
How To Use LLVM To Optimize
Your Parallel Programs

!1

2018 US LLVM Developers Meeting
October 18, 2018

William S. Moses

George Stelle

Tutorial “TA”:

Tapir Authors:

Tao B. Schardl William S. Moses Charles E. Leiserson

Parallel Opt Authors:

William S. Moses George Stelle Jiahao Li

Install Pre-Requisites

!3

❖ This is going to be an interactive tutorial!

❖ In the background, make sure you have docker installed
(https://docs.docker.com/install/)

❖ Pull the pre-prepared docker instance

❖ docker pull wsmoses/tapir-built

❖ Download the git repo for the tutorial

❖ git clone https://github.com/wsmoses/tapir-tutorial

❖ Test installation (good idea run in separate terminal tab/tmux)

❖ cd tapir-tutorial/fib && make run

https://docs.docker.com/install/
https://github.com/wsmoses/tapir-tutorial

Introduction (as everyone gets set up)
❖ Building a parallel language / framework can often be a

difficult, laborious task

❖ Once built, compilers and tools for such frameworks often
create code that is far from optimal (we’ll see this shortly)

❖ This means users have to spend more time writing code
that doesn’t run as fast

❖ This talk will illustrate how support for parallelism in
LLVM will both make parallel programs run faster and
also make it easier for languages to incorporate parallelism

Introduction (as everyone gets set up)

❖ In this tutorial, we’ll be using Tapir — an extension to
LLVM developed by Moses (that’s me), Schardl, and
Leiserson at MIT that allows it to reason about parallel
programs

❖ For those who wish to try it out themselves it’s available
on Github: https://github.com/wsmoses/Tapir-LLVM

❖ For those who want to see parallelism introduced into
mainline LLVM, please come to the BOF later today!

https://github.com/wsmoses/Tapir-LLVM

Tutorial 0: Verify Installation

!6

❖ Go into tapir-tutorial/fib and “make run“

❖ You should see fibonacci numbers slowly printing out

❖ If you want to kill it run “docker kill tapirdocker”

❖ You should see the program running in parallel

Tutorial 0: Verify Installation

!7

❖ Go into tapir-tutorial/fib and “make run“

❖ You should see fibonacci numbers slowly printing out

❖ If you want to kill it run “docker kill tapirdocker”

❖ You should see the program running in parallel

Tutorial 0: Verify Installation

!8

❖ Cilk code to compute
a large number of
fibonacci numbers in
parallel

❖ Not fastest algorithm,
but let’s us check
everything is working

Tutorial 0: Verify Installation

!9

❖ We can open fib.ll to see what the program looks like in LLVM

❖ Special scripts to compile/run using docker container (can use
your own machine if things are set up happily)

Tutorial 0: Verify Installation

!10

❖ We can open fib.ll to see what the program looks like in LLVM

❖ Special scripts to compile/run using docker container (can use
your own machine if things are set up happily)

Compilers Don’t Understand Parallel Code

!11

What’s that?

cilk_for (int i = 0; i < n; ++i) {
 do_work(i);
}

#pragma omp parallel for
for (int i = 0; i < n; ++i) {
 do_work(i);
}

Tutorial 1: Normalizing a Vector
__attribute__((const)) double mag(const double *A, int n);

void normalize(double *restrict out, const double *restrict in, int n) {
 for (int i = 0; i < n; ++i)
 out[i] = in[i] / mag(in, n);
}

!12

❖ Goal: make the fastest (parallel) normalize code we can!

❖ To start, let’s see how the serial code does

❖ Go into tapir-tutorial/norm-mp and run make run

Tutorial 1: Normalizing a Vector

!13

Runtime (seconds)

Size of vector

Idea: Let’s Run
in Parallel!

Tutorial 1: Normalizing a Vector

!15

Parallel is slower :(

Tutorial 1: Normalizing a Vector

!16

Maybe we need bigger vector?

Tutorial 1: Normalizing a Vector

!17

Maybe we need bigger vector?

Nope

What happened?

❖ Try to figure out why
it’s running slower

❖ The LLVM files are
helpful

What happened?

-O3

__attribute__((const)) double norm(const double *A, int n);

void normalize(double *restrict out, const double *restrict in, int n) {
 for (int i = 0; i < n; ++i)
 out[i] = in[i] / mag(in, n);
}

__attribute__((const)) double norm(const double *A, int n);

void normalize(double *restrict out, const double *restrict in, int n) {
 double tmp = mag(in, n);
 for (int i = 0; i < n; ++i)
 out[i] = in[i] / tmp;
}

What happened?

-O3

__attribute__((const)) double norm(const double *A, int n);

void normalize(double *restrict out, const double *restrict in, int n) {
 for (int i = 0; i < n; ++i)
 out[i] = in[i] / mag(in, n);
}

__attribute__((const)) double norm(const double *A, int n);

void normalize(double *restrict out, const double *restrict in, int n) {
 double tmp = mag(in, n);
 for (int i = 0; i < n; ++i)
 out[i] = in[i] / tmp;
}

This did NOT happen for the parallel code!

What happened?

!21

The body of the loop got outlined

The LLVM Compilation Pipeline

C code Clang LLVM -O3 LLVM CodeGen EXE

!22

Front end Middle-end
optimizer

Back end

Compiling Parallel Code

Cilk PClang LLVM -O3 LLVM CodeGen EXE

C Clang LLVM -O3 LLVM CodeGen EXE

LLVM pipeline

Cilk Plus/LLVM pipeline

!23

The front end
translates all parallel
language constructs.

Effect of Compiling Parallel Code

PClang

__attribute__((const)) double norm(const double *A, int n);

void normalize(double *restrict out, const double *restrict in, int n) {
 cilk_for (int i = 0; i < n; ++i)
 out[i] = in[i] / norm(in, n);
}

__attribute__((const)) double norm(const double *A, int n);

void normalize(double *restrict out, const double *restrict in, int n) {
 struct args_t args = { out, in, n };
 __cilkrts_cilk_for(normalize_helper, args, 0, n);
}

void normalize_helper(struct args_t args, int i) {
 double *out = args.out;
 double *in = args.in;
 int n = args.n;
 out[i] = in[i] / norm(in, n);
}

!24

Call into runtime to
execute parallel loop.

Existing optimizations cannot
move call to norm out of the loop.

Helper function
encodes the loop body.

Remember fib?
int fib(int n) {
 __cilkrts_stack_frame_t sf;
 __cilkrts_enter_frame(&sf);
 if (n < 2) return n;
 int x, y;
 if (!setjmp(sf.ctx))
 spawn_fib(&x, n-1);
 y = fib(n-2);
 if (sf.flags & CILK_FRAME_UNSYNCHED)
 if (!setjmp(sf.ctx))
 __cilkrts_sync(&sf);
 int result = x + y;
 __cilkrts_pop_frame(&sf);
 if (sf.flags)
 __cilkrts_leave_frame(&sf);
 return result;
}

void spawn_fib(int *x, int n) {
 __cilkrts_stack_frame sf;
 __cilkrts_enter_frame_fast(&sf);
 __cilkrts_detach();
 *x = fib(n);
 __cilkrts_pop_frame(&sf);
 if (sf.flags)
 __cilkrts_leave_frame(&sf);
}

int fib(int n) {
 if (n < 2) return n;
 int x, y;
 x = cilk_spawn fib(n - 1);
 y = fib(n - 2);
 cilk_sync;
 return x + y;
}

PClang

Optimization passes struggle
to optimize around these
opaque runtime calls.

!25

Cilk Fibonacci code

Tapir: Task-based Asymmetric Parallel IR

!26

Cilk PClang LLVM -O3 LLVM CodeGen EXE

Cilk Plus/LLVM pipeline

Tapir/LLVM pipeline

Cilk PClang Tapir -O3 Tapir CodeGen EXE

Tapir adds three
instructions to LLVM
IR that encode fork-

join parallelism.

With few changes,
LLVM’s existing

optimizations and
analyses work on

parallel code.

Tutorial 2: Tapir Instructions

!27

❖ Go into tapir-tutorial/norm and run make tapir

❖ There are two files tapirpre.ll and tapirpost.ll

❖ Let’s take a look at tapirpre.ll and the source code
(norm.c)

Tutorial 2: Tapir Instructions

!28

❖ Go into tapir-tutorial/norm and run make tapir

❖ There are two files tapirpre.ll and tapirpost.ll

❖ Let’s take a look at tapirpre.ll and the source code
(norm.c)

❖ New instructions: detach, reattach, and sync

Tapir Semantics

!29

x = alloca()
 sr = llvm.syncregion.start()
br (n < 2), exit, if.else

detach within sr det, cont

x0 = fib(n - 1)
store x0, x
reattach within sr, cont

y = fib(n - 2)
sync within sr, syncd

rv = φ([n,entry],[add,cont])
return rv

entry

if.else

syncd

cont

exit

Tapir CFG❖ Tapir introduces three new
terminators into LLVM’s IR:
detach, reattach, sync, and an
intrinsic llvm.syncregion.start().

❖ The successors of a detach
terminator are the detached
block and continuation and
may run in parallel.

❖ Execution after a sync ensures
that all detached CFG’s in
scope have completed
execution.

x1 = load x
add = x1 + y
br exit

det

Parallel Loops in Tapir
sr = llvm.syncregion.start()
br (0 < n), head, return

i0 = φ([0,entry],[i1,inc])
detach within sr, body, inc

norm0 = norm(in, n)
out[i0] = in[i0] / norm0
reattach within sr, inc

i1 = i0 + 1
br (i1 < n), head, exit

sync within sr, return

entry

head

body

inc

exit

void normalize(double *restrict out,
 const double *restrict in,
 int n) {
 cilk_for (int i = 0; i < n; ++i)
 out[i] = in[i] / norm(in, n);
}

Parallel loop resembles a serial
loop with a detached body.

!30

The sync waits on a dynamic
set of detached sub-CFG’s.

ret voidreturn

Tutorial 2: Tapir Instructions

!31

❖ As expected, in Tapir post, the call to magnitude is
moved outside of the loop.

❖ Let’s get a closer look: cd tapir-tutorial/licm

❖ Run make

❖ What is happening?

❖ We can also look at tapir-tutorial/norm at the fast and
slow versions (going through tapir, but electing to not
run optimizations until after lowered to runtime calls)

How does this work?

!32

Intuitively, much of the compiler can reason about a Tapir CFG
as a minor change to that CFG’s serial elision.

Many parts of the
compiler can apply
standard implicit

assumptions of the
CFG to this block.

det

x = alloca()
 sr = llvm.syncregion.start()
br (n < 2), exit, if.else

detach within sr det, cont

x0 = fib(n - 1)
store x0, x
reattach within sr, cont

y = fib(n - 2)
sync within sr, syncd

rv = φ([n,entry],[add,cont])
return rv

entry

if.else

syncd

cont

exit

x1 = load x
add = x1 + y
br exit

Case Study: Common Subexpression Elimination

entry

cont

det

❖ CSE “just works.”
❖ Finding duplicate

expressions and
condensing them at their
lowest common ancestor
works fine for detach/
reattach.

void query(int n) {
 int x = detach
 { search(0,n/2); }
 int y = search(n/2,n);
 sync;
 return x + y;
}

x = alloca()

detach det, cont

div = n / 2
x0 = search(0,div)
store x0, x
reattach cont

div2 = n / 2
y = search(div2,n)
sync
x1 = load x
add = x1 + y
return add
add = x + y
return add

!33

Case Study: Common Subexpression Elimination

entry

cont

det

❖ CSE “just works.”
❖ Finding duplicate

expressions and
condensing them at their
lowest common ancestor
works fine for detach/
reattach.

void query(int n) {
 int x = detach
 { search(0,n/2); }
 int y = search(n/2,n);
 sync;
 return x + y;
}

x = alloca()
div = n / 2
detach within sr det, cont

x0 = search(0,div)
store x0, x
reattach within sr cont

y = search(div,n)
sync within sr
x1 = load x
add = x1 + y
return add
add = x + y
return add

!34

Case Study: Parallel Tail-Recursion Elimination

entry

cont

det

❖ A minor modification
allows TRE to run on
parallel code.

❖ Ignore sync’s before a
recursive call and add
sync’s before intermediate
returns.

void qsort(int* begin, int* end) {
 if (begin == end) return;
 int* mid = partition(start, end);
 swap(end, mid);
 cilk_spawn qsort(begin, mid);
 qsort(mid, end);
 cilk_sync;
}

mid = partition(start,end)
swap(end,mid)
detach det, cont

return

qsort(begin,mid)
reattach cont

qsort(mid,end)
sync

end

part

br (begin == end), end, part

Case Study: Parallel Tail-Recursion Elimination

entry

cont

det

mid = partition(start,end)
swap(end,mid)
detach det, cont

return

qsort(begin,mid)
reattach cont

qsort(mid,end)
sync

end

part

br (begin == end), end, part entry

cont

det

mid = partition(start,end)
swap(end,mid)
detach det, cont

sync
return

qsort(begin,mid)
reattach cont

br entry

end

part

br (begin ==

Compiler Analyses and Optimizations

What did we do to adapt existing analyses and
optimizations?

❖ Dominator analysis: no change

❖ Common-subexpression elimination: no change

❖ Loop-invariant-code motion: 25-line change

❖ Tail-recursion elimination: 68-line change

!37!37

Suite Benchmark Description
Cilk Cholesky Cholesky decomposition

FFT Fast Fourier transform
NQueens n-Queens solver

QSort Hoare quicksort
RectMul Rectangular matrix multiplication
Strassen Strassen matrix multiplication

Intel AvgFilter Averaging filter on an image
Mandel Mandelbrot set computation

PBBS CHull Convex hull
detBFS BFS, deterministic algorithm
incMIS MIS, incremental algorithm
incST Spanning tree, incremental algorithm

kdTree Performance test of a parallel k-d tree
ndBFS BFS, nondeterministic algorithm
ndMIS MIS, nondeterministic algorithm
ndST Spanning tree, nondeterministic algorithm

parallelSF Spanning-forest computation
pRange Compute ranges on a parallel suffix array

radixSort Radix sort
SpMV Sparse matrix-vector multiplication

Work-Efficiency Improvement

Test machine: Amazon AWS c4.8xlarge, 2.9 GHz, 60 GiB DRAM

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TS
T1

Reference Tapir/LLVM

Ideal
efficiency

Decreasing difference between Tapir/LLVM and Reference

!39

Same as Tapir/LLVM, but the front end handles
parallel language constructs the traditional way.

Parallel-Specific Optimizations

To ensure reasonable performance, parallel
frameworks implement parallel-specific optimizations

!40

Example Opt: Coarsening
❖ Combine detached statements to overcome the overhead

of running in parallel

void scale(double *restrict A, double s, int n) {
 parallel_for (int i = 0; i < n; i++) {
 A[i] *= s;
} }

void scale(double *restrict A, double s, int n) {
 parallel_for (int i = 0; i < n; i+=4) {
 for (int i2 = 0; i2 < 4; i2++) {
 A[i+i2] *= s;
} } }

!41

Example Opt: Coarsening
❖ Combine detached statements to overcome the overhead

of running in parallel

void scale(double *restrict A, double s, int n) {
 parallel_for (int i = 0; i < n; i++) {
 A[i] *= s;
} }

void scale(double *restrict A, double s, int n) {
 parallel_for (int i = 0; i < n; i+=4) {
 for (int i2 = 0; i2 < 4; i2++) {
 A[i+i2] *= s;
} } }

~4x
!42

Example Optimization: Scheduling
❖ Existing code written in parallel frameworks can leverage polyhedral

optimizations such as loop fusion or tiling with no extra effort

void add(double * A, double * B, double * C, int n) {
 parallel_for (int i = 0; i < n; i++) {
 A[i] += B[i];
 }
 parallel_for (int i = 0; i < n; i++) {
 A[i] += C[i];
 }
}

void add(double * A, double * B, double * C, int n) {
 parallel_for (int i = 0; i < n; i++) {
 A[i] += B[i];
 A[i] += C[i];
 }
}

Example Optimization: Scheduling
❖ Existing code written in parallel frameworks can leverage polyhedral

optimizations such as loop fusion or tiling with no extra effort

void add(double * A, double * B, double * C, int n) {
 parallel_for (int i = 0; i < n; i++) {
 A[i] += B[i];
 }
 parallel_for (int i = 0; i < n; i++) {
 A[i] += C[i];
 }
}

void add(double * A, double * B, double * C, int n) {
 parallel_for (int i = 0; i < n; i++) {
 A[i] += B[i];
 A[i] += C[i];
 }
}

~2x

Example Opt: Task Elimination
❖ If you have a detached task immediately followed by a

sync, remove the detach.

void foo() {
 detach bar();
 detach baz();
 sync;
}

void foo() {
 detach bar();
 baz();
 sync;
}

Sounds trivial, but especially useful for OpenMP!

!45

Example Opt: Task Elimination
void fib(int n) {
 if (n < 2) return n;
 int x, y;
 #pragma omp task shared(x)
 x = fib(n-1);
 #pragma omp task shared(y)
 y = fib(n-2);
 #pragma omp taskwait
 return x+y;
}

Linguistically OpenMP tasks
encourages users to write code
that needs this optimization!

!46

Case Study: Task Elimination
Fib Runtime

No Opt

Task Elim

Time (s), less is better

0 0.3 0.6 0.9 1.2

!47

Case Study: Task Elimination
Fib Runtime

No Opt

Task Elim

Time (s), less is better

0 0.3 0.6 0.9 1.2

~3x
!48

Parallel Optimizations Today
❖ Every parallel framework today is independent,

requiring large amounts of code duplication.  

❖ Duplication from framework to framework  

❖ Duplication from low level (i.e. LICM in LLVM) to high
level

!49

Parallel Pipeline Today

Cilk Frontend Halide
Frontend

Halide Parallel
Optimizations
(scheduling)

Weld
Frontend

Weld Parallel
Optimizations,

LICM

Halide
Runtime

OpenMP
Frontend

LLVM w/
Halide

Runtime Calls

LLVM w/
Weld Runtime

Calls

Weld Runtime

OMP Parallel
Optimizations

(strip mine)
LLVM w/
OpenMP

Runtime Calls
OpenMP
Runtime

Cilk Parallel
Optimizations
(shrink wrap)

LLVM w/ 
Cilk Runtime

Calls

Cilk Runtime

!50

Rhino: The Parallel Compiler Dream

Common  
Parallel

Optimizations

❖ Tapir is a nice way of representing and
working with parallel programs

❖ Use Tapir as a common parallel
intermediate representation for various
parallel frontends and backends

❖ Benefits

❖ Enable cross-framework compilation

❖ Have one set of common parallel
optimizations that can be shared by all

❖ Tools for one can be used by all

Multiple Parallel
“Frontends”

Multiple Parallel
“Backends”

!51

Rhino: The Parallel Compiler Dream

Tapir/LLVM
Common Parallel

Optimizations

Cilk Runtime OpenMP
Runtime PTX ISA

Cilk OpenMP CUDA Halide Weld

Polly

!52

Rhino: The Parallel Compiler Dream

Cilk Runtime OpenMP
Runtime PTX ISA

Cilk OpenMP CUDA Halide Weld

Completely Done

Partially Done

Tapir/LLVM
Common Parallel

Optimizations Polly

!53

Parallel Runtime Choice

Examples from Barcelona OpenMP benchmark suite
!54

Parallel Runtime Choice

Examples from Barcelona OpenMP benchmark suite
!55

How to Optimize YOUR Parallel Code

!56

Tapir/LLVM pipeline

Cilk PClang Tapir -O3 Tapir CodeGen EXE

Your Code
Lower to

Tapir
Your

Runtime
Calls

Lower to
Tapir

❖ To connect to Tapir, you need to do one or two things:

❖ Modify your frontend to emit Tapir instructions when emitting
LLVM

❖ Add a tapirTarget that will lower tapir instructions to your
runtime calls

Adding a Tapir Frontend
❖ Represent the parallelism in your program using

detach’ed CFG’s and dependencies using sync
instructions / regions (a sync instruction synchronizes
all the tasks in the region)

❖ Let’s look at how to lower a parallel for loop from
Halide

Put the body of
the loop in the
detach

Not shown
here, but
reattach
at end of task in
codegen

Join all the
tasks together
at the end

Adding a Tapir Backend
❖ Three stages / options for lowering: Polly SCoP-based,

loop-based, task based

❖ Higher level stages will run before lower level (i.e. you
can create tasks during loop-based lowering, which will
be lowered later)

Building A Backend

Building A Backend

❖ Don’t need to implement pieces we don’t need

❖ Our “backend” doesn’t require special modification of
functions, main, or handles loop differently (though it
could if we desired)

Building A Backend

❖ Don’t need to implement pieces we don’t need

❖ Our “backend” doesn’t require special modification of
functions, main, or handles loop differently (though it
could if we desired)

!63

Outline task

Ignore previous
task

Call task with
runtime rather
than direct call

Building A Backend

❖ Our sample backend simply calls a syncronize
instruction, with the local function pointer (which is
perhaps used to modify a structure of tasks in the
function)

Building A Backend

❖ The number of workers is used for the default loop
processing to coarsen base cases

❖ In our sample backend this is a simple runtime call

Building A Backend
❖ That’s it!

❖ All together (including the header) ~150 LOC to
implement a backend

❖ We can take advantage of all the Tapir optimizations
and we automatically have frontend language (Cilk,
OpenMP, etc) that compiles to Tapir as valid programs /
benchmarks!

Building A Backend

Tutorial 3: Shared Tools

!68

❖ Tools built for one framework can be used by any
framework that uses Tapir

❖ Let’s get a look at one tool, a race detector: cd tapir-
tutorial/san

❖ Useful for detecting bugs in code, but ALSO for bugs in
your frontend/backend (say accidentally making a
private variable public)

Takeaways
❖ With little modification, the compiler can do a lot of

things to make your parallel programs faster

❖ Run (serial) optimizations on parallel code

❖ Build and share parallel optimizations and tools

❖ Mix-and-match parallel runtimes

❖ Ongoing development (bug fixes, new optimizations, etc).

❖ Available on GitHub!  
https://github.com/wsmoses/Tapir-LLVM.git

!69

https://github.com/wsmoses/Tapir-LLVM.git

Backup Slides!

!70

Obstacle
❖ When designing parallel optimization passes, we ran into the

issue where we couldn’t represent the optimized code inside
of Tapir!

void B() {
 detach B1();
 B2();
 sync;
}

void main() {
 detach A();
 B();
 C();
 sync;
}

Inlining
void main() {
 detach A();
 detach B1();
 B2();
 sync;
 C();
 sync;
}

A is parallel to C A must execute before C

Obstacle

❖ Tapir assumes detaches/syncs (or specifically
detaches/syncs) are scoped to a function, whereas we
need something more precise.

❖ How much more precise?

❖ Provide a sync to individual detaches?

❖ Provide a sync to groups of detaches?

Idea 1: Individualized Sync
void main() {
 a = detach A();
 b = detach B1();
 B2();
 sync a;
 C();
 sync b;
}

❖ Permit synchronization of
specific parallel statements

❖ Most general model

Idea 1: Individualized Sync
f = detach foo();
ø = {}

for (int i = 0; i < n; ++i) {
 γ0 = phi [(ø, entry), (γ1, loop)]
 a = detach A(i);
 γ1 = union [γ0, a]
}
γ2 = phi [(ø, entry), (γ1, loop)]

sync γ2;

bar();

❖ Representing arbitrary sets to
sync dramatically increases
complexity

❖ Generality of model restricts
possible runtimes

❖ Harder to optimize!
(Previously could assume
that a detached statement no
longer can alias after a sync)  

Idea 2: Scoped Sync
❖ Represent parallelism in nested parallel regions

❖ A sync now acts on all detaches in that region

❖ Doesn’t change runtime compatibility

❖ Maintain guarantee that no detaches (now in the region)
continue after a sync

❖ This implies that all parallel optimizations developed
for vanilla Tapir work, except using a parallel region
scope instead of function scope

Idea 2: Individualized Sync

void main() {

 detach A();

 parallel_region {
 detach B1();
 B2();
 sync;
 }

 C();
 sync;
}

%r1 = call llvm.region_start()
detach in r1, det1, cont1

call @A();
reattach in r1, cont1

%r2 = call llvm.region_start()
detach in r2, det2, cont2

call @B1();
reattach in r2, cont2

entry

det1
cont1

cont2

call @B2();
sync in r2
call @C();
sync in r1

det2

Maintaining Correctness
Problem: How does the compiler
ensure that code motion does not
introduce a determinacy race into
otherwise race-free code?

x = alloca()
br (n < 2), exit, if.else

detach det, cont

x0 = fib(n - 1)
store x0, x
reattach cont

y = fib(n - 2)
sync
x1 = load x
add = x1 + y
br exit

rv = φ([n,entry],[add,cont])
return rv

entry

if.else

cont

exit

Maintaining Correctness
Problem: How does the compiler
ensure that code motion does not
introduce a determinacy race into
otherwise race-free code?
● It suffices to consider moving

memory operations around each
new instruction.

x = alloca()
br (n < 2), exit, if.else

detach det, cont

x0 = fib(n - 1)
store x0, x
reattach cont

y = fib(n - 2)
sync
x1 = load x
add = x1 + y
br exit

rv = φ([n,entry],[add,cont])
return rv

entry

if.else

cont

exit

Maintaining Correctness
Problem: How does the compiler
ensure that code motion does not
introduce a determinacy race into
otherwise race-free code?
● It suffices to consider moving

memory operations around each
new instruction.

● Moving code above a detach or
below a sync serializes it and is
always valid.

x = alloca()
br (n < 2), exit, if.else

detach det, cont

x0 = fib(n - 1)
store x0, x
reattach cont

y = fib(n - 2)
sync
x1 = load x
add = x1 + y
br exit

rv = φ([n,entry],[add,cont])
return rv

entry

if.else

cont

exit

Maintaining Correctness
Problem: How does the compiler
ensure that code motion does not
introduce a determinacy race into
otherwise race-free code?
● It suffices to consider moving

memory operations around each
new instruction.

● Moving code above a detach or
below a sync serializes it and is
always valid.

● Other potential races are handled
by giving detach, reattach, and
sync appropriate attributes and by
slight modifications to mem2reg.

x = alloca()
br (n < 2), exit, if.else

detach det, cont

x0 = fib(n - 1)
store x0, x
reattach cont

y = fib(n - 2)
sync
x1 = load x
add = x1 + y
br exit

rv = φ([n,entry],[add,cont])
return rv

entry

if.else

cont

exit

Valid serial passes cannot create race bugs.

Most of LLVM’s existing serial passes “just work” on
parallel code.

