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Install Pre-Requisites
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❖ This is going to be an interactive tutorial!

❖ In the background, make sure you have docker installed  
(https://docs.docker.com/install/)

❖ Pull the pre-prepared docker instance

❖ docker pull wsmoses/tapir-built

❖ Download the git repo for the tutorial

❖ git clone https://github.com/wsmoses/tapir-tutorial

❖ Test installation (good idea run in separate terminal tab/tmux)

❖ cd tapir-tutorial/fib && make run

https://docs.docker.com/install/
https://github.com/wsmoses/tapir-tutorial


Introduction (as everyone gets set up)
❖ Building a parallel language / framework can often be a 

difficult, laborious task

❖ Once built, compilers and tools for such frameworks often 
create code that is far from optimal (we’ll see this shortly)

❖ This means users have to spend more time writing code 
that doesn’t run as fast

❖ This talk will illustrate how support for parallelism in 
LLVM will both make parallel programs run faster and 
also make it easier for languages to incorporate parallelism



Introduction (as everyone gets set up)

❖ In this tutorial, we’ll be using Tapir — an extension to 
LLVM developed by Moses (that’s me), Schardl, and 
Leiserson at MIT that allows it to reason about parallel 
programs

❖ For those who wish to try it out themselves it’s available 
on Github: https://github.com/wsmoses/Tapir-LLVM

❖ For those who want to see parallelism introduced into 
mainline LLVM, please come to the BOF later today!

https://github.com/wsmoses/Tapir-LLVM


Tutorial 0: Verify Installation
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❖ Go into tapir-tutorial/fib and “make run“

❖ You should see fibonacci numbers slowly printing out

❖ If you want to kill it run “docker kill tapirdocker”

❖ You should see the program running in parallel



Tutorial 0: Verify Installation
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❖ Go into tapir-tutorial/fib and “make run“

❖ You should see fibonacci numbers slowly printing out

❖ If you want to kill it run “docker kill tapirdocker”

❖ You should see the program running in parallel



Tutorial 0: Verify Installation
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❖ Cilk code to compute 
a large number of 
fibonacci numbers in 
parallel

❖ Not fastest algorithm, 
but let’s us check 
everything is working



Tutorial 0: Verify Installation
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❖ We can open fib.ll to see what the program looks like in LLVM

❖ Special scripts to compile/run using docker container (can use 
your own machine if things are set up happily)



Tutorial 0: Verify Installation
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❖ We can open fib.ll to see what the program looks like in LLVM

❖ Special scripts to compile/run using docker container (can use 
your own machine if things are set up happily)



Compilers Don’t Understand Parallel Code
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What’s that?

cilk_for (int i = 0; i < n; ++i) { 
    do_work(i); 
}

#pragma omp parallel for 
for (int i = 0; i < n; ++i) { 
    do_work(i); 
}



Tutorial 1: Normalizing a Vector
__attribute__((const)) double mag(const double *A, int n); 

void normalize(double *restrict out, const double *restrict in, int n) { 
  for (int i = 0; i < n; ++i) 
    out[i] = in[i] / mag(in, n); 
}
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❖ Goal: make the fastest (parallel) normalize code we can!

❖ To start, let’s see how the serial code does

❖ Go into tapir-tutorial/norm-mp and run make run



Tutorial 1: Normalizing a Vector
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Runtime (seconds)

Size of vector



Idea: Let’s Run 
in Parallel!



Tutorial 1: Normalizing a Vector
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Parallel is slower :(



Tutorial 1: Normalizing a Vector
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Maybe we need bigger vector?



Tutorial 1: Normalizing a Vector
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Maybe we need bigger vector?

Nope



What happened?

❖ Try to figure out why 
it’s running slower

❖ The LLVM files are 
helpful



What happened?

-O3

__attribute__((const)) double norm(const double *A, int n); 

void normalize(double *restrict out, const double *restrict in, int n) { 
  for (int i = 0; i < n; ++i) 
    out[i] = in[i] / mag(in, n); 
}

__attribute__((const)) double norm(const double *A, int n); 

void normalize(double *restrict out, const double *restrict in, int n) { 
  double tmp = mag(in, n); 
  for (int i = 0; i < n; ++i) 
    out[i] = in[i] / tmp; 
}



What happened?

-O3

__attribute__((const)) double norm(const double *A, int n); 

void normalize(double *restrict out, const double *restrict in, int n) { 
  for (int i = 0; i < n; ++i) 
    out[i] = in[i] / mag(in, n); 
}

__attribute__((const)) double norm(const double *A, int n); 

void normalize(double *restrict out, const double *restrict in, int n) { 
  double tmp = mag(in, n); 
  for (int i = 0; i < n; ++i) 
    out[i] = in[i] / tmp; 
}

This did NOT happen for the parallel code!



What happened?
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The body of the loop got outlined



The LLVM Compilation Pipeline

C code Clang LLVM -O3 LLVM CodeGen EXE

!22

Front end Middle-end
optimizer

Back end



Compiling Parallel Code

Cilk PClang LLVM -O3 LLVM CodeGen EXE

C Clang LLVM -O3 LLVM CodeGen EXE

LLVM pipeline

Cilk Plus/LLVM pipeline

!23

The front end 
translates all parallel 
language constructs.



Effect of Compiling Parallel Code

PClang

__attribute__((const)) double norm(const double *A, int n); 

void normalize(double *restrict out, const double *restrict in, int n) { 
  cilk_for (int i = 0; i < n; ++i) 
    out[i] = in[i] / norm(in, n); 
}

__attribute__((const)) double norm(const double *A, int n); 

void normalize(double *restrict out, const double *restrict in, int n) { 
  struct args_t args = { out, in, n }; 
  __cilkrts_cilk_for(normalize_helper, args, 0, n); 
} 

void normalize_helper(struct args_t args, int i) { 
  double *out = args.out; 
  double *in = args.in; 
  int n = args.n; 
  out[i] = in[i] / norm(in, n); 
}
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Call into runtime to 
execute parallel loop.

Existing optimizations cannot 
move call to norm out of the loop.

Helper function 
encodes the loop body.



Remember fib?
int fib(int n) { 
  __cilkrts_stack_frame_t sf; 
  __cilkrts_enter_frame(&sf); 
  if (n < 2) return n; 
  int x, y; 
  if (!setjmp(sf.ctx)) 
    spawn_fib(&x, n-1); 
  y = fib(n-2); 
  if (sf.flags & CILK_FRAME_UNSYNCHED) 
    if (!setjmp(sf.ctx)) 
      __cilkrts_sync(&sf); 
  int result = x + y; 
  __cilkrts_pop_frame(&sf); 
  if (sf.flags) 
    __cilkrts_leave_frame(&sf); 
  return result; 
} 

void spawn_fib(int *x, int n) { 
  __cilkrts_stack_frame sf; 
  __cilkrts_enter_frame_fast(&sf); 
  __cilkrts_detach(); 
  *x = fib(n); 
  __cilkrts_pop_frame(&sf); 
  if (sf.flags) 
    __cilkrts_leave_frame(&sf); 
}

int fib(int n) { 
  if (n < 2) return n; 
  int x, y; 
  x = cilk_spawn fib(n - 1); 
  y = fib(n - 2); 
  cilk_sync; 
  return x + y; 
}

PClang

Optimization passes struggle 
to optimize around these 
opaque runtime calls.

!25

Cilk Fibonacci code



Tapir: Task-based Asymmetric Parallel IR
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Cilk PClang LLVM -O3 LLVM CodeGen EXE

Cilk Plus/LLVM pipeline

Tapir/LLVM pipeline

Cilk PClang Tapir -O3 Tapir CodeGen EXE

Tapir adds three 
instructions to LLVM 
IR that encode fork-

join parallelism.

With few changes, 
LLVM’s existing 

optimizations and 
analyses work on 

parallel code.



Tutorial 2: Tapir Instructions
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❖ Go into tapir-tutorial/norm and run make tapir

❖ There are two files tapirpre.ll and tapirpost.ll

❖ Let’s take a look at tapirpre.ll and the source code 
(norm.c)



Tutorial 2: Tapir Instructions

!28

❖ Go into tapir-tutorial/norm and run make tapir

❖ There are two files tapirpre.ll and tapirpost.ll

❖ Let’s take a look at tapirpre.ll and the source code 
(norm.c)

❖ New instructions: detach, reattach, and sync



Tapir Semantics
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x  = alloca() 
 sr = llvm.syncregion.start() 
br (n < 2), exit, if.else

detach within sr det, cont

x0 = fib(n - 1) 
store x0, x 
reattach within sr, cont

y = fib(n - 2) 
sync within sr, syncd

rv = φ([n,entry],[add,cont]) 
return rv

entry

if.else

syncd

cont

exit

Tapir CFG❖ Tapir introduces three new 
terminators into LLVM’s IR: 
detach, reattach, sync, and an 
intrinsic llvm.syncregion.start().

❖ The successors of a detach 
terminator are the detached 
block and continuation and 
may run in parallel.

❖ Execution after a sync ensures 
that all detached CFG’s in 
scope have completed 
execution.

x1 = load x 
add = x1 + y 
br exit

det



Parallel Loops in Tapir
sr = llvm.syncregion.start() 
br (0 < n), head, return

i0 = φ([0,entry],[i1,inc]) 
detach within sr, body, inc

norm0 = norm(in, n) 
out[i0] = in[i0] / norm0 
reattach within sr, inc

i1 = i0 + 1 
br (i1 < n), head, exit

sync within sr, return

entry

head

body

inc

exit

void normalize(double *restrict out, 
               const double *restrict in, 
               int n) { 
  cilk_for (int i = 0; i < n; ++i) 
    out[i] = in[i] / norm(in, n); 
}

Parallel loop resembles a serial 
loop with a detached body.

!30

The sync waits on a dynamic 
set of detached sub-CFG’s.

ret voidreturn



Tutorial 2: Tapir Instructions
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❖ As expected, in Tapir post, the call to magnitude is 
moved outside of the loop.

❖ Let’s get a closer look: cd tapir-tutorial/licm

❖ Run make

❖ What is happening?

❖ We can also look at tapir-tutorial/norm at the fast and 
slow versions (going through tapir, but electing to not 
run optimizations until after lowered to runtime calls)



How does this work?

!32

Intuitively, much of the compiler can reason about a Tapir CFG 
as a minor change to that CFG’s serial elision.

Many parts of the 
compiler can apply 
standard implicit 

assumptions of the 
CFG to this block.

det

x  = alloca() 
 sr = llvm.syncregion.start() 
br (n < 2), exit, if.else

detach within sr det, cont

x0 = fib(n - 1) 
store x0, x 
reattach within sr, cont

y = fib(n - 2) 
sync within sr, syncd

rv = φ([n,entry],[add,cont]) 
return rv

entry

if.else

syncd

cont

exit

x1 = load x 
add = x1 + y 
br exit



Case Study: Common Subexpression Elimination

entry

cont

det

❖ CSE “just works.”
❖ Finding duplicate 

expressions and 
condensing them at their 
lowest common ancestor 
works fine for detach/
reattach.

void query(int n) { 
  int x = detach  
          { search(0,n/2); } 
  int y = search(n/2,n); 
  sync; 
 return x + y; 
}

x = alloca() 
  
detach det, cont

div = n / 2  
x0 = search(0,div) 
store x0, x 
reattach cont

div2 = n / 2  
y = search(div2,n) 
sync 
x1 = load x 
add = x1 + y 
return add 
add = x + y 
return add

!33



Case Study: Common Subexpression Elimination

entry

cont

det

❖ CSE “just works.”
❖ Finding duplicate 

expressions and 
condensing them at their 
lowest common ancestor 
works fine for detach/
reattach.

void query(int n) { 
  int x = detach  
          { search(0,n/2); } 
  int y = search(n/2,n); 
  sync; 
 return x + y; 
}

x = alloca() 
div = n / 2 
detach within sr det, cont

x0 = search(0,div) 
store x0, x 
reattach within sr cont

y = search(div,n) 
sync within sr 
x1 = load x 
add = x1 + y 
return add 
add = x + y 
return add

!34



Case Study: Parallel Tail-Recursion Elimination

entry

cont

det

❖ A minor modification 
allows TRE to run on 
parallel code.

❖ Ignore sync’s before a 
recursive call and add 
sync’s before intermediate 
returns.

void qsort(int* begin, int* end) { 
  if (begin == end) return; 
  int* mid = partition(start, end); 
  swap(end, mid); 
  cilk_spawn qsort(begin, mid); 
  qsort(mid, end); 
  cilk_sync; 
}

mid = partition(start,end) 
swap(end,mid) 
detach det, cont

return

qsort(begin,mid) 
reattach cont

qsort(mid,end) 
sync

end

part

br (begin == end), end, part



Case Study: Parallel Tail-Recursion Elimination

entry

cont

det

mid = partition(start,end) 
swap(end,mid) 
detach det, cont

return

qsort(begin,mid) 
reattach cont

qsort(mid,end) 
sync

end

part

br (begin == end), end, part entry

cont

det

mid = partition(start,end) 
swap(end,mid) 
detach det, cont

sync 
return

qsort(begin,mid) 
reattach cont

br entry

end

part

br (begin == 



Compiler Analyses and Optimizations

What did we do to adapt existing analyses and 
optimizations?

❖ Dominator analysis: no change

❖ Common-subexpression elimination: no change

❖ Loop-invariant-code motion: 25-line change

❖ Tail-recursion elimination: 68-line change

!37!37



Suite Benchmark Description
Cilk Cholesky Cholesky decomposition

FFT Fast Fourier transform
NQueens n-Queens solver

QSort Hoare quicksort
RectMul Rectangular matrix multiplication
Strassen  Strassen matrix multiplication

Intel AvgFilter Averaging filter on an image
Mandel Mandelbrot set computation

PBBS CHull Convex hull
detBFS  BFS, deterministic algorithm
incMIS  MIS, incremental algorithm
incST  Spanning tree, incremental algorithm

kdTree Performance test of a parallel k-d tree
ndBFS  BFS, nondeterministic algorithm
ndMIS  MIS, nondeterministic algorithm
ndST  Spanning tree, nondeterministic algorithm

parallelSF  Spanning-forest computation
pRange  Compute ranges on a parallel suffix array

radixSort  Radix sort
SpMV  Sparse matrix-vector multiplication



Work-Efficiency Improvement

Test machine: Amazon AWS c4.8xlarge, 2.9 GHz, 60 GiB DRAM

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TS
T1

Reference Tapir/LLVM

Ideal
efficiency

Decreasing difference between Tapir/LLVM and Reference
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Same as Tapir/LLVM, but the front end handles 
parallel language constructs the traditional way.



Parallel-Specific Optimizations

To ensure reasonable performance, parallel 
frameworks implement parallel-specific optimizations

!40



Example Opt: Coarsening
❖ Combine detached statements to overcome the overhead 

of running in parallel

void scale(double *restrict A, double s, int n) { 
  parallel_for (int i = 0; i < n; i++) { 
    A[i] *= s; 
} }

void scale(double *restrict A, double s, int n) { 
  parallel_for (int i = 0; i < n; i+=4) { 
    for (int i2 = 0; i2 < 4; i2++) { 
      A[i+i2] *= s; 
} } }

!41



Example Opt: Coarsening
❖ Combine detached statements to overcome the overhead 

of running in parallel

void scale(double *restrict A, double s, int n) { 
  parallel_for (int i = 0; i < n; i++) { 
    A[i] *= s; 
} }

void scale(double *restrict A, double s, int n) { 
  parallel_for (int i = 0; i < n; i+=4) { 
    for (int i2 = 0; i2 < 4; i2++) { 
      A[i+i2] *= s; 
} } }

~4x
!42



Example Optimization: Scheduling
❖ Existing code written in parallel frameworks can leverage polyhedral 

optimizations such as loop fusion or tiling with no extra effort

void add(double * A, double * B, double * C, int n) { 
  parallel_for (int i = 0; i < n; i++) { 
    A[i] += B[i]; 
  } 
  parallel_for (int i = 0; i < n; i++) { 
    A[i] += C[i]; 
  } 
}

void add(double * A, double * B, double * C, int n) { 
  parallel_for (int i = 0; i < n; i++) { 
    A[i] += B[i]; 
    A[i] += C[i]; 
  } 
}



Example Optimization: Scheduling
❖ Existing code written in parallel frameworks can leverage polyhedral 

optimizations such as loop fusion or tiling with no extra effort

void add(double * A, double * B, double * C, int n) { 
  parallel_for (int i = 0; i < n; i++) { 
    A[i] += B[i]; 
  } 
  parallel_for (int i = 0; i < n; i++) { 
    A[i] += C[i]; 
  } 
}

void add(double * A, double * B, double * C, int n) { 
  parallel_for (int i = 0; i < n; i++) { 
    A[i] += B[i]; 
    A[i] += C[i]; 
  } 
}

~2x



Example Opt: Task Elimination
❖ If you have a detached task immediately followed by a 

sync, remove the detach.

void foo() { 
  detach bar(); 
  detach baz(); 
  sync; 
}

void foo() { 
  detach bar(); 
         baz(); 
  sync; 
}

Sounds trivial, but especially useful for OpenMP!

!45



Example Opt: Task Elimination
void fib(int n) { 
  if (n < 2) return n; 
  int x, y; 
  #pragma omp task shared(x) 
  x = fib(n-1); 
  #pragma omp task shared(y) 
  y = fib(n-2); 
  #pragma omp taskwait 
  return x+y; 
}

Linguistically OpenMP tasks 
encourages users to write code 
that needs this optimization!

!46



Case Study: Task Elimination
Fib Runtime

No Opt

Task Elim

Time (s), less is better

0 0.3 0.6 0.9 1.2
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Case Study: Task Elimination
Fib Runtime

No Opt

Task Elim

Time (s), less is better

0 0.3 0.6 0.9 1.2

~3x
!48



Parallel Optimizations Today
❖ Every parallel framework today is independent, 

requiring large amounts of code duplication.  

❖ Duplication from framework to framework  

❖ Duplication from low level (i.e. LICM in LLVM) to high 
level

!49



Parallel Pipeline Today

Cilk Frontend Halide
Frontend

Halide Parallel 
Optimizations 
(scheduling)

Weld
Frontend

Weld Parallel 
Optimizations, 

LICM

Halide 
Runtime

OpenMP 
Frontend

LLVM w/ 
Halide 

Runtime Calls

LLVM w/ 
Weld Runtime 

Calls

Weld Runtime

OMP Parallel 
Optimizations 

(strip mine)
LLVM w/ 
OpenMP 

Runtime Calls
OpenMP 
Runtime

Cilk Parallel 
Optimizations 
(shrink wrap)

LLVM w/ 
Cilk Runtime 

Calls

Cilk Runtime

!50



Rhino: The Parallel Compiler Dream

Common  
Parallel 

Optimizations

❖ Tapir is a nice way of representing and 
working with parallel programs

❖ Use Tapir as a common parallel 
intermediate representation for various 
parallel frontends and backends

❖ Benefits

❖ Enable cross-framework compilation

❖ Have one set of common parallel 
optimizations that can be shared by all

❖ Tools for one can be used by all

Multiple Parallel 
“Frontends”

Multiple Parallel
“Backends”

!51



Rhino: The Parallel Compiler Dream

Tapir/LLVM
Common Parallel 

Optimizations

Cilk Runtime OpenMP 
Runtime PTX ISA

Cilk OpenMP CUDA Halide Weld

Polly

!52



Rhino: The Parallel Compiler Dream

Cilk Runtime OpenMP 
Runtime PTX ISA

Cilk OpenMP CUDA Halide Weld

Completely Done

Partially Done

Tapir/LLVM
Common Parallel 

Optimizations Polly

!53



Parallel Runtime Choice

Examples from Barcelona OpenMP benchmark suite
!54



Parallel Runtime Choice

Examples from Barcelona OpenMP benchmark suite
!55



How to Optimize YOUR Parallel Code
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Tapir/LLVM pipeline

Cilk PClang Tapir -O3 Tapir CodeGen EXE

Your Code
Lower to 

Tapir
Your 

Runtime 
Calls

Lower to 
Tapir

❖ To connect to Tapir, you need to do one or two things:

❖ Modify your frontend to emit Tapir instructions when emitting 
LLVM

❖ Add a tapirTarget that will lower tapir instructions to your 
runtime calls



Adding a Tapir Frontend
❖ Represent the parallelism in your program using 

detach’ed CFG’s and dependencies using sync 
instructions / regions (a sync instruction synchronizes 
all the tasks in the region)

❖ Let’s look at how to lower a parallel for loop from 
Halide



Put the body of
the loop in the
detach

Not shown 
here, but 
reattach
at end of task in 
codegen

Join all the 
tasks together 
at the end



Adding a Tapir Backend
❖ Three stages / options for lowering: Polly SCoP-based, 

loop-based, task based

❖ Higher level stages will run before lower level (i.e. you 
can create tasks during loop-based lowering, which will 
be lowered later)



Building A Backend



Building A Backend

❖ Don’t need to implement pieces we don’t need

❖ Our “backend” doesn’t require special modification of 
functions, main, or handles loop differently (though it 
could if we desired)



Building A Backend

❖ Don’t need to implement pieces we don’t need

❖ Our “backend” doesn’t require special modification of 
functions, main, or handles loop differently (though it 
could if we desired)



!63

Outline task

Ignore previous
task

Call task with
runtime rather
than direct call



Building A Backend

❖ Our sample backend simply calls a syncronize 
instruction, with the local function pointer (which is 
perhaps used to modify a structure of tasks in the 
function)



Building A Backend

❖ The number of workers is used for the default loop 
processing to coarsen base cases

❖ In our sample backend this is a simple runtime call



Building A Backend
❖ That’s it!

❖ All together (including the header) ~150 LOC to 
implement a backend

❖ We can take advantage of all the Tapir optimizations 
and we automatically have frontend language (Cilk, 
OpenMP, etc) that compiles to Tapir as valid programs / 
benchmarks!



Building A Backend



Tutorial 3: Shared Tools

!68

❖ Tools built for one framework can be used by any 
framework that uses Tapir

❖ Let’s get a look at one tool, a race detector: cd tapir-
tutorial/san

❖ Useful for detecting bugs in code, but ALSO for bugs in 
your frontend/backend (say accidentally making a 
private variable public)



Takeaways
❖ With little modification, the compiler can do a lot of 

things to make your parallel programs faster

❖ Run (serial) optimizations on parallel code

❖ Build and share parallel optimizations and tools

❖ Mix-and-match parallel runtimes

❖ Ongoing development (bug fixes, new optimizations, etc). 

❖ Available on GitHub!  
https://github.com/wsmoses/Tapir-LLVM.git

!69

https://github.com/wsmoses/Tapir-LLVM.git


Backup Slides!

!70



Obstacle
❖ When designing parallel optimization passes, we ran into the 

issue where we couldn’t represent the optimized code inside 
of Tapir!

void B() { 
  detach B1(); 
         B2(); 
  sync; 
} 

void main() { 
  detach A(); 
         B(); 
         C(); 
  sync; 
}

Inlining
void main() { 
  detach A(); 
  detach B1(); 
         B2(); 
  sync; 
        C(); 
  sync; 
}

A is parallel to C A must execute before C



Obstacle

❖ Tapir assumes detaches/syncs (or specifically 
detaches/syncs) are scoped to a function, whereas we 
need something more precise.

❖ How much more precise?

❖ Provide a sync to individual detaches?

❖ Provide a sync to groups of detaches?



Idea 1: Individualized Sync
void main() { 
  a = detach A(); 
  b = detach B1(); 
            B2(); 
  sync a; 
            C(); 
  sync b; 
}

❖ Permit synchronization of 
specific parallel statements

❖ Most general model



Idea 1: Individualized Sync
f = detach foo(); 
ø = {} 

for (int i = 0; i < n; ++i) { 
  γ0 = phi [(ø, entry), (γ1, loop)] 
  a  = detach A(i); 
  γ1 = union [ γ0, a ] 
} 
γ2 = phi [(ø, entry), (γ1, loop)] 

sync γ2; 

bar(); 

❖ Representing arbitrary sets to 
sync dramatically increases 
complexity

❖ Generality of model restricts 
possible runtimes

❖ Harder to optimize! 
(Previously could assume 
that a detached statement no 
longer can alias after a sync)  



Idea 2: Scoped Sync
❖ Represent parallelism in nested parallel regions

❖ A sync now acts on all detaches in that region

❖ Doesn’t change runtime compatibility

❖ Maintain guarantee that no detaches (now in the region) 
continue after a sync

❖ This implies that all parallel optimizations developed 
for vanilla Tapir work, except using a parallel region 
scope instead of function scope



Idea 2: Individualized Sync

void main() { 

  detach A(); 

  parallel_region { 
    detach B1(); 
           B2(); 
    sync; 
  } 

  C(); 
  sync; 
}

%r1 = call llvm.region_start() 
detach in r1, det1, cont1

call @A(); 
reattach in r1, cont1

%r2 = call llvm.region_start() 
detach in r2, det2, cont2

call @B1(); 
reattach in r2, cont2

entry

det1
cont1

cont2

call @B2(); 
sync in r2 
call @C(); 
sync in r1

det2



Maintaining Correctness
Problem: How does the compiler 
ensure that code motion does not 
introduce a determinacy race into 
otherwise race-free code?

x = alloca() 
br (n < 2), exit, if.else

detach det, cont

x0 = fib(n - 1) 
store x0, x 
reattach cont

y = fib(n - 2) 
sync 
x1 = load x 
add = x1 + y 
br exit

rv = φ([n,entry],[add,cont]) 
return rv

entry

if.else

cont

exit
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Maintaining Correctness
Problem: How does the compiler 
ensure that code motion does not 
introduce a determinacy race into 
otherwise race-free code?
● It suffices to consider moving 

memory operations around each 
new instruction.

● Moving code above a detach or 
below a sync serializes it and is 
always valid.

● Other potential races are handled 
by giving detach, reattach, and 
sync appropriate attributes and by 
slight modifications to mem2reg.

x = alloca() 
br (n < 2), exit, if.else

detach det, cont

x0 = fib(n - 1) 
store x0, x 
reattach cont

y = fib(n - 2) 
sync 
x1 = load x 
add = x1 + y 
br exit

rv = φ([n,entry],[add,cont]) 
return rv

entry

if.else

cont

exit



Valid serial passes cannot create race bugs.

Most of LLVM’s existing serial passes “just work” on 
parallel code.


