
wmoses@mit.edu
ICIAM

Aug 22, 2023

William S. Moses

1

Enzyme: Fast and Effective Automatic Differentiation for
Academia and Industry

William S. Moses Valentin Churavy Ludger Paehler Johannes Doerfert

Jan Hückelheim Sri Hari Krishna
Narayanan Michel Schanen Paul Hovland

Leila Ghaffari Tim GymnichPraytush Das Manuel Drehwald

&
more

Alex Zinenko

AP Calculus: Revisited

• Derivatives compute the rate of change of a function’s output with respect to input(s)

• Derivatives are used widely across science

• Machine learning (back-propagation, Bayesian inference)

• Scientific computing (modeling, simulation, uncertainty quantification)

3 from Efficient Differentiation of Pixel Reconstruction Filters for Path-Space Differentiable Rendering,
SIGGRAPH Asia 2022, Zihan Yu et al

Target Reconstruction

https://dl.acm.org/doi/pdf/10.1145/3550454.3555500

 AD-Powered Applications

4

from Efficient Differentiation of Pixel Reconstruction Filters for Path-Space Differentiable Rendering,
SIGGRAPH Asia 2022, Zihan Yu et al

Target Reconstruction

from Comrade: High Performance Black-Hole Imaging JuliaCon 2022, 
Paul Tiede (Harvard)

from CLIMA & NSF CSSI: Differentiable programming in Julia for Earth system modeling
(DJ4Earth) from Center for the Exascale Simulation of Materials in Extreme Environments

from MFEM Team at LLNL

from Differential Molecular Simulation with Molly.jl, EnzymeCon 2023, 
Joe Greener (Cambridge)

https://dl.acm.org/doi/pdf/10.1145/3550454.3555500
https://live.juliacon.org/talk/3LHDTD
https://clima.caltech.edu/
https://dj4earth.github.io/
https://dj4earth.github.io/
https://computing.mit.edu/cesmix/
https://www.llnl.gov/news/doe-funds-llnl-project-improve-differentiation-extreme-scale-science-applications
https://enzyme.mit.edu/conference

Automatic Derivative Generation

• Derivatives can be generated automatically from definitions within programs 
 
 
 
 

• Unlike numerical approaches, automatic differentiation (AD) can compute the derivative of ALL
inputs (or outputs) at once, without approximation error!

5

AD

double relu3(double x) {
 if (x > 0)
 return pow(x,3)
 else
 return 0;
}

double grad_relu3(double x) {
 if (x > 0)
 return 3 * pow(x,2)
 else
 return 0;
}

// Numeric differentiation
// f’(x) approx [f(x+epsilon) - f(x)] / epsilon
double grad_input[100];

for (int i=0; i<100; i++) {
 double input2[100] = input;
 input2[i] += 0.01;
 grad_input[i] = (f(input2) - f(input))/0.001;
}

// Automatic differentiation
double grad_input[100];

grad_f(input, grad_input)

Existing AD Approaches (1/3)

• Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)

• Provide a new language designed to be differentiated

• Requires rewriting everything in the DSL and the DSL must support all operations in original
code

• Fast if DSL matches original code well import tensorflow as tf

x = tf.Variable(3.14)

with tf.GradientTape() as tape:
 out = tf.cond(x > 0,
 lambda: tf.math.pow(x,3),
 lambda: 0
)
print(tape.gradient(out, x).numpy())

double relu3(double val) {
 if (x > 0)
 return pow(x,3)
 else
 return 0;
}

Manually
Rewrite

Existing AD Approaches (2/3)

• Operator overloading (Adept, JAX)

• Differentiable versions of existing language constructs (double => adouble, np.sum => jax.sum)

• May require writing to use non-standard utilities

• Often dynamic: storing instructions/values to later be interpreted

// Rewrite to accept either
// double or adouble
template<typename T>
T relu3(T val) {
 if (x > 0)
 return pow(x,3)
 else
 return 0;
}

adept::Stack stack;
adept::adouble inp = 3.14;

// Store all instructions into stack
adept::adouble out(relu3(inp));
out.set_gradient(1.00);

// Interpret all stack instructions
double res = inp.get_gradient(3.14);

Existing AD Approaches (3/3)

• Source rewriting

• Statically analyze program to produce a new gradient function in the source language

• Re-implement parsing and semantics of given language

• Requires all code to be available ahead of time => hard to use with external libraries

Tapenade

// myfile.h
double relu3(double x) {
 if (x > 0)
 return pow(x,3)
 else
 return 0;
}

// myfile.c
double relu3(double x) {
 if (x > 0)
 return pow(x,3)
 else
 return 0;
}

// grad_myfile.h
double relu3(double x) {
 if (x > 0)
 return pow(x,3)
 else
 return 0;
}

// grad_myfile.c
double grad_relu3(double x) {
 if (x > 0)
 return 3 * pow(x,2)
 else
 return 0;
}

Existing Automatic Differentiation Pipelines

AD

CodeGen

Optimize

Lower

AD

AD

AD

9

Case Study: Vector Normalization

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n^2)
void norm(double[] out, double[] in) {

 for (int i=0; i<n; i++) {
 out[i] = in[i] / mag(in);
 }
}

10

Case Study: Vector Normalization

//Compute magnitude in O(n)
double mag(double[] x);

//Compute norm in O(n)
void norm(double[] out, double[] in) {
 double res = mag(in);
 for (int i=0; i<n; i++) {
 out[i] = in[i] / res;
 }
}

11

Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
res = mag(in)
for i=0..n {
 out[i] /= res
}

d_res = 0.0
for i=n..0 {
 d_res += d_out[i]…
}
∇mag(d_in, d_res)

O (n)
for i=0..n {
 out[i] /= mag(in)
}

12

Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
for i=0..n {
 out[i] /= mag(in)
}

res = mag(in)
for i=0..n {
 out[i] /= res
}

d_res = 0.0
for i=n..0 {
 d_res += d_out[i]…
}
∇mag(d_in, d_res)

O (n)

O (n2)
for i=0..n {
 out[i] /= mag(in)
}

AD
for i=n..0 {
 d_res = d_out[i]…
 ∇mag(d_in, d_res)
}

O (n2)

13

Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
for i=0..n {
 out[i] /= mag(in)
}

res = mag(in)
for i=0..n {
 out[i] /= res
}

d_res = 0.0
for i=n..0 {
 d_res += d_out[i]…
}
∇mag(d_in, d_res)

O (n)

O (n2)O (n2)
for i=0..n {
 out[i] /= mag(in)
}

AD
for i=n..0 {
 d_res = d_out[i]…
 ∇mag(d_in, d_res)
}

O (n2)
for i=n..0 {
 d_res = d_out[i]…
 ∇mag(d_in, d_res)
}

Optimize

14

Optimization & Automatic Differentiation

Differentiating after optimization can create asymptotically faster gradients!

Optimize

O (n2) O (n)

AD
for i=0..n {
 out[i] /= mag(in)
}

res = mag(in)
for i=0..n {
 out[i] /= res
}

d_res = 0.0
for i=n..0 {
 d_res += d_out[i]…
}
∇mag(d_in, d_res)

O (n)

O (n2)O (n2)
for i=0..n {
 out[i] /= mag(in)
}

AD
for i=n..0 {
 d_res = d_out[i]…
 ∇mag(d_in, d_res)
}

O (n2)
Optimize

for i=n..0 {
 d_res = d_out[i]…
 ∇mag(d_in, d_res)
}

15

Lower Enzyme .

Optimize

CodeGen

Optimize

 Enzyme Approach

Performing AD at low-level lets us work on optimized code!

16

Experimental Setup

Enzyme:

Ref:

Tapenade:

Adept: -O2

Enzyme .

Tapenade

Adept

• Collection of benchmarks from Microsoft’s ADBench suite and of technical interest

-O2

-O2-O2

-O2-O2

-O2 Enzyme . -O2

17

Speedup of Enzyme
H

ig
he

r i
s

Be
tte

r

Enzyme is 4.2x faster than Reference!
18

Automatic Differentiation & GPUs

• Prior work has not explored reverse mode AD of existing GPU kernels

1. Reversing parallel control flow can lead to incorrect results

2. Complex performance characteristics make it difficult to synthesize
efficient code

3. Resource limitations can prevent kernels from running at all

19

Efficient GPU Code
• For correctness, Enzyme may need to cache values in

order to compute the gradient

• The complexity of GPU memory means large caches
slow down the program by several orders of magnitude,
if it even fits at all

• Like the CPU, existing optimizations reduce the overhead

• Unlike the CPU, existing optimizations aren’t sufficient

• Novel GPU and AD-specific optimizations can speedup by
several orders of magnitude

20

// Forward Pass

out[i] = x[i] * x[i];

x[i] = 0.0f;

// Reverse (gradient) Pass

...
grad_x[i] += 2 * x[i] * grad_out[i];
...

Efficient Correct GPU Code
• For correctness, Enzyme may need to cache values in

order to compute the gradient

• The complexity of GPU memory means large caches
slow down the program by several orders of magnitude,
if it even fits at all

• Like the CPU, existing optimizations reduce the overhead

• Unlike the CPU, existing optimizations aren’t sufficient

• Novel GPU and AD-specific optimizations can speedup by
several orders of magnitude

21

double* x_cache = new double[…];

// Forward Pass

out[i] = x[i] * x[i];
x_cache[i] = x[i];

x[i] = 0.0f;

// Reverse (gradient) Pass

...
grad_x[i] += 2 * x_cache[i]
 * grad_out[i];
...

delete[] x_cache;

Cache Reduction Example
• By considering the dataflow graph

we can perform a min-cut to
approximate smaller cache sizes.

22

for(int i=0; i<10; i++) {
 double sum = x[i] + y[i];

 use(sum);
}

overwrite(x, y);
grad_overwrite(x, y);

for(int i=9; i>=0; i--) {
 ...
 grad_use(sum);
}

X Y

Sum

Overwritten:

Required for
Reverse:

XX

Cache Reduction Example

23

double* x_cache = new double[10];
double* y_cache = new double[10];

for(int i=0; i<10; i++) {
 double sum = x[i] + y[i];
 x_cache[i] = x[i];
 y_cache[i] = y[i];
 use(sum);
}

overwrite(x, y);
grad_overwrite(x, y);

for(int i=9; i>=0; i--) {
 double sum = x_cache[i] + y_cache[i];
 grad_use(sum);
}

• By considering the dataflow graph
we can perform a min-cut to
approximate smaller cache sizes.

X Y

Sum

Overwritten:

Required for
Reverse:

Naive Cache

Sum

Cache Reduction Example

24

double* sum_cache = new double[10];

for(int i=0; i<10; i++) {
 double sum = x[i] + y[i];
 sum_cache[i] = sum;

 use(sum);
}

overwrite(x, y);
grad_overwrite(x, y);

for(int i=9; i>=0; i--) {

 grad_use(sum_cache[i]);
}

• By considering the dataflow graph
we can perform a min-cut to
approximate smaller cache sizes.

X Y

Sum

Overwritten:

Required for
Reverse:

Smallest Cache

Novel AD + GPU Optimizations

• See our SC’21 paper for more (https://c.wsmoses.com/papers/EnzymeGPU.pdf) 
 Reverse-Mode Automatic Differentiation and Optimization of GPU Kernels via Enzyme. SC, 2021

• [AD] Cache LICM/CSE

• [AD] Min-Cut Cache Reduction

• [AD] Cache Forwarding

• [GPU] Merge Allocations

• [GPU] Heap-to-stack (and register)

• [GPU] Alias Analysis Properties of SyncThreads

• …
25

https://c.wsmoses.com/papers/EnzymeGPU.pdf

GPU Gradient Overhead

26

• Evaluation of both original code and gradient

• DG: Discontinuous-Galerkin integral (Julia)

• LBM: particle-based fluid dynamics
simulation

• LULESH: unstructured explicit shock
hydrodynamics solver

• XSBench & RSBench: Monte Carlo
simulations of particle transport
algorithms (memory & compute bound,
respectively)

XSBench

RSBench

LULESH

LBM (Parboil)

DG (CUDA)

DG (ROCm)

3.2

4.2

2.01

6.3

18.35

5.4

GPU Gradient Overhead

27

• Evaluation of both original code and gradient

• DG: Discontinuous-Galerkin integral (Julia)

• LBM: particle-based fluid dynamics
simulation

• LULESH: unstructured explicit shock
hydrodynamics solver

• XSBench & RSBench: Monte Carlo
simulations of particle transport
algorithms (memory & compute bound,
respectively)

XSBench

RSBench

LULESH

LBM (Parboil)

DG (CUDA)

DG (ROCm)

3.2

4.2

2.01

6.3

18.35

5.4

Bug in CUDA
Register Allocator

28

Forward (1x) 10x 100x 1000x OOM

XSBench

RSBench

LULESH

LBM

DG (CUDA)

DG (ROCm)
5.4⇥
o

1378.3⇥
o

116.6⇥
o

17.8⇥
o

19.87⇥
o

8.7⇥
o

6.4⇥
o

2979.1⇥
o

2.4⇥
o

2.0⇥
o

6372.2⇥
o

9.5⇥
o

4.7⇥
o

25.9⇥
o

16.3⇥
o

9.5⇥
o

3.2⇥
o

Overhead above Forward Pass

Unrolling

Unrolling MallocCoalescing PreOptimization

Allocator Recompute InlineCacheABI

SpecPHI PreOptimization

CacheLICM Inlining PreOpt

Templating PHI LoopBound PreOptimization

Ablation Analysis of Optimizations

29

Forward (1x) 10x 100x 1000x OOM

XSBench

RSBench

LULESH

LBM

DG (CUDA)

DG (ROCm)
5.4⇥
o

1378.3⇥
o

116.6⇥
o

17.8⇥
o

19.87⇥
o

8.7⇥
o

6.4⇥
o

2979.1⇥
o

2.4⇥
o

2.0⇥
o

6372.2⇥
o

9.5⇥
o

4.7⇥
o

25.9⇥
o

16.3⇥
o

9.5⇥
o

3.2⇥
o

Overhead above Forward Pass

Unrolling

Unrolling MallocCoalescing PreOptimization

Allocator Recompute InlineCacheABI

SpecPHI PreOptimization

CacheLICM Inlining PreOpt

Templating PHI LoopBound PreOptimization

Ablation Analysis of Optimizations

30

Forward (1x) 10x 100x 1000x OOM

XSBench

RSBench

LULESH

LBM

DG (CUDA)

DG (ROCm)
5.4⇥
o

1378.3⇥
o

116.6⇥
o

17.8⇥
o

19.87⇥
o

8.7⇥
o

6.4⇥
o

2979.1⇥
o

2.4⇥
o

2.0⇥
o

6372.2⇥
o

9.5⇥
o

4.7⇥
o

25.9⇥
o

16.3⇥
o

9.5⇥
o

3.2⇥
o

Overhead above Forward Pass

Unrolling

Unrolling MallocCoalescing PreOptimization

Allocator Recompute InlineCacheABI

SpecPHI PreOptimization

CacheLICM Inlining PreOpt

Templating PHI LoopBound PreOptimization

Ablation Analysis of Optimizations

31

Forward (1x) 10x 100x 1000x OOM

XSBench

RSBench

LULESH

LBM

DG (CUDA)

DG (ROCm)
5.4⇥
o

1378.3⇥
o

116.6⇥
o

17.8⇥
o

19.87⇥
o

8.7⇥
o

6.4⇥
o

2979.1⇥
o

2.4⇥
o

2.0⇥
o

6372.2⇥
o

9.5⇥
o

4.7⇥
o

25.9⇥
o

16.3⇥
o

9.5⇥
o

3.2⇥
o

Overhead above Forward Pass

Unrolling

Unrolling MallocCoalescing PreOptimization

Allocator Recompute InlineCacheABI

SpecPHI PreOptimization

CacheLICM Inlining PreOpt

Templating PHI LoopBound PreOptimization

Ablation Analysis of Optimizations

GPU AD is Intractable Without Optimization!

 Enzyme-Powered Applications

32

from Efficient Differentiation of Pixel Reconstruction Filters for Path-Space Differentiable Rendering,
SIGGRAPH Asia 2022, Zihan Yu et al

Target Reconstruction

from Comrade: High Performance Black-Hole Imaging JuliaCon 2022, 
Paul Tiede (Harvard)

>100x speedup! 
 
Prior: 
 5 days (cluster) 

Enzyme-Based:

 1 hour (laptop)

from CLIMA & NSF CSSI: Differentiable programming in Julia for Earth system modeling
(DJ4Earth) from Center for the Exascale Simulation of Materials in Extreme Environments

from MFEM Team at LLNL

from Differential Molecular Simulation with Molly.jl, EnzymeCon 2023, 
Joe Greener (Cambridge)

https://dl.acm.org/doi/pdf/10.1145/3550454.3555500
https://live.juliacon.org/talk/3LHDTD
https://clima.caltech.edu/
https://dj4earth.github.io/
https://dj4earth.github.io/
https://computing.mit.edu/cesmix/
https://www.llnl.gov/news/doe-funds-llnl-project-improve-differentiation-extreme-scale-science-applications
https://enzyme.mit.edu/conference

 Enzyme-Powered Applications

33

Target Reconstruction

• Tool for performing reverse-mode (and forward mode) AD of statically analyzable LLVM IR

• Differentiates code in a variety of parallel frameworks (OpenMP, MPI, Julia Tasks, GPU), and
languages (C, C++, Fortran, Julia, Rust, Swift, etc)

• Parallel and AD-specific optimizations crucial for performance

• Keep similar scalability as non-differentiated code

• Open source (enzyme.mit.edu & join our mailing list)!

• Ongoing work to support Mixed Mode, Batching, Checkpointing, and more

 Enzyme

34

http://enzyme.mit.edu

A Growing Enzyme Community (EnzymeCon 2023)

• 40 attendees spanning developers, users, and everywhere in between.

• 17 great talks from AD
internals, to algorithms, to
climate science, to physics,
and beyond (https://
enzyme.mit.edu/conference).

• Talks live streamed to YouTube
(to be split individually soon):

• Day 1 Link

• Day 2 Link 

https://enzyme.mit.edu/conference
https://enzyme.mit.edu/conference
https://www.youtube.com/watch?v=ubIDJAbIXAc
https://youtube.com/live/NB7xUHQNox8?feature=share

Acknowledgements

• Thanks to James Bradbury, Alex Chernyakhovsky, Lilly Chin, Hal Finkel, Marco Foco, Laurent Hascoet, Mike
Innes, Tim Kaler, Charles Leiserson, Yingbo Ma, Chris Rackauckas, TB Schardl, Lizhou Sha, Yo Shavit, Dhash
Shrivathsa, Nalini Singh, Vassil Vassilev, and Alex Zinenko

• William S. Moses was supported in part by a DOE Computational Sciences Graduate Fellowship
DESC0019323. Valentin Churavy was supported in part by the Defense Advanced Research Projects Agency
(DARPA) under Agreement No. HR0011-20-9-0016, and in part by NSF Grant OAC-1835443. Ludger Paehler
was supported in part by the German Research Council (DFG) under grant agreement No. 326472365.

• This research was supported in part by LANL grant 531711; in part by the Applied Mathematics activity
within the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research Program,
under contract number DE-AC02-06CH11357; in part by the Exascale Computing Project (17-SC-20-SC).
Research was sponsored by the United States Air Force Research Laboratory and was accomplished under
Cooperative Agreement Number FA8750-19-2-1000.

• The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the United States Air Force or
the U.S. Government.

36

