An Introduction to Enzyme & Some Fun Recent Results

William S. Moses

wmoses@mit.edu -> {havent-gotten-my-email-yet}@illinois.edu
William S. Moses Valentin Churavy Ludger Paehler Johannes Doerfert
Jan Hückelheim Sri Hari Krishna Narayanan Michel Schanen Paul Hovland
Leila Ghaffari Praytush Das Tim Gymnich Manuel Drehwald
& more
Existing AD Approaches (1/3)

- Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)
 - Provide a new language designed to be differentiated
 - Requires rewriting everything in the DSL and the DSL must support all operations in original code
 - Fast if DSL matches original code well

```python
import tensorflow as tf
x = tf.Variable(3.14)
with tf.GradientTape() as tape:
    out = tf.cond(x > 0,
                  lambda: tf.math.pow(x, 3),
                  lambda: 0)
print(tape.gradient(out, x).numpy())
```

```
def relu3(val):
    if x > 0:
        return pow(x, 3)
    else:
        return 0
```
Existing AD Approaches (2/3)

- Operator overloading (Adept, JAX)
 - Differentiable versions of existing language constructs (double => adouble, np.sum => jax.sum)
 - May require writing to use non-standard utilities
 - Often dynamic: storing instructions/values to later be interpreted

```cpp
// Rewrite to accept either
double or adouble

template<typename T>
T relu3(T val) {
    if (x > 0)
        return pow(x, 3)
    else
        return 0;
}

adept::Stack stack;
adept::adouble inp = 3.14;

// Store all instructions into stack
adept::adouble out(relu3(inp));
out.set_gradient(1.00);

// Interpret all stack instructions
double res = inp.get_gradient(3.14);
```
Existing AD Approaches (3/3)

- Source rewriting
 - Statically analyze program to produce a new gradient function in the source language
 - Re-implement parsing and semantics of given language
 - Requires all code to be available ahead of time => hard to use with external libraries

```c
// myfile.h
double relu3(double x) {
    if (x > 0)
        return pow(x,3)
    else
        return 0;
}

// myfile.c
double relu3(double x) {
    if (x > 0)
        return pow(x,3)
    else
        return 0;
}

// grad_myfile.h
double grad_relu3(double x) {
    if (x > 0)
        return 3 * pow(x,2)
    else
        return 0;
}

// grad_myfile.c
double grad_relu3(double x) {
    if (x > 0)
        return 3 * pow(x,2)
    else
        return 0;
}
```
Existing Automatic Differentiation Pipelines

AD

Optimize

Lower

CodeGen

EXE
Case Study: Vector Normalization

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n^2)
void norm(double[] out, double[] in) {
 for (int i=0; i<n; i++) {
 out[i] = in[i] / mag(in);
 }
}
Case Study: Vector Normalization

```c
//Compute magnitude in O(n)
double mag(double in[]);

//Compute norm in O(n)
void norm(double out[], double in[], double res) {
    double res = mag(in);
    for (int i=0; i<n; i++) {
        out[i] = in[i] / res;
    }
}
```
Optimization & Automatic Differentiation

\[O(n^2) \]

for i=0..n {
 out[i] /= mag(in)
}

Optimize

\[O(n) \]

res = mag(in)
for i=0..n {
 out[i] /= res
}

\[O(n) \]

d_res = 0.0
for i=n..0 {
 d_res += d_out[i]
}

\[\nabla \text{mag}(d_{\text{in}}, d_{\text{res}}) \]
Optimization & Automatic Differentiation

\[O(n^2) \]

\[O(n) \]

\[O(n) \]

\[O(n^2) \]

\[O(n^2) \]

\[O(n) \]

\[O(n) \]

for \(i = 0 \ldots n \) {
 \(\text{out}[i] /= \text{mag}(\text{in}) \)
}

Optimize

res = \text{mag}(\text{in})

for \(i = 0 \ldots n \) {
 \(\text{out}[i] /= \text{res} \)
}

AD

d_res = 0.0

for \(i = n \ldots 0 \) {
 d_res += d_\text{out}[i]...
}

\(\nabla \text{mag}(\text{d_in, d_res}) \)

for \(i = 0 \ldots n \) {
 \(\text{out}[i] /= \text{mag}(\text{in}) \)
}

for \(i = n \ldots 0 \) {
 d_res = d_\text{out}[i]...
 \(\nabla \text{mag}(\text{d_in, d_res}) \)
}

10
Optimization & Automatic Differentiation

\[O(n^2) \]

```
for i=0..n {
    out[i] /= mag(in)
}
```

Optimize

\[O(n) \]

```
res = mag(in)
for i=0..n {
    out[i] /= res
}
```

AD

\[O(n) \]

```
d_res = 0.0
for i=n..0 {
    d_res += d_out[i]...
}
\n∇mag(d_in, d_res)
```

\[O(n^2) \]

```
for i=0..n {
    out[i] /= mag(in)
}
```

AD

\[O(n^2) \]

```
for i=n..0 {
    d_res = d_out[i]...
    ∇mag(d_in, d_res)
}
```

Optimize

\[O(n^2) \]

```
for i=n..0 {
    d_res = d_out[i]...
    ∇mag(d_in, d_res)
}
```

Optimize
Optimization & Automatic Differentiation

Differentiating after optimization can create **asymptotically faster** gradients!

\[O(n^2) \quad \longrightarrow \quad O(n) \quad \longrightarrow \quad O(n) \]

\[\text{for } i=0..n \{ \quad \text{for } i=0..n \{ \quad \text{d_res = 0.0} \quad \text{d_res = 0.0} \}
\quad \text{out}[i] /= \text{mag}(\text{in}) \} \quad \text{res = mag(\text{in})} \}
\]

\[O(n^2) \quad \longrightarrow \quad O(n^2) \quad \longrightarrow \quad O(n^2) \]

\[\text{for } i=0..n \{ \quad \text{for } i=n..0 \{ \quad \text{for } i=n..0 \{
\quad \text{d_res} = \text{d_out}[i] \ldots \n\}
\quad \n\}
\quad \text{d_res} = \text{d_out}[i] \ldots \n\}
\quad \text{d_res} = \text{d_out}[i] \ldots \n\}
\]

\[\text{OPTIMIZE} \quad \text{AD} \quad \text{OPTIMIZE} \]

\[\text{\n} \]

\[\text{\n} \]

\[\text{\n} \]
Enzyme Approach

Performing AD at low-level lets us work on *optimized* code!
Experimental Setup

- Collection of benchmarks from Microsoft’s ADBench suite and of technical interest
Speedup of Enzyme

Enzyme is \textbf{4.2x faster} than Reference!
Automatic Differentiation & GPUs

- Prior work has not explored reverse mode AD of existing GPU kernels

 1. Reversing parallel control flow can lead to incorrect results
 2. Complex performance characteristics make it difficult to synthesize efficient code
 3. Resource limitations can prevent kernels from running at all
Efficient GPU Code

• For correctness, Enzyme may need to cache values in order to compute the gradient

• The complexity of GPU memory means large caches slow down the program by several orders of magnitude, if it even fits at all

• Like the CPU, existing optimizations reduce the overhead

• Unlike the CPU, existing optimizations aren’t sufficient

• Novel GPU and AD-specific optimizations can speedup by several orders of magnitude

// Forward Pass
out[i] = x[i] * x[i];
x[i] = 0.0f;
// Reverse (gradient) Pass
...grad_x[i] += 2 * x[i] * grad_out[i];...
Efficient Correct GPU Code

- For correctness, Enzyme may need to cache values in order to compute the gradient
- The complexity of GPU memory means large caches slow down the program by several orders of magnitude, if it even fits at all
- Like the CPU, existing optimizations reduce the overhead
- Unlike the CPU, existing optimizations aren’t sufficient
- Novel GPU and AD-specific optimizations can speedup by several orders of magnitude

```cpp
double* x_cache = new double[...];
// Forward Pass
out[i] = x[i] * x[i];
x_cache[i] = x[i];
x[i] = 0.0f;
// Reverse (gradient) Pass
...
grad_x[i] += 2 * x_cache[i] * grad_out[i];
...
delete[] x_cache;
```
Cache Reduction Example

- By considering the dataflow graph we can perform a min-cut to approximate smaller cache sizes.

```java
for(int i=0; i<10; i++) {
    double sum = x[i] + y[i];
    use(sum);
}
overwrite(x, y);
grad_overwrite(x, y);
for(int i=9; i>=0; i--) {
    ...
    grad_use(sum);
}
```
Cache Reduction Example

- By considering the dataflow graph we can perform a min-cut to approximate smaller cache sizes.

```cpp
double* x_cache = new double[10];
double* y_cache = new double[10];

for(int i=0; i<10; i++) {
    double sum = x[i] + y[i];
    x_cache[i] = x[i];
    y_cache[i] = y[i];
    use(sum);
}

overwrite(x, y);
grad_overwrite(x, y);

for(int i=9; i>=0; i--) {
    double sum = x_cache[i] + y_cache[i];
    grad_use(sum);
}
```

• By considering the dataflow graph we can perform a min-cut to approximate smaller cache sizes.

Overwritten:

Required for Reverse:

Naive Cache
Cache Reduction Example

- By considering the dataflow graph we can perform a min-cut to approximate smaller cache sizes.

```c
double* sum_cache = new double[10];
for(int i=0; i<10; i++) {
    double sum = x[i] + y[i];
    sum_cache[i] = sum;
    use(sum);
}
overwrite(x, y);
grad_overwrite(x, y);
for(int i=9; i>=0; i--) {
    grad_use(sum_cache[i]);
}
```
Novel AD + GPU Optimizations

- See our SC’21 paper for more (https://c.wsmoses.com/papers/EnzymeGPU.pdf)
 Reverse-Mode Automatic Differentiation and Optimization of GPU Kernels via Enzyme. SC, 2021

- [AD] Cache LICM/CSE

- [AD] Min-Cut Cache Reduction

- [AD] Cache Forwarding

- [GPU] Merge Allocations

- [GPU] Heap-to-stack (and register)

- [GPU] Alias Analysis Properties of SyncThreads

...
GPU Gradient Overhead

- Evaluation of both original code and gradient
- DG: Discontinuous-Galerkin integral (Julia)
- LBM: particle-based fluid dynamics simulation
- LULESH: unstructured explicit shock hydrodynamics solver
- XSBench & RSBench: Monte Carlo simulations of particle transport algorithms (memory & compute bound, respectively)
GPU Gradient Overhead

- Evaluation of both original code and gradient
- DG: Discontinuous-Galerkin integral (Julia)
- LBM: particle-based fluid dynamics simulation
- LULESH: unstructured explicit shock hydrodynamics solver
- XSBench & RSBench: Monte Carlo simulations of particle transport algorithms (memory & compute bound, respectively)
Ablation Analysis of Optimizations

Forward (1x)

- **Unrolling**
 - DG (ROCm): $5.4 \times$
 - DG (CUDA): $17.8 \times$
 - LBM: $6.4 \times 8.7 \times$
 - LULESH: $2.0 \times 2.4 \times$
 - RSbench: $4.7 \times 9.5 \times$
 - XSbench: $3.2 \times 9.5 \times$

- **MallocCoalescing**
 - DG (ROCm): $116.6 \times$
 - DG (CUDA): $1378.3 \times$
 - LBM: $19.87 \times$
 - LULESH: $2979.1 \times$
 - RSbench: $9.5 \times$
 - XSbench: $16.3 \times 25.9 \times$

- **PreOptimization**
 - DG (ROCm): OOM
 - DG (CUDA): OOM
 - LBM: OOM
 - LULESH: OOM
 - RSbench: OOM
 - XSbench: OOM

Overhead above Forward Pass

- **Unrolling**
- **MallocCoalescing**
- **PreOptimization**

Notes:
- PreOptimization includes all the optimizations listed above.
- DG (ROCm) and DG (CUDA) are marked with red crosses indicating they exceed OOM.
Ablation Analysis of Optimizations

DG (ROCm)
- DG (CUDA)
- LBM
- LULESH
- RSbench
- XSbench

Forward (1x) 10x 100x 1000x OOM

Overhead above Forward Pass

Unrolling
MallocCoalescing
PreOptimization
Allocator Recompute
InlineCacheABI
SpecPHI
PreOptimization
CacheLICM
Inlining
Templating PHI LoopBound
PreOptimization

5.4× 17.8× 1378.1×
116.6×
6.4×8.7× 19.87× 6.4×8.7×
2979.1×
4.7× 9.5× 2979.1×
4.7×
3.2× 9.5× 16.3× 25.9×
Ablation Analysis of Optimizations

- DG (ROCm)
 - Overhead above Forward Pass
 - Unrolling: 5.4x

- DG (CUDA)
 - Overhead above Forward Pass
 - Unrolling: 17.8x
 -MallocCoalescing: 116.6x
 - PreOptimization: 1378.3x

- LBM
 - Overhead above Forward Pass
 - Allocator: 6.4x
 - Recompute: 19.87x
 - InlineCacheABI: 2979.1x

- LULESH
 - Overhead above Forward Pass
 - SpecPHI: 2.0x
 - PreOptimization: 2979.1x

- RSbench
 - Overhead above Forward Pass
 - CacheLICM: 4.7x
 - Inlining: 9.5x
 - PreOpt: 6372.2x

- XSBench
 - Overhead above Forward Pass
 - Templating: 3.2x
 - PHI: 9.5x
 - LoopBound: 16.3x
 - PreOptimization: 25.9x

Forward (1x)

Overhead above Forward Pass

OOM
Ablation Analysis of Optimizations

GPU AD is Intractable Without Optimization!
Enzyme-Powered Applications

Target Reconstruction

>100x speedup!
Prior: 5 days (cluster)
Enzyme-Based: 1 hour (laptop)

from Efficient Differentiation of Pixel Reconstruction Filters for Path-Space Differentiable Rendering, SIGGRAPH Asia 2022, Zihan Yu et al

from MFEM Team at LLNL

from Comrade: High Performance Black-Hole Imaging JuliaCon 2022, Paul Tiede (Harvard)

from CLIMA & NSF CSSI: Differentiable programming in Julia for Earth system modeling (DJ4Earth)

from Center for the Exascale Simulation of Materials in Extreme Environments

from Differential Molecular Simulation with Molly, EnzymeCon 2023, Joe Greener (Cambridge)
Scalable Automatic Differentiation of Multiple Parallel Paradigms through Compiler Augmentation
History of Parallel AD

- Prior AD tools are often built with a single language and parallel framework in mind
- Differentiating code using multiple parallel frameworks may be difficult or impossible
- Require AD-specific rewriting to specify extra information
- Run at a source-level, preventing optimizations from being applied

```c
void send(double* data, int size) {
    MPI_ISend(data, val);
}
```

```c
void send(ADdouble* data, int size, void* buffer) {
    AD_MPI_ISend(data, val, buffer);
}
```
Challenges of Parallel AD

- The adjoint of an instruction increments the derivative of its input
- Benign read race in forward pass => Write race in reverse pass (undefined behavior)

```c
void set(double* ar, double val) {
    parallel_for(int i=0; i<10; i++)
        ar[i] = val;
}

double gradient_set(double* ar, double* d_ar, double val) {
    double d_val = 0.0;
    parallel_for(int i=0; i<10; i++)
        ar[i] = val;
    parallel_for(int i=0; i<10; i++)
        d_val += d_ar[i];
    d_ar[i] = 0.0;
    return d_val;
}
```
Optimizations on Parallel AD

- Prior work on AD for GPU’s demonstrated importance of combining optimizations with AD for performance

 “Reverse-Mode Automatic Differentiation and Optimization of GPU Kernels via Enzyme” @ SC’21

- E.g. determining memory to be thread-local lets us use a faster non-atomic add

Thread-local memory

 - Non-atomic load/store

```
__device__
void f(....) {
  // Thread-local var
double y;
  ...  
d_y += val;
}
```

Others [always legal fallback]

 - Atomic increment

```
__device__
// Unknown thread-aliasing
void f(double* y) {
  ...  
  atomic { d_y += val; }
}
```

Slower
Performing AD in the compiler lets us build a common tool to differentiate & optimize multiple parallel frameworks simultaneously!
General Parallel Differentiation Framework

- Algorithm for fast and efficient AD of arbitrary DAG-style parallelism
- Interface for detecting and using parallel constructs in arbitrary frameworks
- General parallel-specific optimizations that improve the performance
Parallelism-Preserving Differentiation

- Computing the adjoint of an instruction in the reverse pass updates the derivative of the operands it used.

- Reversing the parallel dependency structure ensures that for a given value all derivative updates are performed before its definition.
Framework Generality

- Implemented hooks for several parallel frameworks:
 - OpenMP
 - MPI
 - Julia Tasks
 - GPU (ROCM, CUDA)
 - GraphCore IPU
- Supports any higher-level framework built off these primitives
 - RAJA
 - MPI.jl
 - Julia @parallel
 - ...
Construct Generality

- Higher-level parallel utilities are automatically handled by existing support for parallelism
 - Both source-level or manually written utilities are lowered to common form.
 - If optimizations exist for higher-level utilities, Enzyme supports overriding
 - E.g. faster OpenMP `parallel for`, rather than differentiating via separate support for OpenMP parallel and work sharing loop

```c
double min_per_thread[omp_get_thread_num()];
#pragma omp parallel
{
    double min_value = 0;
    #pragma omp for
    for(int i = 0; i < N; i++)
        min_value = min(data[i], min_value);
    min_per_thread[omp_get_thread_num()] = min_value;
}
double final_val = 0;
for(int i = 1; i < omp_get_num_threads(); i++)
    final_val = min(final_val, min_per_thread[i]);
```
Evaluation Highlights: Strong Scaling (BUDE)

- Parallel optimizations enable Enzyme to keep the same scalability as the original program
Compiler Optimizations for Sparsity (in progress)
Spadina-{Enzyme, JaX}

- Given a function of n inputs -> 1 output, nesting AD twice gives you a function to densely compute each element of a hessian.

- Compiler techniques (e.g. dead code elimination) interspersed within differentiation enables automatically reduction of computing and storage of the full dense matrix to just the non-zero elements.

```c
void hessian(double* in, double* outputs) {
    for (int i=0; i<n; i++)
        __enzyme_fwddiff(
            +[](double* in, double* out) {
                __enzyme_autodiff(f, in, out);
            },
            enzyme_dup, in, &identity[i * n],
            enzyme_dupnoneed, nullptr, &outputs[i * n]);
}
```

```c
void hessian(double* in, double* outputs) {
    for (int i=0; i<n; i++)
        __enzyme_fwddiff(
            +[](double* in, double* out) {
                __enzyme_autodiff(f, in, out);
            },
            enzyme_dup, in, __enzyme_todense(ident_load, ident_store, n),
            enzyme_dupnoneed, nullptr,
            __enzyme_todense(csr_load, csr_store, n));
}
```
BLASphemy: Leveraging Compiler Information for Efficient Differentiable Linear Algebra (in progress)
Compiling Linear Algebra

• Linear Algebra is some of the most common operations in science — it is natural to want to AD through it.

• Prior work has explored (e.g. differentiating BLAS calls with other BLAS calls), but operated on the source level

• Compilation has historically provided significant performance advantages for such computations by rewriting the code to improve spatial/temporal locality, parallelism, kernel launches, among others

• Open question: combining scheduling with AD? See Enzyme-MLIR
Our Work

1. Differentiate high-level linear algebra (e.g. BLAS, LAPACK) functions directly.
 - Better scaling as can leverage parallelism/machine-specific tuning

2. Replace BLAS calls with corresponding serial execution, differentiate at an instruction level
 - Enables cross-kernel optimization and better integration with caching, but only sequential execution

3. Integrate BLAS deeply within AD framework compilation analyses to improve performance (alias analysis, activity analysis, to be recorded/differential use analysis, caching)
 - Enables performance optimizations before AD, e.g. hoisting code out of loops, getting rid of unnecessary computations, as well as avoiding caching if not needed for derivative or overwritten

<table>
<thead>
<tr>
<th>Size</th>
<th>Enzyme LL(1)</th>
<th>Enzyme TG(64)</th>
<th>Zygote(64)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.001</td>
<td>0.001</td>
<td>0.004</td>
</tr>
<tr>
<td>2</td>
<td>0.001</td>
<td>0.001</td>
<td>0.004</td>
</tr>
<tr>
<td>4</td>
<td>0.001</td>
<td>0.001</td>
<td>0.004</td>
</tr>
<tr>
<td>8</td>
<td>0.001</td>
<td>0.001</td>
<td>0.004</td>
</tr>
<tr>
<td>16</td>
<td>0.002</td>
<td>0.002</td>
<td>0.004</td>
</tr>
<tr>
<td>32</td>
<td>0.003</td>
<td>0.003</td>
<td>0.005</td>
</tr>
<tr>
<td>64</td>
<td>0.013</td>
<td>0.011</td>
<td>0.010</td>
</tr>
<tr>
<td>128</td>
<td>0.067</td>
<td>0.066</td>
<td>0.039</td>
</tr>
<tr>
<td>256</td>
<td>0.182</td>
<td>0.106</td>
<td>0.129</td>
</tr>
<tr>
<td>512</td>
<td>0.738</td>
<td>0.319</td>
<td>0.486</td>
</tr>
<tr>
<td>1024</td>
<td>2.826</td>
<td>1.150</td>
<td>2.225</td>
</tr>
<tr>
<td>2048</td>
<td>16.985</td>
<td>13.646</td>
<td>9.925</td>
</tr>
<tr>
<td>4096</td>
<td>70.837</td>
<td>66.082</td>
<td>92.268</td>
</tr>
</tbody>
</table>
Tool for performing reverse-mode (and forward mode) AD of statically analyzable LLVM IR

Differentiates code in a variety of parallel frameworks (OpenMP, MPI, Julia Tasks, GPU), and languages (C, C++, Fortran, Julia, Rust, Swift, etc)

Parallel and AD-specific optimizations crucial for performance

Efficient sparse differentiation with Spadina (also implemented in JaX)

Efficient BLAS differentiation/optimization

Open source (enzyme.mit.edu & join our mailing list)!

Lots more ongoing work including scheduling, checkpointing, and more
Acknowledgements

• Thanks to James Bradbury, Alex Chernyakhovsky, Lilly Chin, Hal Finkel, Marco Foco, Laurent Hascoet, Mike Innes, Tim Kaler, Charles Leiserson, Yingbo Ma, Chris Rackauckas, TB Schardl, Lizhou Sha, Yo Shavit, Dhash Shrivathsa, Nalini Singh, Vassil Vassilev, and Alex Zinenko

• William S. Moses was supported in part by a DOE Computational Sciences Graduate Fellowship DESC0019323. Valentin Churavy was supported in part by the Defense Advanced Research Projects Agency (DARPA) under Agreement No. HR0011-20-9-0016, and in part by NSF Grant OAC-1835443. Ludger Paehler was supported in part by the German Research Council (DFG) under grant agreement No. 326472365.

• This research was supported in part by LANL grant 531711; in part by the Applied Mathematics activity within the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research Program, under contract number DE-AC02-06CH11357; in part by the Exascale Computing Project (17-SC-20-SC). Research was sponsored by the United States Air Force Research Laboratory and was accomplished under Cooperative Agreement Number FA8750-19-2-1000.

• The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the United States Air Force or the U.S. Government.
Enzyme

- Tool for performing reverse-mode (and forward mode) AD of statically analyzable LLVM IR

- Differentiates code in a variety of parallel frameworks (OpenMP, MPI, Julia Tasks, GPU), and languages (C, C++, Fortran, Julia, Rust, Swift, etc)

- Parallel and AD-specific optimizations crucial for performance

- Keep similar scalability as non-differentiated code

- Open source (enzyme.mit.edu & join our mailing list)!

- Ongoing work to support Mixed Mode, Batching, Checkpointing, and more
Enzyme
Existing AD Approaches (1/3)

- Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)
- Provide a new language designed to be differentiated
- Requires rewriting everything in the DSL and the DSL must support all operations in original code
- Fast if DSL matches original code well

```python
import tensorflow as tf
x = tf.Variable(3.14)
with tf.GradientTape() as tape:
    out = tf.cond(x > 0,
                  lambda: tf.math.pow(x, 3),
                  lambda: 0
    )
print(tape.gradient(out, x).numpy())
```

```c
double relu3(double val) {
    if (x > 0)
        return pow(x, 3)
    else
        return 0;
}
```
Existing AD Approaches (2/3)

- Operator overloading (Adept, JAX)
 - Differentiable versions of existing language constructs (double => adouble, np.sum => jax.sum)
 - May require writing to use non-standard utilities
 - Often dynamic: storing instructions/values to later be interpreted

```cpp
// Rewrite to accept either double or adouble
template<typename T>
T relu3(T val) {
    if (x > 0)
        return pow(x, 3)
    else
        return 0;
}

adept::Stack stack;
adept::adouble inp = 3.14;

// Store all instructions into stack
adept::adouble out(relu3(inp));
out.set_gradient(1.00);

// Interpret all stack instructions
double res = inp.get_gradient(3.14);
```
Existing AD Approaches (3/3)

- Source rewriting
 - Statically analyze program to produce a new gradient function in the source language
 - Re-implement parsing and semantics of given language
 - Requires all code to be available ahead of time => hard to use with external libraries

```c
// myfile.h
double relu3(double x) {
    if (x > 0)
        return pow(x, 3);
    else
        return 0;
}

// myfile.c
double relu3(double x) {
    if (x > 0)
        return pow(x, 3);
    else
        return 0;
}

// grad_myfile.h
double grad_relu3(double x) {
    if (x > 0)
        return 3 * pow(x, 2);
    else
        return 0;
}

// grad_myfile.c
double grad_relu3(double x) {
    if (x > 0)
        return 3 * pow(x, 2);
    else
        return 0;
}
```
Existing Automatic Differentiation Pipelines

- AD
- Julia
- R
- Swift
Case Study: Vector Normalization

```c
//Compute magnitude in O(n)
double mag(double x);

//Compute norm in O(n^2)
void norm(double out, double in) {
    for (int i=0; i<n; i++) {
        out[i] = in[i] / mag(in);
    }
}
```
Case Study: Vector Normalization

```c
//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n)
void norm(double[] out, double[] in) {
    double res = mag(in);
    for (int i=0; i<n; i++) {
        out[i] = in[i] / res;
    }
}
```
Optimization & Automatic Differentiation

\[O(n^2) \]

\[
\text{for } i=0..n \{ \\
\quad \text{out}[i] /= \text{mag}(\text{in}) \\
\}
\]

\[O(n) \]

\[
\text{res} = \text{mag}(\text{in}) \\
\text{for } i=0..n \{ \\
\quad \text{out}[i] /= \text{res} \\
\}
\]

\[O(n) \]

\[
\text{d_res} = 0.0 \\
\text{for } i=n..0 \{ \\
\quad \text{d_res} += \text{d_out}[i] \\
\}
\]

\[
\nabla \text{mag}(\text{d_in}, \text{d_res})
\]
Optimization & Automatic Differentiation

\[O(n^2) \]

for \(i = 0 \ldots n \) {
 out[\(i \)] /= mag(in)
}

\[O(n) \]

res = mag(in)
for \(i = 0 \ldots n \) {
 out[\(i \)] /= res
}

\[O(n^2) \]

for \(i = 0 \ldots n \) {
 out[\(i \)] /= mag(in)
}

\[O(n) \]

\(d_res = 0.0 \)
for \(i = n \ldots 0 \) {
 d_res += d_out[i]...
}
\(\nabla \text{mag}(d_in, d_res) \)
Optimization & Automatic Differentiation

\[O(n^2) \]

for \(i=0..n \) {
 out[\(i \)] /= mag(in)
}

Optimize

\[O(n) \]

res = mag(in)
for \(i=0..n \) {
 out[\(i \)] /= res
}

AD

\[O(n) \]

d_res = 0.0
for \(i=n..0 \) {
 d_res += d_out[\(i \)]
}
\[\nabla \text{mag}(d_{in}, d_{res}) \]

Optimize

\[O(n^2) \]

for \(i=0..n \) {
 out[\(i \)] /= mag(in)
}

AD

\[O(n^2) \]

for \(i=n..0 \) {
 d_res = d_out[\(i \)]
 \[\nabla \text{mag}(d_{in}, d_{res}) \]
}

Optimize
Optimization & Automatic Differentiation

Differentiating after optimization can create **asymptotically faster** gradients!

\[O(n^2) \]

for i=0..n {
 out[i] /= mag(in)
}

\[O(n) \]

res = mag(in)
for i=0..n {
 out[i] /= res
}

\[O(n) \]

d_res = 0.0
for i=n..0 {
 d_res += d_out[i]...
}
\n\[\nabla \text{mag}(d_{in}, d_{res}) \]

\[O(n^2) \]

for i=n..0 {
 d_res = d_out[i]...

\[\nabla \text{mag}(d_{in}, d_{res}) \]

Why Does Enzyme Use LLVM?

- Generic low-level compiler infrastructure with many frontends
 - “Cross platform assembly”
 - Many backends (CPU, CUDA, AMDGPU, etc)
- Well-defined semantics
- Large collection of optimizations and analyses
Challenges of Low-Level AD

- Low-level code lacks information necessary to compute adjoints

```c
void f(void* dst, void* src) {
    memcpy(dst, src, 8);
}
```

```c
void grad_f(double* dst, double* dst',
            double* src, double* src') {
    // Forward Pass
    memcpy(dst, src, 8);
    // Reverse Pass
    src'[0] += dst'[0];
    dst'[0] = 0;
}
```

```c
void grad_f(float* dst, float* dst',
            float* src, float* src') {
    // Forward Pass
    memcpy(dst, src, 8);
    // Reverse Pass
    src'[0] += dst'[0];
    dst'[0] = 0;
    src'[1] += dst'[1];
    dst'[1] = 0;
}
```
Type Analysis

- New interprocedural dataflow analysis that detects the underlying type of data
- Each value has a set of memory offsets: type
- Perform series of fixed-point updates through instructions

```
struct MyType {
    double;
    int*;
}

x = MyType*;
```

\[
types(x) = \{[0]::\text{Pointer}, [0,0]::\text{Double}, [0,8]::\text{Pointer}, [0,8,0]::\text{Integer}\}
\]
Experimental Setup

- Collection of benchmarks from Microsoft’s ADBench suite and of technical interest
Speedup of Enzyme

Enzyme is 4.2x faster than Reference!
Automatic Differentiation & GPUs

- Prior work has not explored reverse mode AD of existing GPU kernels
 1. Reversing parallel control flow can lead to incorrect results
 2. Complex performance characteristics make it difficult to synthesize efficient code
 3. Resource limitations can prevent kernels from running at all
GPU Memory Hierarchy

- **Per Thread**
 - Register: ~Bytes
 - Use Limits Parallelism

- **Per Block**
 - Shared Memory: ~KBs
 - Use Limits Parallelism

- **Per GPU**
 - Global Memory: ~GBs

Slower, larger amount of memory
Parallel Enzyme Design

- Algorithm for fast and efficient AD of arbitrary DAG-style parallelism
- Interface for detecting and using parallel constructs in arbitrary frameworks
- General parallel-specific optimizations that improve the performance
- Implemented for various parallel frameworks on CPU (OpenMP, Julia Tasks, RAJA), Distributed (MPI, MPI.jl), GPU (e.g. CUDA, ROCm), and more
Correct and Efficient Derivative Accumulation

Thread-local memory

- Non-atomic load/store

Same memory location across all threads (some shared mem)

- Parallel Reduction

Others [always legal fallback]

- Atomic increment

__device__
void f(...) {
 // Thread-local var
double y;
 ...
 d_y += val;
}

// Same var for all threads
double y;
__device__
void f(...) {
 ...
 reduce_add(&d_y, val);
}

__device__
// Unknown thread-aliasing
void f(double* y) {
 ...
 atomic { d_y += val; }
}

Slower
Synchronization Primitives

- Synchronization (\texttt{sync_threads}) ensures all threads finish executing \texttt{codeA} before executing \texttt{codeB}

- Sync is only necessary if A and B may access to the same memory

- Assuming the original program is race-free, performing a sync at the corresponding location in the reverse ensures correctness

- Prove correctness of algorithm by cases
Case 1: Store, Sync, Load

codeA(); // store %ptr
sync_threads;
codeB(); // load %ptr
...
diffe_codeB(); // atomicAdd %d_ptr
sync_threads;
diffe_codeA(); // load %d_ptr
 // store %d_ptr = 0

Correct

• Load of d_ptr must happen after all atomicAdds have completed
CUDA Example

```c
__device__
void inner(float* a, float* x, float* y) {
  y[threadIdx.x] = a[0] * x[threadIdx.x];
}

__device__
void __enzyme_autodiff(void*, ...);

__global__
void daxpy(float* a, float* da, float* x, float* dx, float* y, float* dy) {
  __enzyme_autodiff((void*)inner,
    a, da, x, dx, y, dy);
}

__device__
void diffe_inner(float* a, float* da, float* x, float* dx, float* y, float* dy) {
  // Forward Pass
  y[threadIdx.x] = a[0] * x[threadIdx.x];

  // Reverse Pass
  float dy = dy[threadIdx.x];
  dy[threadIdx.x] = 0.0f;
  float dx_tmp = a[0] * dy;
  atomic { dx[threadIdx.x] += dx_tmp; }
  float da_tmp = x[threadIdx.x] * dy;
  atomic { da[0] += da_tmp; }
}
```
CUDA Example

```c
__device__
void inner(float* a, float* x, float* y) {
    y[threadIdx.x] = a[0] * x[threadIdx.x];
}

__device__
void __enzyme_autodiff(void*, ...);

__global__
void daxpy(float* a, float* da, float* x, float* dx, float* y, float* dy) {
    __enzyme_autodiff((void*)inner, a, da, x, dx, y, dy);
}

__device__
void diff_inner(float* a, float* da, float* x, float* dx, float* y, float* dy) {
    // Forward Pass
    y[threadIdx.x] = a[0] * x[threadIdx.x];

    // Reverse Pass
    float dy = dy[threadIdx.x];
    dy[threadIdx.x] = 0.0f;
    float dx_tmp = a[0] * dy;
    dx[threadIdx.x] += dx_tmp;
    float da_tmp = x[threadIdx.x] * dy;
    reduce_accumulate(&da[0], da_tmp);
}
```
CUDA.jl / AMDGPU.jl Example

```julia
function compute!(inp, out)
    s_D = @cuStaticSharedMem eltype(inp) (10, 10)
    ...
end

function grad_compute!(inp, out)
    Enzyme.autodiff_deferred(compute!, inp, out)
    return nothing
end

@cuda grad_compute!(Duplicated(inp, d_inp),
                  Duplicated(out, d_out))
```

```julia
function compute!(inp, out)
    s_D = AMDGPU.alloc_special(…)
    ...
end

function grad_compute!(inp, out)
    Enzyme.autodiff_deferred(compute!, inp, out)
    return nothing
end

@rocm grad_compute!(Duplicated(inp, d_inp),
                   Duplicated(out, d_out))
```

See Below For Full Code Examples

Efficient GPU Code

- For correctness, Enzyme may need to cache values in order to compute the gradient
 - The complexity of GPU memory means large caches slow down the program by several orders of magnitude, if it even fits at all
- Like the CPU, existing optimizations reduce the overhead
- Unlike the CPU, existing optimizations aren’t sufficient
- Novel GPU and AD-specific optimizations can speedup by several orders of magnitude

```c
// Forward Pass
out[i] = x[i] * x[i];
x[i] = 0.0f;

// Reverse (gradient) Pass
...
grad_x[i] += 2 * x[i] * grad_out[i];
...```
**Efficient Correct GPU Code**

- For correctness, Enzyme may need to cache values in order to compute the gradient

  - The complexity of GPU memory means large caches slow down the program by several orders of magnitude, if it even fits at all

- Like the CPU, existing optimizations reduce the overhead

- Unlike the CPU, existing optimizations aren’t sufficient

- Novel GPU and AD-specific optimizations can speed up by several orders of magnitude

```c++
double* x_cache = new double[...];
// Forward Pass
out[i] = x[i] * x[i];
x_cache[i] = x[i];
x[i] = 0.0f;
// Reverse (gradient) Pass
... grad_x[i] += 2 * x_cache[i] * grad_out[i];
... delete[] x_cache;
```
Cache Reduction Example

- By considering the dataflow graph we can perform a min-cut to approximate smaller cache sizes.

```java
for(int i=0; i<10; i++) {
 double sum = x[i] + y[i];
 use(sum);
}
overwrite(x, y);
grad_overwrite(x, y);
for(int i=9; i>=0; i--) {
 ... grad_use(sum);
}
```
Cache Reduction Example

- By considering the dataflow graph we can perform a min-cut to approximate smaller cache sizes.

```cpp
double* x_cache = new double[10];
double* y_cache = new double[10];

for(int i=0; i<10; i++) {
 double sum = x[i] + y[i];
 x_cache[i] = x[i];
 y_cache[i] = y[i];
 use(sum);
}

overwrite(x, y);
grad_overwrite(x, y);

for(int i=9; i>=0; i--) {
 double sum = x_cache[i] + y_cache[i];
 grad_use(sum);
}
```
Cache Reduction Example

- By considering the dataflow graph we can perform a min-cut to approximate smaller cache sizes.

```
double* sum_cache = new double[10];
for(int i=0; i<10; i++) {
 double sum = x[i] + y[i];
 sum_cache[i] = sum;
 use(sum);
}
overwrite(x, y);
grad_overwrite(x, y);
for(int i=9; i>=0; i--) {
 grad_use(sum_cache[i]);
}
```
Allocation Merging

- Allocations (and any calls) on the GPU are expensive
- Given two allocations in the same scope, replace uses with a single allocation
- Beneficial for not just AD, but any GPU programs!

```c
double* var1 = new double[N];
double* var2 = new double[M];
use(var1, var2);
delete[] var1;
delete[] var2;
```

```c
double* var1 = new double[N + M];
double* var2 = var1 + N;
use(var1, var2);
delete[] var1;
```
Novel AD + GPU Optimizations

- See our SC paper (Nov 17) for more (https://c.wsmoses.com/papers/EnzymeGPU.pdf)
  Reverse-Mode Automatic Differentiation and Optimization of GPU Kernels via Enzyme. SC, 2021

- [AD] Cache LICM/CSE
- [AD] Min-Cut Cache Reduction
- [AD] Cache Forwarding
- [GPU] Merge Allocations
- [GPU] Heap-to-stack (and register)
- [GPU] Alias Analysis Properties of SyncThreads

...
GPU Gradient Overhead

- Evaluation of both original code and gradient
- DG: Discontinuous-Galerkin integral (Julia)
- LBM: particle-based fluid dynamics simulation
- LULESH: unstructured explicit shock hydrodynamics solver
- XSBench & RSBench: Monte Carlo simulations of particle transport algorithms (memory & compute bound, respectively)
GPU Gradient Overhead

- Evaluation of both original code and gradient
- DG: Discontinuous-Galerkin integral (Julia)
- LBM: particle-based fluid dynamics simulation
- LULESH: unstructured explicit shock hydrodynamics solver
- XSBench & RSBench: Monte Carlo simulations of particle transport algorithms (memory & compute bound, respectively)

![Bar chart showing GPU gradient overhead for different benchmarks and implementations.]

- DG (ROCm): 5.4
- DG (CUDA): 18.35
- LBM (Parboil): 6.3
- LULESH: 2.01
- RSBench: 4.2
- XSBench: 3.2

Bug in CUDA Register Allocator
Ablation Analysis of Optimizations

Forward (1x) 10x 100x 1000x OOM

DG (ROCm)  5.4×
DG (CUDA)  17.8×  116.6×  1378.3×
LBM  Allocating  6.4× 8.7×  19.87×
LULESH  SpecPHI  2.0× 2.4×
RSBench  CacheLICM  4.7×  9.5×
XSBench  Templating  PHI  LoopBound  3.2×  9.5×  16.3×  25.9×

Overhead above Forward Pass
Ablation Analysis of Optimizations
Ablation Analysis of Optimizations

DG (ROCm)
- Unrolling: 5.4x

DG (CUDA)
- Unrolling: 17.8x
- MallocCoalescing: 116.6x
- PreOptimization: 1378.3x

LBM
- Allocator: 6.4x
- Recompute: 8.7x
- InlineCacheABI: 19.87x

LULESH
- SpecPHI: 2.0x
- PreOptimization: 2979.1x

RSBench
- CacheLICM: 4.7x
- Inlining: 9.5x
- PreOpt: 6372.2x

XSBench
- Templating: 3.2x
- PHI: 9.5x
- LoopBound: 16.3x
- PreOptimization: 25.9x

Overhead above Forward Pass
Ablation Analysis of Optimizations

GPU AD is Intractable Without Optimization!
Common Framework for Parallel AD (Ongoing, To Be Published)

- Common infrastructure for supporting parallel AD (caching, race-resolution, gradient accumulation) enables parallel differentiation independent of framework or language.

- Enables differentiation of a combination of GPU (e.g. CUDA, ROCm), CPU (OpenMP, Julia Tasks, RAJA), Distributed (MPI, MPI.jl), and more.
Enzyme

- Tool for performing forward and reverse-mode AD of statically analyzable LLVM IR
- Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)
- 4.2x speedup over AD before optimization on CPU
- State-of-the art performance with existing tools
- First general purpose reverse-mode GPU AD
- Novel GPU and AD-specific optimizations improve runtime by several orders of magnitude
- Open source (enzyme.mit.edu & join our mailing list)!
- Ongoing work to support Mixed Mode, Batching, Checkpointing
Acknowledgements

• Thanks to James Bradbury, Alex Chernyakhovsky, Lilly Chin, Hal Finkel, Marco Foco, Laurent Hascoet, Mike Innes, Tim Kaler, Charles Leiserson, Yingbo Ma, Chris Rackauckas, TB Schardl, Lizhou Sha, Yo Shavit, Dhash Shrivathsa, Nalini Singh, Vassil Vassilev, and Alex Zinenko

• William S. Moses was supported in part by a DOE Computational Sciences Graduate Fellowship DESC0019323. Valentin Churavy was supported in part by the Defense Advanced Research Projects Agency (DARPA) under Agreement No. HR0011-20-9-0016, and in part by NSF Grant OAC-1835443. Ludger Paehler was supported in part by the German Research Council (DFG) under grant agreement No. 326472365.

• This research was supported in part by LANL grant 531711; in part by the Applied Mathematics activity within the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research Program, under contract number DE-AC02-06CH11357; in part by the Exascale Computing Project (17-SC-20-SC). Research was sponsored by the United States Air Force Research Laboratory and was accomplished under Cooperative Agreement Number FA8750-19-2-1000.

• The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the United States Air Force or the U.S. Government.
Enzyme

- Tool for performing forward and reverse-mode AD of statically analyzable LLVM IR
- Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)
- 4.2x speedup over AD before optimization on CPU
- State-of-the art performance with existing tools
- First general purpose reverse-mode GPU AD
- Novel GPU and AD-specific optimizations improve runtime by several orders of magnitude
- Open source (enzyme.mit.edu & join our mailing list)!
- Ongoing work to support Mixed Mode, Batching, Checkpointing/Scheduling
Enzyme
PyTorch-Enzyme & TensorFlow-Enzyme

```python
import torch
from torch_enzyme import enzyme

Create some initial tensor
inp = ...

Apply foreign function to tensor
out = enzyme("test.c", "f").apply(inp)

Derive gradient
out.backward()
print(inp.grad)
```

```python
import tensorflow as tf
from tf_enzyme import enzyme

Create some initial tensor
inp = tf.Variable(…)

Use external C code as a regular TF op
out = enzyme(inp, filename="test.c", function="f")

Results is a TF tensor
out = tf.sigmoid(out)
```

```c
// Input tensor + size, and output tensor
void f(float* inp, size_t n, float* out);

// diffe_dupnoneed specifies not recomputing the output
void diffe_def(float* inp, float* d_inp, size_t n, float* d_out) {
 __enzyme_autodiff(f, diffe_dup, inp, d_inp, n, diffe_dupnoneed, (float*)0, d_out);
}
```
Cache

- Adjoint instructions may require values from the forward pass
  
  - e.g. $\nabla(x \times y) \Rightarrow x \, dy + y \, dx$

- For all values needed in the reverse, allocate memory in the forward pass to store the value

- Values computed inside loops are stored in an array indexed by the loop induction variable
  
  - Array allocated statically if possible; otherwise dynamically `realloc`d
When LLVM Doesn’t Cut It

- Enzyme relies on optimizations such as LICM and CSE to eliminate redundant loads, and thus redundant caches.

- Since we instead need to preserve values for the reverse pass, these optimizations may not apply.

```c
for(int i=0; i<N; i++) {
 for(int j=0; j<M; j++) {
 use(array[j]);
 }
}
overwrite(array);
```
When LLVM Doesn’t Cut It

- Enzyme relies on optimizations such as LICM and CSE to eliminate redundant loads, and thus redundant caches.

- Since we instead need to preserve values for the reverse pass, these optimizations may not apply.

- This requires far more caching than necessary.

```cpp
double* cache = new double[N*M];

for(int i=0; i<N; i++) {
 for(int j=0; j<M; j++) {
 cache[i*M+j] = array[j];
 use(array[j]);
 }
}

overwrite(array);
grad_overwrite(array);

for(int i=0; i<N; i++) {
 for(int j=M-1; i<M; i++) {
 grad_use(cache[i*M+j], d_array[j]);
 }
}
```
When LLVM Doesn’t Cut It

- Enzyme relies on optimizations such as LICM and CSE to eliminate redundant loads, and thus redundant caches.

- Since we instead need to preserve values for the reverse pass, these optimizations may not apply.

- This requires far more caching than necessary.

- By analyzing the read/write structure, we can hoist the cache.

```c
double* cache = new double[M];
memcpy(cache, array, sizeof(double)*M);
for(int i=0; i<N; i++) {
 for(int j=0; j<M; j++) {
 use(array[j]);
 }
}
overwrite(array);
grad_overwrite(array);
for(int i=0; i<N; i++) {
 for(int j=M-1; i<M; i++) {
 grad_use(cache[j], d_array[j]);
 }
}
```
Cache

- Adjoint instructions may require values from the forward pass
  - e.g. $\nabla(x \cdot y) \Rightarrow x \ dy + y \ dx$

- For all values needed in the reverse, allocate memory in the forward pass to store the value

- Values computed inside loops are stored in an array indexed by the loop induction variable
  - Array allocated statically if possible; otherwise dynamically realloc’ed
Case Study: Read Sum

double sum(double* x) {
    double total = 0;
    for(int i=0; i<10; i++)
        total += read() * x[i];
    return total;
}

void differentiate(double* x, double* xp) {
    return __enzyme_autodiff(sum, x, xp);
}

define double @sum(double* %x)

entry

br for.body

%i = phi [ 0, entry ], [ %i.next, for.body ]
%total = phi [ 0.0, %entry ], [ %add, for.body ]
%call = @read()
%0 = load %x[%i]
%mul = %0 * %call
%add = %mul + %total
%i.next = %i + 1
%exitcond = %i.next == 10
br %exitcond, for.cleanup, for.body

%result = phi [ %call, cond.true], [0, entry]
ret %result
Case Study: Read Sum

define double @sum(double* %x)

entry

for.body

%total = phi [0.0, %entry], [%add, for.body]
%call = @read()
%0 = load %x[%i]
%mul = %0 * %call
%add = %mul + %total
%i.next = %i + 1
%exitcond = %i.next == 10
br %exitcond, for.cleanup, for.body

for.cleanup

%result = phi [%call, cond.true], [0, entry]
ret %result

Active Variables
Case Study: Read Sum

Each register in the for loop represents a distinct active variable every iteration.
Allocate & zero shadow memory per active value
define double @diffe_sum(double* %x, double* %xp)

entry

alloca %x' = 0.0
alloca %total' = 0.0
alloca %0' = 0.0
alloca %mul' = 0.0
alloca %add' = 0.0
alloca %result' = 0.0

%call_cache = @malloc(10 x double)

br for.body

%i = phi [ 0, entry ], [ %i.next, for.body ]
%total = phi [ 0.0, %entry ], [ %add, for.body ]
%call = @read()
store %call_cache[%i] = %call
%0 = load %x[%i]
%mul = %0 * %call
%add = %mul + %total
%i.next = %i + 1
%exitcond = %i.next == 10
br %exitcond, for.cleanup, for.body

%result = phi [ %call, cond.true], [0, entry]
@free(%cache)
ret %result
define void @diffe_sum(double* %x, double* %xp)

entry

%call_cache = @malloc(10 x double)
br for.body

for.body

%i = phi [ 0, entry ], [ %i.next, for.body ]
%total = phi [ 0.0, %entry ], [ %add, for.body ]
%call = @read()
store %call_cache[%i] = %call
%i.next = %i + 1
%exitcond = %i.next == 10
br %exitcond, reversefor.body, for.body

reversefor.body

%i' = phi [ 9, for.body ], [ %i'.next, reversefor.body ]
%i'.next = %i' - 1
%cached_read = load %call_cache[%i']
store %xp[%i'] = %cached_read + %xp[%i']
%exit2 = %i = 0
br %exitcond, %exit2, reversefor.body

exit

@free(%cache)
ret

After lowering & some optimizations
Case Study: Read Sum

define void @diffe_sum(double* %x, double* %xp)

entry
%call0 = @read()
store %xp[0] = %call0
%call1 = @read()
store %xp[1] = %call1
%call2 = @read()
store %xp[2] = %call2
%call3 = @read()
store %xp[3] = %call3
%call4 = @read()
store %xp[4] = %call4
%call5 = @read()
store %xp[5] = %call5
%call6 = @read()
store %xp[6] = %call6
%call7 = @read()
store %xp[7] = %call7
%call8 = @read()
store %xp[8] = %call8
%call9 = @read()
store %xp[9] = %call9
ret

After more optimizations

void diffe_sum(double* x, double* xp) {
  xp[0] = read();
  xp[1] = read();
  xp[2] = read();
  xp[3] = read();
  xp[4] = read();
  xp[5] = read();
  xp[6] = read();
  xp[7] = read();
  xp[8] = read();
  xp[9] = read();
}
Enzyme on the GPU

- Care must be taken to both ensure correctness and maintain parallelism.
- GPU programs have much lower memory limits. Performance is highly dependent on the number of memory transfers.
- Without first running optimizations reverse-mode AD of large kernels is intractable (OOM).
- Novel GPU and AD-specific optimizations can make a difference of several orders of magnitude when computing gradients.

<table>
<thead>
<tr>
<th>Test</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>1</td>
</tr>
<tr>
<td>AD, Optimized</td>
<td>4.4</td>
</tr>
<tr>
<td>AD, No CacheLICM</td>
<td>343.7</td>
</tr>
<tr>
<td>AD, Bad Recompute Heuristic</td>
<td>1275.6</td>
</tr>
<tr>
<td>AD, No Inlining</td>
<td>6372.2</td>
</tr>
<tr>
<td>AD, No PreOptimization</td>
<td>OOM</td>
</tr>
</tbody>
</table>
CUDA Automatic Differentiation

- Enzyme enables differentiation of CPU programs without rewriting them in a DSL.

- Similarly, GPU programs cannot currently be differentiated without being rewritten in a differentiable language (e.g. PyTorch).

- Enzyme enables reverse-mode AD of general existing GPU programs by:
  - Resolving potential data race issues
  - Differentiating parallel control (syncthreads)
  - Differentiating CUDA intrinsics (e.g. threadIdx.x /llvm.nvvm.read.ptx.sreg.tid.x)
  - Handling shared memory
CUDA Automatic Differentiation

- Most CUDA intrinsics [e.g. threadIdx.x] are inactive and recomputable and thus are incorporated into Enzyme without any special handling.

- Derivative of syncthreads is a syncthreads at the corresponding place in reverse pass.

- Shared memory is handled by making a second shared memory allocation to act as the shadow for any potentially active uses.
Enzyme

• Tool for performing reverse-mode AD of statically analyzable LLVM IR

• Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)

• 4.2x speedup over AD before optimization

• State-of-the art performance with existing tools

• Differentiate GPU kernels

• Open Source (enzyme.mit.edu / github.com/wsmoses/Enzyme)

• PyTorch-Enzyme & TensorFlow-Enzyme imports foreign code in ML workflow
GPU Automatic Differentiation

- Prior work has not explored reverse mode AD of GPU kernels

- Similarly, GPU programs cannot currently be differentiated without being rewritten in a differentiable language (e.g. PyTorch).

- Enzyme enables reverse-mode AD of general existing GPU programs by:
  - Resolving potential data race issues
  - Differentiating parallel control (syncthreads)
  - Differentiating CUDA intrinsics (e.g. threadIdx.x /llvm.nvvm.read.ptx.sreg.tid.x)
  - Handling shared memory
Enzyme

• Tool for performing reverse-mode AD of statically analyzable LLVM IR

• Differentiates code in a variety of languages (C, C++, Fortran, Julia, Rust, Swift, etc)

• 4.2x speedup over AD before optimization

• State-of-the art performance with existing tools

• Differentiate GPU kernels

• Open Source (enzyme.mit.edu / github.com/wsmoses/Enzyme)

• PyTorch-Enzyme & TensorFlow-Enzyme imports foreign code in ML workflow
Custom Derivatives & Multisource

- One can specify custom forward/reverse passes of functions by attaching metadata

```c
__attribute__((enzyme("augment", augment_func)))
__attribute__((enzyme("gradient", gradient_func)))
double func(double n);
```

- Enzyme leverages LLVM's link-time optimization (LTO) & “fat libraries” to ensure that LLVM bitcode is available for all potential differentiated functions before AD
CUDA Performance Improvements

- Introduce optimizations to reduce the use of memory
  - Alias Analysis to determine legality of recomputing an instruction
    - More aggressive alias analysis properties of syncthreads
  - Don’t cache unnecessary values
    - Move cache outside of loops when possible
  - Heap-to-stack [and to register]
  - Don’t cache memory itself acting as a cache [such as shared memory]
Enzyme Differentiation Algorithm

- Type Analysis
- Activity Analysis
- Synthesize derivatives
  - Forward pass that mirrors original code
  - Reverse pass inverts instructions in forward pass (adjoints) to compute derivatives
- Optimize
Activity Analysis

- Determines what instructions could impact derivative computation
- Avoids taking meaningless or unnecessary derivatives (e.g. d/dx cpuid)
- Instruction is active iff it can propagate a differential value to its return or memory
- Build off of alias analysis & type analysis
  - E.g. all read-only function that returns an integer are inactive since they cannot propagate adjoints through the return or to any memory location
Compiler Analyses Better Optimize AD

- Existing

- Alias analysis results that prove a function does not write to memory, we can prove that additional function calls do not need to be differentiated since they cannot impact the output.

- Don’t cache equivalent values

- Statically allocate caches when a loop’s bounds can be determined in advance
Decomposing the “Tape”

- Performing AD on a function requires data structures to compute
  - All values necessary to compute adjoints are available [cache]
  - Place to store adjoints [shadow memory]
  - Record instructions [we are static]
- Creating these directly in LLVM allows us to explicitly specify their behavior for optimization, unlike approaches that call out to a library
- For more details look in paper
Conventional Wisdom: AD Only Feasible at High-Level

- Automatic Differentiation requires high level semantics to produce gradients
- Lack of high-level information can hinder performance of low-level AD
  - “AD is more effective in high-level compiled languages (e.g. Julia, Swift, Rust, Nim) than traditional ones such as C/C++, Fortran and LLVM IR […]” -Innes\[1]\n
Differentiation Is Key To Machine Learning

- Hinders application of ML to new domains
- Synthesizing gradients aims to close this gap
Enzyme Overturns Conventional Wisdom

- As fast or faster than state-of-the-art tools
  - Running after optimization enables a **4.2x speedup**
- Necessary semantics for AD derived at low-level (with potential cooperation of frontend)
Parallel Memory Detection

• Thread-local memory
  • Non-atomic load/store
  • Same memory location across all threads
  • Parallel Reduction

• Others [always legal fallback]
  • Atomic increment

```assembly
%tmp = load %d_res
store %d_res = 0
atomic %d_ptr += %tmp
```
AD-Specific Cache

- Some optimizations require domain-specific knowledge.

- Not all values are needed for the reverse pass. By considering the dataflow graph we can perform a min-cut to approximate smaller cache sizes.

  - Not all (loop) sizes are known at compile-time, so this must be a heuristic.

```plaintext
double xy_cache=x[0] + y[0];
use(x[0] + y[0]);
overwrite(x, y);
grad_overwrite(x, y);
grad_use(xy_cache);
```
AD-Specific Cache

- Some optimizations require domain-specific knowledge

- Not all values are needed for the reverse pass. By considering the dataflow graph we can perform a min-cut to approximate smaller cache sizes.

- Not all (loop) sizes are known at compile-time, so this must be a heuristic

```c
double x_cache=x[0];
double y_cache=y[0];
use(x[0] + y[0]);
overwrite(x, y);
grad_overwrite(x, y);
grad_use(x_cache + y_cache);
```
AD-Specific Cache

- Some optimizations require domain-specific knowledge
- Not all values are needed for the reverse pass. By considering the dataflow graph we can perform a min-cut to approximate smaller cache sizes.
  - Not all (loop) sizes are known at compile-time, so this must be a heuristic

```plaintext
double xy_cache=x[0] + y[0];
use(x[0] + y[0]);
overwrite(x, y);
grad_overwrite(x, y);
grad_use(xy_cache);
```
Differentiation Is Key To Machine Learning And Science

- Computing derivatives is key to many algorithms
  - Machine learning (back-propagation, Bayesian inference, uncertainty quantification)
  - Scientific computing (modeling, simulation)
- When working with large codebases or dynamically-generated programs, manually writing derivative functions becomes intractable
- Community has developed tools to create derivatives automatically
Existing AD Approaches

- Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)
  - Provide a new language designed to be differentiated
  - Requires rewriting everything in the DSL and the DSL must support all operations in original code
  - Fast if DSL matches original code well
- Operator overloading (Adept, JAX)
  - Provide differentiable versions of existing language constructs (double => adouble, np.sum => jax.sum)
  - May require writing to use non-standard utilities
  - Often dynamic: storing instructions/values to later be interpreted
Existing AD Approaches

- Source rewriting
  - Statically analyze program to produce a new gradient function in the source language
  - Re-implement parsing and semantics of given language
  - Requires all code to be available ahead of time
  - Difficult to use with external libraries
Case Study: ReLU3

C Source

```c
double relu3(double x) {
 double result;
 if (x > 0)
 result = pow(x, 3);
 else
 result = 0;
 return result;
}
```

Enzyme Usage

```c
double diffe_relu3(double x) {
 return __enzyme_autodiff(relu3, x);
}
```

LLVM

```
define double @relu3(double %x)
entry
%cmp = %x > 0
br %cmp, cond.true, cond.end
cond.true
%call = pow(%x, 3)
br cond.end
cond.end
%result = phi [%call, cond.true], [0, entry]
ret %result
```
Case Study: ReLU3

Active Instructions

```c
define double @relu3(double %x)

%cmp = %x > 0
br %cmp, cond.true, cond.end

%call = pow(%x, 3)
br cond.end

%result = phi [%call, cond.true], [0, entry]
ret %result
```
Allocate & zero shadow memory for active values

```c
define double @diffe_relu3(double %x, double %differet)

entry

alloca %result' = 0.0
alloca %call' = 0.0
alloca %x' = 0.0
%cmp = %x > 0
br %cmp, cond.true, cond.end

%call = pow(%x, 3)
br cond.end

%result = phi [%call, cond.true], [0, entry]
; deleted return
%result' = 1.0
br reverse_cond.end
```

128
Compute adjoints for active instructions

```
define double @diffe_relu3(double %x, double %differet)
 entry
 %call = pow(%x, 3)
 br cond.end
 cond.true
 %result = phi [%call, cond.true], [0, entry]
 %result' = 1.0
 br cond.end
 cond.end
 alloca %result' = 0.0
 alloca %call' = 0.0
 alloca %x' = 0.0
 %cmp = %x > 0
 br %cmp, cond.true, cond.end
 reverse_cond.true
 %df = 3 * pow(%x, 2)
 %tmp_call' = load %call
 %x' += %df * %tmp_call'
 store %call' = 0.0
 br reverse_entry
 reverse_cond.end
 %tmp_res' = load %result'
 %call' += if %x > 0 then %tmp_res' else 0
 store %result' = 0.0
 br %cmp, reverse_cond.true, reverse_entry
reverse_entry
 %0 = load %x'
 ret %0
```

129
Compute adjoints for active instructions

Given a function `diffe_relu3(x, d)`, the adjoint is computed as follows:

```c
define double @diffe_relu3(double %x, double %differet)
{
 %result' = 0.0
 %call' = 0.0
 %x' = 0.0
 %cmp = %x > 0
 br %cmp, cond.true, cond.end

 %call = pow(%x, 3)
 br cond.end

 %result = phi [%call, cond.true], [0, entry]
 ; deleted return
 %result' = 1.0
 br reverse_cond.end

 %tmp_res' = load %result'
 %call' = if %x > 0 then %tmp_res' else 0
 store %result' = 0.0
 br %cmp, reverse_cond.true, reverse_entry

 %df = 3 * pow(%x, 2)
 %tmp_call' = load %call
 %x' = %df * %tmp_call'
 store %call' = 0.0
 br reverse_entry

 %0 = load %x'
 ret %0
}
```
Essentially the optimal hand-written gradient!

double diffé_relu3(double x) {
    double result;
    if (x > 0)
        result = 3 * pow(x, 2);
    else
        result = 0;
    return result;
}
Challenges of Low-Level AD

- Low-level code lacks information necessary to compute adjoints

```c
void f(void* dst, void* src) {
 memcpy(dst, src, 8);
}

void grad_f(double* dst, double* dst', double* src, double* src') {
 // Forward Pass
 memcpy(dst, src, 8);

 // Reverse Pass
 src'[0] += dst'[0];
 dst'[0] = 0;
}
```

```c
void grad_f(float* dst, float* dst', float* src, float* src') {
 // Forward Pass
 memcpy(dst, src, 8);

 // Reverse Pass
 src'[0] += dst'[0];
 dst'[0] = 0;
 src'[1] += dst'[1];
 dst'[1] = 0;
}
```
Type Analysis

• New interprocedural dataflow analysis that detects the underlying type of data

• Each value has a set of memory offsets : type

• Perform series of fixed-point updates through instructions

```
struct MyType {
 double;
 int*;
}
x = MyType*;
```

types(x) = {[0]:Pointer, [0,0]:Double, [0,8]:Pointer, [0,8,0]:Integer}
Case 3: Store, Sync, Store

codeA(); // store %ptr
sync_threads;

codeB(); // store %ptr
...
diffe_codeB(); // load %d_ptr
    // store %d_ptr = 0
sync_threads;

diffe_codeA(); // load %d_ptr
    // store %d_ptr = 0

✅ Correct

• All stores to d_ptr in diffe_B will complete prior to diffe_A, ensuring only the clobbering store has its derivative incremented
Scalability Analysis (Fixed Thread Count)

![Graph showing AD Overhead (factor) vs Iterations for LBM – Parboil (C & CUDA)]
CUDA Example

```c
__device__ void inner(float* a, float* x, float* y) {
 y[threadIdx.x] = a[0] * x[threadIdx.x];
}

__device__ void __enzyme_autodiff(void*, ...);

__global__ void daxpy(float* a, float* da, float* x, float* dx, float* y, float* dy) {
 __enzyme_autodiff((void*)inner, a, da, x, dx, y, dy);
}

__device__ void dffe_inner(float* a, float* da, float* x, float* dx, float* y, float* dy) {
 y[threadIdx.x] = a[0] * x[threadIdx.x];

 float dy = dy[threadIdx.x];
 dy[threadIdx.x] = 0.0f;

 float dx_tmp = a[0] * dy;
 atomic { dx[threadIdx.x] += dx_tmp; }

 float da_tmp = x[threadIdx.x] * dy;
 atomic { da[0] += da_tmp; }
}
```
Existing AD Approaches (1/3)

- Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)
  - Provide a new language designed to be differentiated
  - Requires rewriting everything in the DSL and the DSL must support all operations in original code
  - Fast if DSL matches original code well

```python
import tensorflow as tf

x = tf.Variable(3.14)
with tf.GradientTape() as tape:
 out = tf.math.square(x)

print(tape.gradient(out, x).numpy())
```

```c++
double square(double val) {
 return val * val;
}
```

Manually Rewrite
Existing AD Approaches (3/3)

- Source rewriting
  - Statically analyze program to produce a new gradient function in the source language
  - Re-implement parsing and semantics of given language
  - Requires all code to be available ahead of time => hard to use with external libraries

```c
double square(double val) {
 return val * val;
}
```

Tool Rewrite

```c
double grad_square(double val) {
 return 2 * val;
}
```

$ tapenade -b -o out.c -head "square(val)/(out)" square.c
Parallel Automatic Differentiation in LLVM

• Shadow Registers %d_res and %d_val are *thread-local* as they shadow thread-local registers.

• No risk of races and no special handling required.

• Both %ptr and shadow %d_ptr might be raced upon and require analysis.
Case 2: Load, Sync, Store

```c
codeA(); // load %ptr
sync_threads;
codeB(); // store %ptr
...
diffe_codeB(); // load %d_ptr
 // store %d_ptr = 0
sync_threads;
diffe_codeA(); // atomicAdd %d_ptr
```

Correct

- All of the stores of \(d\_ptr\) will complete prior to any atomicAdds

No cross-thread race here since that’s equivalent to a write race in B
Differentiation of SyncThreads

Case 3 [write sync write]

codeA(); // store %ptr
sync_threads;
codeB(); // store %ptr
...
diffe_codeB(); // load %d_ptr
    // store %d_ptr = 0
sync_threads;
diffe_codeA(); // load %d_ptr
    // store %d_ptr = 0

All uses of stores to d_ptr in diffe_B will correctly complete prior to diffe_A

Case 4 [read sync read]

codeA(); // load %ptr
sync_threads;
codeB(); // load %ptr
...
diffe_codeB(); // atomicAdd %d_ptr
sync_threads;
diffe_codeA(); // atomicAdd %d_ptr

Original and differential sync unnecessary and legal to include
Scalability Analysis (Fixed Work Per Thread)
Parallel Optimization: Loop Indexing

- Allocations (and any calls) on the GPU are expensive
- Given two allocations in the same scope, replace uses with a single allocation
- Beneficial for not just AD, but any GPU programs!

```cpp
double* var1 = new double[N];
double* var2 = new double[M];
use(var1, var2);
delete[] var1;
delete[] var2;

double* var1 = new double[N + M];
double* var2 = var1 + N;
use(var1, var2);
delete[] var1;
```
Evaluation

- Differentiated nine distinct versions of LULESH and miniBUDE applications, in a variety of parallel frameworks, and in both C++ and Julia
  
  - LULESH: unstructured hydrodynamics solver
  
  - miniBUDE: computational kernels of a molecular docking engine
  
- Compare performance and scalability against non-differentiated code, as well as a state of the art MPI AD tool (CoDiPack)
  
- Benchmarks available at: https://github.com/EnzymeAD/Enzyme-sc22
Evaluation Highlights: Runtime Overhead (LULESH)

- Overhead is stable and small, independent of number of MPI nodes, or language/framework