(Quantum Gomputing for the
Common Man

2’

William S. Moses

8.370 Project Presentations

Gl May 7, 2018
| N .
2 MIT

III

Why Quantum?

Moore’s Law

Connection Machine CM-5 Apple 13” MacBook Pro
* 60 GFLOPS on LINPACK * 70 GFLOPS on LINPACK

e $47 million in 1993 e $1500 in 2015

M()()I'@g S LE[W [M65, M75]

7

“The complexity for minimum
component costs has increased
at a rate of roughly a factor of
two per year.” [M65]

\.

~\

7

“The new slope might approximate
a doubling every two years, rather
than every year, by the end of the

\

/ Jdecade.” [M75]
/ Processor scaling trends

1e+05 -

Transistors
o
o
w

1e+01 -

1 1 1 1 1
1970 1980 1990 2000 2010
Date

00-Year Impact of Moore’s Law

More transistors means cheaper computing.

Moore’s Law is a printing press for processor cycles.

00-Year Impact of Moore’s Law

More transistors maa

gaber computing.

Moore’s Law Will End

Robert Colwell, chief architect for the Intel Pentium Pro, Pentium 11,

Pentium III, and Pentium 4 processors, and former director of the
Microsystems Technology Office at DARPA, said in 2013:

“For planning horizons, I pick 2020 as
the earliest date where I think we
could call [Moore’s Law]| dead.”

%”You can talk me into 2022.”]

Colwell

Why Must It End Now?

We're running out of atoms.

Silicon lattice

Silicon lattice constant:
0.543 nanometers

Intel Skylake processor, 2015 (5.43 angstroms)

Transistors are now

==

= Ml 25 atoms wide.
14 nanometer tran81st0rs

Won’
n'tQu
an
tum Computing S
ave

T'he Day?

0) 4 H A
0= : - |
H LA
0) 4 H ’ :
QFT= :
2
/7(":

i e
7l
Ua? H
. (,,"(12l s
<sou) (.‘,(2‘.’1:—1
A

Not Quite Yet...

* Not enough error-corrected qubits to run “heavy”
algorithms (though still plenty for doing interesting
things)

“ Lack of infrastructure for building and optimizing
quantum programs

* Hard to use quantum computing
for modern-day speedups

Qllbi[Counts [OCR16]

o The beSt We C an Qubit Projections versus Algorithm Requirements
hope from s

quantum et

computing in the 3
near future are | (- ShorRshi0ss
clever algorithms ... | Lo chomis i

" Classical Limit

on relatively few o)

° L
ubits =
20112012 2013 2014 2015 20162017 2018 2015 2020 2021 2022 2023 2024 2025 2026 2027 2028 20292030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041

Classical Infrastructure
def normalize(out, in):

. Normalize Vector
for i in range(len(in)): Algorithms —

| out[i] = in[i] / norm(in) |

High-level languages
def normalize(out, in):

= norm(in) Compiler
for 1 in range(len(in)):

out[i] = in[i] / n Classical architecture loop:

(memory, arithemetic %divq %rax, %rle
operations, control %inc %rbx
e operations, communication) %jne loop, %rbx, %r9
: . Hardware building
R blocks: gates, bits

VLSI circuits

Semiconductor
transistors

Classical Infrastructure

def normalize(out, in): _ Normalize Vector
for 1 in range(len(in); Algorithms —

out[i] = in[i] / norm(in)
High-level languages

def normalize(out, in):
= norm(in) Compiler
for i in range(len(in)):
out[i] = in[i] / n Classical architecture loop:
(memory, arithemetic %divqg %rax, %rie
operations, control %inc %rbx

operations, communication) %jne loop, %rbx, %r9

Hardware building
blocks: gates, bits

VLSI circuits

Semiconductor
transistors

Quantum Infrastructure [CFM17]

Algorithms

High-level languages

Classical compiler Quantum compiler

Classical
architecture ngntum
(control operations) architecture

. (QC gates, qubits,
Hardware building communication)
blocks (gates, bits)

Error-correction

VLSI circuits and control pulses

Underlying technology
(semiconductors,
trapped ions)

Semiconductor
transistors

Quantum Infrastructure (CFM17]

Algorithms

High-level languages

Classical compiler Quantum compiler

Classical
architecture Quantum

(control operations) architecture

(QC gates, qubits,

Hardware building communication)
blocks (gates, bits)

Error-correction

VLSI circuits and control pulses

Underlying technology
(semiconductors,
trapped ions)

Semiconductor
transistors

In Other Words,

® @ wn Decomposition exercise: 3-qu x Billy

C' & Secure https://Ims... 2 w O 5 [:

U =| [H(2).X(2),H(2),CNOT(1,2),Z(2),H(2),5(1),5(1),5(1),H(1),CNOT(0,1),H(1)] v

Graphical rendition of your circuit :

A |
T SHESHSHH

—{H P H

+—D

No need to build an optimized
cryptosystem with MI'Tx circuit builder

Contlicting Problems

* We need to build high-level primitives to help people
develop and code quantum algorithms

* Quantum programs need to make clever use ot few qubits
to run at all (seemingly requires low-level knowledge of
the quantum stack)

. Have a (classical) computer
optimize our program for us

Restof Talk

* Three quantum optimization success stories

* Quantum Register Allocation [leveraging classical CS]
* Quantum Time Evolution [leveraging physics]

* Quantum Scheduling

« Glimpse at some original research

(Quantum) Register Allocation

* Have few (physical or logical) qubits

“ Optimize an input program on n qubits to use as few

physical qubits as possible.

« Key insight: when a qubit is dead, it can be reused

Requires two registers

(Quantum) ReF%“ister Allocation
[SFCQ13]

« Classically equivalent to finding optimal graph coloring
on registers (NP-complete).

* For classical compilers, non-optimal heuristics are used.

0. e
A * ibmmapper 108 e & 2
30- | 4 qubiter 1 T ,.-:A o
® random A o —a—
+wpm ©dynprog
o “ wqubiter 4ibmmapper
25- \| 10-2- ® qubiter
A
a “random
Al “wpm
2.0- \ » 2o _o% _o__oo O L “wqubiter
N TN L3 W 5115 9E 1008 B
1 10—48' 7,,.—~"“?"”~—.:,:-—7-f’%,f—j"‘ U ‘7-7;‘?11__7;#
/N. e T — O —
"o M%MMMM -
1.0 | T UL - ey e . v L b tel qgec mod w qft grv ipea pea
Cost (~required qubits) relative to optimal Time to solve for allocation

(dynprog is optimal)

Chemistry Time Evolution mweria

1!
H— thqC;Cq o 5 Z %QTSC;C:;CTCS
pq

pqrs

Quantum chemistry problem has N non-commuting terms

Similar to PSET, performing each term on a small time step.

By taking advantage of certain properties present in the terms of the Hamiltonian, can

choose a better (interleaved) ordering. [Additional, less dramatic “fix” via perturbation
theory].

1E+1

r H20 Interleave and Diagonal Fix
1.E+0 X

— Interleaved, Diagonal Fix
"""" Interleaved, Original

, - - = Lexicographic, Diagonal Fix
LE3 1 S _ Lexicographic, Original

1.E-2

Error to Best

0 100 200 300 400 500 600
Trotter#

Quantum SChﬁdllliIlg (HPJHKBFCM15]

def bit H(x, y, 1i):
H(x[1], y[1], 1)

for 1 in range(N):
X(x[1], y[i])

for i in range(N):
bit H(x, y, i)

X(x[e], y[e])

X(x[N-11, y[N-11)

bit H(x[e], y[e])

Bi%_H(x[N—l], y[N-1])

“Quantum” programmer specifies gates (either directly
or via library functions) to execute in imperative
fashion.

“Classical” control flow (loops, if, etc) separates any
quantum operations. This example uses 2N quantum
cycles.

Unrolling all loops, the runtime can attempt (and here
succeed) in detecting the parallelism and coalese the X
operations to one quantum cycle — however, the bit_ H
operations still take N quantum cycles, as hindered by
classical function call.

Deciding when to do such inlining is a difficult
problem, as it can allow for dramatic quantum
performance gains, however, at the risk of exponentially
increasing code size.

Quantum SCh@dllliIlg (HPJHKBFCM15]

In 2015, Heckey et al introduced a set of optimization and analysis passes on
top of a serial classical compiler (LLVM) to perform some of this optimization.

In doing so they also introduced the Longest Path-First Scheduling (LPFS)
algorithm to reduce communication overhead and increase parallelism (such
as in the matter presented in prior slide).

They found a 3%-308% improvement.

New Research in (Q. Scheduling

In 2017, Schardl, Moses, and Leiserson,

were able to extend classical compiler Japir (B
infrastructure to natively support v = allloes()

e entry . .
(optimize and analyze) parallel ar < 2), @A, 1r.elss
programs through the use of new v
instructions called Tapir, to much - else@etach et Contj
benefit. 1

| N)
There has been success in using the x0 = fib(n = 1) y = fib(n = 2)
detl| store x0, x sync

x1 = load x

polyhedral model (a mechanism for s colnt

greatly optimizing code by considering Edd =.>t” vy

r exl
it as an iteration on a lattice) for - Y,
optimizing schedules with a given cost Y

model or by simply auto-tuning ie|rv = @0 entry1, radd, cont 1)
|[VZTGDMVAC1S]. return rv

New Research in (). Scheduling

In 2017, Schardl, Moses, and Leiserson,
were able to extend classical compiler
infrastructure to natively support
(optimize and analyze) parallel
programs through the use of new

instructions called Tapir, to much
benefit.

There has been success in using the
polyhedral model (a mechanism for
greatly optimizing code by considering
it as an iteration on a lattice) for
optimizing schedules with a given cost

model or by simply auto-tuning
[VZTGDMVACIS].

{s(i,j) |0<i<NAOLj <K}
Domain | {T(¢,7,k) |0 <i< N
AN<F<KAO<LKk< M}

Sequence
Filter{S(i,)}
Band{s(s,j) — (4,7)}
Filter{T(¢, j,k)}
Band{T(¢, j,k) — (i,7,k)}

Fuse S, T loops

{T(i,7,k) |0<i < NA ANOL< k< M}
Band [{S(Z’j) - (Z’J)}
{T(3,4,k) — (4,5)}
Sequence
Filter{S(7,7)}
Filter{T (7, 7, k)}
Band{T(3, j, k) — (k)}

) {s(i,7) |0<i< NAOLj<K}
Domaln[0<j<K

New Research in (Q. Scheduling

As some novel research for the class, I am presently working on using a
combination of Tapir (to allow for efficient representation and
optimization of the parallel aspects of the quantum operations) along
with the use of the polyhedral model to optimize scheduling.

Presently integrating of Tapir/Polly with ScaffCC (Quantum based
LLVM).

wsmoses / Tapir-LLVM epiqc / ScaffCC

<> Code Issues 11 Pull requests 4 Projec <> Code Issues 8 Pull requests 1 Projects 0

Tapir extension to LLVM for optimizing Parallel Programs Compilation, analysis and optimization framework for the Scaff

Conclusions

We need to develop new technologies to help mitigate the effects of
Moore’s Law ending

Quantum computing, while promising, isn’t yet ready for prime time.

We don’t have enough qubits to run large algorithms, yet require high-
level abstractions to allow regular programmers to use it.

It is crucial to quantum computing’s success in the near future to develop
systems that are able to automatically make quantum programs more
efficient (and thus help fit more abstract, yet less efficient quantum
programs into current hardware).

There have been a number of success stories applying work from across
both classical CS and physics to resolving this issue.

Yet, there is still a lot of work to be done!

