences Graduate Fellowship DESC0019323.

❖ This research was supported in part by LANL grant 531711. Research was sponsored by the United States Air Force Research Laboratory and was accomplished under Cooperative Agreement Number FA8750-19-2-1000.

❖ The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the United States Air Force or the U.S. Government.
Conclusions

❖ AD on low-level IR can be performant
❖ Optimization before AD is crucial
❖ Enzyme provides high-performance cross-language AD
❖ Open-sourcing late summer (email for beta access!)
❖ Future Work:
 ❖ Parallelism, GPU AD
 ❖ AD-specific optimizations
Backup Slides
Type Analysis

```c
int* indirect(int* x, int idx) {
    return &x[idx];
}

void callee(int* ptr) {
    int* ptr2 = indirect(ptr, 2);
    double loadtype = *(double*)ptr2;
    int* ptr3 = indirect(ptr, 3);
    int* cptr2 = &ptr[2];
    int notype = *(cptr2);
    int* cptr3 = &ptr[3];
    *((int64_t*)cptr3) = 100;
    ptr2 = indirect
    ptr3 = indirect
}
```
Load + Store Propagation

int* indirect(int* x, int idx) {
 return &x[idx];
}

void callee(int* ptr) {
 int* ptr2 = indirect(ptr, 2);
 double loadtype = *(double*)ptr2;
 int* ptr3 = indirect(ptr, 3);
 int* cptr2 = &ptr[2];
 int notype = *cptr2;
 int* cptr3 = &ptr[3];
 ((int64_t)cptr3) = 100;
}

callee:

ptr2 = indirect
ptr3 = indirect

void callee(int* ptr) {
 ptr: {}
 ptr2: {[]:Pointer}
 loadtype: {}
 ptr3: {}
 cptr2: {[]:Pointer}
 notype: {}
 cptr3: {[]:Pointer}
```c
int* indirect(int* x, int idx) {
    return &x[idx];
}

void callee(int* ptr) {
    int* ptr2 = indirect(ptr, 2);
    double loadtype = *(double*)ptr2;
    int* ptr3 = indirect(ptr, 3);
    int* cptr2 = &ptr[2];
    int notype = *cptr2;
    int* cptr3 = &ptr[3];
    *((int64_t*)cptr3) = 100;
}
```
cptr3 => ptr

```c
int* indirect(int* x, int idx) {
    return &x[idx];
}
void callee(int* ptr) {
    int* ptr2 = indirect(ptr, 2);
    double loadtype = *(double*)ptr2;
    int* ptr3 = indirect(ptr, 3);
    int* cptr2 = &ptr[2];
    int notype = *cptr2;
    int* cptr3 = &ptr[3];
    *((int64_t*)cptr3) = 100;
}
```
ptr => cptr2

```c
int* indirect(int* x, int idx) {
    return &x[idx];
}

void callee(int* ptr) {
    int* ptr2 = indirect(ptr, 2);
    double loadtype = *(double*)ptr2;
    int* ptr3 = indirect(ptr, 3);
    int* cptr2 = &ptr[2];
    int notype = *cptr2;
    int* cptr3 = &ptr[3];
    *((int64_t*)cptr3) = 100;
    ptr2 = indirect
    ptr3 = indirect
}
```
ptr2 Call IPO

int* indirect(int* x, int idx) {
 return &x[idx];
}

void callee(int* ptr) {
 int* ptr2 = indirect(ptr, 2);
 double loadtype = *(double*)ptr2;
 int* ptr3 = indirect(ptr, 3);
 int* cptr2 = &ptr[2];
 int notype = *cptr2;
 int* cptr3 = &ptr[3];
 ((int64_t)cptr3) = 100;
}

ptr2 = indirect
int* indirect(int* x, int idx) {
 return &x[idx];
}

void callee(int* ptr) {
 int* ptr2 = indirect(ptr, 2);
 double loadtype = *(double*)ptr2;
 int* ptr3 = indirect(ptr, 3);
 int* cptr2 = &ptr[2];
 int notype = *cptr2;
 int* cptr3 = &ptr[3];
 ((int64_t)cptr3) = 100;
}

ptr2 = indirect
void callee(int* ptr) {
 int* ptr2 = indirect(ptr, 2);
 double loadtype = *(double*)ptr2;
 int* ptr3 = indirect(ptr, 3);
 int* cptr2 = &ptr[2];
 int notype = *cptr2;
 int* cptr3 = &ptr[3];
 ((int64_t)cptr3) = 100;
}

int* indirect(int* x, int idx) {
 return &x[idx];
}
 PTR2 CALL IPO - x

callee:

```c
void callee(int* ptr) {
    int* ptr2 = indirect(ptr, 2);
    double loadtype = *(double*)ptr2;
    int* ptr3 = indirect(ptr, 3);
    int* cptr2 = &ptr[2];
    int notype = *cptr2;
    int* cptr3 = &ptr[3];
    *((int64_t*)cptr3) = 100;
}
```

```
ptr2 = indirect
```

```c
int* indirect(int* x, int idx) {
    return &x[idx];
}
```

```
x:     {[]: Pointer, [16]: Double, [24]: Int}
idx:   {[]: Int@2}
&x[idx] {[]: Pointer, [0]: Double, [8]: Int}
return {[]: Pointer, [0]: Double, [8]: Int}
```
ptr2 Call IPO

```c
int* indirect(int* x, int idx) {
    return &x[idx];
}

void callee(int* ptr) {
    int* ptr2 = indirect(ptr, 2);
    double loadtype = *(double*)ptr2;
    int* ptr3 = indirect(ptr, 3);
    int* cptr2 = &ptr[2];
    int notype = *cptr2;
    int* cptr3 = &ptr[3];
    *((int64_t*)cptr3) = 100;
}
```

callee:

```c
void callee(int* ptr) {
    ptr:  {[]:Pointer, [16]:Double, [24]:Int}
    ptr2: {[]:Pointer, [0]:Double, [8]:Int}
    loadtype: {[]:Double}
    ptr3: {}
    cptr2: {[]:Pointer, [8]:Int}
    notype: {}
    cptr3: {[]:Pointer, [0]:Int}
}
```
Requirements & Performance Boosts

- **Requirements**
 - Enable TBAA (Type based alias analysis)
 - Strict Aliasing (no unions)
 - Disable exceptions

- **Performance Boosts**
 - Disable Loop Unrolling before AD
 - Disable Vectorization before AD
Future Work: Parallelism*

- Build off prior work [1] representing parallelism (OpenMP, Cilk, etc) in compiler
- Reverse pass can remain in parallel, with dependencies reversed
- Updates to adjoints in parallel tasks done with reducer or atomic add to prevent races

```
int fib(int n) {
    if (n < 2) return n;
    int x, y;
    x = spawn fib(n - 1);
    y = fib(n - 2);
    sync;
    return x + y;
}
```


[*] Work in progress — suggestions appreciated
Benchmarks

- LSTM: Long-short term memory model
- BA: Bundle analysis
- GMM: Gaussian mixture model
- Euler: Euler integration
- RK4: Runge-Kutta integration
- FFT: Fast Fourier transform
- Bruss: Brusselrator chemical simulation
Matrix Vector: Single Iteration

```
#define N 20000
#define M 20000
#define ITERS 1
```

<table>
<thead>
<tr>
<th></th>
<th>Enzyme</th>
<th>Adept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>1.119</td>
<td>0.0006</td>
</tr>
<tr>
<td>Forward</td>
<td>1.119</td>
<td>11.016</td>
</tr>
<tr>
<td>Forward +Reverse</td>
<td>1.210</td>
<td>13.445</td>
</tr>
</tbody>
</table>
Taylor Expand Log

```java
static adouble logger(adouble x) {
    adouble sum = 0;
    for(int i=1; i<=ITERS; i++) {
        sum += pow(x, i) / i;
    }
    return sum;
}

static double logger_and_gradient(double xin, double& xgrad) {
    adept::Stack stack;
    adouble x = xin;
    stack.new_recording();
    adouble y = logger(x);
    y.set_gradient(1.0);
    stack.compute_adjoint();
    xgrad = x.get_gradient();
    return y.value();
}
```
Taylor Expand Log (Julia)

\[f(x) = \sum_{i=1}^{N} \frac{x^i}{i} \approx -\log(1 - x) \]

```c
#define ITERS 10000000

double logger(double x) {
    double sum = 0;
    for (int i=1; i<=ITERS; i++)
        sum += pow(x, i) / i;
    return sum;
}
```

```c
function jl_f1(f::Float64)
    sum = 0 * f;
    for i = 1:10000000
        sum += f^i / i;
    end
    return sum;
end
```

\[\frac{\partial}{\partial x} f(x) \approx \frac{1}{1 - x} \]

\[\frac{\partial}{\partial x} f(x = 0.5) \approx 2 \]

```c
using Zygote
@show autodiff(f1_f1, 0.5)
@time autodiff(f1_f1, 0.5)
```

```c`
; Enzyme derivative code
@show autodiff(f1_f1, 0.5)
@time autodiff(f1_f1, 0.5)
```
Taylor Expand Log

10000000 iterations

<table>
<thead>
<tr>
<th></th>
<th>Enzyme</th>
<th>Adept</th>
<th>Enzyme-Julia</th>
<th>Zygote-Julia</th>
<th>AutoGrad-Julia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>3.74</td>
<td>3.72</td>
<td>3.82</td>
<td>3.82</td>
<td>3.82</td>
</tr>
<tr>
<td>Forward</td>
<td>3.74</td>
<td>4.56</td>
<td>3.82</td>
<td>3.82</td>
<td>3.82</td>
</tr>
<tr>
<td>Forward +Reverse</td>
<td>3.90</td>
<td>4.65</td>
<td>3.95</td>
<td>44.694</td>
<td>896.30</td>
</tr>
</tbody>
</table>
#define N 10000000

double logsumexp(double* x, size_t n) {
 double A = 0;
 for(int i=1; i < n; i++) {
 A = max(A, x[i]);
 }
 double sema = 0;
 for(int i=0; i < n; i++) {
 sema += max(x[i] - A);
 }
 return max(sema) + A;
}

function logsumexp(x::Array{Float64,1}) {
 A = maximum(x)
 ema = exp.(x .- A)
 sema = sum(ema)
 return log(sema) + A
end
Taylor Expand Log

10000000 iterations

<table>
<thead>
<tr>
<th></th>
<th>Enzyme</th>
<th>Adept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>3.74</td>
<td>3.72</td>
</tr>
<tr>
<td>Forward</td>
<td>3.74</td>
<td>4.56</td>
</tr>
<tr>
<td>Forward +Reverse</td>
<td>3.90</td>
<td>4.65</td>
</tr>
</tbody>
</table>
LogSumExp

10000000 elements

<table>
<thead>
<tr>
<th></th>
<th>Enzyme</th>
<th>Adept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.364</td>
<td>0.364</td>
</tr>
<tr>
<td>Forward</td>
<td>0.364</td>
<td>2.994</td>
</tr>
<tr>
<td>Forward +Reverse</td>
<td>0.605</td>
<td>3.836</td>
</tr>
</tbody>
</table>
Find Matrix by Gradient Descent

<table>
<thead>
<tr>
<th></th>
<th>Enzyme</th>
<th>Adept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>4.731</td>
<td>25.606</td>
</tr>
<tr>
<td>Gradient Descent</td>
<td>22.672</td>
<td>133.354</td>
</tr>
</tbody>
</table>
Training Simple Neural Network

<table>
<thead>
<tr>
<th></th>
<th>Enzyme</th>
<th>Adept</th>
<th>Handwritten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>73.718</td>
<td>338.097</td>
<td>72.178</td>
</tr>
</tbody>
</table>

Picked first C MNIST Code on Github:
https://github.com/AndrewCarterUK/mnist-neural-network-plain-c

- 1-layer fully connected layer => softmax => cross-entropy loss
- Batch size 100
- 1000 iterations
- Learning rate 0.5
Case Study: Subcall

double loadsq(double* x) {
 return x[0] * x[0];
}

void f(double* x) {
 *x = loadsq(x);
}

void diffe_f(double* x, double* xp) {
 _enzyme_autodiff(f, x, xp);
}

#define double @loadsq(double* %x)

entry
%val = load %x
%mul = %val * %val
ret %mul

#define void @f(double* %x)

entry
%call = @loadsq(%x)
store %x = %call
ret
double loadsq(double* x) {
 return x[0] * x[0];
}

void f(double* x) {
 *x = loadsq(x);
}

define {double, double} @augment_loadsq(double* %x)

entry
%val = load %x
%mul = %val * %val
ret {/*return val*/%mul,
 /*cache*/ %val}

define void @diffe_loadsq(double* %x, double* %x’, double %diffe, double %cache)

entry
%val = %cache // cannot reload as x changed
%mul = %val * %val
%mul’ = %diffe
%val’ = 2 * %val * %mul’
store %x’ += %val’
define {double, double} @augment_loadsq(double* %x)

entry
%val = load %x
%mul = %val * %val
ret { /*return val*/ %mul,
 /*cache*/ %val}

define void @diffe_loadsq(double* %x, double* %x', double %diffe, double %cache)

entry
%val = %cache // cannot reload as x changed
%mul = %val * %val
%mul' = %diffe
%val' = 2 * %val * %mul'
store %x' += %val'

define void @diffe_f(double* %x)

entry
{%call, %cache} = @augment_loadsq(%x)
store %x = %call
%call' = load %x'
store %x' = 0
@augment_loadsq(%x, %x', %call', %cache)
ret

double loadsq(double* x) {
 return x[0] * x[0];
}
void f(double* x) {
 *x = loadsq(x);
}
define {double, double} @augment_loadsq(double* %x) {
 %val = load %x
 %mul = %val * %val
 ret {
 /*return val*/
 %mul,
 /*cache*/ %val
 }
}

define void @diffe_loadsq(double* %x', double %diffe, double %cache) {
 store %x' += 2 * %cache * %diffe
}

define void @diffe_f(double* %x) {
 %call, %cache} = @augment_loadsq(%x)
 store %x = %call
 %call' = load %x'
 store %x' = 0
 @augment_loadsq(%x', %call', %cache)
 ret
}

double loadsq(double* x) {
 return x[0] * x[0];
}

void f(double* x) {
 *x = loadsq(x);
}
ptr2 Call IPO

callee:

```c
void callee(int* ptr) {
    int* ptr2 = indirect(ptr, 2);
    double loadtype = *(double*)ptr2;
    int* ptr3 = indirect(ptr, 3);
    int* cptr2 = &ptr[2];
    int notype = *cptr2;
    int* cptr3 = &ptr[3];
    *((int64_t*)cptr3) = 100;
}
```

ptr2 = indirect

```c
int* indirect(int* x, int idx) {
    return &x[idx];
}
```
ptr => cptr2

```c
int* indirect(int* x, int idx) {
    return &x[idx];
}

void callee(int* ptr) {
    int* ptr2 = indirect(ptr, 2);
    double loadtype = *(double*)ptr2;
    int* ptr3 = indirect(ptr, 3);
    int* cptr2 = &ptr[2];
    int notype = *cptr2;
    int* cptr3 = &ptr[3];
    *((int64_t*)cptr3) = 100;
}
```
int* indirect(int* x, int idx) {
 return &x[idx];
}

void callee(int* ptr) {
 int* ptr2 = indirect(ptr, 2);
 double loadtype = *(double*)ptr2;
 int* ptr3 = indirect(ptr, 3);
 int* cptr2 = &ptr[2];
 int notype = *cptr2;
 int* cptr3 = &ptr[3];
 ((int64_t)cptr3) = 100;
}
ptr3 Call IPO

```c
int* indirect(int* x, int idx) {
    return &x[idx];
}

void callee(int* ptr) {
    int* ptr2 = indirect(ptr, 2);
    double loadtype = *(double*)ptr2;
    int* ptr3 = indirect(ptr, 3);
    int* cptr2 = &ptr[2];
    int notype = *cptr2;
    int* cptr3 = &ptr[3];
    *((int64_t*)cptr3) = 100;
    return;
}
```

```
callee:
void callee(int* ptr) {
    ptr:      {
        [0]: Pointer, [16]: Double, [24]: Int
    }
    ptr2:     {
        [0]: Pointer, [0]: Double, [8]: Int
    }
    loadtype: {
        [0]: Double
    }
    ptr3:     {
        [0]:
    }
    cptr2:    {
        [0]: Pointer, [0]: Double, [8]: Int
    }
    notype:   {
        [0]: Double
    }
    cptr3:    {
        [0]: Pointer, [0]: Int
    }
    ptr3 = indirect
```

```
int* indirect(int* x, int idx) {
    x:      {
        [0]: Pointer, [16]: Double, [24]: Int
    }
    idx:    {
        [0]: Int
    }
    &x[idx] {} return {}
```
/* ptr3 Call IPO - x */

```c
int* indirect(int* x, int idx) {
    return &x[idx];
}

void callee(int* ptr) {
    int* ptr2 = indirect(ptr, 2);
    double loadtype = *(double*)ptr2;
    int* ptr3 = indirect(ptr, 3);
    int* cptr2 = &ptr[2];
    int notype = *cptr2;
    int* cptr3 = &ptr[3];
    *((int64_t*)cptr3) = 100;
}
```

```
ptr3 = indirect

int* indirect(int* x, int idx) {
    x:     {[]: Pointer, [16]: Double, [24]: Int}
    idx:   {[]: Int@3}
    &x[idx]: {[]: Pointer, [0]: Int}
    return {};
}
```
ptr3 Call IPO - return

```c
int* indirect(int* x, int idx) {
    return &x[idx];
}

void callee(int* ptr) {
    int* ptr2 = indirect(ptr, 2);
    double loadtype = *(double*)ptr2;
    int* ptr3 = indirect(ptr, 3);
    int* cptr2 = &ptr[2];
    int notype = *cptr2;
    int* cptr3 = &ptr[3];
    *((int64_t*)cptr3) = 100;
}
```
ptr3 Call IPO

```c
int* indirect(int* x, int idx) {
    return &x[idx];
}

void callee(int* ptr) {
    int* ptr2 = indirect(ptr, 2);
    double loadtype = *(double*)ptr2;
    int* ptr3 = indirect(ptr, 3);
    int* cpotr2 = &ptr[2];
    int notype = *ct2;
    int* cpotr3 = &ptr[3];
    *((int64_t*)cpotr3) = 100;
}
```

```c
void callee(int* ptr) {
    ptr:   {
        &:Pointer, [16]:Double, [24]:Int
    }
    ptr2:  {
        &:Pointer, [0]:Double, [8]:Int
    }
    loadtype: {
        &:Double
    }
    ptr3:   {
        &:Pointer, [0]:Int
    }
    cpotr2: {
        &:Pointer, [0]:Double, [8]:Int
    }
    notype: {
        &:Double
    }
    cpotr3: {
        &:Pointer, [0]:Int
    }
```

```
```
int* indirect(int* x, int idx) {
 return &x[idx];
}

void callee(int* ptr) {
 int* ptr2 = indirect(ptr, 2);
 double loadtype = *(double*)ptr2;
 int* ptr3 = indirect(ptr, 3);
 int* cptr2 = &ptr[2];
 int notype = *cptr2;
 int* cptr3 = &ptr[3];
 ((int64_t)cptr3) = 100;
}