
Enzyme: Efficient Cross-Platform
AD by Synthesizing LLVM

!1

{wmoses, tfk}@mit.edu  
EuroAD

July 2, 2019

William S. Moses Tim Kaler

Tao B. SchardlCharles E. Leiserson

Part of exploration on AD
by MIT Supertech Research Groups

Daniele Vettorel

https://supertech.mit.edu

Funding provided by DOE CSGF fellowship and IBM

https://supertech.mit.edu

“Holy Grail” of Automatic Differentiation
❖ General: we should be able to run AD on arbitrary

programs

❖ Easy to Use: the amount of code one needs to modify to
use AD should be small

❖ Fast: executing AD shouldn’t take too long

❖ Correct: AD should produce the right answer

State of AD
Usable Fast

?

M
or

e
Gen

era
l Language

Independent

Library/DSL
Specific

High Level
Lang. Specific

Low Level
Lang. Specific

?

Examples

None*
😢

* There are some “language independent” ones but they require rewriting for said framework in a way that makes it rather unusable

State of AD
Usable Fast

?

M
or

e
Gen

era
l Language

Independent

Library/DSL
Specific

High Level
Lang. Specific

Low Level
Lang. Specific

?

Examples

Enzyme  
(this work)

* There are some “language independent” ones but they require rewriting for said framework in a way that makes it rather unusable

Why Generality Matters
❖ Taking derivatives of arbitrary programs gives programmers

composability — they only need to care about the tool they’re
building rather than any code they’re differentiating

❖ e.g. ’I want to build ML tool for predicting the result of this
simulator’

❖ Most programs aren’t written in the same language /
framework as your tool and thus won’t work with your AD

Idea: Generality by Bootstrapping
❖ A sufficiently general AD system for a particular

language (or framework) works not only with code in
that language, but any code for higher level languages
written in the lower level language.

❖ i.e a good C differentiator should be able to  
also differentiate Python code

❖ If we create a general AD for a low level  
language we get the higher 
languages (mostly) for free

Presenting Enzyme (work in progress)
❖ Reverse-mode automatic differentiation tool built in

LLVM to handle a variety of languages and frameworks

❖ Performs differentiation by synthesizing a new function

❖ Clean interface that doesn’t require rewriting existing
programs to use

Presenting Enzyme (work in progress)
❖ Reverse-mode automatic differentiation tool built in

LLVM to handle a variety of languages and frameworks

❖ Performs differentiation by synthesizing a new function

❖ Clean interface that doesn’t require rewriting existing
programs to use

Our beta* can match the performance of less 
general AD on a variety of benchmarks!

[*] Beta is in progress and not yet feature-complete.  
 Planned open sourcing once published and ABI-stable.

Enzyme Pipeline

Lower

Lowering pass needs to be implemented for each language.
C/C++ and Julia implemented presently.

[2]

Synthesize

Optimize

CodeGen

Optimize

Valentin Churavy

[1]

[1] Frontend for Julia joint with Valentin Churavy

[2]

[2]

What is LLVM
❖ Generic low-level compiler infrastructure

❖ “Cross platform assembly”

❖ Goal is compiling arbitrary code as efficiently as possible

❖ Well-defined semantics and high-level constructs

❖ Large collection of optimization and analysis passes for
handling

LLVM IR
LLVM represents each function as a control-flow graph
(CFG) of BasicBlocks, containing lists of Instructions.

%cmp = %n < 0
br %cmp, exit, if.else

%nm1 = %n - 1
%x = fib(%nm1)
%nm2 = %n - 1
%y = fib(%nm2)
%add = %x + %y
br exit

entry

if.else

exit
rv = phi([n,entry],[add,if.else])
return rv

int fib(int n) {
 if (n < 2) return n;
 int x, y;
 x = fib(n - 1);
 y = fib(n - 2);
 return x + y;
}

!12

Basic block

Control flow

What is Synthesis?
❖ Instrumentation-based approaches

❖ Store the operations and values of the forward pass in
a tape that is later “interpreted” by the reverse pass

❖ Can store data by overloading a language’s types/
functions or rewriting/transforming the source code to
include it (such as in compiler instrumentation)

❖ Synthesis-based approaches

❖ Statically analyze the function to produce a new
function with the relevant operations

Why Synthesis?
❖ Synthesis is often faster

❖ Overloading all of LLVM’s instructions and fixing its
~4 million lines of code is both impractical and
unsustainable

❖ Since we must do program rewriting/transformation
anyways (and LLVM has tools for making it easier),
might as well do synthesis rather than instrumentation
for faster results

Core Algorithm
❖ Iterate through all instructions in the original function

to detect whether they are active (could modify
derivatives) or not.

❖ For active value in the original function, allocate and
zero memory to store the derivative of all of its
occurrences.

❖ For each block in the original function, compute the
adjoint of its active instructions in reverse order,
caching and reloading any necessary values from the
forward pass

Optimizing away the “Tape”
❖ To compute adjoints, it may be necessary to use values

computed in the forward pass

❖ Traditionally stored in a stack-based tape mechanism

❖ Idea: carefully cache all values individually in a form
LLVM understands (to simplify implementation)

❖ Existing optimization passes can optimize the
memory away

❖ Without optimization may use more memory than
traditional tape, after optimization uses far less

Optimizing Communication
❖ Compute the forward pass and backward passes

together

❖ Let LLVM optimize how values are shared/reused
from forward to backward pass

❖ Dead code-elimination can get rid of the forward
pass if not needed!

❖ After optimizations, forward pass and backward pass
can be split* [useful for recursive calls]

[*] Splitting is in progress.

Case Study: ReLU-f

!18

entry

cond.true

%result = phi [%call, cond.true], [0, entry]
ret %resultcond.end

%cmp = %x < 0
br %cmp, cond.true, cond.end

%call = f(%x)
br cond.end

double reluf(double x) {
 double result;
 if (x > 0)
 result = f(x);
 else
 result = 0;
 return result;
}

define double @reluf(double %x)

double diffe_reluf(double x) {
 return __builtin_autodiff(reluf, x);
}

!19

entry

cond.true
%result = phi [%call, cond.true], [0, entry]
br reverse_cond.end cond.end

alloca %result’ = 1.0
alloca %call’ = 0.0
alloca %x’ = 0.0
%cmp = %x < 0
br %cmp, cond.true, cond.end

%call = f(%x)
br cond.end

define double @diffe_reluf(double %x)

%8 = %x < 0
%9 = load %call’
%10 = load %result’
%11 = if %8 then %10 else %9
store %call’ = %11
store %result’ = 0.0
br %cmp, reverse_cond.true, reverse_entry

reverse_cond.end

%3 = diffe_f(%x)
%4 = load %call’
%5 = %4 * %3
%6 = load %x’
%7 = %6 + %5
store %x’ = %7
store %call’ = 0.0
br reverse_entry

%0 = load %x’
ret %0

!19

reverse_entry

reverse_cond.true

!20

entry

cond.true

%result = phi [%call, cond.true], [0, entry]
br reverse_cond.end cond.end

%cmp = %x < 0
br %cmp, cond.true, cond.end

%call = f(%x)
br cond.end

define double @diffe_reluf(double %x)

%8 = %x < 0
%11 = if %8 then 1.0 else 0.0
br %cmp, reverse_cond.true, reverse_entry

reverse_cond.end

%3 = diffe_f(%x)
%5 = %11 * %3
%7 = 0.0 + %5
br reverse_entry

%0 = phi [%7, reverse_cond.true], [0, reverse_cond.end]
ret %0

!20

reverse_entry

reverse_cond.true

Run LLVM memory optimizations

!21

entry

cond.true

%result = phi [%call, cond.true], [0, entry]
br reverse_cond.end cond.end

%cmp = %x < 0
br %cmp, cond.true, cond.end

%call = f(%x)
br cond.end

define double @diffe_reluf(double %x)

%8 = %x < 0
%11 = if %cmp then 1.0 else 0.0
br %cmp, reverse_cond.true, reverse_entry

reverse_cond.end

%3 = diffe_f(%x)
%5 = 1.0 * %3
%7 = 0.0 + %3
br reverse_entry

%0 = phi [%3, reverse_cond.true], [0, reverse_cond.end]
ret %0

!21

reverse_entry

reverse_cond.true

Common Sub-expression Elimination
& Instruction Simplification

!22

entry

cond.true

 
br reverse_cond.end cond.end

%cmp = %x < 0
br %cmp, cond.true, cond.end

 
br cond.end

define double @diffe_reluf(double %x)

 
 
br %cmp, reverse_cond.true, reverse_entry

reverse_cond.end

%3 = diffe_f(%x)
 
 
br reverse_entry

%0 = phi [%3, reverse_cond.true], [0, reverse_cond.end]
ret %0

!22

reverse_entry

reverse_cond.true

Dead Code Elimination

!23

entry %cmp = %x < 0
br %cmp, reverse_cond.true, reverse_entry

define double @diffe_reluf(double %x)

%3 = diffe_f(%x)
br reverse_entry

%0 = phi [%3, reverse_cond.true], [0, entry]
ret %0

!23

reverse_entry
reverse_cond.true

Simplify CFG

Essentially the optimal hand-compiled program!

double diffe_reluf(double x) {
 double result;
 if (x > 0)
 result = diffe_f(x);
 else
 result = 0;
 return result;
}

More Advanced Details

Loops
❖ Loops require special handling since an SSA Value can

have multiple distinct realizations per iteration of the loop

❖ Idea: Statically allocate an array of sufficient size to store
all loop allocations in outermost loop preheater

❖ With correct attributes, LLVM is able to understand this
allocation and similarly optimize

❖ If loop bounds cannot be calculated statically, dynamically
reallocate array

❖ Requires modification to LLVM memory analyses to
understand semantics of realloc.

Active Variable Detection*
❖ All function arguments are denoted as either inactive,

active (with reasonable defaults for the user)

❖ Non-pointer value is inactive if it is created by using only
inactive values or never used in creation of an active
value

❖ Pointer values require examining stores to uses/users

❖ Algorithm as heuristic to avoid creating unnecessary
computation / synthesis and avoid asking for ill-defined
derivatives (i.e a function prints an active variable —
what is the derivative of the print function)

[*] Work in progress — suggestions appreciated

Complex Data Types
❖ Calling a derivative function with complex data types

(e.g arrays) requires passing a second data structure to
store derivative outputs

❖ Structs with multiple elements may contain both
active variables and constants

❖ e.g. an array storing its size — size is constant

❖ Variable marked as active

❖ Rely on active variable detection to identify if a
particular element of struct derivatives

Local Data Structures
❖ Local data structures with active variable need to be

duplicated to store derivative information

❖ Leverage all data structures are created by specific
memory instructions (malloc/free/new/delete/etc)

❖ Allocations are copied in forward pass to create
differential structures

❖ Frees are delayed until the reversed version of the
block that allocated in case values are used in the
reverse pass

Case Study: Read Sum

!29

entry

for.body

%result = phi [%call, cond.true], [0, entry]
ret %result

for.cleanup

br for.body

 %i = phi [0, entry], [%i.next, for.body]
 %total = phi [0.0, %entry], [%add, for.body]
 %call = @read()
 %0 = load %x[%i] 
 %mul = %0 * %call
 %add = %mul + %total
 %i.next = %i + 1
 %exitcond = %i.next == 10
 br %exitcond, for.cleanup, for.body

double sum(double* x) {
 double total = 0; 

 for(int i=0; i<10; i++)
 total += read() * x[i];

 return total;
}

define double @sum(double* %x)

void diffe_sum(double* x, 
 double* xp) {
 return 
 __builtin_autodiff(sum, x, xp);
}

!30

entry

for.body

@free(%cache)
ret

exit

%cache = @malloc(8 x double) 
br for.body

 %i = phi [0, entry], [%i.next, for.body]
 %total = phi [0.0, %entry], [%add, for.body]
 %call = @read()
 store %cache[%i] = %call 
 %i.next = %i + 1
 %exitcond = %i.next == 10
 br %exitcond, reversefor.body, for.body

define void @diffe_sum(double* %x, double* %xp)

 %i' = phi [9, for.body], [%i’.next, reversefor.body]
 %i’.next = %i' - 1
 %cached_read = load %cache[%i’] 
 store %xp[%i’] = %cached_read + %xp[%i’] 
 %exit2 = %i = 0
 br %exitcond, %exit2, reversefor.body

After lowering and 
some optimizations

!30

reversefor.body

Case Study: Read Sum

!31

entry %call0 = @read() 
 store %xp[0] = %call0
 %call1 = @read() 
 store %xp[1] = %call1
 %call2 = @read() 
 store %xp[2] = %call2
 %call3 = @read() 
 store %xp[3] = %call3
 %call4 = @read() 
 store %xp[4] = %call4
 %call5 = @read() 
 store %xp[5] = %call5
 %call6 = @read() 
 store %xp[6] = %call6
 %call7 = @read() 
 store %xp[7] = %call7
 %call8 = @read() 
 store %xp[8] = %call8
 %call9 = @read() 
 store %xp[9] = %call9
 ret

define void @diffe_sum(double* %x, double* %xp)

After more optimizations

void diffe_sum(double* x, double* xp) {
 xp[0] = read();
 xp[1] = read();
 xp[2] = read();
 xp[3] = read();
 xp[4] = read();
 xp[5] = read();
 xp[6] = read();
 xp[7] = read();
 xp[8] = read();
 xp[9] = read();
}

Parallelism*
❖ Build off prior work [1] representing

parallelism (OpenMP, Cilk, etc) in
compiler

❖ Reverse pass can remain in parallel,
with dependencies reversed

❖ Updates to adjoints in parallel tasks
done with reducer or  
atomic add to prevent  
races

det

%x = alloca i64
%cmp = %n < 2
br %cmp, exit, if.else

detach det, cont

%nm1 = %n - 1
%x0 = fib(%nm1)
store %x = %x0
reattach cont

%nm2 = %n - 2
%y = fib(%nm2)
sync
%x1 = load %x
%add = %x1 + %y
br exit

rv = phi [%n, entry], [%add, cont]
return rv

entry

if.else

cont

exit

Tapir CFG

int fib(int n) {
 if (n < 2) return n;
 int x, y;
 x = spawn fib(n - 1);
 y = fib(n - 2);
 sync;
 return x + y;
}

[*] Work in progress — suggestions appreciated
[1] Tapir; Tao. B Schardl, William S Moses, Charles E. Leiserson; PPoPP 2017

Custom Derivatives*
❖ Enzyme can compute derivatives of any function in

current compilation module

❖ Functions compiled in a unit (i.e. libraries, linked
objects) can be handled by compiling library with
Enzyme, creating library with derivatives included

❖ Functions can be marked with a custom derivative
function via metadata

[*] Work in progress — suggestions appreciated

Preliminary Tests of Beta
Implementation

Intel E5520 @ 2.27GHz, 64GB 1066MHz DDR3, Ubuntu 16.04

All programs run serially

Time Graph
Ti

m
e

 (n
or

m
al

iz
ed

)

0

0.2

0.4

0.6

0.8

1

TaylorLog LogSumExp Matrix NeuralNet

Enzyme Tapenade Adept

Between 19% and 534% speedup over Adept  
Comparable with Tapenade

Taylor Expand Log

#define ITERS 10000000
double taylor_log(double x) {
 double sum = 0; 

 for(int i=1; i<=ITERS; i++)
 sum += pow(x, i) / i;

 return sum;
}

f(x) =
N

∑
i=1

xi

i
≈ − log(1 − x) ∂

∂x
f(x) ≈

1
1 − x

Use a Taylor series to compute the log function, evaluated at x=0.5

double derivative(double x) {
 return __builtin_autodiff(taylor_log, x);
}

Taylor Expand Log

Enzyme Adept Tapenade

Normal 3.71 3.74 3.70

Forward 3.70 4.50 3.71

Forward 
+Reverse 3.72 4.67 3.70

10000000 iterations

LogSumExp

#define N 10000000
double logsumexp(double* x, size_t n) {
 double A = 0;
 
 for(int i=1; i < n; i++) {
 A = max(A, x[i]);
 }

 double sema = 0;

 for(int i=0; i < n; i++) {
 sema += max(x[i] - A);
 }

 return max(sema) + A;
}

Smooth approximation to maximum function, often used in machine learning.

double derivative(double* input, double* inputp, size_t n) {
 return __builtin_autodiff(logsumexp, input, inputp, n);
}

LogSumExp

Enzyme Adept Tapenade

Normal 0.364 0.364 0.364

Forward 0.364 2.994 0.364

Forward 
+Reverse 0.605 3.836 0.817

10000000 elements

Find Matrix by Gradient Descent

#define N 2000
#define M 2000
double matvec(double* mat, double* vec) {
 double* out = malloc(sizeof(double)*N); 

 double A = 0; 
 for(int i=1; i < N; i++) {
 out[i] = 0;
 for(int j=1; j < M; j++) {

 out[i] += mat[i*M+j] * vec[j];
 }

 }
 double sum = 0;
 for(int i=0; i < N; i++) {
 sum += out[i] * out[i];
 }
 free(out);
 return sum;
}

#define ITERS 1000
#define RATE 0.00000001
double descent(double* mat, double* dmat,

 double* vec){
 
 for(int iter=1; iter < ITERS; iter++) {

 memset(dmat, 0, sizeof(double)*N*M);
 __builtin_autodiff(matvec, mat, dmat,

 diffe_const, vec);

 out[i] = 0;
 for(int i=1; i < N*M; i++) {

 mat[i] -= dmat[i] * RATE;
 }
 }
 double sum = 0;
 for(int i=0; i < N; i++) {
 sum += out[i] * out[i];
 }
}

Find a matrix that produces a vector close to zero when multiplied by vec 

Find Matrix by Gradient Descent

Enzyme Adept Tapenade

Forward 4.698 25.356 4.704

Gradient  
Descent 22.039 130.957 21.828

Training Simple Neural Network

Enzyme Adept Tapenade Handwritt
en

73.663 338.097 73.008 72.076

Picked first C MNIST Code on Github:  
 https://github.com/AndrewCarterUK/mnist-neural-network-plain-c

❖ 1-layer fully connected layer => softmax => cross-entropy loss
❖ Batch size 100
❖ 1000 iterations
❖ Learning rate 0.5

https://github.com/AndrewCarterUK/mnist-neural-network-plain-c

Conclusions
❖ Need four things in AD: generality, usability, speed, and correctness

❖ Created a prototype tool: Enzyme

❖ Provides first “true” cross platform AD (to our knowledge)

❖ Compatible with any tool lowering to LLVM (Tensorflow, Rust, C/C++,
Julia, etc)

❖ Matches state of art performance by building off on compiler optimizations

❖ Demonstrates possibility of a general AD that is efficient and easy-to-use

❖ Future Work:

❖ Feature completion and more frontends

❖ Heuristics (e.g. recompute vs cache)

❖ ABI stability and open source release / publication

Backup Slides

Matrix Vector: Single Iteration

Enzyme Adept

Normal 1.119 0.0006

Forward 1.119 11.016

Forward 
+Reverse 1.210 13.445

#define N 20000
#define M 20000
#define ITERS 1

Taylor Expand Log
static adouble logger(adouble x) {
 adouble sum = 0;
 for(int i=1; i<=ITERS; i++) {
 sum += pow(x, i) / i;
 }
 return sum;
}

static double logger_and_gradient(double xin, double& xgrad) {
 adept::Stack stack;
 adouble x = xin;
 stack.new_recording();
 adouble y = logger(x);
 y.set_gradient(1.0);
 stack.compute_adjoint();
 xgrad = x.get_gradient();
 return y.value();
}

Taylor Expand Log (Julia)

#define ITERS 10000000
double logger(double x) {
 double sum = 0; 

 for(int i=1; i<=ITERS; i++)
 sum += pow(x, i) / i;

 return sum;
}

function jl_f1(f::Float64)
 sum = 0 * f;
 for i = 1:10000000
 sum += f^i / i;
end

 return sum;
end

f(x) =
N

∑
i=1

xi

i
≈ − log(1 − x)

∂
∂x

f(x) ≈
1

1 − x

∂
∂x

f(x = 0.5) ≈ 2
using Zygote
@show jl_f1‘(0.5)
@time jl_f1‘(0.5)

; Enzyme derivative code
@show autodiff(fl_f1, 0.5)
@time autodiff(fl_f1, 0.5)

Taylor Expand Log

Enzyme Adept Enzyme-
Julia

Zygote-
Julia

AutoGrad-
Julia

Normal 3.74 3.72 3.82 3.82 3.82

Forward 3.74 4.56 3.82 3.82 3.82

Forward 
+Reverse 3.90 4.65 3.95 44.694 896.30

10000000 iterations

LogSumExp

#define N 10000000
double logsumexp(double* x, size_t n) {
 double A = 0; 
 for(int i=1; i < n; i++) {
 A = max(A, x[i]);
 }
 double sema = 0;
 for(int i=0; i < n; i++) {
 sema += max(x[i] - A);
 }
 return max(sema) + A;
}

function logsumexp(x::Array{Float64,1})
 A = maximum(x)
ema = exp.(x .- A)
sema = sum(ema)

 return log(sema) + A
end

Taylor Expand Log

Enzyme Adept

Normal 3.74 3.72

Forward 3.74 4.56

Forward 
+Reverse 3.90 4.65

10000000 iterations

LogSumExp

Enzyme Adept

Normal 0.364 0.364

Forward 0.364 2.994

Forward 
+Reverse 0.605 3.836

10000000 elements

Find Matrix by Gradient Descent

Enzyme Adept

Forward 4.731 25.606

Gradient  
Descent 22.672 133.354

Training Simple Neural Network

Enzyme Adept Handwritten

73.718 338.097 72.178

Picked first C MNIST Code on Github:  
 https://github.com/AndrewCarterUK/mnist-neural-network-plain-c

❖ 1-layer fully connected layer => softmax => cross-entropy loss
❖ Batch size 100
❖ 1000 iterations
❖ Learning rate 0.5

https://github.com/AndrewCarterUK/mnist-neural-network-plain-c

